
Louvain School of Engineering

Ph.D. Thesis

Hélène Verhaeghe

The extensional constraint

Advisors:
Prof. Pierre Schaus
Prof. Christophe Lecoutre

Jury Members:
Prof. Yves Deville

Prof. Claude-Guy Quimper
Prof. Jean-Charles Régin

Prof. Peter Van Roy

2021

Abstract

Extensional constraints are crucial in Constraint Programming. They
represent allowed combinations of values for a subset of variables (the
scope of the constraint) using extensional representation forms such as
tables (lists of tuples of constraint solutions) or MDDs (layered acyclic
directed graphs where each path represents a constraint solution). Such
extensional forms allow the modelization of virtually any kind of con-
straints.

This type of constraint is among the first ones available in constraint
solvers. A lot of progress has been made since the original design of the
first propagator of table constraints: advanced use of supports, sim-
ple tabular reduction, bitwise computations, reseting opperations, table
compression, and MDDs. The most recent algorithm prior to this the-
sis is Compact-Table. It advantageously uses a data structure called
reversible sparse bitsets to speed up the computations.

The work in this thesis initiates with Compact-Table. The goal is to
extend it to handle other kinds of extensional representation. The first
addressed representation is about compressed tables, i.e. tables contain-
ing tuples wich do not only contain single values but also simple unary
(∗, 6= v, ≤ v, ≥ v, ∈ S, 6∈ S) or binary (= x + v, 6= x + v, ≤ x + v,
≥ x + v) restrictions. One such compressed tuple allows representing
several classical ones. This led to the CT∗ and CTbs algorithms, handling
respectively short and basic smart tables. The second addressed issue
concerns negative tables, i.e. tables listing forbidden combinations of
values. This results in the CTneg and CT∗neg algorithms, handling respec-
tively negative and negative short tables. The third and last adaptation
addresses diagram structures, i.e. graphs such as MDDs or other layered
graphical structure. This led to the CD and CDbs algorithms, handling
respectively diagrams and basic smart diagrams.

Being able to use such diversity of representation helps to counter-

I

balance the main drawback of classical table representations, which is
their potentially exponential growth in size. Compressed tables, nega-
tive tables, and diagrams help reduce the memory consumption (storage
size) required to store an equivalent representation.

II

Acknowledgements

Firstly, I would like to thank my advisors, Prof. Pierre Schaus and Prof.
Christophe Lecoutre, for their guidance during my thesis. They help me
grow into the researcher I’m now, guiding me, teaching me, allowing me
to research some of my own ideas, giving me some great opportunities,...
I am thankful to Prof. Yves Deville and Prof. Siegfried Nijssen, the
members of my thesis committee. I would also like to thank all the jury
members, Prof. Yves Deville, Prof. Peter Van Roy, Prof. Jean-Charles
Régin, and Prof. Claude-Guy Quimper, for their constructive insights,
which helped improve my thesis.

I am also grateful for all the researchers I have had the pleasure to
discuss with at conferences or/and work with on papers. I would also
thank the CP community for the great conference I had the pleasure to
attend.

I am extremely thankful to my friends and colleagues at the INGI
department for the great environment in which I had the chance to work.
More precisely, I would like to thank Vanessa M. and the secretary team
for all the logistic help they are bringing to everyone; John A., Gaël
A. and Ratheil H., who shared my office during these years; Guillaume
D., with whom I had had so much interesting whiteboard talks; the
members of the AiA group, for all the great time passed in conferences
and all the great games of Perudo; and, Charles T., Fabien D., Gorby
K., Mathieu J., and all the others for all the discussions during breaks,
card games, RPGs, anime nights, board games and other various social
activities.

Furthermore, many thanks to an understanding family and friends
that supported me in this effort. I also thank my parents for giving me
the opportunities and experiences that have made me who I am.

III

IV

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Contributions . 4

I Background 9

2 The Constraint Programming Paradigm 11

2.1 Introduction . 11

2.2 A Brief History . 12

2.3 What is CP? . 13

2.3.1 Modeling a Problem 14

2.3.2 Searching for a Solution 15

2.4 Components of a CP Solver 16

2.4.1 The Variables . 16

2.4.2 The Constraints Propagators 17

2.4.3 The Fix-Point Algorithm 18

2.4.4 The Search Algorithm 19

2.4.5 The State Restoration Mechanism 19

2.5 Conclusion . 20

3 Extensional Constraints 21

3.1 Introduction . 21

3.2 History of Extensional Constraints 22

3.2.1 Genesis of Constraints, Propagation, and Filtering 23

3.2.2 AC4 and the Support 23

3.2.3 GAC4 . 24

3.2.4 AC3bit and the First Bitwise Approaches 24

3.2.5 The Simple Tabular Reduction (STR) Family . . . 24

V

3.2.6 MDDC: Arrival of the MDD 25
3.2.7 ShortSTR2, SmartTable,... : The Arrival of Com-

pressed Tables . 26
3.2.8 STRNe: Introducing Negative Tables 28
3.2.9 GAC4R & MDD4R: Interest of Reseting 28
3.2.10 Compact-Table: The bitwise Computation Revo-

lution . 28
3.3 Conclusion . 34

4 About Sets and Reversible Structures 37
4.1 Introduction . 37
4.2 Sets . 37

4.2.1 Dense versus Sparse Implementation 38
4.2.2 Array versus Bitset Implementation 39

4.3 Reversibles Data Structures 40
4.4 Used Implementations . 41
4.5 Conclusion . 44

II Structures 51

5 Tables for Constraints 53
5.1 Introduction . 53
5.2 Definitions . 53

5.2.1 Positive and Negative Tables 54
5.2.2 Compressed Tables 55

5.3 CNF and DNF are Tables 57
5.4 The Compression Problem 59

5.4.1 Incompressibility of some Tables 59
5.4.2 Compression Algorithms 61

5.5 Conclusion . 69

6 Diagrams for Constraints 71
6.1 Introduction . 71
6.2 Ground Diagrams . 73

6.2.1 Multi-Valued Variable Diagrams (MVDs) 73
6.2.2 Multi-Valued Decision Diagrams (MDDs) 76
6.2.3 Semi Multi-Valued Decision Diagrams (sMDDs) . . 79
6.2.4 pReduce versus sReduce 82

6.3 Basic Smart Diagrams . 83
6.3.1 From Basic Smart Table to Basic Smart MVD . . . 83
6.3.2 From Diagram to Basic Smart Diagram 87
6.3.3 Comparison of the Different Transformations . . . 89

VI

6.4 Incompressibility of some Diagrams 89
6.5 Conclusion . 92

III Propagation Algorithms 93

7 Filtering Positive Smart Table Constraints 95
7.1 Introduction . 95
7.2 Adaptations to Compact-Table 98

7.2.1 CT∗: Handling Short Tables 98
7.2.2 Handling the 〈6= v〉 99
7.2.3 Handling 〈≥ v〉 and 〈≤ v〉 101
7.2.4 Handling 〈∈ S〉 . 104
7.2.5 The CTbs Algorithm 104
7.2.6 Handling Full Smart Elements 106

7.3 Integer Intervals . 108
7.4 Enforcing Bound Consistency with CT 109
7.5 Results . 109

7.5.1 Experiments Results with CT∗ 109
7.5.2 Experiments Results with CTbs 110

7.6 Conclusion . 112

8 Filtering Negative Smart Table Constraints 113
8.1 Introduction . 113
8.2 CTneg: CT for Negative Tables 115

8.2.1 The Update Phase 115
8.2.2 The Filtering Phase 115
8.2.3 GAC and Complexity 118

8.3 CT∗neg: Handling Negative Short Table 119
8.3.1 NP-Completeness of the Problem with Overlap-

ping Tuples . 119
8.3.2 The Update Phase 122
8.3.3 The Filtering Phase 122
8.3.4 GAC and Complexity 124

8.4 Results . 125
8.5 Conclusion . 127

9 Filtering Basic Smart Diagram Constraints 129
9.1 Introduction . 129
9.2 Compact-Diagram . 131

9.2.1 Data Structures . 131
9.2.2 The Update Phase 134
9.2.3 The Filtering Phase 137

VII

9.2.4 GAC and Complexity 138
9.3 Compact-Diagram for Basic Smart Diagrams 139

9.3.1 Simple Adaptation of CTbs 139
9.3.2 Optimized Version of CDbs 140

9.4 Results . 143
9.4.1 Experiments Results with CD 143
9.4.2 Experiments Results with CDbs 146

9.5 Conclusion . 148

IV Conclusion 151

10 Conclusion 153

VIII

Chapter 1

Introduction

It is nice to know that the computer understands the prob-
lem. But I would like to understand it too.

- Eugene Wigner

1.1 Introduction

Since a long time ago, mankind has sought efficiency in every task, from
the invention of the wheel to the sending off rockets to space. The defi-
nition of efficiency depends on the context but includes a wide range of
objectives such as decreasing the time taken by some actions, decreas-
ing the quantity of some raw material used, increasing the profits,...
generally while satisfying a set of constraints.

Optimality is defined as the most efficient way to do some tasks.
Intuitively, people have sought optimality leading to the earliest defi-
nitions of greedy algorithms. However, scientists did not wait for the
invention of computers to solve some optimality problems. In the 17th

century, Newton and Raphson designed the Newton–Raphson method,
which aims at finding the optimums of functions. During the 18th cen-
tury, Lagrange invented the relaxation method of Lagrangian multipli-
cators. However, applying such methods to complex problems was not
yet possible since every computation had to be done by hand.

Since the popularization of computers, and the non-stopping im-
provement of the hardware, automatized optimization has become more
accessible to anyone. These factors enter into the successive improve-
ments of optimization algorithms. All these improvements allowed to
tackle more complex problems with more and more variables and con-
straints; for example, the birth in 1947 of the simplex algorithm, which
aims to solve linear optimization problems.

1

Constraint Programming (CP) is a way to solve combinatorial op-
timization problems (problems dealing with finite domains) in an auto-
mated way. Typically, such problems are modeled using variables and
constraints. The model is then fed to a CP solver in order to exhibit
solutions.

This thesis is about one type of constraint available in CP solvers:
extensional constraints.

Let us define an example of such constraints using online product
configurators. Such software provides the user a list of attributes and
values for each of them. For example, the configurator of a laptop seller
(Fig. 1.1) will display attributes such as the size of the screen, the size,
and type of the internal disk, the language of the keyboard,... Values
are available for each attribute, such as 17’, 15’ or 13’ for the screen size
or 512 Gb, 1 Tb or 2 Tb for the disk size. The configurator also displays
all the possible items the user can buy, in our example, each available
computer. Each item corresponds to an attribution of one value to each
characteristic. E.g., the iPear 500 has a screen of 13’, with 512 Gb SSD,
the NVision 516 graphic card,... The user can interact with the config-
urator by selecting some values for some attributes. For each attribute,
the user can select a single value or a subset of the initially available
values. The configurator then reduces the available options by removing
the items not valid anymore regarding the attributes’ remaining values.
The software also removes some values from other attributes when they

Figure 1.1: Screenshot of the online product configurator of Dell (www.
dell.com).

2

www.dell.com
www.dell.com

are no longer part of a possible combination. For example, if a user
selects 17’ as screen size, the configurator removes the ones with other
screen sizes but may also remove the 128 Gb SSD option, for example,
as no computers with 17’ are equipped with such a disk.

Formally, attributes correspond to the variables involved in the con-
straints. Each variable has some values possible, corresponding to each
of the values of the related attributes. The set of possible items is called
the table. Each item is called a tuple of the table. The action of remov-
ing items after selecting a subset of valid values is called updating the
table. The action of removing some values because an item is not in the
table anymore is called filtering. This type of constraint is called a table
constraint, which is a kind of extensional constraint.

On a more global view, extensional constraints are among the oldest
and most generic families of constraints in the Constraint Programming
paradigm. It links some variables to an explicit definition of the solution
of the constraint. The two most known representations are the table
and the multi-valued decision diagram (abbreviated MDD). In the table
constraint version, the constraint solutions are listed in a simple table,
each row corresponding to one solution. In the MDD constraint version,
solutions are represented as a multi-valued decision diagram where each
path corresponds to a solution.

However, in many cases, extensional constraints can have many en-
tries in the table (its oldest version). Some other constructs were de-
signed to reduce the size of the input. Such constructs are the addition of
unary and even binary compression elements as values of the tables (for
example, 〈∗〉, 〈6= v〉,...), using complementary tables (i.e. the negative
tables), using diagrams.

A new algorithm, called Compact-Table, was introduced in 2015
[DHL+16]. This table-oriented propagator for extensional constraints
uses bitwise operations to speed up the propagation. Since this new
algorithm only helps the regular positive table, it was decided to adapt
it to some of the extensional constraint variations.

The work done can be summarized by the schema in Fig. 1.2. All
of the work achieved in this thesis starts from the Compact-Table algo-
rithm (CT). It uses bitwise operations through a particular data structure
called the reversible sparse bitset. This structure helps speeding up the
computation in comparison with previous table constraint algorithms.
This algorithm was extended following three orthogonal directions. The
first one extends the algorithm to handle tables using compression ele-
ments such as 〈∗〉, 〈≤ v〉,... leading to the CT∗ and CTbs algorithms. The
second one extends the algorithm to handle negative tables (i.e. com-
plement tables), leading to the CTneg and CT∗neg algorithms. The last

3

one extends the algorithm to handle another representation of exten-
sional constraint, the diagram (the most known type of diagram being
the Multi-Valued Decision Diagram, i.e. the MDD) leading to the CD and
CDbs algorithms.

This thesis is organized into four parts. The first part explains the
state of the art. It is composed of three chapters. The first one (Chap. 2)
introduces the Constraint Programming paradigm’s bases. The second
(Chap. 3) presents the history of extensional constraints. The last one
(Chap. 4) details data structures widely used in this thesis. The second
part explains in detail the two input structures possible in the exten-
sional constraint, namely the table (Chap. 5) and the diagram (Chap. 6).
The last part details the various propagators designed regarding the
three main axes, with one chapter per ax. First, the positive table with
the addition of compression (Chap. 7), then the negative tables (Chap. 8)
and finally the diagrams (Chap. 9).

1.2 Contributions

The work in this thesis led to the publication of several papers in various
conferences. The contributions are:

– A first conference paper at AAAI17 on the extension of Compact-
Table to short tables, negative tables, and negative short tables.

CT CT∗ CTbs

CTneg CT∗neg

CD CDbs

add ∗

add 6= v,
≤ v,
≥ v, ∈
{v, w, ...}

neg
at

ive

add ∗

neg
at

ive

g
ra

p
h

add ∗, 6= v, ≤ v, ≥ v, ∈ {v, w, ...}

g
ra

p
h

State of art New algorithm

Figure 1.2: Links between the various algorithms developped during this
thesis.

4

A summary of this paper was also accepted at JFPC17.

– Hélène Verhaeghe, Christophe Lecoutre, and Pierre Schaus.
Extending compact-table to negative and short tables. In
Proceedings of the Thirty-First AAAI Conference on Artifi-
cial Intelligence and the Twenty-Ninth Innovative Applica-
tions of Artificial Intelligence Conference, volume 5, 2017

– Hélène Verhaeghe, Christophe Lecoutre, and Pierre Schaus.
Extension de compact-table aux tables négatives et concises.
In Treizièmes journées Francophones de Programmation par
Contraintes (JFPC17), 2017

– A second conference paper at CP2017 on the extension of
Compact-Table to basic smart tables. A summary of this paper
was also accepted at JFPC18.

– Hélène Verhaeghe, Christophe Lecoutre, Yves Deville, and
Pierre Schaus. Extending compact-table to basic smart ta-
bles. In International Conference on Principles and Practice
of Constraint Programming, pages 297–307. Springer, 2017

– Hélène Verhaeghe, Christophe Lecoutre, Yves Deville, and
Pierre Schaus. Extension de compact-table aux tables simple-
ment intelligentes. In Quatorzièmes journées Francophones
de Programmation par Contraintes (JFPC18), 2018

– A third conference paper at IJCAI18 on Compact-Diagram, the
adaptation of Compact-Table to MDD (and layered graph in gen-
eral). A summary of this paper was also accepted at JFPC19.

– Hélène Verhaeghe, Christophe Lecoutre, and Pierre Schaus.
Compact-mdd: Efficiently filtering (s) mdd constraints with
reversible sparse bitsets. 2018

– Hélène Verhaeghe, Christophe Lecoutre, and Pierre Schaus.
Compact-diagram propagateur efficace pour la contrainte
(s)MDD. In Quinzièmes journées Francophones de Program-
mation par Contraintes (JFPC19), 2019

– A fourth conference paper at CPAIOR19 on Compact-Diagram to
basic smart MVDs. A summary of this paper was also accepted
at JFPC19.

– Hélène Verhaeghe, Christophe Lecoutre, and Pierre Schaus.
Extending compact-diagram to basic smart multi-valued vari-
able diagrams. 2019

5

– Hélène Verhaeghe, Christophe Lecoutre, and Pierre Schaus.
Extension de compact-diagram aux smart MVD. In
Quinzièmes journées Francophones de Programmation par
Contraintes (JFPC19), 2019

The contributions also include the open-source implementation of
the algorithms described in the papers in OscaR [Tea].

Besides, but not directly related to this thesis’s work, a fifth paper
was submitted to CP2019 on learning optimal decision trees using CP.
This paper was accepted to the journal fast track of the conference. A
two-page summary of this paper was also accepted at BENELEARN19.
We also were invited to present a 4-page extended abstract to the sister
conference track at IJCAI20. A summary of this paper was also accepted
at JFPC21.

– Hélène Verhaeghe, Siegfried Nijssen, Gilles Pesant, Claude-Guy
Quimper, and Pierre Schaus. Learning optimal decision trees using
constraint programming. In The 25th International Conference
on Principles and Practice of Constraint Programming (CP2019),
2019

– Hélène Verhaeghe, Siegfried Nijssen, Gilles Pesant, Claude-Guy
Quimper, and Pierre Schaus. Learning optimal decision trees us-
ing constraint programming. In Katrien Beuls, Bart Bogaerts,
Gianluca Bontempi, Pierre Geurts, Nick Harley, Bertrand Lebi-
chot, Tom Lenaerts, Gilles Louppe, and Paul Van Eecke, editors,
Proceedings of the 31st Benelux Conference on Artificial Intelli-
gence (BNAIC 2019) and the 28th Belgian Dutch Conference on
Machine Learning (Benelearn 2019), Brussels, Belgium, November
6-8, 2019, volume 2491 of CEUR Workshop Proceedings. CEUR-
WS.org, 2019

– Hélène Verhaeghe, Siegfried Nijssen, Gilles Pesant, Claude-Guy
Quimper, and Pierre Schaus. Learning optimal decision trees
using constraint programming (extended abstract). In Christian
Bessiere, editor, Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020, pages
4765–4769. ijcai.org, 2020

– Hélène Verhaeghe, Siegfried Nijssen, Gilles Pesant, Claude-Guy
Quimper, and Pierre Schaus. Learning optimal decision trees using
constraint programming. pages 1–25. Springer, 2020

– Hélène Verhaeghe, Siegfried Nijssen, Gilles Pesant, Claude-Guy
Quimper, and Pierre Schaus. Apprentissage d’arbres de décision

6

optimaux grâce à la programmation par contraintes. In Seizièmes
journées Francophones de Programmation par Contraintes
(JFPC21), 2021

7

8

Part I

Background

9

Chapter 2

The Constraint
Programming Paradigm

Computer science inverts the normal. In normal science,
you’re given a world, and your job is to find out the rules.
In computer science, you give the computer the rules, and it
creates the world.

- Alan Kay

2.1 Introduction

This chapter gives an introduction to the main concepts behind the
Constraint Programming (CP) paradigm.

CP is a declarative way to solve combinatorial optimization prob-
lems. The user’s job is to describe what should be a solution and not
how to find it. The solver is let to decide how to solve the problem. Due
to that, it is often considered close to the holy grail of solving problems
[Fre96].

