Deux ouvrages d'intérêt pour l'AFPC

- Algorithms and Ordering Heuristics for Distributed Constraint Satisfaction Problems par Mohamed Wahbi (cf.

DisCSP (Distributed Constraint Satisfaction Problem) is a general framework for solving distributed problems arising in Distributed Artificial Intelligence. A wide variety of problems in artificial intelligence are solved using the constraint satisfaction problem paradigm. However, there are several applications in multi-agent coordination that are of a distributed nature. In this type of application, the knowledge of the problem, i.e. variables and constraints, may be logically or geographically distributed among physical distributed agents. This distribution is mainly due to privacy and/or security requirements. Therefore, a distributed model allowing a decentralized solving process is more adequate to model and solve such kinds of problem. The distributed constraint satisfaction problem has such properties.

- Modeling and Optimization of Air Traffic par Daniel Delahaye et Stéphane Puechmorel (cf.

This book combines the research activities of the authors, both of whom are researchers at Ecole Nationale de l’Aviation Civile (French National School of Civil Aviation), and presents their findings from the last 15 years. Their work uses air transport as its focal point, within the realm of mathematical optimization, looking at real-life problems and theoretical models in tandem, and the challenges that accompany studying both approaches. The authors’ research is linked with the attempt to reduce air space congestion in Western Europe, USA and, increasingly, Asia. They do this through studying stochastic optimization (particularly artificial evolution), the sectorization of airspace, route distribution and take-off slots, and by modeling airspace congestion. Finally, the authors discuss their short, medium and long term research goals. They hope that their work, although related to air transport, will be applied to other fields, such is the transferable nature of mathematical optimization. At the same time, they intend to use other areas of research, such as approximation and statistics, to complement their continued inquiry in their own field.