This paradigm has also proven its use over other techniques in several
domains such as scheduling [RP97, BLPN12, Lab03, LM12, LRSV18]
and data mining [DRGN10, Gun15, SAG17]. Lately, a growing inter-
est has appeared for the use of Constraint Programming in order to
solve machine learning problems [DRGN10, ANS20, BOP20, VNP+20a,
CMR+20].

More can be learned on CP by reading [Apt03], [RVBW06] or
[Lau18].

11

1965 1970 1975 1980 1985 1990 1995

Sk
et

ch
pa

d

Im
ag

e
Lab

el
in

g

A
lic

e
D
efi

ni
tio

n
of

C
P

C
H
IP

, IL
O
G

so
lv
er

C
A
L

Pro
lo
g

II
I

C
LP(R

)

C
P’9

5

Figure 2.1: Chronology of the big milestones leading to Constraint Pro-
gramming.

2.2 A Brief History

The Constraint Programming paradigm finds its early roots in the six-
ties where Sketchpad [Sut64], the ancestor of modern computer-aided
design programs, was designed by Sutherland during his Ph.D. thesis.
This program is considered as one of the earliest constraint systems.
The reasoning is based on a relaxation method, starting from a given
assignment of values to variables, constraints are then used to adapt
these values to be respected.

Waltz [Wal72] was the first to use a domain reduction method in
his image labeling software in 1972. His software is the first to have
variables, domains, and constraints to eliminate the domains’ values.

A bit later, in 1978, ALICE [Lau78] is introduced by Lauriere. He
defined it as ”A language and a program for stating and solving combina-
torial problems”. This language is the first to introduce the AllDifferent
constraint [vH01].

In 1980, Steel obtained his Ph.D. thesis with his dissertation called
”The definition and implementation of a computer programming lan-
guage based on constraints” [SJ80], defining formally for the first time
what is Constraint Programming.

During the eighties and the nineties, several researches around the
world were made on Constraint Programming and several frameworks
and languages appeared: in Japan, CAL [ASS+88], GDCC [THS+92]
and cuProlog [Tsu92], in France, Prolog III [Col90], in Europe, CHIP
[DSVH87] and in Australia, CLP(R) [JMSY92].

As Constraint Programming begins to solve practical problems
such as scheduling problems, commercial usage begins to appear in
the nineties with commercial systems such as Charme, CHIP V4, and
ILOG solver.

In the meantime, in 1995, the first edition of the International Con-
ference on Principles and Practice of Constraint Programming was held

12

in France (Fig.2.2).

2.3 What is CP?

Constraint Programming is a paradigm which solves combinatorial prob-
lems such as constraint satisfaction problem (CSP) (Def. 2.1) and con-
straint optimization problem (COP) (Def. 2.2).

Definition 2.1. Constraint Satisfaction Problem (conventionnal
definition as given p.16 of [RVBW06])
A Constraint Satisfaction Problem (CSP) is a triple P = 〈X,D,C〉
where X is an n-tuple of variables X = 〈x1, x2, . . . , xn〉, D is a corre-
sponding n-tuple of domains D = 〈D1, D2, . . . , Dn〉 such that xi ∈ Di

and C is a e-tuple of constraint C = 〈C1, C2, . . . , Ce〉. A constraint
Cj is a pair 〈RSj , Sj〉 where RSj is a relation on the variables in Si =
scope(Ci). In other words, Ri is a subset of the Cartesian product of the
domains of the variables in Si.

Definition 2.2. Constraint Optimization Problem
A Constraint Optimization Problem (COP) is a CSP with a cost function
over the variables that must be minimized or maximized.

Figure 2.2: Poster of the first edition of the International Conference
on Principles and Practice of Constraint Programming (CP’95, Cassis,
France).

13

We often represent the variables and constraints as a constraint net-
work (CN). Each variable x is represented by a node in this network and
each constraint c is represented by an arc (or hyperarc) between scp(c)
nodes.

To solve such a problem with a CP solver, one must first model the
problem using variables, domains, and constraints. Secondly, a search
has to be chosen to find solutions. The CP paradigm is therefore often
summarized by the following equation:

CP = MODEL+ SEARCH

2.3.1 Modeling a Problem

A model is a high-level formulation of a problem. It formulates a problem
in terms of variables, domains, and constraints involving some of the
variables. A domain is a finite set of possible values associated to each
variable. A constraint is a restriction of the associations of values allowed
for the variables involved. The model is a declarative expression of the
solutions to the problem. Several formulations can exist for the same
problem. A solution for a problem consists in assigning each variable
with a value from its domains, while respecting the constraints.

Let us take the example of the n-queens problem. Given a chessboard
of size n by n, how should n queens be placed such that none of them
can attack each other. As a reminder, two queens can attack each other
if they are on the same line, column, or diagonal.

A first model consists of having one variable by square of the board
(xij , with i, j ∈ {1, 2, . . . , n}); each of them having as domain {0, 1}, 0
meaning the square is empty, 1 meaning it contains a queen. For each
line, at most 1 queen can be placed on it. This is modeled by a constraint
atMost, on each variable forming a line, ensuring the maximum number
of occurrences of the value 1 is 1. The same is done for each of the
columns and diagonals.

A second model is built with n variables, one by column (xi, with
i ∈ {1, 2, . . . , n}); each of them represents one queen’s position (i.e.
which line is it on) that belongs to this column. The domain of these
variables is {1, 2, . . . , n}. An AllDifferent constraint is added between all
the variables to ensure a given line number can be assigned to a single
queen. For the diagonals, the following arithmetic constraints ensure
there are no two queens on the same diagonal.

|xj − xi| 6= j − i ∀i, j ∈ {1, 2, . . . , n}, i < j

The efficiency of a model depends on various factors, such as the

14

number of variables and constraints (each additional variable may in-
crease the depth of the search tree), the constraints used (some con-
straints are more efficient than others), if the model is used in isolation
or is part of a bigger problem.

2.3.2 Searching for a Solution

The second part of the paradigm is about the search. The search works
as a depth-first exploration of the search space. This is done by devel-
oping a search tree (i.e. a tree representation of the search space). The
shape of the search tree is also given by the user. Generic ones can be
used. A more complex search tree based on known heuristics can also
be used depending on what the user knows about its problem.

The search tree is composed of nodes and leaves. Leaves contain a
state where every variable has been assigned to one value. The nodes
contain a decision. Two decisions are mainly used: the binary (Fig. 2.3a)
and the non-binary (Fig. 2.3b). The binary node selects a variable and
a value from its domain. In the first branch, the value is assigned to the
variable. In the second one, the value is removed from the domain. The
non-binary node selects a variable. It has one branch per value in the
domain. Each of these branches assigns the value to the variable.

Some search trees defined as static are fully known from the begin-
ning. Some are dynamic, and their building depends on the evolution of
the domains during the search. An example of a static search tree is the
lexical one. The variables are ordered at the beginning. At a given depth
i, the ith variable of the sequence is selected and a non-binary node is
done. An example of a dynamic search tree is the first fail one. The
variable with the smallest current remaining domain is selected, and a
binary node is done using one of the remaining values from the domain.

Generally, a smaller search tree (its size is the number of nodes and
leaves) allows a more efficient search since fewer nodes have to be ex-

x = v x 6= v

(a) binary search node

x = v1 x = v2 x = v3

(b) non-binary search node

Figure 2.3: Example of the different search nodes.

15

plored. Figure 2.4 shows how starting with variables with smaller do-
mains generally helps reduce the size of the search tree. The first sub-
tree (Fig. 2.4b) has 13 nodes/leaves. The second (Fig. 2.4a) has 11
nodes/leaves.

2.4 Components of a CP Solver

The solver works with five main components: the variables, the con-
straints propagators, the fix-point algorithm, the search algorithm, and
the state restoration mechanism.

2.4.1 The Variables

Each variable has an associated domain. The solver can ask them which
values remain, whether they are bound, whether their domain still con-
tains at least one value, to remove a value from their domains, which
values were removed from the domain since last propagation,...

y = 0 y = 1 y = 2 y = 3

x = 0 x = 1 x = 0 x = 1 x = 0 x = 1 x = 0 x = 1

(a) Variable with largest domain first (13 nodes)

x = 0 x = 1

y = 0 y = 1 y = 2 y = 3 y = 0 y = 1 y = 2 y = 3

(b) Variable with smallest domain first (11 nodes)

Figure 2.4: Example demonstrating the impact on the number of node
of different searches (dom(x) = {0, 1} and dom(y) = {0, 1, 2, 3}).

16

2.4.2 The Constraints Propagators

The constraints contain the algorithms responsible for filtering out im-
possible remaining values out of the domains based on their current
values. These algorithms are called propagators. Each constraint may
have several propagators of different efficiency.

One can measure the efficiency of a propagator using the propagation
strength. Two of the most commonly used strengths are the bound
consistency (Def. 2.3) and the generalized arc consistency (Def. 2.4).
A greater strength often implies a more complex and time-consuming
algorithm. However, it can also reduce the search’s size and, thus, the
number of times the propagator is called. It is thus not straightforward
to choose the right propagator.

Definition 2.3. Bound Consistency
Several bound consistency exist [CHLS06]. The two most use when deal-
ing with integer domains are the bound(D) consistency and bound(Z)
consistency.

To achieve bound(D) consistency (BC(D)), also called range consis-
tency, for each variable involved in the constraint, for every value of its
domains, a solution should be possible by selecting an integer for each
other variables which is between the lower and upper bound (this integer
may not be part of the domain).

To achieve bound(Z) consistency (BC(Z)), for each variable involved
in the constraint, for the lower and upper bounds of its domains, a so-
lution should be possible by selecting an integer for each other variables
which is between the lower and upper bound (this integer may not be part
of the domain).

Definition 2.4. Generalized Arc Consistency
A constraint achieves generalized arc consistency (GAC) if, after its
propagation, all the remaining values of each variable involved in the
constraint are part of possible solutions of the constraint. This means
that, for each variable x involved in the constraint, for each value v of
the domain of x, there should exist the possibility of a valid assignment of
all the variables, with x assigned v such that the constraint is respected.

Here is a simple example to show the difference between BC and
GAC. Given the variable X, Y and Z and their respective domains
dom(X) = {0, 4}, dom(Y) = {0, 1, 2} and dom(Z) = {0, 1, 2, 3, 4, 5, 6, 7},
and the constraint X+Y = Z. A BC propagator looks at each variable’s
bound and determines that 7 cannot be part of the domain of Z since
no combination of values within the range of the bounds of the domains
of X and Y give 7. However, as 6 can result from 2 + 4, the propagator

17

stops there, and only 7 is removed here. The full analysis of the BC
propagator is summarized in Fig. 2.5a. A GAC propagator looks for
each value of each variable and verifies that a solution is possible. In
addition to the check for the bounds (Fig. 2.5a), it also checks other
values inside the domains (Fig. 2.5b). In this case, the inner domain
value 3 is removed from the domain of Z in addition to the removal of
7.

2.4.3 The Fix-Point Algorithm

The fix-point algorithm’s goal is to move the solver state to a new stable
state or a failure state. A stable state can be defined as a state where
none of the constraints can remove any value anymore. A failure state
is a state where at least one variable does not have any value in its
domain. The fix-point starts by creating a pool of constraints waiting
to be called. In some solvers this pool is implemented using a priority
queue. This pool is initialized with the constraints impacted (i.e. the
constraints with some modified variables in their scope) by the decision

Tested Support Result

X = 0 Y = 0 & Z = 0 LB of X consistent
X = 4 Y = 2 & Z = 6 UB of X consistent

Y = 0 X = 0 & Z = 0 LB of Y consistent
Y = 2 X = 4 & Z = 6 UB of Y consistent

Z = 0 X = 0 & Y = 0 LB of Z consistent
Z = 7 ? UB of Z unconsistent
Z = 6 X = 4 & Y = 2 UB of Z = 6 consistent

(a) Bound Concistancy Analysis

Tested Support Result

Y = 1 X = 0 & Z = 1 Y = 1 consistent

Z = 1 X = 0 & Y = 1 Z = 1 consistent
Z = 2 X = 0 & Y = 2 Z = 2 consistent
Z = 3 ? Z = 3 unconsistent
Z = 4 X = 4 & Y = 0 Z = 4 consistent
Z = 5 X = 4 & Y = 1 Z = 5 consistent

(b) Rest of the GAC Analysis

Figure 2.5: Analysis of the filtering performed by BC(Z) and GAC prop-
agators on X + Y = X.

18

of the node inside which the fix-point is called. The pool is processed
one constraint at a time until either the pool is empty (stable state) or
a failure is detected (failure state). Each time a constraint filters out
some values from a domain, the impacted constraints are added to the
pool.

2.4.4 The Search Algorithm

The search algorithm is responsible for finding the solution(s) of the
problem. It works generally as a depth-first exploration of the search
space, starting with a node, thoroughly exploring the first of its children
before exploring the second one, and so on. Each node represents a
restriction of the initial problem with some values removed from the do-
mains. Except for the root node, each node represents the sub-problem
of its parents where an additional decision (a given reduction of the
domains) has been applied.

When reaching a node, the search first applies the decision associated
with it (typically, assigning or removing a given value from a variable
domain). Then, it runs the fix-point algorithm. What the search does
next depends on its result.

– If the state is stable and all variables are bound to values, then
a solution is reached. The node has no children and is called a
solution leaf. The user is notified, the search goes back and can
continue.

– If the state is stable with remaining unbound variables, then it
will continue the depth-first exploration of the tree and explore
the children.

– If the state is failing, then no solutions can be found by continuing
the exploration in this branch. The search goes back and continues
to another branch. The node is called a dead leaf.

2.4.5 The State Restoration Mechanism

When the search has to go back to explore a new branch, it must also
restore the state as it was in the parent node. This is called backtrack-
ing and is done by the state restoration mechanism. Checkpoints saves
are made at the end of each explored nodes of the search tree, and a
restore operation helps retrieve the state. The solver is said copy-based
if the restorations are made by retrieving a stored copy of the wanted
state. The solver is said trail-based if the restorations are made using
the changes in the state since the last checkpoint.

19

2.5 Conclusion

In this thesis, we will focus on one important component of constraint
solvers, which corresponds to the constraints propagators, and, more
precisely, those for constraints defined in extensional forms. We call
them extensional constraints as they capture using an explicit represen-
tation all allowed combinations of values (constraint’s solutions). This
category includes the table and the multi-valued decision diagram con-
straints (or MDD constraints). They are considered as universal since any
other constraint can be expressed as an extension constraint.

The solver used for this thesis implementations and experiments is
Oscar [Tea]. It is a trail-based backtracking open-source solver written
in Scala. Thus, the following algorithms are defined using the trail state
restoration mechanism, but they could easily be adapted to a copy-based
solver (as already done for CT [IS18]).

20

Chapter 3

Extensional Constraints

People think that computer science is the art of geniuses,
but the actual reality is the opposite, just many people doing
things that build on each other, like a wall of mini stones.

- Donald Knuth

3.1 Introduction

The extensional constraints family is a family of global constraints.
Their common point is that they explicitly contain all their solutions.
Two well-known explicit representations of the set of solutions are:

– using a table: A table constraint C associates a set of variable
scp(C), called the scope, to a set of tuples, called the table. Each
of them is associating a value for each variables. Each tuple repre-
sents a solution to the constraint. Figure 3.1a shows an example
of a simple table constraint.

– using a diagram, such as a multi-valued decision diagram (an
MDD): An MDD constraint C associates a set of variable scp(C),
called the scope, to a labeled, layered acyclic directed graph with
decision nodes, called the MDD. Each of the layers of the diagram
corresponds to a distinct variable from the scope. Each edge of
a given level associated a value to the variable of the level. Each
path within the diagram (from ROOT to END) represents a solution
to the constraint. Figure 3.1b shows an example of a simple MDD
constraint.

Extensional constraints are often considered as the most generic ones
possible as they can represent any constraint whether a mathematical
expression can easily represent them or not.

21

This chapter highlights the main concepts introduced over the years
about the extensional constraint while looking at a quite exhaustive list
of the propagators designed over time.

3.2 History of Extensional Constraints

The timeline Fig. 3.2 displays the various propagators for the exten-
sional constraints over time. Each propagator brought new improve-
ments: supports, reset, MDD, bitwise operations,...

x0 x1 x2

τ0 0 0 0
τ1 0 0 1
τ2 0 1 2
τ3 1 2 0
τ4 1 2 1
τ5 2 2 0
τ6 2 2 1

(a) An example of a table constraint

ROOT

END

x0

x1

x2

1 20

201

0 12

(b) An example of an MDD constraint

Figure 3.1: Examples of extensional constraints.

1980 1985 1990 1995 2000

A
C
1,

A
C
2,

A
C
3

A
C
4

G
A
C
4

A
C
5

A
C
6

A
C
-In

fé
re

nc
e

G
A
C
-S

ch
em

a

2005 2010 2015

A
C
20

01

A
C
20

01
/3

.1

ST
R

A
C
3
bi
t

M
D
D
C

ST
R
2

Sh
or

tS
T
R
2,

ST
R
N
e

G
A
C
4R

, M
D
D
4R

ST
R
3,

Sm
ar

tT
ab

le

C
om

pa
ct

-T
ab

le

Figure 3.2: History of the work on extensionnal constraint.

22

3.2.1 Genesis of Constraints, Propagation, and Filtering

The history of extensional constraints goes way back in time. Starting in
1977 with the birth of the idea of arc-consistency (algorithms AC1, AC2
and AC3 [Mac77]). Arc-consistency is the generalized arc consistency
(Def. 2.4) applied to a pair of variables. At the time, the scope of the
considered constraints was restricted to two. The three algorithms are
reasoning on the network of variable and constraint (each node repre-
sents a variable and each edge, a constraint between two variables).

AC1. AC1 first checks for the unary constraints. Then it revises the
whole set of binary constraints in search of values to be removed. If at
least one value is removed, it revises the whole set again. It only stops
when none of the revisions triggered any changes.

AC2. AC1 can clearly waste time since not all binary constraints must
be revised again at each time of the main loop. Only those affected
by a change (i.e. those involving a modified variable) should be revised
again. AC2 improves this by collecting in a set the arcs to be revised
again. This set is used in the next iteration.

AC3. AC2 is somewhat inefficient in some cases. A constraint can be
added to the constraints to be revised at the next loop while still in the
set of constraints to be revised at this loop. In this case, there is no need
to add it to the future set since it will be revised in the current loop.
AC3 is the result of this optimization.

The revise method is the genesis of any constraints (propagation
and filtering), while the AC algorithms were the genesis of the fix-point
algorithm.

3.2.2 AC4 and the Support

A few years later, [MH86] revisited the AC algorithms, leading to the
AC4 version. This version introduces the concept of support. It states
that, given a variable x and a value a ∈ dom(x), as long as a admits a
support from each of the variables linked to x in the network, a remains
a possible value for x. A support for a in a variable y being a value
b ∈ dom(y) such as x = a ∧ y = b is allowed.

To keep track of the supports, counters and sets of supports were
introduced for each constraint and each value of its variables. These
counters are decreased when a value is removed, and propagation is
triggered to another pair variable value if a counter is down to 0.

23

AC5 [DVH], AC2001 [BR01] and AC2001/3.1 [BRYZ05] are other im-
provements of the algorithm. Another improved algorithm, AC6 [Bes94],
manages to improve the space complexity of AC4 while keeping its opti-
mal worst-case time complexity. AC-Inference [Rég95] is another devel-
oped algorithm which differs a bit from the other AC algorithms. Instead
of systematically make the checks for support for each pair of variable-
value, it uses the computations of some supports to already deduce some
other support, removing the need to compute them.

3.2.3 GAC4

GAC4 [MM88] is the generalization of AC4 to more than two variables.
It also uses a table as input. A support for (x, a) is thus a tuple τ for
which the value associated to x is a. For each (x, a), the set of support
is built. When the support set is empty, the value is removed from the
domain of the variable.

3.2.4 AC3bit and the First Bitwise Approaches

Using bitwise operations to speedup computations is not a new concept.
Already in 1979, [McG79] used bitvectors to represent domains and set
of supports. Ullmann [Ull76] did some optimizations based on bitwise
operations. In 1996, Bliek [Bli96] demonstrated the potential of repre-
senting constraints using bit vectors to speed up the propagation. Also
in 1996, in his thesis [Rég95], J-C Régin made use of a set representa-
tion, and more precisely bit vectors, to speedup the propagation of table
constraint. He proposes an adaptation of AC-Inférence based on the
use of bit vectors.

In 2008, another approach using bitwise operation is designed. In the
AC3bit [LV08], the domains are defined using bitsets. The supports are
also stored using bitsets which allow to quickly compute the remaining
values by intersecting the current domain with the supports using bitwise
operations. The introduction of these bitsets allows a speedup compared
to AC3

3.2.5 The Simple Tabular Reduction (STR) Family

Simple Tabular Reduction (or STR for short) was first introduced in
2007 [Ull07]. The idea behind this GAC algorithm is to modify the
table of the constraint dynamically: whenever tuples became invalid,
they are removed from the table. The tuples currently valid represent
the current table set. At each step of the propagation, the validity of
each tuple is tested. A subset of the current table, corresponding to

24

the detected invalid tuples, is discarded. This current table is stored
using a sparse set made reversible to allow the state to restore itself
during backtracking. Filtering is achieved by looking at each tuple in
the current table set and gathering each valid value for each unbound
variable. Values not gathered are then removed from domains.

In 2011, STR2 [Lec11] was proposed as an optimized version of the
initial STR algorithm. It brings two main optimizations.

First, during filtering, a value is supported as soon as a valid tuple
using this value is identified. Consequently, if all values of the domain
of a given unbound variable have supporting tuples, there is no need to
continue searching for more supporting tuples regarding this variable.
This is done by keeping a set, Ssup, of variable yet without support for
each value. This set is initialized with the unbound variables (Ssup =
{x ∈ scp : |dom(x)| > 1}). A set gacValue[x], for each variable x, is
used to maintain the set of values yet without support during the filtering
process. This set is initialized with the remaining values in the domain
(gacValue[x] = dom(x)). Filtering is thus done only on variables in
Ssup until they are removed when gacValue[x] becomes empty.

Secondly, checking the validity of a tuple does not require testing val-
ues for each variable. As every tuple is valid regarding a given variable at
the end of the propagation at a given node, if the domain has not changed
at the next propagation, all the tuples still have a valid value for this
variable. Validity thus does not require testing the value corresponding
to the variable. This is done by checking the validity only on the set of
variable Sval, initialized at the beginning of the propagation, which con-
tains the variable whose domain has changed since the last propagation
(Sval = {x ∈ scp() : |∆x| > 0}, where |∆x| = |lastSize[x]|−|dom(x)|).
A backtracked array lastSize[x] is kept for each variable to know
where some changes have happened since the last propagation.

STR3 [LLY15] was published in 2015. Its crucial element is a data
structure removing unnecessary traversal of the table. It is complemen-
tary to STR2 as it works better when the average number of remaining
tuples in the table during the search stays high but worse in the opposite
case.

3.2.6 MDDC: Arrival of the MDD

In 2009, Cheng and Yap [CY10] exploited the connection between tables
and Multi-Valued decision diagrams (MDDs) [Bry86]. In an MDD, each
path from ROOT to END corresponds to a tuple in a table. For example, on
MDD in Fig. 3.1b, each path corresponds to a tuple of table in Fig. 3.1a. In
some cases, the MDD can be exponentially smaller than the corresponding

25

table. This is the motivation behind mddc, the propagator based on an
MDD representation.

In mddc, they use the MDD structure to find more efficiently supports
for each remaining value. Similarly, as the table was reduced in the STR
family of algorithms, mddc maintains a reduced version of the initial MDD.

MDDs are also proven usefull outside the scope of extensionnal con-
straints: in the context of domain storage [AHHT07, HvHH10], the use
of limited width MDDs to model some constraints [BCvH14], the use of
MDDs to solve optimization problems [BCvHH16], .

3.2.7 ShortSTR2, SmartTable,... : The Arrival of Com-
pressed Tables

The arrival of MDD-based propagators highlighted the biggest problem of
tables: their size. From this point, all kinds of compressed tables were
invented, each aiming to reduce its size. Following the introduction of
new tables, new propagators using these compressed tables directly were
introduced.

Here is a non-exaustive list of such compressed tables:

– short tables (Fig. 3.3a), i.e. tables allowing the ∗ value representing
any possible value. shortSTR2 [JN13] is a propagator handling this
kind of table.

– c-tuples (Fig. 3.3b), i.e. tables allowing in tuples the presence of
subsets of values instead of single values. The c-tuples are based
on the concept of Global Cut Seed [FM01]. STR2-c and STR3-c

[XY13, KW07] are some propagators adapted to handle such tu-
ples.

– tuple sequences [Rég11] (Fig. 3.3c), i.e. tuples defined by a Global
Cut Seed, a minimum tuple and a maximum tuple (given an or-
dering). Each tuple represented by the GCS within the defined
bounds is in the table. This kind of table allows an easy represen-
tation of the complementary table.

– smart tables (Fig. 3.3d), i.e. tables allowing in tuples restrictions
that can be unary constraints or binary constraints such as ∗, 6= v,
≤ v, ∈ S, = x + v, ≥ x + v, representing several values from the
domain or even small binary constraint within the table. These
tables can be handled by the smart table algorithm [MDL15].

– sliced tables (Fig. 3.3e), i.e. tables represented as several cardinal
products between a prefix and smaller tables. The STR-slice

algorithm [GHLR14] handles such tables.

26

– segmented tables (Fig. 3.3f), i.e a generalization of sliced tables,
containing tuples made of possibly several sub-tables, simple val-
ues and/or the universal value ∗. The SegmentedConstraint al-
gorithm [ALM20] handles such tables.

– ...

Most of the algorithms for filtering such tables use the technique of
tabular reduction.

x y z

τ1 1 ∗ 4
τ2 0 1 ∗
τ3 ∗ 2 3
τ4 2 0 2
τ5 2 ∗ 1

(a) Short table

x y z

τ1 {0, 2} {1, 2, 3} {1, 2}
τ2 {0} {0, 1} {0}
τ3 {1, 2} {0, 3} {2, 3}
τ4 {1, 3} {2, 3} {0, 1}
τ5 {2, 3} {1, 2} {0, 3}

(b) Table containing c-tuples

min max GCS

τ1 (0, 0, 0) (0, 1, 2) ({0}, {1, 2}, {0, 2})
τ2 (1, 0, 1) (1, 1, 1) ({0, 1, 2}, {0, 1, 2}, {0, 1, 2})
τ3 (1, 1, 0) (2, 0, 3) ({0, 1, 2}, {1, 3}, {0, 2})
τ4 (0, 2, 0) (2, 0, 0) ({0, 2}, {1, 3}, {0, 1, 2})
τ5 (2, 0, 0) (2, 1, 2) ({2, 3}, {1, 2}, {0, 1, 2})

(c) Table containing tuple sequences

x y z

τ1 1 = x+ 1 4
τ2 ∈ {0, 2} 1 ∗
τ3 ∗ ≤ 2 3
τ4 ≥ 2− y 0 6= 2
τ5 2 6= z 1

(d) Smart table

x

0
1

⊗
y z

0 1
1 2

x z

1 1
2 2

⊗ y

0

(e) Sliced table

w x y z

τ1

[
1 0
2 1

]
∗

[
0
2

]
τ2 ∗

[
0 2
1 1

] [
1
2

]
(f) Segmented table

Figure 3.3: Examples of various compressed tables.

27

From this point, we distinct ground tuples (tuples containing only
simple values) from compressed tuples (tuples containing a compressed
representation of values).

3.2.8 STRNe: Introducing Negative Tables

A negative table (also called conflict table) contains tuples, but instead
of representing solutions, they represent non-solutions of a constraint.
The negative table is the complement of a positive table in the universe
of all the tuples possible given the domains.

STRNe [LLGL13], also based on the STR algorithm family handles
such tables.

3.2.9 GAC4R & MDD4R: Interest of Reseting

Until now, the algorithms based themselves on the values removed since
the last propagation. They updated their state incrementally at each
step. However, in [PR14], they show that in some cases, when too
many values are removed at once during the propagation, it could be
beneficial to rebuild the state from the current domain of the variables.
The concept of reset was introduced.

3.2.10 Compact-Table: The bitwise Computation Revo-
lution

Compact-Table, the latest table constraint propagator, on which this
thesis’s work is mainly based, was presented at CP2016 [DHL+16]. It
uses the concept of bitwise computation between bitsets (Sec. 4.2.2) to
reduce the computation time drastically.

As for the previous algorithms, the propagation of Compact-Table is
composed of two main phases. First, the update phase, whose goal is to
update the remaining table’s representation (here the bitset currtable).
This phase can be model by the mathematical invariant inv. 3.1. Second,
the filtering phase, which finds which values have to be removed from
the unbound variables’ domains. Again, this could be formulated as
a matematical invariant inv. 3.2. The respect of these two invariants
by CT makes it a GAC algorithm (Prop. 3.1). The pseudo-code of the
algorithm can be found in Algo. 1.

Invariant 3.1 (Current table update). Given the notations: T 0, the
initial table (i.e. before any propagation occurs), T c, the reduced table at
a given current state c of the propagation, and, dom c(x), the domain of
x at the current state c. A tuple τ belongs to the current table T c if and

28

only if it was a tuple of the initial table and all its values still belongs to

Algorithm 1: The Compact-Table algorithm

1 Method updateTable() // Invariant 3.1

2 foreach variable x ∈ Sval do
3 mask← 064

4 if |∆x| < |dom c(x)| then // Classical update

5 foreach value a ∈ ∆x do
6 mask← mask | supports[x, a]

7 mask←∼ mask

8 else // Reset update

9 foreach value a ∈ dom c(x) do
10 mask← mask | supports[x, a]

11 currtable← currtable & mask

12 Method filterDomains()
13 foreach variable x ∈ Ssup do
14 foreach value a ∈ dom c(x) do
15 intersection← currtable & supports[x, a]
16 if intersection = 064 then // Invariant 3.2

17 dom c(x)← dom c(x) \ {a}
18 currtable← currtable & ∼ supports[x, a]

19 Method enforceGAC()
20 Sval ← {x ∈ scp : lastSizes[x] 6= |dom c(x)|}
21 Ssup ← {x ∈ scp : |dom c(x)| > 1}
22 updateTable()
23 count← nb1s(currtable) // nb1s detailed in Algo. 2

24 if count =
∏
x∈scp |dom c(x)| then // Invariant 3.3

25 return > // desactivation of the cst

26 if count = 0 then // Invariant 3.4

27 return ⊥ // backtrack triggered

28 filterDomains()
29 foreach variable x ∈ Sval do
30 lastSizes[x]← |dom c(x)|

29

the respective current domains of the associated variables from scp.(
τ ∈ T 0 ∧ ∀x ∈ scp, τ [x] ∈ dom c(x)

)
⇔
(
τ ∈ T c

)
Invariant 3.2 (Domain filtering). Given any variable x ∈ scp, each
value v in dom c(x) should appear in at least one tuple τ ∈ T c.

∀x ∈ scp, ∀v ∈ dom c(x), ∃τ ∈ T c, τ [x] = v

Proposition 3.1. A positive table constraint enforces GAC if inv. 3.1
and inv. 3.2 hold.

Proof. By means of inv. 3.1, the set of valid tuples is maintained. Invari-
ant 3.2 detects when a given value (x, a) can be removed if necessary.

In addition, two other invariants (inv. 3.3 and inv. 3.4), direct con-
sequences from the two initial one, can be considered to speed up the
process. The first one describes the case when any assignment is a so-
lution, and the second describes the case when there are no solutions
anymore. Detecting these cases earlier in the computations may help
reduce the total computation time.

Invariant 3.3 (Entailement). A positive table constraint is entailed if
and only if the table contains all the possible tuple w.r.t. the domains of
the variables.on.(∣∣{τ : τ ∈ T c}

∣∣ =
∏
x∈scp

∣∣dom(x)
∣∣)⇔ >

Invariant 3.4 (Emptiness). A positive table constraint is falsified if
and only if it is empty. (

T c = ∅
)
⇔ ⊥

The next subsections introduce the CT algorithm, start with the data
structures used, then the update phase, followed by the filtering phase,
and finish with the algorithm as a whole.

Algorithm 2: The nb1s method

1 Method nb1s(bs:Bitset)
2 count ← 0
3 foreach i ∈ 1..bs.length do
4 count ← count +

java.lang.Long.bitCount(bs.words[i])

5 return count

30

3.2.10.1 Data Structure

The main data structure, called currtable, is a Reversible Sparse Bitset
(Chap. 4). Its purpose is to represent the tuples from T c, i.e. the tuples
from the initial table T 0, which are still valid. Its formal definition is
given at Def. 3.2.

Definition 3.2. currtable (as used in CT)
currtable is a reversible sparse bitset. It associates one bit to each of
the tuples of a given table T 0. At a given time, currtable represents a
given T c, subset of T 0, valid regarding the domains’ values at that time.
Given any τ ∈ T 0,

currtable〈τ〉 =

{
1 iff τ ∈ T c

0 iff τ 6∈ T c

Figure 3.4 shows an example of currtable.

Also, some immutable bitsets called supports are precomputed at
the setup of the constraint. They are meant to ease the computations
and avoid computing several times the same thing during the propa-
gation. The same bit position as in currtable is used for each of the
tuples of the table. Its formal definition is given at Def. 3.3.

τ0 τ1 τ2 τ3 τ4 τ5 τ6

0 1 0 0 1 0 0

(a) currtable (assuming dom(x)0 = {0, 1}, dom(x)1 = {0, 2} and dom(x)2 = {1, 2})

τ0 τ1 τ2 τ3 τ4 τ5 τ6

supports[x0, 0] 1 1 1 0 0 0 0
supports[x0, 1] 0 0 0 1 1 0 0
supports[x0, 2] 0 0 0 0 0 1 1

supports[x1, 0] 1 1 0 0 0 0 0
supports[x1, 1] 0 0 1 0 0 0 0
supports[x1, 2] 0 0 0 1 1 1 1

supports[x2, 0] 1 0 0 1 0 1 0
supports[x2, 1] 0 1 0 0 1 0 1
supports[x2, 2] 0 0 1 0 0 0 0

(b) All supports for each pair of variable-value

Figure 3.4: An example of currtable and supports, corresponding to
the table at Fig. 3.1a.

31

Definition 3.3. supports (as used in CT)
Given a ground tuple τ , for a given variable x, ∀v ∈ dom(x),

supports[x, v]〈τ〉 =

{
1 iff τ [x] = v
0 iff τ [x] 6= v

This formula defines a given supports[x, v] for a variable x and a vari-
able v ∈ dom(x) to be the bitset containing the tuples supporting the value
v from dom(x).
Figure 3.4 shows an example of supports.

3.2.10.2 The Update Phase

As in GAC4R, in CT, the update (Algo. 1 line line 1) w.r.t. a variable
can be executed in two ways: the classical way and the reset way.

In the classical way (Algo. 1 line 4), the update is done regarding the
removed values since the last propagation from the domain of a variable
x (called the delta of the variable1, ∆x).

The supports corresponding to the values in the ∆x are unified
into a temporary variable mask (bitwise AND operation between the
supports). This union corresponds to a set of tuples no more valid
w.r.t. the newest removed values from x. This mask is then removed
from currtable, updating the representation of the table w.r.t. the
variable x (bitwise AND operation between currtable and the bitwise
NOT operation on the mask).

In the reset way (Algo. 1 line 8), the update is done regarding the
remaining values in the domain of the variable x. The supports corre-
sponding to the values in dom(x) are unified into a temporary variable
mask (bitwise or operation between the supports). This union corre-
sponds to a set of tuple potentially valid. The mask is then intersected
with currtable, updating the representation of the table w.r.t. the
variable x (bitwise AND operation between currtable and mask).

During the update, currtable has to be updated w.r.t. all the vari-
ables modified since last propagation. For each of the modified variables,
the choice is made between the classical update and the reset update.
As the complexity of the classical update is O(|∆x|) and the complexity
of the reset update is O(|dom(x)|), the choice is made by comparing the
size of ∆x and dom(x).

1In [lCdSMSSL13], a sparse-set domain implementation for obtaining ∆x without
overhead is described

32

Complexity. The worst-case time complexity of the update phase is

O
(∑
x∈Sval

(
min(|∆x|, |dom c(x)|)

) ⌈ |T 0|
w

⌉)
where w is the number of bits into a word (i.e, for java Long type,
w = 64). The worst-case space complexity of the update is

O(1)

as it does not use any space not already preallocated.

3.2.10.3 The Filtering Phase

The filtering tries each of the values from the unbound variables’ do-
mains. The set Ssup contains the unbound variables. The goal is to
identify those who can lead to inconsistencies. To do so, the filtering
invariant (inv. 3.2) is applied.

The idea is to check if for each value v for an unbound variable x there
exists remaining tuples supporting v to x. This is done by verifying the
value of the intersection between currtable and supports[x, v] (bitwise
AND operation between the currtable and supports[x, v]). An empty
intersection means no remaining tuples associate v to x. Therefore v
can be removed from dom(x).

Complexity. The worst-case time complexity of the filtering phase is

O
(∑
x∈Ssup

(|dom c(x)|)
⌈ |T 0|
w

⌉)
where w is the number of bits into a word (i.e, for java Long type,
w = 64). The worst-case space complexity of the filtering is

O(1)

as it uses only a fixed number of temporary variables and preallocated
variables.

3.2.10.4 GAC and Complexity

enforceGAC() (Algo. 1 line 19) is the entry point of the propagator.
It first updates the table (using inv. 3.1), then tests the entailment
(inv. 3.3) and the emptiness (inv. 3.4) property and finally filters the
values from the domains (using inv. 3.2).

33

Proposition 3.4. Algorithm 1 applied to a positive table constraint C
enforces GAC.

Proof. By means of Method updateTable() and statement at Algo. 1
line 18, we maintain the set of conflicts on C in currtable. At line 16,
we can detect if no more support exists for a given value (x, a), and
delete it if necessary.

Complexity. The worst-case time complexity is

O
(∑
x∈Sval

(
min(|∆x|, |dom c(x)|)

) ⌈ |T 0|
w

⌉
︸ ︷︷ ︸

update

+

⌈ |T 0|
w

⌉
︸ ︷︷ ︸

invariants3.3&3.4

+
∑
x∈Ssup

(|dom c(x)|)
⌈ |T 0|
w

⌉
k︸ ︷︷ ︸

filtering

)

Since |scp| ≥ |Ssup| and |scp| ≥ |Sval|, this can be globally reduced to

O
(
|scp| dc

⌈ |T 0|
w

⌉)
where dc = maxx∈Ssup∪Sval{|dom c(x)|} is the size of the largest of the cur-
rent unbound variable domain at last propagation and w is the number
of bits in a word (i.e, for Java Long type, w = 64).
The worst-case space complexity is

O
(∑
x∈scp

|dom 0(x)|
⌈ |T 0|
w

⌉)
which can be globally reduced to

O
(
|scp| d0

⌈ |T 0|
w

⌉)
where d0 = maxx∈scp{|dom 0(x)|} is the size of the largest initial domain
and w is the number of bits in a word.

3.3 Conclusion

This chapter retraced the history of the numerous developements con-
cerning extensional constraints, which is one of the oldest form of con-
straints in the Constraint Programming paradigm. Successively pro-
posed algorithms have brought the mechanisms that are present in the

34

last state-of-the-art table propagator: namely, efficient data structure for
storing supports, simple tabular reduction, reseting operations, and the
use of bitsets. The latest algorithm in this evolution is Compact-Table

(CT), which combines all these elements.
This chapter also retraced the other forms of extensional constraints

in the literature: namely, several forms of compressed tables, negative
tables, and MDDs. These forms help to counterbalance one of the weak-
nesses of the tables, i.e. they can grow on exponentially.

This thesis adapts Compact-table, the last state-of-the-art table
propagator, to other forms of extensional constraints. First, to short,
basic smart and smart tables, leading to the CT∗ and CTbs extensions.
Second, to negative tables, leading to the CTneg and CT∗neg extensions.

Finally, to MDDs and diagrams in general, leading to the CD and CDbs

extensions.

35

36

Chapter 4

About Sets and
Reversible Structures

One curious thing about growing up is that you don’t only
move forward in time; you move backwards as well, as pieces
of your parents’ and grandparents’ lives come to you.

- Philip Pullman

4.1 Introduction

As the previous chapter mentioned, the last improvement in table con-
straints is mainly due to the use of a reversible sparse bitset. This
chapter aims at explaining this data structure and other types of sets
used in this thesis: the reversible sparse sets and the bitsets. The dif-
ferences between these set implementations are explained here. This
chapter also describes how the backtracking mechanism used in trail-
based solver works.

4.2 Sets

The formal definition of the set the following Def. 4.1.

Definition 4.1. Set
A set S is an unsorted collection of items, each present at most once

in the set. These items belong to the universe of items U . For example,
S1 = {i2, i5, i6} is a set containing three items, named i2, i5 and i6. The
empty set is often represented by {} or ∅.

In our context, a set implementation has two orthogonal features:

37

– dense or sparse implementation

– array or bitset implementation

These features are explained in the next sections.

Besides, to work with the trail-based solver’s backtracking mecha-
nism, the required implementation has been made reversible, i.e. they
can automatically revert to a previous state.

Each implementation has its strengths and weaknesses. Which set to
use is motivated by which operations will be the most used. For example,
an algorithm iterating many times on a set will prefer a sparse imple-
mentation, an algorithm using many union and intersection operations
will favor a bitset implementation,...

4.2.1 Dense versus Sparse Implementation

A dense set (Fig. 4.1a) is traditionally represented by a collection of
Boolean. Each of these corresponds to an item in the space of the set.
The Boolean associated with item i is set to true (4) if the item is
in the set, false (7) if not. Checking the presence of a given item is
then easy. Union, intersection, and complement are also rather trivial
operations to perform. However, iterating over the set’s items requires
iterating over all the possible items in the universe, whether the set is
almost empty or full. A dense set representation is more often used
when a large portion of the universe belongs to the set.

A sparse set (Fig. 4.1b) is represented by a collection of integers. An
additional integer states the number of items present in the set. The
collection decreases of size when some items are removed and increases
when some are added. To check whether an item belongs to the set
it is required to iterate over all the items. Union, intersection, and
complement operations are often more complicated due to the inefficient
way of checking whether an item belongs to the set. On the other
hand, iterating on the set’s items is relatively easy, and the complexity

universe 0 1 2 3 4 5

in the set? 7 4 7 4 4 7

(a) Dense set

1 3 4 ⊥ ⊥ ⊥

size = 3

In the set

(b) Sparse set

Figure 4.1: Example of dense and sparse representation of a set contain-
ing values {1, 3, 4} from a universe {0, 1, 2, 3, 4, 5}.

38

depends precisely on the number of items in the set. Such a set is
often implemented using a single array and an integer i. The integer is
responsible for storing the set’s size, and items in the set are stored in
the first ith slots in the array. A sparse set representation is more often
used when a small portion of the universe belongs to the set.

Both views have their strengths and weaknesses. A middle ground
also exists by implementing the set using two arrays and an integer i.
The first array and the integer work the same as in the sparse imple-
mentation. The second array contains, for each item, where the item is
stored in the first array. This allows an easy check of whether an item
belongs to the set or not by comparing the index to the set’s size and
an easy iteration over the items in the set. The drawback here resides
in the increased memory usage and increased operations when adding
or removing an item.

4.2.2 Array versus Bitset Implementation

A array-based representation (Fig. 4.2a) uses arrays to store either the
Boolean corresponding to an item or the item itself. They allow the
processing of items one by one. Their drawback is their storage size.
There is at least a byte (smallest unit processed by a CPU) for each
item dedicated to it. In practice, it is more than a byte. An array-based
implementation can be dense or sparse, as explained in the previous
section.

A bitset-based representation (Fig. 4.2b) uses a collection of bits to
model the set. Each of these bits is associated with one item potentially
available in the set. The bit associated with item i is set to 1 if the item
is in the set, 0 otherwise. Using longs, this implementation allows for
stacking 64 items in a single word unit that a CPU can simultaneously

universe 0 1 2 3 4 5

in the set? 7 4 7 4 4 7

(a) Array representation

b0 b1 b2 b3 b4 b5
bits 0 1 0 1 1 0

words 2 6

(b) Bitset representation

Figure 4.2: Example of array-based and bitset-base representation of a
set containing values {1, 3, 4} from a universe {0, 1, 2, 3, 4, 5} (assuming
words composed of 3 bits).

39

process. If the set contains more than 64 items, an array of long is
used, each storing 64 items. This allows efficient union, intersection, and
complement operations through bitwise operations. However, checking
a single item and iterating on each of them now requires more complex
operations. A bitset-based representation can also be either dense or
sparse. A dense bitset representation is achieved generally using an
array of longs with each of the bits of the longs associated with an
item. A sparse bitset representation is achieved using two arrays and
an integer. The first one, an array of longs keeps the items. The second
one, an array of integers, contains the indexes of words from the first
item where there is at least one item present, i.e. non-empty words.
Indexes are stored at the beginning of the array, and the integer tracks
the number of non-empty indexes.

4.3 Reversibles Data Structures

A reversible data structure is a structure able to restore itself to a pre-
vious state with the help of a context data structure (used in trail-based
solvers). The context is responsible for storing the changes, creating and
maintaining the save state points, and triggering the restorations.

Algorithm 3 displays the pseudo-code of the Context class. It is
composed of a first stack containing the restorations, a second stack
containing the save points, and a timestamp. The restorations encapsu-
late the operations required to restore a reversible data structure to a
previous state. The save points describe the states in which the program
can return. The timestamp is used by the reversible to know whether a
new restoration is required.

Algorithm 4 contains the abstract class used for the restorations.
Each restoration models one object and one state. In its restore method,
it contains all the operations required to restore the object to the state
saved.

At some critical point, the trail-based solver uses the context to save
and restore the state. Restoration can be done only once for each save.
The reversible data structure uses the context to know when they need
to create a restoration. The context stores all the restorations in order
to apply them all when restoring to a previous state.

There are two means of creating a reversible data structure.

– First, by creating it from scratch. Algorithm 5 shows the class’s
pseudo-code of a simple reversible integer structure. Each re-
versible is linked to a given context.

40

– Second, by composition of other already existing reversible data
structure. For example, a reversible array of integers can be built
by using an array of reversible integers.

4.4 Used Implementations

Three types of sets are used in this thesis. They are similar to those
already introduced in the CT algorithm.

– the reversible sparse set: Algorithm 7 gives the pseudo-code of the

Algorithm 3: Pseudo-code of the Context class

1 class Context

2 private Stack<Restoration> storage

3 private Stack<Integer> savepoints

4 private Integer timeStamp
5 Constructor Context(x : ReversibleInt, v : integer)
6 storage = new Stack<Restoration>
7 savepoints = new Stack<Integer>
8 timeStamp = 0

9 Method addRestoration(Restoration r)
10 storage.push(r)

11 Method save()
12 savepoints.push(storage.size())
13 timestamp += 1

14 Method backtrack()
15 point = savepoints.pop()
16 while ¬ (storage.size() = point) do
17 storage.pop().restore()

18 timestamp += 1

19 Method getTimeStamp()
20 return timestamp

Algorithm 4: Pseudo-code of the Restoration abstract class

1 abstract class Restoration

2 Method restore()
3 ... // restoration operations, to implement

41

ReversibleSparseSet class. They are used, in the propagators,
to store the set of remaining unbound variables. Figure 4.3 shows
an example of the evolution of the internal representation during
some steps of execution.

– the reversible sparse bitset: Algorithm 8 gives the pseudo-code
of the ReversibleSparseBitSet class. They are used to store

Algorithm 5: Specification of a simple reversible integer

1 class ReversibleInt

2 private c : context
3 private timeStamp : integer
4 private value : integer
5 Constructor ReversibleInt(c : context, v : integer)
6 context ← c

7 value ← v

8 timeStamp ← 0

9 Method getValue()
10 return value

11 Method setValue(newvalue : integer)
12 contextTimeStamp ← context.getTimeStamp()
13 if timeStamp 6= contextTimeStamp then
14 timeStamp ← contextTimeStamp

15 context.addRestoration(new RestoreInt(this,value))

16 value = newvalue

17 Method restore(v : integer)
18 value = v

Algorithm 6: Specification of a modification data structure

1 class RestoreInt implement Restoration

2 object : ReversibleInt
3 value : integer
4 Constructor RestoreInt(x : ReversibleInt, v : integer)
5 object = x

6 value = v

7 Method restore()
8 object.restore(value)

42

the current table’s representation (contains the set of tuples still
valid at some point) or the current diagram (contains the set of
edges still valid at some point). The reversible sparse bitset is
modified using immutable bitsets. To reduce the overhead of the
reversible nature of the data structure, the union and intersection
are performed using a temporary variable. Figure 4.4 shows an
example of the evolution of the internal representation during some
steps of execution.

– the bitset: Algorithm 9 and Algo. 10 give the pseudo-code of the
BitSet class. They are used to store pre-computed sets. Those
are then intersected or unioned with reversible sparse bitsets. As
we are not modifying them in our algorithms, the class’s pseudo-
code only contains a way to create the object and a method used
to access one given word of the bitset.

As it can be seen in the pseudo-codes, for the reversible sparse set
part of each implementation, the values (either the simple values in the
reversible sparse set either the index of the nonempty words in the re-
versible sparse bitset) of the universe are moved around in the array used
to represent the set. In this implementation, the backtrack guarantees
the restitution of values inside the set. However, the internal state re-
stored may not be identical (the order of the values inside the array may
vary). This can lead to a different order of the values while iterating on
the structure.

0 1 2 3 4 5

size = 6

In the set

(a) Initial state: all values are still in
the set

0 4 5 3 1 2

size = 4

In the set

(b) Step 1: representation after the re-
moval of values 1 and 2

3 4 5 0 1 2

size = 3

In the set

(c) Step 3: representation after the re-
moval of value 0

3 4 5 0 1 2

size = 4

In the set

(d) Step 4: backtrack to previous state
(where only 1 and 2 are removed)

Figure 4.3: Example of the use of a reversible sparse set in the universe
{0, 1, 2, 3, 4, 5}.

43

4.5 Conclusion

Each of the set implementations has strengths and weaknesses. The use
of one instead of another is justified by which operations are needed
the most. Dense sets are more used when there is a need to easily check
whether one value is still in the set. Sparse sets are more used when there
is a need for a traversal of all elements individually but when unions,
intersections, and checks for a given value are not so much used. Bitsets
are used when intersection and union are critical operations. However,
verifying one individual bit to check for one value is less straightforward.
Sparse bitsets allow easy intersection and union but also allow quick
verification of the emptiness.

The use of reversibility allows the structure to easily revert to its
previous state when using a trail-based solver. Making reversible an
existing data structure in an efficient way is thus crucial to the success
of propagation algorithms. In this thesis, the used data structures are
the reversible sparse sets (Algo. 7), the reversible sparse bitsets (Algo. 8)

0 1

size = 2

Nonempty words

b0 b1 b2 b3 b4 b5
bits 1 1 1 1 1 1

words 7 7

(a) Initial state: all values are still in
the set

0 1

size = 2

Nonempty words

b0 b1 b2 b3 b4 b5
bits 1 0 0 1 1 1

words 4 7

(b) Step 1: representation after the
removal of values 1 and 2

1 0

size = 1

Nonempty words

b0 b1 b2 b3 b4 b5
bits 0 0 0 1 1 1

words 0 7

(c) Step 3: representation after the
removal of value 0

1 0

size = 2

Nonempty words

b0 b1 b2 b3 b4 b5
bits 1 0 0 1 1 1

words 4 7

(d) Step 4: backtrack to previous
state (where only 1 and 2 are re-
moved)

Figure 4.4: Example of the use of a reversible sparse bitset in the uni-
verse {0, 1, 2, 3, 4, 5} (assuming words composed of 3 bits).

44

and the bitsets (Algo. 9).

45

Algorithm 7: Pseudo-code of the reversible sparse set class

1 class ReversibleSparseSet

2 set : Array[integer]
3 size : ReversibleInt

/* Construct a ReversibleSparseSet object

representing a set with U = {0, 1, . . . , n− 1} and

initially containing all the items. This

implementation allows only to remove item from

the set. A previous state of the set may be

retrieved by the context. */

4 Constructor ReversibleSparseSet(c:context,n :
integer)

5 set ← new Array of size n where set[i] = i
6 size ← new ReversibleInt(c,n)

/* Return true if the set is empty, false otherwise

*/

7 Method isEmpty()
8 return size.getValue() == 0

/* Apply function f (function which takes an

integer and return nothing) to each of the

remaining items in the set. */

9 Method foreach(f:integer → void)
10 iterIdx ← size.getValue()
11 while iterIdx 6= 0 do
12 iterIdx ← iterIdx - 1
13 f(set[iterIdx])

/* Filter the set using f (function which takes an

integer and return false if it should be removed

from the set, true otherwise) */

14 Method filter(f:integer → boolean)
15 iterIdx ← size.getValue()
16 currSize ← size.getValue()
17 while iterIdx 6= 0 do
18 iterIdx ← iterIdx - 1
19 if ¬ f(set[iterIdx]) then
20 currSize ← currSize -1
21 temp ← set[iterIdx]
22 set[iterIdx] ← set[currSize]
23 set[currSize] ← temp

24 size.setValue(currSize)

46

Algorithm 8: Pseudo-code of the reversible sparse bitset class

1 class ReversibleSparseBitset

2 words : Array[ReversibleLong]
3 indexes : ReversibleSparseSet
4 temp : Bitset

/* Return true if the set is empty, false otherwise

*/

5 Method isEmpty()
6 return indexes.isEmpty()

/* Clear the temporary bitset used for computation.

Clear only the usefull words, i.e. those which

are not empty yet in the set. */

7 Method clearCollect()
8 indexes.startIter
9 while indexes.hasNext() do

10 temp.emptyWord(indexes.next())

/* Add the bitset to the temporary bitset. Only

apply to the usefull words, i.e. those which

are not empty yet in the set. */

11 Method unionCollect(bs: Bitset)
12 indexes.startIter
13 while indexes.hasNext() do
14 temp.unionWord(bs,indexes.next());

/* Intersect the bitset with the temporary bitset.

Only apply to the usefull words, i.e. those

which are not empty yet in the set. */

15 Method intersectCollect(bs: Bitset)
16 indexes.startIter
17 while indexes.hasNext() do
18 temp.intersectWord(bs,indexes.next());

/* Remove the bitset (equivalent to the

intersection with the complement) with the

temporary bitset. Only apply to the usefull

words, i.e. those which are not empty yet in

the set. */

19 Method removeFromCollect(bs: Bitset)
20 indexes.startIter
21 while indexes.hasNext() do
22 temp.removeWord(bs,indexes.next());

47

Algorithm 9: Pseudo-code of the bitset class (part 1)

1 class Bitset

2 words : Array[long]
3 nWord : integer

/* Construct a Bitset object representing a set

with S = {0, 1, . . . , n− 1} and the values contained

in iter as initial values */

4 Constructor Bitset(n : integer, iter: Iterator)
5 nWord ← bn+63

64 c
6 words ← new Array of size nWord

7 foreach item in iter do
8 wordID ← bitem64 c
9 bitID ← item− 64 ∗ wordID

10 words[wordID] ← words[wordID] | 2bitID

/* Return the value of the word at index i

(assuming 0 ≤ i < nWord) */

11 Method getWord(i : integer)
12 return words[i]

/* Empty the set */

13 Method emptySet()
14 foreach i ∈ [0; size.getValue()[do
15 emptyWord(i)

/* Empty only the word at index i (assuming

0 ≤ i < nWord) */

16 Method emptyWord(index:integer)
17 words[index] ← 0L

/* The bitset is modified to correspond to the

union between its initial value and bs */

18 Method union(bs:Bitset)
19 foreach i ∈ [0; size.getValue()[do
20 unionWord(bs,i)

/* The word at index i (assuming 0 ≤ i < nWord) of

the bitset is modified to correspond to the

union between its initial value and the word at

index i of bs. The bitwise AND operation (&) is

used to perform the operation. */

21 Method unionWord(bs:Bitset,index:integer)
22 words[i] ← words[i] & bs.getWord(i);

48

Algorithm 10: Pseudo-code of the bitset class (part 2)

1 class Bitset

/* The bitset is modified to correspond to the

intersection between its initial value and bs

*/

2 Method intersect(bs:Bitset)
3 foreach i ∈ [0; size.getValue()[do
4 intersectWord(bs,i)

/* The word at index i (assuming 0 ≤ i < nWord) of

the bitset is modified to correspond to the

intersection between its initial value and the

word at index i of bs. The bitwise OR operation

(|) is used to perform the operation. */

5 Method intersectWord(bs:Bitset,index:integer)
6 words[i] ← words[i] | bs.getWord(i);

/* The bitset is modified to correspond to the

result of removing each item in bs from the

initial value of the bitset */

7 Method remove(bs:Bitset)
8 foreach i ∈ [0; size.getValue()[do
9 intersectWord(bs,i)

/* The word at index i (assuming 0 ≤ i < nWord) of

the bitset is modified to correspond to the

removal of the word at index i of bs from the

initial value of the bitset. The bitwise AND

operation (&) and the bitwise NOT (∼) are used

to perform the operation. */

10 Method removeWord(bs:Bitset,index:integer)
11 words[i] ← words[i] & ∼bs.getWord(i);

49

50

Part II

Structures

51

Chapter 5

Tables for Constraints

If I designed a computer with 200 chips, I tried to design
it with 150. And then I would try to design it with 100. I
just tried to find every trick I could in life to design things
real tiny.

- Steve Wozniak

5.1 Introduction

A table (Def. 5.1) is a generic term to define a collection of tuples of
values. The semantic of a table depends on the adjective attributed to
it. A table can be positive or negative, ground, short, basic smart or
smart,...

The table is the input of one of the variants of the extensional con-
straint. This chapter first defines the different kinds of tables possible.
Then the link between tables and CNF/DNF is explained. Finally, the
compression problem is discussed.

5.2 Definitions

Let us first define the generic table at Def. 5.1.

Definition 5.1. Tables, tuples and domains
A domain D is a collection, finite or infinite, continuous or not, of values
of the same type (integer, double, char,...). The domain of a table is the
ordered sequence of r domains D = (D1,D2, . . . ,Dr), with r called the
arity of the table.
A tuple is a sequence of values (v1, v2, ..., vk). A tuple belongs to D iff
k = r and vi ∈ Di (∀1 ≤ i ≤ r). The table is a set of tuples belonging

53

to its domain.
The universe table U is a table containing all possible tuples allowed
by its domain, i.e. the cardinal product of each of the elements of the
domain of the table D1 × D2 × . . . × Dr. The size of the universe table
is
∏r
i=1 |Di|. This size is finite only if each Di composing D is finite.

Figure 5.1 displays examples of different tables.

The domain of a table is often represented using a tuple of variables.
In this case the domain of each variable is used to define the range of
allowed values for each colum. For example, given the table in Fig. 5.1a
and given the variable x1, x2, x3, and x4 and their associated domains,
dom(x1) = {a, b}, dom(x2) = {a, b, c, d}, dom(x3) = {a, b, c, d, e}, and
dom(x4) = {a, b, c, d, e}, the domain of the table can be defined by the
variable tuple (x1, x2, x3, x4). Using the variable notation, the first value
of τ1 can be written τ1[x1].

5.2.1 Positive and Negative Tables

From a semantic point of view, the list of tuples can relate to two se-
mantic of tables. First, when the table is defined as a positive table, the
tuples listed belong to the table described. Second, when the table is
defined as a negative table (also called conflict table), the tuples listed
are the forbidden instantiations of the variables. The set of forbidden
tuples is the complementary of the set of accepting tuples in the universe
table U.

Given a positive table P and a negative table N , P and N are
sementically equivalent iff P∩N = ∅ and P∪N = U = D1×D2×. . .×DN .
Said otherwise, using set theory and given the universe table U, N is
the complementary set of P .

τ1 a b c c
τ2 a c d c
τ3 b a e a
...

...
...

...
...

(a) 1st example

τ1 red 1 5, 2
τ2 green 1 3, 5
τ3 red 2 6, 2
...

...
...

...

(b) 2nd example

τ1 1 2 2
τ2 2 3 3
τ3 3 5 2
...

...
...

...

(c) 3rd example

Figure 5.1: Several examples of generic Table. Their domains are,
respectivelly, DFig. 5.1a = ({a, b}, {a, b, c, d}, {a, b, c, d, e}, {a, b, c, d, e}),
DFig. 5.1b = ({green, red, yellow, ...}, {0, 1, 2, 3, ...}, [0.0, 10.0]) and
DFig. 5.1c = ({0, 1, 2, 3}, {0, 1, 2, 3}, {0, 1, 2, 3}).

54

5.2.2 Compressed Tables

A table can easily become huge. Indeed, for a domain of table composed
of N domains of size M , the size of U, the corresponding universe table,
is MN . This corresponds to an upper bound on the maximum number
of tuples in any table with this given domain.

As seen in Chap. 3, several forms of compressed tables have been
proposed (smart tables, sliced tables,...). We decided to focus on the
smart table family of compression, where the table still consists of a set
of tuples.

Definition 5.2 defines the formal concepts of ground tables and
ground tuples. The addition of a universal value allowed to define a first
level of compression: the short table (Def. 5.3). The addition of other
unary relations leads to the basic smart table (Def. 5.4). Finally, using
binary relation defines the smart table (Def. 5.5). All the elements are
described Def. 5.6.

Definition 5.2. Ground Table and Ground Tuple
A ground table is a table composed of ground tuples. A ground tuple is a
tuple only composed of single value elements 〈= v〉. Often, the shortcut
of writing only v is used. Figure 5.2a shows an example of ground table.

Definition 5.3. Short Table and Short Tuple
A short table is a table composed of short tuples. A short tuple is a tuple
composed of single values 〈= v〉 and/or universal values 〈∗〉 elements.
By definition, any ground table is thus a short table too. Figure 5.2b
shows an example of short table.

τ1 1 2 4
τ2 0 1 0
τ3 1 2 3
τ4 2 0 2
τ5 2 3 1

(a) Ground table

τ1 1 ∗ 4
τ2 0 1 ∗
τ3 ∗ 2 3
τ4 2 0 2
τ5 2 ∗ 1

(b) Short table

τ1 1 ∗ 4
τ2 ∈ {0, 2} 1 ∗
τ3 ∗ ≤ 2 3
τ4 ≥ 2 0 6= 2
τ5 2 2 1

(c) Basic smart table

τ1 1 = x+ 1 4
τ2 ∈ {0, 2} 1 ∗
τ3 ∗ ≤ 2 3
τ4 ≥ 2− y 0 6= 2
τ5 2 6= z 1

(d) Smart table

Figure 5.2: Example of all types of compressed tables

55

Definition 5.4. Basic Smart Table and Basic Smart Tuple
A basic smart table is a table composed of basic smart tuples. A basic
smart tuple is a tuple composed of basic smart elements which are tuple
restrictions which corresponds to unary constraints: single values 〈= v〉,
universal values 〈∗〉, exclusion values 〈6= v〉, upper bound values 〈≤ v〉
〈< v〉, lower bound values 〈≥ v〉 〈> v〉 and/or sets values 〈∈ S〉 〈6∈ S〉.
By definition, any short table is thus a basic smart table too. Figure 5.2c
shows an example of basic smart table.

Definition 5.5. Smart Table and Smart Tuple
A smart table is a table composed of smart tuples. A smart tuple is a
tuple composed of smart elements and/or basic smart elements. Smart
elements are tuple restrictions xhich corresponds to binary constraints:
〈= v〉, 〈∗〉, 〈6= v〉, 〈≤ v〉, 〈< v〉, 〈≥ v〉, 〈> v〉, 〈∈ S〉, or 〈6∈ S〉. By
definition, any basic smart table is thus a smart table too. Figure 5.2d
shows an example of smart table.

Definition 5.6. Compression Elements (Basic Smart and
Smart)
Basic smart elements are unary expressions of the following forms:

– 〈= v〉: the single value, representing only the value v (for simplic-
ity, this one is often writen simply v in tables)

– 〈∗〉: the universal value, representing any value

– 〈6= v〉: the exclusion, representing any value except value v

– 〈≤ v〉 (resp. 〈< v〉): representing any value lower or equal (resp.
strictly lower) to value v

– 〈≥ v〉 (resp. 〈> v〉): representing any value heigher or equal (resp.
strictly higher) to value v

– 〈∈ S〉 (resp. 〈6∈ S〉): representing any value contained (resp. not
contained) in the set of value S

Smart elements are binary expressions of the following forms:

– 〈= x+ v〉

– 〈6= x+ v〉

– 〈≤ x+ v〉 (resp. 〈< x+ v〉)

– 〈≥ x+ v〉 (resp. 〈> x+ v〉)

The 〈≤ v〉, 〈≥ v〉, 〈≤ x + v〉, and 〈≥ x + v〉 make only sense if an
ordering is defined on the values contained in the domains.

56

5.3 CNF and DNF are Tables

Interestingly, there is a strong link between the DNF/CNF duality and
the positive/negative table duality. Indeed, any DNF (Def. 5.7) can be
written as a positive short table while any CNF (Def. 5.8) can be written
as a negative short table.

Definition 5.7. DNF
A DNF (i.e Disjunctive Normal From) is a canonical form of Boolean
formula. It consists of a disjunction (OR) of several conjunctions (AND)
of literals.

(X11 ∧X12 ∧ . . . ∧X1k1) ∨ (X21 ∧ . . . ∧X2k2) ∨ . . . ∨ (Xl1 ∧ . . . ∧Xlkl)

Definition 5.8. CNF
A CNF (i.e. Conjunctive Normal From) is a canonical form of Boolean
formula. It consists of a conjunction (AND) of several disjunctions (OR)
of literals.

(X11 ∨X12 ∨ . . . ∨X1k1) ∧ (X21 ∨ . . . ∨X2k2) ∧ . . . ∧ (Xl1 ∨ . . . ∨Xlkl)

DNF as a positive short table. One can view a positive table as
a collection of conjunctive clauses (i.e. a conjunction of literals), each
corresponding to one of the tuples. At least one of these clauses (i.e.
this corresponds to the OR part) should be satisfied to satisfy the table.
To satisfy a clause, all its literal should be satisfied (i.e. this corresponds
to the AND part). The DNF formula Eq. (5.1) can be transformed into
the positive short table in Fig. 5.3.

(x1 ∧ x2 ∧ ¬x4) ∨ (x2 ∧ ¬x3 ∧ ¬x5) ∨ (¬x1 ∧ ¬x2 ∧ x5) (5.1)

The transformation is the following. Each clause corresponds to one tu-
ple of the table, and each literal used corresponds to a column. For each
literal present in the clause, the value true is set in the corresponding
column if the literal is not negated, false otherwise. For each literal
not present in the clause, the universal value is used. Each ground tuple
allowed by this table corresponds to a possible solution of the DFA.

CNF as a negative short table. For the CNF, the transformation is
a bit different. The negative table is viewed as a collection of disjunctive
clauses (i.e. a disjunction of literals), each corresponding to one of the
tuples. All the clauses (i.e. this corresponds to the AND part) should
be satisfied to satisfy the table. To satisfy a clause, at least one of the

57

literal should be satisfied (i.e. this corresponds to the OR part). The
CNF formula Eq. (5.2) can be transformed into the negative short table
in Fig. 5.4.

(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ ¬x5) ∧ (¬x1 ∨ ¬x2 ∨ x5) (5.2)

The transformation is the following. Each clause corresponds to one tu-
ple of the table, and each literal used corresponds to a column. For each
literal present in the clause, the value false is set in the corresponding
column if the literal is not negated, true otherwise. For each literal
not present in the clause, the universal value is used. Each tuple repre-
sents the only combination of the values of the literal, not satisfying the
corresponding clause.

These similarities between DNFs/CNFs and tables help us to provide
some NP-completeness proof for some of the problems encountered.

Complexity It is trivial to see that the complexity of generating the
positive (resp. negative) short table corresponding to a DNF (resp.
CNF) is O(td) where t is the number of clauses (which also correspond
to the number of tuples in the table) and d is the number of different
literals present in the clauses.

x1 x2 x3 x4 x5

τ1 true true ∗ false ∗
τ2 ∗ true false ∗ false
τ3 false false ∗ ∗ true

Figure 5.3: Result of the transformation of the DNF formula (Eq. (5.1))
to a positive short table

x1 x2 x3 x4 x5

τ1 false false ∗ true ∗
τ2 ∗ false true ∗ true
τ3 true true ∗ ∗ false

Figure 5.4: Result of the transformation of the CNF formula (Eq. (5.2))
to a negative short table

58

5.4 The Compression Problem

The compression problem consists of finding a more compact (ideally a
smaller) table (short table, basic smart table,...), which corresponds to
a given ground table (or an already partially compressed table). We can
first show that the minimization of a Boolean short table is NP-complete
(Prop. 5.9). The minimization of a basic smart table is NP-hard at least
as difficult.

Proposition 5.9. Finding the smallest Boolean short table is NP-
complete.

Proof. Equivalence to the minimization of a DNF formula can be shown.

Polynomial reduction of the minimization of a DNF formula to
the compression problem. The problem of minimizing the size of
a DNF formula [KS08] can be reduced to the compression problem. As
previously shown, a DNF can be written polynomial time as a Boolean
short table. The minimal DNF formula corresponds to the minimal
Boolean short table.

Polynomial reduction of the compression problem to the mini-
mization of a DNF formula. Any Boolean short table is also equiv-
alent to a DNF formula and can be transformed into one in a polynomial
time. The minimal Boolean short table corresponds to the minimal DNF
formula.

The first thing noticed is that some tables cannot be compressed
at all. Then some algorithms, which aim at solving the problem, are
defined.

5.4.1 Incompressibility of some Tables

Finding an equivalent smallest basic smart table (i.e. a compressed table
with fewer tuples) is not always possible. Figure 5.5 shows multiple
possible decomposition of a given tuple into less compressed tables. As
shown by the figure, intuitively, a tuple with k basic smart elements is
composed of tuples with k− 1 basic smart elements that have arity− 1
values in common. These tuples with k − 1 basic smart elements are
formed by tuples with k − 2 elements,... up to ground tuples.

This means, to be able to compress, we need at least several tuples
with values in common. To formalize our propositions, we first need two
definitions. The first one, Def. 5.10, is an adaptation of the Hamming

59

distance (metric to measure the difference between two binary numbers)
to tuples. The second one, Def. 5.11, is about trivial element of compres-
sion. This leads to Prop. 5.12 defining a criterium of incompressibility.

Definition 5.10. Hamming Distance Between two Tuples
The Hamming distance between two tuples is the number of positions
where values differ. Ex: the Hamming distance between (1, 1, 0) and
(0, 1, 1) is 2, between (0, 0, 0) and (0, 1, 0) is 1

Definition 5.11. Trivial Compression
A trivial compression is when a compression element only represents
one value, i.e. ∗ used with a domain having a size of 1, 6= v used with
a domain having only two values and v being one of them, ≤ v (resp.
≥ v) used with v the smallest (resp. biggest) value of the domain, ∈ S
used with the size of S being equal to one,...

Proposition 5.12. Suppose the Hamming distance between each pair
of tuples contained in a ground table (without duplicated tuples) is each
time higher or equal to 2. In that case, there is no compression possible
using the basic smart compressions (excepts trivial ones).

Proof. This can be proven recursively. Given a tuple τ with only one
non-trivial basic smart compression element K (representing at least two
values v1 and v2), we can easily see that this tuple represents at least
two tuples where K was respectively replaced by v1 and v2, other values
being the same. The Hamming distance between these two tuples is

(0, ≤ 1, ≥ 3, 6= 2)

...
(0, −3, ≥ 3, 6= 2)
(0, −2, ≥ 3, 6= 2)
(0, −1, ≥ 3, 6= 2)
(0, 0, ≥ 3, 6= 2)
(0, 1, ≥ 3, 6= 2)

(0, ≤ 1, 3, 6= 2)
(0, ≤ 1, 4, 6= 2)
(0, ≤ 1, 5, 6= 2)
(0, ≤ 1, 6, 6= 2)
(0, ≤ 1, 7, 6= 2)

...

...
(0, ≤ 1, ≥ 3, 0)
(0, ≤ 1, ≥ 3, 1)
(0, ≤ 1, ≥ 3, 3)
(0, ≤ 1, ≥ 3, 4)

...

Figure 5.5: Example of a 4-tuple with 3 basic smart elements being
developped into sets of 4-tuples with 2 basic smart elements sharing 3
common values (3 developpements possible).

60

1. Recursively, we can show that a tuple with 2 nontrivial compression
represents at least two tuples with one compression element,... a tuple
with n nontrivial compression represents at least two tuples with n− 1
compression elements.

A second proposition can be directly derived from it:

Proposition 5.13. Given a tuple τ from a given table, if for each other
tuples τi of the table, the Hamming distance between τ and τi is equal
or greater than two, τ cannot be used with another tuple to generate a
compression.

These propositions may help identify the number of incompressible
tuples, thus reducing the compression algorithm’s input to tuples poten-
tially compressible with others.

5.4.2 Compression Algorithms

As the problem is difficult, using an exact algorithm is untractable.
Instead, greedy algorithms are preferred. However, the solution obtained
may not be optimal.

The next subsection describes three original algorithms. The first
one, based on data-mining techniques, generates short tables. The sec-
ond one is greedy and generate basic smart tables. The last one is purely
theoretical and has not been implemented. It solves the exact problem.

These algorithms only work for the compression of tables in basic
smart table. To compress tables into smart tables see [LCKLD].

5.4.2.1 Mining Short Tables

Compressing a table into a short table can be related to the frequent
itemset mining problem [Bor12] (Def. 5.14).

Definition 5.14. Frequent Itemset Mining Problem
Given a predefined set of items (universe), a transaction is a subset of
this universe. Given a database of transactions (i.e. a set of transac-
tions) and a given threshold t, the frequent itemset problem consists of
finding all the patterns (also a subset of the universe) included in at least
t transactions of the database.

A table can be viewed as a database: each tuple corresponding to
a transaction and each value associated with a position corresponding
to an item. A frequent itemset mining algorithm (such as coversize

61

[SAG17]) searches for the frequent itemsets, i.e. the short tuple candi-
dates. A candidate represents a short tuple if the set of all the trans-
actions containing it corresponds to the set of all valid tuples with the
given assigned values (i.e. the values corresponding to the candidate
itemset). This is valid if the number of occurrences corresponds to the
product of the domain size of the variables uninvolved in the itemset.

Algorithm 11 shows the pseudo-code to create the corresponding
short table. It relies on some auxillary fonctions: mapToTransactions

and mapToShortTuple which take care of the mapping of pair (x, v)
into corresponding items, and frequentItemsetMining which can be
any frequent itemset mining algorithms ([SAG17] for example).

Figure 5.6 illustrates the process. First, the table (Fig. 5.6a) is
mapped, using a given mapping function (Fig. 5.6b), into the database
(Fig. 5.6c). From the database, the frequent itemsets (Fig. 5.6d) are ex-
tracted. The itemset are then evaluated. Itemset i0 have an occurrence
of 4, which corresponds to the threshold. The corresponding short tuple
(0, ∗, ∗) is thus added to the short table. Itemsets i2 and i5 does not
meet the threshold. Itemsets i0, i2 and i0, i3 meet the threshold but are
already subsumed by the tuple (0, ∗, ∗). Itemset i2, i5 meet the thresh-
old and is not entirely covered already. The short tuple (∗, 0, 1) is thus
added. At the end all ground tuples are covered by the short tuples
which lead to the result table (Fig. 5.6e).

Algorithm 11: Pseudo-code of the mining of short table

1 Method compressIntoShortTable(T:table,scp:scope)
2 database ← mapToTransactions(T)
3 freqItemset ← frequentItemsetMining(database,threshold)
4 shortTable ← ∅
5 foreach (itemset,nOccurence) from freqItemset do
6 candidate ← mapToShortTuple(itemset)
7 if nOccurence =

∏
x∈scp;x 6∈candidate |dom(x)| then

8 if candidate not already represented by another tuple
then

9 shortTable ← shortTable ∪ {candidate}

10 foreach τ from T do
11 if τ 6∈ shortTable then // 6∈ is seen here as not

covered by any short tuple

12 shortTable ← shortTable ∪ {τ}

62

5.4.2.2 Greedy Compression of Basic smart tables

We introduce a heuristic compression algorithm to generate a basic
smart table from a given (ordinary) table. It focuses on column con-
straints of the form ≤ v and ≥ v. Other forms can be obtained by
post-processing: i) expressions ≤ dom(x).max or ≥ dom(x).min can be
replaced by ∗, and ii) two tuples that are identical except on a column
where we have respectively ≤ v − 1 and ≥ v + 1 can be merged by sim-
ply using 6= v. Expressions ∈ S and 6∈ S were not considered in this
heuristic to avoid costly set operations.

The compression algorithm proceeds in r steps, r being the arity of
the table. The algorithm handles two tables at each step: the c-table
(compressed table) and the r-table (residual table). The union of these
two tables is always equivalent to the initial table. At step i, each tuple

x y z

τ1 0 0 0
τ2 0 0 1
τ3 0 1 0
τ4 0 1 1
τ5 1 0 1

(a) Table

(Var,Val) item

(x, 0) i0
(x, 1) i1
(y, 0) i2
(y, 1) i3
(z, 0) i4
(z, 1) i5

(b) Mapping

Transaction Items

t1 i0, i2, i4
t2 i0, i2, i5
t3 i0, i3, i4
t4 i0, i3, i5
t5 i1, i2, i5

(c) Database

Itemset nOccurence

i0 4
i2 3
i5 3

i0, i2 2
i0, i3 2
i2, i5 2
i3 2
i4 2

(d) Frequent itemsets

x y z

τa 0 ∗ ∗
τ b ∗ 0 1

(e) Result table

Figure 5.6: An example of the mining of short tables.

63

of the c-table has exactly i column constraints of the form ≤ v or ≥ v.
When i = 0, the c-table is the initial table, and the r-table is empty.
After step r, the resulting table of the algorithm is the union of the c-
table and the r-table. The computation at a given step is the following.
Several abstract tuples are generated from the tuples in the c-table, used
to introduce new tuples with one more column constraint of the form
≤ v or ≥ v. The new tuples that cover at least two tuples in the c-table
are gathered in a new c-table used in the next step. The uncovered
tuples in the c-table are added to the r-table.

More formally, at a given step, we define an abstract tuple as a tuple
taken from the current c-table with one of its literal value x = a replaced
by the symbol ’?’. At step i, there are thus (r − i) · tc possible abstract
tuples, with tc the size of c-table. An abstract tuple can be matched
against so-called strictly compatible (resp. compatible) tuples. A basic
smart tuple τ is strictly compatible (resp. compatible) with an abstract
tuple ρ iff for each 1 ≤ j ≤ r, the form of τ [j] is strictly compatible (resp.
compatible) with the form of ρ[j]. Compatibility of forms is intuitive: a
value v is compatible with the same value v and also with ’?’, the form
≤ v (resp. ≥ v) is compatible with ≤ w (resp. ≥ w) provided that w ≥ v
(resp. w ≤ v). Strict compatibility requires compatibility and w = v.

We denote by Sρc (resp., Sρsc) the sets of tuples from the current c-
table that are compatible (resp., strictly compatible) with ρ, an abstract
tuple. Note that the computation of these two sets can be done in O(r.tc)
and that we have Sρsc ⊂ Sρc . Given Sρc = {τ1, . . . , τk}, we denote by V ρ

set of values {τ1[j], . . . , τk[j]} where j is the column index of ? in ρ. If,
given the domain of xj , a subset of V ρ can be represented by xj ≤ v (or
xj ≥ v), then a new basic smart tuple ρ′ is generated, where ρ′ is the
tuple ρ with ? replaced by ≤ v (or ≥ v). The corresponding tuples in
Ssc can be removed as the new smart tuple covers them. However, the
tuples only present in Sc cannot be removed. In practice, a new basic
smart tuple is only introduced if it ensures a reduction of the table (i.e.
at least two tuples can be removed). As tc is O(t), the total complexity
of the compression algorithm is O(r3t2).

Example. Let us consider the abstract tuple ρ = (1, ?,≤ 1). In the
following set of basic smart tuples {τ1 = (1, 0,≤ 1), τ2 = (1, 1,≤ 2), τ3 =
(1, 2,≤ 1)}, the tuples τ1 and τ3 are strictly compatible with ρ, the
tuple τ2 is only compatible with ρ. The new smart tuple (1,≤ 2,≤ 1) is
then generated, allowing us to remove both τ1 and τ3. The tuple τ2 is
necessary to generate this new tuple, but cannot be removed from the
table.

64

Results We have studied the compression of the tables that are
present in the instances of the benchmark. The benchmark used is
derived from the instances available on the XCSP3 website [BLP16]
restricted to tables constraints only. The set of all the tables from these
instances forms the benchmark. The compression ratio is defined as t′

t ,
where t and t′ respectively denote the numbers of tuples in the initial
and compressed tables. Using the algorithm described above, we obtain
the results displayed in Fig. 5.7. As expected, dense tables (i.e. tables
with a high number of tuples compared to the Cartesian product of
domains) lead to good compression. This can be observed in particular
with the series PigeonsPlus that contains dense instances (making them
highly compressible) and the series Renault containing instances with
a wide range of tables (many of them being well compressed). On the
other hand, the series Kakuro or Nonogram contains very sparse tables
that cannot be compressed.

5.4.2.3 Exact Method for Basic Smart Table

Because we only deal with finite domains, an exact method can be de-
rived from the problem of finding optimal submatrices (Def. 5.15) and
more precisely from the maximum weighted submatrix coverage prob-
lem (Def. 5.16). However, this method is NP-Complete and unusable in
practice. It is only presented for the theoretical beauty of the formula-
tion.

Definition 5.15. Maximal-Sum Submatrix Problem
Given a matrix M ∈ Rm×n. Let R = {1, . . . ,m} and C = {1, . . . , n}
be index sets for rows and for columns, respectively. The maximal-sum

0

0.25

0.5

0.75

1

C
om

pr
e

ss
io

n
R

at
io

#tuples

Kakuro Renault MaxCSP Random

0

0.25

0.5

0.75

1

101 103 105

Nonogram

101 103 105

Sat

101 103 105

QRandom

101 103 105

PigeonsPlus

Figure 5.7: Compression ratio of all the table, classed by family of in-
stances.

65

submatrix is the submatrix (I∗, J∗), with I∗ ⊆ R and J∗ ⊆ C, such that:

(I∗, J∗) = arg max
I,J

∑
i∈I,j∈J

Mi,j

Definition 5.16. The Maximum Weighted Submatrix Coverage
Problem
Given a matrix M∈ Rm×n and a parameter K, the maximum weighted
submatrix coverage problem is to select a set S∗ of submatrices (Rk, Ck)
with k = 1, . . . ,K such that the sum of the elements covered is maximum.

The formulation relies on the possibility to formulate any table of
arity r as a Boolean r-dimension matrix. Each dimension of the matrix
is associated with one of the sub-domains of the table. Each column is
thus associated with one of the associated sub-domain’s finite values in
each dimension of the matrix. Following these mappings, each cell of the
r-dimension matrix corresponds to one of the tuples in the corresponding
universe table U. Creating a weighted matrix from this binary matrix
is easy. To reach the table’s optimal and exact compression, one must
ensure no tuple not in the table arises as a ground tuple of a compressed
element. To ensure that, a cost of −∞ is set for each tuple which is not
present.

Example Here is an example of the mapping for a table of arity 2.
The mapping leads thus to a simple 2-dimensions matrix. Assuming two
variables, x and y, with domains dom(x) = {0, 1, 2, 3, 4} and dom(y) =
{0, 1, 2, 3, 4}, and a table (Fig. 5.8a) linking x and y. It is possible
to consider each tuple as a point in a 2D-Space. As the domains are
discrete, this 2D-Space can be represented as a matrix (Fig. 5.8b). The
next step is the creation of the weight matrix (Fig. 5.8c). To each cell
with a tuple, the cost of 1 is associated. To the other cells, without a
tuple, a cost of −∞ is associated.

The next part of solving the problem as a maximum submatrixes
problem is to define what kind of matrixes we are looking for. The
compression problem can be reduced to finding the smallest K with the
value of the objective equal to the number of tuples.

Finally, when we have a solution, we can retrieve the basic smart
tuples from the solution as each submatrix with a positive weight cor-
responds to a compressed tuple. The resulting basic smart element de-
pends on the columns selected of a given dimension.

– 〈= i〉 s used if only one column of a given dimension is part of the
submatrix

66

– 〈∗〉 is used if all the columns of a given dimension are part of the
submatrix

– 〈6= v〉 is used if all but one of the columns is selected

– 〈≤ v〉 (resp. 〈≥ v〉) is used when the only consecutive columns
from first to v (resp. v to last)

– 〈∈ S〉 is used in any other cases, regrouping the selected columns

Finding the minimum number of submatrix with a positive total cost
leads to the optimal basic smart table.

Example The solution of our example table (Fig. 5.8a) is then a map-
ping from the submatrix to compressed tuples. For the example, an
optimal solution is with 5 submatrix:

– Submatrix Sx = {0} Sy = {0, 1, 2, 3, 4} (Fig. 5.9a) corresponding
to (∈ {0},∈ {0, 1, 2, 3, 4}), refined in (0, ∗)

– Submatrix Sx = {0, 2} Sy = {0} (Fig. 5.9b) corresponding to
(∈ {0, 2},∈ {0}), refined in (∈ {0, 2}, 0)

x y

τ0 0 0
τ1 0 1
τ2 0 2
τ3 0 3
τ4 0 4
τ5 1 3
τ6 2 0
τ7 3 2
τ8 3 3
τ9 4 1
τ10 4 4

(a) Example
table

0 1 2 3 4

0 τ0 τ1 τ2 τ3 τ4

1 τ5

2 τ6

3 τ7 τ8

4 τ9 τ10

(b) Space representation of the table

0 1 2 3 4

0 1 1 1 1 1
1 −∞ −∞ −∞ 1 −∞
2 1 −∞ −∞ −∞ −∞
3 −∞ −∞ 1 1 1
4 −∞ 1 −∞ −∞ 1

(c) Corresponding weight matrix

Figure 5.8: Illustration on how to map a table into a matrix.

67

– Submatrix Sx = {0, 4} Sy = {1, 4} (Fig. 5.9c) corresponding to
(∈ {0, 4},∈ {1, 4}), which can not be refined using more precise
unary restrictions

– Submatrix Sx = {0, 3} Sy = {2, 3, 4} (Fig. 5.9d) corresponding to
(∈ {0, 3},∈ {2, 3, 4}), refined in (∈ {0, 3},≥ 2)

– Submatrix Sx = {0, 1} Sy = {3} (Fig. 5.9e) corresponding to (∈
{0, 1},∈ {3}), refined in (≤ 1, 3)

The generalization to arities higher than two is made by working
with the submatrix problem with tensors (matrix of higher dimensions).

However, even if this method leads to an optimal result, it is in-
tractable in practice.

0 1 2 3 4

0 1 1 1 1 1
1 −∞ −∞ −∞ 1 −∞
2 1 −∞ −∞ −∞ −∞
3 −∞ −∞ 1 1 1
4 −∞ 1 −∞ −∞ 1

(a) Tuple (0, ∗)

0 1 2 3 4

0 1 1 1 1 1
1 −∞ −∞ −∞ 1 −∞
2 1 −∞ −∞ −∞ −∞
3 −∞ −∞ 1 1 1
4 −∞ 1 −∞ −∞ 1

(b) Tuple (∈ {0, 2}, 0)

0 1 2 3 4

0 1 1 1 1 1
1 −∞ −∞ −∞ 1 −∞
2 1 −∞ −∞ −∞ −∞
3 −∞ −∞ 1 1 1
4 −∞ 1 −∞ −∞ 1

(c) Tuple (∈ {0, 4},∈ {1, 4})

0 1 2 3 4

0 1 1 1 1 1
1 −∞ −∞ −∞ 1 −∞
2 1 −∞ −∞ −∞ −∞
3 −∞ −∞ 1 1 1
4 −∞ 1 −∞ −∞ 1

(d) Tuple (∈ {0, 3},≥ 2)

0 1 2 3 4

0 1 1 1 1 1
1 −∞ −∞ −∞ 1 −∞
2 1 −∞ −∞ −∞ −∞
3 −∞ −∞ 1 1 1
4 −∞ 1 −∞ −∞ 1

(e) Tuple (≤ 1, 3)

Figure 5.9: Submatrices composing the solution of the example problem.

68

5.5 Conclusion

This chapter introduced the various kinds of tables used in this thesis
and the differences between them. The primary dichotomy in table
semantics lies between positive and negative tables. Tuples contained in
positive tables represent allowed instantiations of variables, while tuples
in negative tables represent forbidden instantiations.

Interestingly, the size of tables can be reduced by compressing them
using unary or binary constraints used as values inside the tuples. These
tables are called smart tables. Unfortunately, compressing ground tables
into basic smart tables is a complex problem. This is why greedy ap-
proaches are the only ones that can be used in practice for now. However,
compression is not always possible, as discussed in this chapter. The
greedy compression algorithm was published as part of the [VLDS17]
paper.

69

70

Chapter 6

Diagrams for
Constraints

It’s always good to take an orthogonal view of something.
It develops ideas.

- Ken Thompson

6.1 Introduction

This chapter presents all variations of (decision) diagrams (Def. 6.1)
used in this thesis.

Definition 6.1. Diagrams, Nodes, Arcs, Paths, ROOT and END

A diagram is a layered oriented acyclic graph. It is described by a pair
(Ω,Θ) where Ω is the set of nodes forming the diagram and Θ is the set
of arcs.

As in any acyclic graph, each arc ε ∈ Θ is described by specifying
its source node, called the tail (t(ε) ∈ Ω), and its target node, called the
head (h(ε) ∈ Ω). The tuple notation ε = (t(ε), h(ε)) is also used.

In diagrams, arcs and nodes are organized in layers. There are N
layers of arcs (numbered from 0 to N − 1) and N + 1 layers of nodes
(numbered from 0 to N). N is called the arity of the diagram. Each
node n ∈ Ω is assigned to exactly one node layer Ln(n). Each arc ε ∈ Θ
is assigned to exactly one arc layer La(ε). Each arc belonging to the arc
layer l initiates in node layer l and reaches node layer l + 1. The node
layers 0 and N contain both one unique node. The first is called the
ROOT, and the second is called the END.

Figure 6.1 gives an example of a diagram.

There are several subclasses of diagrams. Each of them depending
on how the arcs are labeled (Def. 6.2).

71

Definition 6.2. Labeled Diagrams, Domains, Binary and
Multi-valued
As for tables (Def. 5.1), we can define the domain of a diagram.
The domain of a diagram is the ordered sequence of N domains
D = (D0,D1, . . . ,DN−1), when N is the arity of the diagram. Each
of the domains of the sequence is associated with one of the arc layers
of the diagram. A labeled diagram is a diagram where each arc is
associated with a label. The label of an arc l(ε) belongs to the domain of
the associated arc layer l(ε) ∈ DLa(ε). The same label cannot be used for
two arcs sharing the same tail and the same head. A triplet notation is
often used to describe labeled arcs: ε = (t(ε), l(ε), h(ε)).

When the domains contain only two values, the diagram is said to
be binary. Otherwise, it is called multi-valued.

Each of these subclasses can be associated with an equivalent table.
The tuples associated to each path (Def. 6.3) inside it can represent a
table.

Definition 6.3. Path in a Diagram
A path in a diagram is an alternate sequence of nodes and arcs. It starts
at the ROOT and ends at the END. Each arc ε in the sequence is preceded
by its source t(ε) and followed by its destination h(ε). Figure 6.1 shows,
using bold arrows, an example of a path. This diagram contains a total
of eleven different paths.

In labeled diagrams, we can extract the sequence of the arcs’ labels
along the path. This sequence of labels is called the tuple associated with
the path.

} Node layer 0

} Node layer 1

} Node layer 2

} Node layer 3

Arc layer 0 {

Arc layer 1 {

Arc layer 2 {

ROOT

END

Figure 6.1: An example of diagram of arity 3 with its arc and node
layers highlighted. The bold arcs represent an example of path within
the diagram.

72

The following sections introduce the MVD, MDD, and sMDD subclasses
and the concept of determinism of nodes. Then, we introduce the
bs− MVD, bs− MDD, and bs− sMDD extentions, which result from the han-
dling of basic smart elements (Def. 5.6) in the diagram. Further, some
properties linking tables and diagrams are given. Finally, some experi-
ments compare the various types of diagrams.

6.2 Ground Diagrams

Ground diagrams are the simplest form of labeled diagram (Def. 6.4).

Definition 6.4. Ground diagrams
A ground diagram is a labeled diagram where each label represents only
a single value 〈= v〉.

The notion of determinism (Def. 6.5) about the set of incom-
ing/outgoing arcs of a node is introduced to simplify the definition of
subclasses of ground diagrams.

Definition 6.5. In-d, out-d, in-nd and out-nd Node
A node is in-d (in-deterministic) if and only if at most one incoming
arc by available label is allowed. Otherwise, it is said to be in-nd (in-
non-deterministic).
A node is out-d (out-deterministic if and only if at most one outgoing
arc by available label is allowed. Otherwise, it is said to be out-nd (out-
non-deterministic).
Out-d nodes are also commonly called decision nodes. By definition each
in-d (resp. out-d) node can also be said to be in-nd (resp. out-nd).
Figure 6.2 gives an example of these possible combinations.

Using this definition, one can define three types of ground diagrams:
the MVD already known but not so much used, the MDD, already well
known and well used, and the sMDD, new in-between structure.

6.2.1 Multi-Valued Variable Diagrams (MVDs)

The formal definition of the multi-valued variable diagrams is the fol-
lowing Def. 6.6. The multi-valued variable diagrams used in this thesis
corresponds to the ordered MVD as defined by [AFNP14].

Definition 6.6. Multi-Valued Variable Diagram
A multi-valued variable diagram, also called MVD, is a ground diagram
where any node is in-nd and out-nd. Figure 6.3 gives an illustration.

73

However, by construction, some nodes are always in-d or out-d
(Prop. 6.7).

Proposition 6.7. MVDs always have their nodes of level 1 (resp. N −1)
in-d (resp. out-d).

out
out-d out-nd

in

in
-d

0 1 2

0 1 2

0 1 2

0 1 0

in
-n

d

0 1 0

0 1 2

0 1 0

0 1 0

Figure 6.2: Example of nodes with in-d, out-d, in-nd and out-nd. Non-
determinism is highlighted by bold arcs.

} Node level 0

} Node level 1

} Node level 2

} Node level 3

} Node level 4

} Node level 5

Arc level 0 {

Arc level 1 {

Arc level 2 {

Arc level 3 {

Arc level 4 {

ROOT

END

3

2 11

3

1

1

1

3 3

2

2

2 22

2 12

2 3

1

1

1

3

1 1

Figure 6.3: An MVD.

74

Proof. This is the combination of two facts. First, there is only one
node at level 0 (resp. N), i.e. the ROOT (resp. END). Secondly, no two
arcs can share the same source, destination, and label. Assuming two
arcs sharing the same label targeting (resp. sourced from) a given node
of level 1 (resp. N − 1), as their source (resp. target) lies in level 0
(resp. N), their source (resp. target) is, by the first fact, ROOT (resp.
END). They would therefore share their source, target, and label, which
contradicts the second fact. This prooves that nodes at level 1 (resp.
N − 1) cannot have more than one arc by label entering (resp. exiting)
them, making them in-d (resp. out-d).

A ground table and an MVD with the same arity are equivalent if for
each tuple of the ground table, there exists a path in the MVD associated
to this tuple and if for each path of the MVD, the associated tuple exists
in the ground table. Figure 6.4 displays the table corresponding to the
MVD in Fig. 6.3.

Remark. Due to the in-nd property of MVDs, several paths can be associ-
ated with the same tuple. For example, the highlighted tuple in Fig. 6.4
corresponds to the three highlighted paths in Fig. 6.3.

x0 x1 x2 x3 x4 #

1 1 1 2 1
1 1 1 2 2
1 1 1 3 1 (×3)
1 1 1 3 2 (×2)
1 1 1 3 3
1 1 2 1 1
1 1 2 1 3
1 1 2 2 1 (×3)
1 1 2 2 2 (×2)
1 1 2 2 3
1 1 2 3 1 (×2)
1 1 2 3 2 (×2)
1 1 3 1 1
1 1 3 1 3
1 1 3 2 1
1 1 3 2 3
1 2 1 3 1 (×2)
1 2 1 3 2

x1 x2 x3 x4 x5 #

1 2 1 3 3
1 2 2 1 1
1 2 2 1 3
1 2 2 2 1 (×3)
1 2 2 2 2 (×2)
1 2 2 2 3
1 2 2 3 1 (×2)
1 2 2 3 2 (×2)
1 2 3 1 1
1 2 3 1 3
1 2 3 2 1
1 2 3 2 3
2 1 1 2 1
2 1 1 2 2
2 1 1 3 1
2 1 1 3 2
2 2 2 1 1
2 2 2 1 3

x1 x2 x3 x4 x5 #

2 2 2 2 1 (×2)
2 2 2 2 2
2 2 2 2 3
2 2 2 3 1
2 2 2 3 2
3 1 1 3 1 (×2)
3 1 1 3 2
3 1 1 3 3
3 1 2 2 1
3 1 2 2 2
3 1 2 3 1
3 1 2 3 2
3 1 3 1 1
3 1 3 1 3
3 1 3 2 1
3 1 3 2 3

Figure 6.4: The equivalent ground table to Fig. 6.3 (assuming arc level
i is associated to variable xi). Last column indicates the number of
associated paths in the MVD if there is more than one.

75

6.2.2 Multi-Valued Decision Diagrams (MDDs)

A well-known subclass of ground diagrams is the MDD (Def. 6.8). The
multi-valued decision diagrams used in this thesis corresponds to the
ordered MDD as defined by [AFNP14] which are a generalization of the
ordered BDD as defined by [DM02a]. The definition of the BDD goes
back to the 80’ [Bry86] where they were first used (in their non-ordered
version) to describe Boolean formulas.

Definition 6.8. Multi-Valued Decision Diagram
A multi-valued decision diagram is a multi-valued variable diagram
where all nodes are in-nd and out-d. Figure 6.5 gives an example of an
MDD. A binary decision diagram (BDD) is the binary version of the MDD

(Fig. 6.6f).

An MDD and a ground table are two different representations of the
same set of tuples. However, the out-d nature of the nodes of the MDD

makes it impossible to have more than one path corresponding to each
of the tuples (Prop. 6.10).

Definition 6.9. Path Uniqueness
A given diagram is said to have the path uniqueness property if there is
at most one path that could be associated with it for any given tuple. In

} Node level 0

} Node level 1

} Node level 2

} Node level 3

} Node level 4

} Node level 5

Arc level 0 {

Arc level 1 {

Arc level 2 {

Arc level 3 {

Arc level 4 {

ROOT

END

1 2 3

1 2 33

1 3

1 3

2
1

3
2 32

1

12 12

1 2 1 3

Figure 6.5: An MDD.

76

other words, a given diagram is said to have the path uniqueness property
if the size of the corresponding ground table is always the number of paths
in the diagram.

Proposition 6.10. Path Uniqueness of MDDs
Any MDD has the path uniqueness property.

Proof. Given a node and a label, the out-d property states that at most
one node of the next layer can be reached. Applying this from ROOT to
END leads to at most one path possible for a given tuple. The size of the
equivalent ground table corresponds thus to the number of paths in the
MDD.

pReduce: Transforming a Table into an MDD

Reduction algorithms for generating decision diagrams from tables have
been proposed in the literature. A first algorithm based on a breadth-
first bottom-up exploration was proposed in [Bry86] for BDDs, and a
second algorithm, using a dictionary and called mddify, was proposed
in [CY08, CY10] for MDDs. More recently, pReduce [PR15] has been
shown to admit a better worst-case time complexity than mddify.

Figure 6.6 illustrates the creation of an MDD in the spirit of pReduce.
For clarity and simplicity, the process is illustrated starting from a binary
table, thus leading to a BDD. In the illustrations, dashed and plain arcs
stand for labels with values 0 and 1, respectively. A generalization of
the process to an MDD is straightforward.

Initially, a table (Fig. 6.6a) and an ordering of the associated vari-
ables (x0 to x4, in a lexicographic order) are required. The tuples of
these tables are sorted using a lexical ordering on the values following
the given variable ordering (here, the table is already sorted). Then, the
trie [GJMN07] (i.e. prefix tree) corresponding to this table is created
by grouping the tuples with common prefixes. Figure 6.6b represents
the table with the merged prefixes and Fig. 6.6c represents the resulting
trie. Sorting the table was introduced in pReduce to reduce the complex-
ity during the creation of the trie. A (non-reduced) MDD can be easily
derived from this trie (Fig. 6.6d) by merging all the leaves of the trie
(nodes S to Z) into one single END leaf. The MDD is, then, reduced by
successively merging nodes when possible, from bottom to top. Merging
is done by finding nodes having similar sets of outgoing arcs. Two sets of
outgoing arcs are similar if they have the same cardinality, and for each
arc in one set, there is an arc in the other set with the same label (value)
and the same head node. In our example, one can observe that nodes
M , O, and P have only one outgoing arc, each one labeled with 1 and

77

x0 x1 x2 x3 x4

0 0 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 1
1 0 0 0 1
1 1 0 0 0
1 1 1 0 0
1 1 1 0 1

(a) Sorted table

x0 x1 x2 x3 x4

0

0 0 0 1

1
0 1

0
1

1 0 1

1

0 0 0 1

1
0 0 0

1 0
0
1

(b) Table with merged prefixes

x0

x1

x2

x3

x4

ROOT

A B

C D E F

G H I J K L

M N O P Q R

S T U V W X Y Z

(c) Trie

x0

x1

x2

x3

x4

m
er

gi
n

g
ROOT

A B

C D E F

G H I J K L

M N O P Q R

END

(d) MDD from the Trie (level of x5

has been reduced)

x0

x1

x2

x3

x4

m
er

gi
n

g

ROOT

A B

C D E F

G H I J K L

MOP NR Q

END

(e) MDD during reduction (level of x4

has been reduced)

x0

x1

x2

x3

x4

ROOT

A B

CE D F

GIJ H KL

MOP NR Q

END

(f) Reduced MDD

Figure 6.6: Process of reducing a Table into an MDD.

78

reaching END. Hence, these nodes can be merged (leading to node MOP
in Fig. 6.6e). Then, G, I, and J have now both only one outgoing arc,
each one labeled with 0 and pointing to MOP . They can therefore be
merged into GIJ . The MDD resulting from this iterative merging process
is shown in Fig. 6.6f.

Complexity. The complexity of creating the trie and the MDD from
the trie is

O(m(t+ d))

As stated in [PR15], the time and space complexities of pReduce are

O(n+m+ d)

where n is the number of nodes in the diagram, m is its arity and d is
the size of the domain.

6.2.3 Semi Multi-Valued Decision Diagrams (sMDDs)

Definition 6.11. Semi Multi-Valued Decision Diagram
A semi multi-valued decision diagram is a diagram where the nodes of
levels in [0; b r2c[are in-nd and out-d and the nodes of levels in]b r2c+1; r]
are in-d and out-nd. The nodes at levels b r2c and b r2c+ 1 are in-nd and
out-nd.
Figure 6.7 gives an example of an sMDD. A semi binary decision diagram
(sBDD) is the binary version of the sMDD (Fig. 6.8h).

One interest of sMDDs over MDDs is the potential reduction of the
number of nodes. Assuming an uniform variable domain size equal to
d, the number of nodes in the initial trie is O(dr) for the MDD while it is
O(dr/2) for the sMDD. The gain can thus be very substantial, although
merging renders precise predictions challenging to make.

Proposition 6.12. Path Uniqueness of sMDDs
Any sMDD has the path uniqueness property.

Proof. There is a unique path in the top of the diagram representing
each prefix. There is also a unique path in the bottom of the dia-
gram representing each suffix. This is derived from the demonstration
of Prop. 6.10. Thus, a given tuple will always be represented by a path
composed of the prefix partial path and the suffix partial path, both
linked by the complementary edge. Two different paths for the same
tuple would require two complementary edges between the end of the
prefix partial path and the start of the suffix partial path. Neverthe-
less, this can only arise if the edges are labeled with two different values

79

(since two edges between the same pair of nodes cannot be labeled with
the same value). Hence, a contradiction since these two paths would
represent two different tuples.

sReduce: Transforming a Table into an sMDD

The transformation algorithm, called sReduce, results of an addaptation
of pReduce. Figure 6.8 illustrates the creation of an sMDD in the spirit
of sReduce. For clarity and simplicity, the process is illustrated starting
from a binary table, thus leading to a sBDD. In the illustrations, dashed
and plain arcs stand for labels with values 0 and 1, respectively. A
generalization of the process to an sMDD is straightforward.

The algorithm is composed of five main steps. It starts with a table
(Fig. 6.6a) and an ordering of the associated variables (x0 to x4, in a
lexicographic order).

First, the initial table is split in two main parts:

– the p-table (table for the prefixes) corresponding to a restriction
of the table to its first b r2c columns (or variables),

– the s-table (table for the suffixes) corresponding to a restriction of
the table to its last r − b r2c − 1 columns (or variables),

} Node level 0

} Node level 1

} Node level 2

} Node level 3

} Node level 4

} Node level 5

Arc level 0 {

Arc level 1 {

Arc level 2 {

Arc level 3 {

Arc level 4 {

ROOT

END

1 2 3

1 2 13

1 3

3 3

3

2
1

3
2 32

2

12 12

1 2

Figure 6.7: An sMDD.

80

At this point, note that all variables, except one, are involved in one of
these two partial tables. On our example with r = 5, we obtain a p-
table with 2 columns (corresponding to x0 and x1) and an s-table with 2
columns (corresponding to x3 and x4). The missing column (for variable
x2) will be considered in a later stage.

Second, duplicates are removed from the p-table (resp. s-table),
which is then sorted using a lexicographic (resp. colexicographic1) order.
After these steps, we obtain the p-table and the s-table shown in Fig. 6.8a

1Ordering is done by reading numbers from right to left.

x0 x1

0 0
0 1
1 0
1 1

(a) p-table

0
0
1

1
0
1

(b) p-table
with merged
prefixes

x0

x1

ROOT

A B

C D E F

(c) p-trie

x3 x4

0 0
1 0
0 1
1 1

(d) s-table

0
0

1

0
1

1

(e) s-table
with merged
sufixes

x3

x4

G H I J

K L

SINK

(f) s-trie

x0

x1

x2

x3

x4

m
er

g
in

g
m

er
g
in

g

ROOT

A B

C D E F

G H I J

K L

SINK

(g) sMDD

x0

x1

x2

x3

x4

ROOT

A B

CED F

G HJ I

K L

SINK

(h) Reduced sMDD

Figure 6.8: Reducing a Table into an sMDD.

81

and Fig. 6.8d.
Third, we build some equivalent tables sharing prefixes and suffixes.

Equivalent trie (for the p-table) and inverted trie (for the s-table) are
naturally derived from them (we call them p-trie and s-trie). Notably,
the columns’ order is preserved, and we start with a special root node
for the p-tree, whereas we finish with a special END node for the s-tree.
An illustration is given by Fig. 6.8b, Fig. 6.8c, Fig. 6.8e and Fig. 6.8f.

Fourth, for each tuple τ in the initial table, an arc is built. It links
the node in the p-trie corresponding to the end of the prefix of τ and the
node in the s-trie corresponding to the start of the suffix of τ . This arc is
labeled with the intermediate variable value, which was involved neither
in the p-table nor in the s-table. We obtain a new diagram, depicted in
Fig. 6.8g, where arcs have been added for x2.

Fifth, reduction, as in pReduce, is performed twice. On the one
hand, from bottom to top, merging can be conducted by starting from
the nodes that were leaves in the p-trie. For merging, the algorithm
searches for similarities between sets of outgoing arcs. As an illustration,
let us consider nodes C and E in Fig. 6.8g. These two nodes have both
one outgoing arc with the same label 0 and the same head: therefore,
they can be merged (node CE in Fig. 6.8h). On the other hand, from
top to bottom, merging can be conducted by starting from the nodes
with no parent in the s-trie. For merging, the algorithm searches now
for similarities between sets of incoming arcs. As an illustration, observe
how nodes H and J in Fig. 6.8g can be merged (node HJ in Fig. 6.8h).
The graph obtained after complete reduction is depicted in Fig. 6.8h.

Proposition 6.13. The graph obtained after executing sReduce on any
specified table is an sMDD.

Proof. Before executing merging operations, the diagram (at the end of
step 4) is an sMDD, by construction. Merging conducted in the first pass
(bottom-up) preserves out-determinism of any node at a level < b r2c,
while merging conducted in the second pass (top-down) preserves in-
determinism of any node at a level > b r2c+ 1.

Complexity. Note that the complexity of sReduce is basically the
same as pReduce as operations are essentially the same (sorting and
merging).

6.2.4 pReduce versus sReduce

We first compared sReduce with pReduce. Similar execution times were
observed for sReduce and pReduce. Concerning the size of the dia-

82

grams, Fig. 6.9 shows two performance profiles [DM02b] that allow us
to compare the number of nodes and arcs globally in the generated MDDs
and sMDDs for all the tables involved in our benchmark (around 230, 000
tables of arity greater than or equal to 3). A performance profile is
a cumulative distribution of the speedup performance of an algorithm
s ∈ S compared to other algorithms of S over a set I of instances:
ρs(τ) = 1

|I| × |{i ∈ I : ri, s ≤ τ}| where the performance ratio is defined

as ri, s =
ti, s

min{ti, s|s∈S} with ti, s the time obtained with algorithm s ∈ S
on instance i ∈ I. A ratio ri, s = 1 thus means that s is the fastest on
instance i.

As we predicted, the number of nodes is significantly reduced in the
generated sMDDs (more than a factor 8 for at least 70% of the tables),
while the number of arcs tends to be slightly higher.

6.3 Basic Smart Diagrams

A way to compress even more the diagrams is to use the compression el-
ements (Def. 5.6) as labels. We call such diagrams basic smart diagrams
(Def. 6.14).

Definition 6.14. Basic Smart Diagram
A basic smart diagram (basic smart MVD (bs− MVD), basic smart MDD

(bs− MDD), basic smart sMDD (bs− sMDD),...) is a diagram where the arcs
are labeled with basic smart elements (Def. 5.6), i.e. unary expressions
of the form 〈= v〉, 〈∗〉, 〈6= v〉, 〈≤ v〉, 〈< v〉, 〈≥ v〉, 〈> v〉, 〈∈ S〉 or 〈6∈ S〉.
An example of a basic smart MVD (bs− MVD) is given by Fig. 6.10.

There are two ways of generating a basic smart diagram from a table
(Fig. 6.11). Both involves two steps. The first consists of transforming
the table into a basic smart table, then transforming it into the basic
smart diagram. The second required the table to be transformed into a
diagram and then into the basic smart diagram. The proprieties of the
resulting graph depend on the transformation path taken.

6.3.1 From Basic Smart Table to Basic Smart MVD

To create a bs− MVD from a bs− table, one can easily adapt a known
procedure to construct diagrams, such as pReduce (see Sec. 6.2.2 for
more details), or sReduce (see Sec. 6.2.3 for more details). The adapta-
tion is of pReduce (resp. sReduce) is called pReducebs (resp. sReducebs).

Even if pReduce (resp. sReduce) creates MDD (resp. sMDD),
pReducebs does not generate bs− MDD (resp. bs− sMDD). In fact, it
always represents bs− MVD.

83

However, the property of path uniqueness may be conserved on one
condition. As a bs− table may contain overlapping tuples (i.e. two
tuples representing the same ground tuple), several paths may repre-
sent the same ground tuple. The presence of overlapping tuples in the
bs− table would lead to overlapping paths in resulting diagrams. Each
ground tuple common to the overlapping tuples is represented by all the

(a) Comparison of the number of edges

(b) Comparison of the number of nodes

Figure 6.9: Comparing the size of the generated MDDs and sMDDs.

84

corresponding paths. The resulting diagram does not have the unique
path property in that case. If the initial bs− table does not contain
any overlapping tuple then, no ground tuples are represented by more
than one tuple at the same point, and therefore not represented by more
than one path. In this case, the unique path property applied.

pReducebs: Transforming a bs− table into a bs− MDD

The four steps of the procedure pReduce are the following. First, the
tuples of the table are sorted using lexicographic ordering. Second, the
corresponding trie (i.e. prefix tree) is created by sharing common pre-
fixes among the tuples. Third, a diagram is derived from the trie by
merging all the trie leaves to form the END node. Finally, the diagram
is reduced by merging, in a bottom-up way, each pair of nodes having

ROOT

END

≤ 4 ∗ ∗

2 6= 2 1 ≥ 3

2 3 0 ∗ ≥ 2

0 ≤ 2 6= 1 3

∈ {1, 3}

∈ {0, 4} ∈ {0, 2, 3}

Figure 6.10: A basic smart MVD.

table

diagram

bs-diagram

bs− table

pReduce/sReduce

transform pReducebs/sReducebs

edge merging

Figure 6.11: Ways to turn a table into a bs-diagram.

85

similar sets of outgoing arcs. Two sets of outgoing arcs are similar if
they have the same cardinality, and for each arc in one set, there is an
arc in the other set with the same label (value) and the same head.

Actually, for adapting it to bs− table, we need to impose a total
order on expressions (unary constraints) involved in basic smart tuples.
For example, we can associate a pair of integers with each expression
(unary constraint). The first element of the pair represents the type
(operator) of the expression, and the second element the operand in-
volved in the expression. Figure 6.12 illustrates the naturally derived
lexicographic order. Using such order requires a simple hypothesis: two
different used compression elements can represent the same subset of
values from the domain. For example, ≤ dom.max and ∗ represent the
same element. Therefore, for benefiting from a defined ordering, each
occurrence of ≤ dom.max should be replaced by ∗.

Figure 6.13 illustrates through an example the four steps of
pReducebs: going from a sorted bs− table (Fig. 6.13a) to a trie
(Fig. 6.13b), then into an MVD (Fig. 6.13c) and finally into a reduced
MVD (Fig. 6.13d), where the highlighted node is the result of merging
two nodes with similar outgoing sets of arcs). This example shows that
pReducebs does not necessarily generate a bs− MDD, because some nodes
are not out-d, possibly leading to several paths for the same tuple as it
is the case for (1, 1, 1).

sReducebs: Transforming a bs− table into a bs− MDD

Using the same ordering, a similar adaptation is possible for sReduce,
the procedure that generates sMDDs, leading to sReducebs.

Expression Representation

= v (0, v)
6= v (1, v)
∗ (2, 0)
≤ v (3, v)
≥ v (4, v)
∈ S (5,

∑
i∈S 2i)

6∈ S (6,
∑

i 6∈S 2i)

Figure 6.12: Lexicographic Order on Expressions.

86

6.3.2 From Diagram to Basic Smart Diagram

Generating a basic smart diagram from a ground diagram is straight-
forward. At each layer i, we process every group G of (at least two)
arcs sharing the same tail and head nodes. Specifically, we can compare
V = {l(ω) : ω ∈ G} with dom(xi), and consequently apply some rules
(given in order of priority) for merging some arcs of G:

1. if V = dom(xi), then G is replaced by a unique arc labeled with
〈∗〉

2. else if ∃v ∈ dom(xi) s.t. V ∪ {v} = dom(xi), then G is replaced by
a unique arc labeled with 〈6= v〉

3. else

(a) if m, defined as max{v : {v′ ∈ dom(xi) : v′ ≤ v} ⊆ G} is
not equal to dom(xi).min, then Gm = {ω ∈ G : l(ω) ≤ m}
is replaced by a unique arc labeled with 〈≤ m〉. Otherwise,
Gm = ∅.

(b) if M , defined as min{v : {v′ ∈ dom(xi) : v′ ≥ v} ⊆ G \ Gm},
is not equal to dom(xi).max, then GM = {ω ∈ G \ Gm :

x1 x2 x3

= 1 = 1 ≤ 1
∗ 6= 2 ≤ 1
∗ ≤ 2 = 1

(a) Sorted Table

x1 x2 x3

= 1 = 1 ≤ 1

∗ 6= 2 ≤ 1
≤ 2 = 1

(b) Trie

ROOT

END

x0

x1

x2

∗= 1

≤ 26= 2= 1

= 1
≤ 1

≤ 1

(c) Trivial MVD

ROOT

END

x0

x1

x2

∗= 1

≤ 26= 2= 1

= 1≤ 1

(d) Reduced MVD

Figure 6.13: Turning a bs− table into a bs− MVD using pReducebs.

87

l(ω) ≥ M} is replaced by a unique arc labeled with 〈≥ M〉.
Otherwise, GM = ∅.

(c) Finally, given G′ = G\Gm\GM , if |G′| > 1 then G′ is replaced
by a unique arc labeled with 〈∈ S〉 where S = {l(ω) : ω ∈ G′}
if |S| ≤ |dom(xi) \ G|, otherwise G′ is replaced by a unique
arc labeled with 〈∈ S′〉 where S′ = {l(ω) : ω ∈ dom(xi) \G}.

Figure 6.14 illustrates these merging rules. The variable of interest xi
has a domain (initially) composed of 10 values, and white cells represent
the values that are present in G.

Note that our merging procedure keeps at most three arcs between
any two nodes. An example is given in Fig. 6.15.

v

= v ∗

v

6= v

v w

≤ v ≥ w∈ S

Figure 6.14: Illustration of the possible merging rules (on a domain of
size 10).

ROOT

END

x0

x1

x2

0
1

2
1

1 2 4 5 0 20

1

0
10

2

(a) An MVD

ROOT

END

x0

x1

x2

∗= 1

∈ {0, 2}
≤ 1

∈ {1, 2} ≥ 4

6= 26= 1

(b) An equivalent bs− MVD

Figure 6.15: Transforming an MVD into an equivalent bs− MVD. The do-
mains of the variables are dom(x0) = {0, 1, 2}, dom(x1) = {0, 1, 2, 3, 4, 5}
and dom(x2) = {0, 1, 2}.

88

6.3.3 Comparison of the Different Transformations

Depending on the main data structure (table or diagram) and possible
transformation, we use different names to describe the benchmark suite:

– βt: the initial benchmark. It is a set of roughly 4, 000 instances
only containing (positive) table constraints and available on the
XCSP3 website [BLP16].

– βbst: instances of βt have been transformed into instances where
bs− table replace (ordinary) tables. The compression used is the
one presented in Sec. 5.4.2.2.

– βmdd: instances of βt have been transformed into instances where
MDDs replace (ordinary) tables. The algorithm pReduce [PR15]
was used.

– βbsmvd: instances of βbst have been transformed into instances
where bs− MVDs replace bs− table. The algorithm pReducebs was
used.

– βbsmdd: instances of βmdd have been transformed into instances
where bs− MDDs replace MDDs.

To start, we consider the results depicted in Fig. 6.16. The three
benchmarks involving MVDs are βmdd, βbsmvd and βbsmdd. In terms of
compression, the clear winner is βbsmdd with substantially fewer arcs
than in the diagrams generated by the two other approaches. Let us
recall that this approach consists of two main steps: 1) creating a graph
and 2) merging arcs greedily. The alternative approach βbsmvd that
creates first a bs− table, and then converts it into a bs− MVD is worse
both in terms of the number of nodes and the number of arcs, even when
compared to a standard generation of MDDs (βmdd). One explanation is
that, despite starting from smaller tables, there is less chance to merge
nodes due to the proliferation of constraint labels in the compressed
tables.

6.4 Incompressibility of some Diagrams

As for tables, some properties can be expressed about the compression
of the diagrams that have the path uniqueness property. The first one
(Prop. 6.15) links the incompressibility of diagrams to the incompress-
ibility of tables.

89

Proposition 6.15. A ground diagram with the path uniqueness property

20 21 22 23 24 25 26
0%

20%

40%

60%

80%

100%

τ (arc ratio)

%
ta
b
le
s

βbsmdd

βbsmvd

βmdd

(a) Comparison of the number of edges

20 21 22 23 24 25 26
0%

20%

40%

60%

80%

100%

τ (node ratio)

%
ta
b
le
s

βmdd & βbsmdd

βbsmvd

(b) Comparison of the number of nodes

Figure 6.16: Performance profile comparing the structure of the graphs
from βbsmdd, βbsmvd and βmdd.

90

has at most one arc between every two pairs of nodes if and only if the
corresponding ground table has no non-trivial possible compression.

Proof. At most one arc ⇒ no non-trivial compression.
Consider the simplest table with one tuple with one non-trivial com-
pression element (for example, the table with the tuple (1, ∗, 1). Every
diagram with path uniqueness property representing it will result in a
diagram with only one path, with a non-trivial compression element,
meaning several edges in the corresponding ground diagram. Hence the
contradiction.
No non-trivial compression ⇒ at most one arc.
Assume the corresponding diagram could have a non-trivial compression
on one arc, i.e. has at least two arcs with the same source and destina-
tion. As each path through the graph corresponds to a tuple, the path(s)
going through that non-trivially compressed arc would correspond to a
valid tuple containing a compression. Hence the contradiction.

The second proposition (Prop. 6.17) is more an intuition. It expresses
a possible metric that could be used to predict a diagram’s wideness
based on its associated table. This metric (Def. 6.16) is again based on
the Hamming distance.

Definition 6.16. Midle Hamming Distance between two Tuples
The midle Hamming distance between two tuples is the size of the tuple
minus the sum of the sizes of the common prefix and suffix. Ex: the tail
Hamming distance between (1, 1, 0) and (0, 1, 0) is 1, between (0, 0, 0)
and (0, 1, 0) is 1.

Proposition 6.17. Given a table, the wideness of a corresponding di-
agram with the uniqueness property is linked to the middle Hamming
distances between the table’s tuples. The higher the distance, the fewer
merges can happen during the diagram’s construction, resulting in a
wider diagram.

Proof. Given a two-tuple table and a corresponding diagram with two
paths, these paths can share arcs only when sharing the same prefix or
suffix. This means that the higher the prefix/suffix Hamming distance
is between two tuples, the higher the number of arcs and nodes in the
diagram. Given a larger table, the higher the distribution of the pairwise
tail Hamming distance is, the wider the diagram should be expected to
be.

91

6.5 Conclusion

MDDs have already proven to be a critical compression tool to help re-
ducing the memory space used by an extensional representation. Our
work on diagrams shows that even a bit of non-determinism can even
achieve a greater reduction, especially concerning the number of nodes
required for the representation. Being able to build an MVD should help
further reducing the size of the representation. The benefit of basic
smart elements lies in the reduction of the number of arcs.

The work on sMDDs was published as part of the [VLS18] paper. The
work on basic smart MDDs was published as part of the [VLS19a] paper.

92

Part III

Propagation Algorithms

93

Chapter 7

Filtering Positive Smart
Table Constraints

A gravitational wave is a very slight stretching in one di-
mension. If there’s a gravitational wave traveling towards
you, you get a stretch in the dimension that’s perpendicular
to the direction it’s moving. And then perpendicular to that
first stretch, you have a compression along the other dimen-
sion.

- Rainer Weiss

7.1 Introduction

Our work on positive table constraints focuses on adapting the Compact-
Table (Sec. 3.2.10) propagation algorithm to handle basic smart tables
(Def. 5.4) without decompressing them. This is done incrementally,
by first handling short tables (Def. 5.3) and then basic smart tables
(Def. 5.4).

As already seen in Chap. 3, the CT algorithm follows some invariants
(inv. 7.1, which states which tuples belong to T c, and inv. 7.2, which
states which values belong to dom c(x)) guaranteeing the correctness of
propagation. Respecting these invariant leads to a GAC propagator as
stated by Prop. 7.1. Two additional invariants (inv. 7.3, which states
when any assignement is a solution, and inv. 7.4, which states when
there is no solution) are derived from inv. 7.2. They do not change
the propagation strength. However, as inv. 7.4 is quicker than check-
ing inv. 7.2 for each variable, adding it may speed up the propagation.
Adding inv. 7.3 may help detecting earlier whether the constraint may
be deactivated (i.e. when the constraint is always valid).

95

Invariant 7.1 (Current Table Update - Ground Tables). Given
the notations: T 0, the initial table (i.e. before any propagation occurs),
T c, the reduced table at a given current state c of propagation, and,
dom c(x), the domain of x at the current state c. A ground tuple τ belongs
to the current table T c if and only if it is a ground tuple of the initial
table and all its values still belong to the respective current domains of
the associated variables from scp.(

τ ∈ T 0 ∧ ∀x ∈ scp, τ [x] ∈ dom c(x)
)
⇔
(
τ ∈ T c

)
Invariant 7.2 (Domain Filtering - Ground Tables). Given any
variable x ∈ scp, each value v in dom c(x) should appear in at least one
of the ground tuple τ ∈ T c.

∀x ∈ scp, ∀v ∈ dom c(x), ∃τ ∈ T c, τ [x] = v

Proposition 7.1 (GAC Filtering - Ground Tables). A positive
table constraint enforces GAC if inv. 7.1 and inv. 7.2 hold.

Proof. By means of inv. 7.1, the set of valid tuples is maintained. Invari-
ant 7.2 detects when a given value (x, a) can be removed if necessary.

Invariant 7.3 (Entailement - Ground Tables). A positive table con-
straint is entailed if and only if the table contains all the possible tuple
w.r.t. the domains of the variables.(∣∣{τ : τ ∈ T c}

∣∣ =
∏
x∈scp

∣∣dom(x)
∣∣)⇔ >

Invariant 7.4 (Emptiness - Ground Tables). A positive table con-
straint is falsify if and only if it is empty.(

T c = ∅
)
⇔ ⊥

To handle basic smart elements, when filtering tables, the first step is
to update the required invariants to this new situation. The first element
to keep in mind is that the table may contain both basic smart tuples
and ground tuples. As each element of each table may represent several
values, we consider them as sets of values (instead of single values).
The element 〈= v〉 corresponds thus to the set {v}, the element 〈6= v〉
corresponds to dom(x) \ {v},... This eases the update of the invariants.

The updated invariants (inv. 7.5 and inv. 7.6) allow proving again
a GAC filtering (Prop. 7.2) holds. From them we can also derive two
invariants (inv. 7.7 and inv. 7.8) which define conditions where the con-
straint is either always true or always false.

96

Invariant 7.5 (Current Table Update - Basic Smart Tables).
Given the notations: T 0, the initial table (i.e. before any propagation
occurs), T c, the reduced table at a given current state c of the propaga-
tion, and, dom c(x), the domain of x at the current state c. A tuple τ
belongs to the current table T c if and only if it was a tuple of the initial
table and all its values still belongs to the respective current domains of
the associated variables from scp.(

τ ∈ T 0 ∧ ∀x ∈ scp, τ [x] ∩ dom c(x) 6= ∅
)
⇔
(
τ ∈ T c

)
Invariant 7.6 (Domain Filtering - Basic Smart Tables). Given
any variable x ∈ scp, each value v in dom c(x) should be included in at
least one of the tuple τ ∈ T c.

∀x ∈ scp, ∀v ∈ dom c(x), ∃τ ∈ T c, v ∈ τ [x]

Proposition 7.2 (GAC Filtering - Basic Smart Tables). A positive
table constraint enforces GAC if inv. 7.5 and inv. 7.6 hold.

Proof. By means of inv. 7.5, the set of valid tuples is maintained. In-
variant 7.6 detects when a given value (x, a) can be removed.

Invariant 7.7 (Entailement - Basic Smart Tables). A positive ta-
ble containing all the possible ground tuple allows each of them to be a
solution. (∣∣{τ : ∃τ ∈ T c, s.t. τ ⊆ τ}

∣∣ =
∏
x∈scp

∣∣dom(x)
∣∣)⇔ >

Invariant 7.8 (Emptiness - Basic Smart Tables). An empty positive
table does not have a solution.(

T c = ∅
)
⇔ ⊥

The adaptation of the CT algorithm to handle basic smart elements is
done incrementally. To preserve GAC, the two main invariants (inv. 7.5
and inv. 7.6) should stay valid.

Finally, let us recall two assumptions. First, regarding the inputs
of the table constraint, we assumed a finite integer domain for each
variable, containing values 0, 1, . . ., size − 1. We can easily adapt the
algorithm to other finite domain. Secondly, we assume the variables
are responsible for triggering a backtrack when their domains become
empty.

97

7.2 Adaptations to Compact-Table

First, CT is extended to handle short tables (by adding the 〈∗〉). Then,
the other smart elements are added one by one: 〈6= v〉, followed by the
duo 〈≤ v〉/〈≥ v〉 and finally the 〈∈ S〉. Finally, a way to solve smart
table is given, using a simple mapping to a basic smart table.

7.2.1 CT∗: Handling Short Tables

The first step is to extend Compact-Table to handle Short Tables
(Def. 5.3). Short Tables contain two types of Basic Smart Elements:
〈= v〉 and 〈∗〉.

As we now consider sets of values intead of standalone values insides
the tuples, a small update is done to the initial definition of the supports
(Def. 3.3). This new definition (Def. 7.3) does not change the semantic
of the supports.

Definition 7.3. supports (as Used in CT∗ and CTbs)
Given a tuple τ , for a given variable x, ∀v ∈ dom(x),

supports[x, v]〈τ〉 =

{
1 iff v ∈ τ [x]
0 iff v 6∈ τ [x]

In other words, the bitset supports[x, v], for a variable x and a value
v ∈ dom(x), represents the tuples supporting the value v from dom(x).

The intuition behind the modification is that each tuple containing
〈∗〉 associated for given variable x remains valid regarding x as long
as dom(x) is not empty. In addition, let us assume an empty domain
variable triggers inconsistency by itself. Using this assumption, the job
of the table propagation algorithm is to keep valid these tuples whatever
the modification of dom(x) is.

The modification of the propagator consists of a duplication of the
precomputed bitsets. The second set is called supports∗ and is defined
formally in Def. 7.4.

Definition 7.4. supports∗ (as Used in CT∗)
Given a short tuple τ , for a given variable x, ∀v ∈ dom(x),

supports∗[x, v] =

{
1 iff τ [x] is 〈= v〉
0 iff τ [x] ∈ {〈= w〉, 〈∗〉} with w 6= v

This formula defines a given supports∗[x, v] for a variable x and a value
v ∈ dom(x) to be the bitset containing the tuples supporting exclusively
one value (v) from x. Figure 7.1, for tuples τ1 and τ2, displays an
example of supports and supports∗ for a given short table.

98

This new series of supports∗ bitsets is used in the classical update
where currtable is updated using the removed values (∆). Removing
a value v from a domain should only remove the tuples supporting ex-
clusively v. Thus, tuples supporting several values, such as the ones
containing 〈∗〉, can’t be invalidated during the classical update. This is
avoided using supports∗ instead of supports when doing this update.
Invariant 7.5 is thus followed. Algorithm 12 shows the modification done
to the initial CT algorithm (Algo. 1) to handle 〈∗〉. This version is called
CT∗.

For the filtering part, no modification is needed since it already guar-
antees the validity of inv. 7.6.

Finally, one can notice that inv. 7.7 is never checked in the algo-
rithm. Due to potentially overlapping tuples, the complexity required
to compute the number of ground tuples outgrows the benefits of the
invariant. As the invariant is not mendatory to achieve GAC, it was
decided not to include this verification in the algorithm.

Complexity. The complexities (both time and spacial) remain exactly
the same as CT. Only the space used is impacted since there is twice the
number of precomputed bitsets (supports and supports∗).

7.2.2 Handling the 〈6= v〉

The next basic smart element added is 〈6= v〉. In fact, no modification to
Algo. 12 is required. Only the definition of supports∗ requires a slight
update.

x y z

τ1 1 ∗ 3
τ2 ∗ 2 1
τ3 6= 2 6= 1 2
τ4 ∗ 6= 2 ∗

(a) Table

supports supports∗

τ1 τ2 τ3 τ4 τ1 τ2 τ3 τ4

(x, 1) 1 1 1 1 1 0 0 0
(x, 2) 0 1 0 1 0 0 0 0
(x, 3) 0 1 1 1 0 0 0 0
(y, 1) 1 0 0 1 0 0 0 0
(y, 2) 1 1 1 0 0 0 0 0
(y, 3) 1 0 1 1 0 1 0 0

. . .

(b) Bitsets

Figure 7.1: Illustration of the bitsets supports and supports∗ (dark
grey highlight the bits for 〈∗〉 and light grey, the bits for 〈6= v〉).

99

Definition 7.5. supports∗ as Used to Handle 〈= v〉, 〈∗〉 and 〈6= v〉
Given a basic smart tuple τ containing only the smart element 〈= v〉,
〈∗〉 and 〈6= v〉, for a given variable x, ∀v ∈ dom(x),

supports∗[x, v] =

{
1 iff τ [x] is 〈= v〉
0 iff τ [x] ∈ {〈= w〉, 〈∗〉, 〈6= u〉} with w 6= v

The intuitive definition is the same as previously: supports∗[x, v] for
a variable x and a value v ∈ dom(x) is the bitset containing the tuples
supporting exclusively one value (v) from x. Figure 7.1 shows an exam-

Algorithm 12: The CT∗ algorithm

1 Method updateTable() // Invariant 7.5

2 foreach variable x ∈ Sval do
3 mask← 064

4 if |∆x| < |dom c(x)| then // Classical update

5 foreach value a ∈ ∆x do
6 mask← mask | supports∗[x, a]

7 mask←∼ mask

8 else // Reset update

9 foreach value a ∈ dom c(x) do
10 mask← mask | supports[x, a]

11 currtable← currtable & mask

12 Method filterDomains() // Same filtering as CT

(Algo. 1), Invariant 7.5

13 foreach variable x ∈ Ssup do
14 foreach value a ∈ dom c(x) do
15 intersection← currtable & supports[x, a]
16 if intersection = 064 then
17 dom c(x)← dom c(x) \ {a}
18 currtable← currtable & ∼ supports[x, a]

19 Method enforceGAC()
20 updateTable()
21 count ← nb1s(currtable)
22 if count = 0 then // Invariant 7.8

23 return ⊥ // backtrack triggered

24 filterDomains()

100

ple of both structure, supports and supports∗, for a table containing
〈= v〉, 〈∗〉 and 〈6= v〉 elements.

Given this new definition of supports∗, Algo. 12 still enforces GAC
for tuples containing 〈= v〉, 〈∗〉 and 〈6= v〉.

Let us demonstrate the correctness for a tuple with 〈6= v〉 associated
to x when at least one value of dom(x) is removed. There are three
different cases to consider:

– dom(x) = ∅: as hypothesized, an empty domain successfully trig-
gers itself a backtrack.

– If |∆x| < |dom c(x)|, a classical update is used : As |∆x| is as least
one (since we run the udate only on variables in Sval, i.e. variables
with modified domains), dom (x) contains at least two values. In
this case, the tuple is always a support for the given variable and as
the corresponding bits in supports∗ are set to 0 by construction,
the tuple is successfully not removed from currtable.

– If |∆x| ≥ |dom c(x)|, a reset update is used : Reconstructing the
currtable from supports is always correct.

This confirms that CT∗ does not need adaptations to handle 〈6= v〉,
adapting the way we build supports∗ automatically is only mandatory
to manage this case.

7.2.3 Handling 〈≥ v〉 and 〈≤ v〉

First, note that it is sufficient to focus on expressions of the form 〈≥ v〉
and 〈≤ v〉. This is possible since 〈> v〉 and 〈< v〉 are equivalent to
〈≥ v + 1〉 and 〈≤ v − 1〉 with the assumption on the domains. We first
introduce two additional arrays of bitsets: supportsMin (Def. 7.6) for
〈≤ v〉 and supportsMax (Def. 7.7) for 〈≥ v〉.

Definition 7.6. supportsMin

Given a smart tuple τ , for a given variable x, ∀v ∈ dom(x),

supportsMin[x, v] =

{
0 iff {w : w ∈ τ [x] and w ≥ v} = ∅
1 iff {w : w ∈ τ [x] and w ≥ v} 6= ∅

Figure 7.2 displays an example of supportsMin for a given basic smart
table.

101

Definition 7.7. supportsMax

Given a smart tuple τ , for a given variable x, ∀v ∈ dom(x),

supportsMax[x, v] =

{
0 iff {w : w ∈ τ [x] and w ≤ v} = ∅
1 iff {w : w ∈ τ [x] and w ≤ v} 6= ∅

Figure 7.2 displays an example of supportsMax for a given basic smart
table.

The definition of supports∗ require again a slight adjustment
(Def. 7.8). Its semantics is however unchanged: only explicit supports
of (x, a) are considered.

Definition 7.8. supports∗ as used to handle 〈= v〉, 〈∗〉, 〈6= v〉,
〈≤ v〉 and 〈≥ v〉
Given a basic smart tuple τ containing only the smart elements 〈= v〉,
〈∗〉, 〈6= v〉, 〈≤ v〉 and 〈≥ v〉, for a given variable x, ∀v ∈ dom(x),

supports∗[x, v] =

{
1 iff τ [x] is 〈= v〉
0 iff τ [x] ∈ {〈= w〉, 〈∗〉, 〈6= u〉, 〈≤ u〉, 〈≥ u〉} with w 6= v

The intuitive definition is the same as previously: supports∗[x, v] for
a variable x and a value v ∈ dom(x) is the bitset containing the tuples
supporting exclusively one value (v) from x. Figure 7.2 shows an exam-
ple both structure of supports and supports∗ for the given basic smart
table.

Starting from the CT∗ algorithm, only the lines of the classical up-
date requires some changes (Algo. 12 line 4). The classical update is
replaced by the lines at Algo. 13. Note that min (resp. max) denotes the
smallest (resp. largest) value of dom (x), whereas minChanged() (resp.
maxChanged()) is a method that returns true when min (resp. max) has
changed since the last call of the algorithm. Line 1 is slightly modified
to compensate the overhead induced by the two operations. Because
lines 5-8 handle all the values that are respectively less than and greater
than min and max, we only consider at line 3 the values a ∈ ∆x such
that dom(x).min < a < dom(x).max.

Correctness is shown for 〈≤ v〉, considering all cases at column x for
tuple τ . The case |dom(x)| = 0 is as trivial as in the last section. For
the case of the reset-based update, as supports precisely depicts the
acceptance of values by tuples, this is necessarily correct. Finally in the
incremental update (Algo. 13), due to the constructions of the bitsets,
i.e. the bit for τ in supports∗ is always set to 0 (resp. 1), updating
depends only on supportsMin (resp. supportsMax). By definition of

102

〈≤ v〉, if dom(x).min is lower than v, there is at least one value in the
domain which is meaning still supported. By construction, the bit for τ
in supportsMin[x,dom (x).min] is 1, keeping τ in currtable when used
in the new update. If dom(x).min > v, by construction, the bit for τ is
0 in supportsMin[x,dom (x).min], leading to a removal of τ .

x y z

τ1 6= 1 ∗ 3
τ2 3 ≤ 2 6= 1
τ3 < 3 2 6= 2
τ4 > 2 ≥ 2 ∗

(a) Table

supports supports∗ supportsMin supportsMax

τ1 τ2 τ3 τ4 τ1 τ2 τ3 τ4 τ1 τ2 τ3 τ4 τ1 τ2 τ3 τ4

(x, 1) 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0
(x, 2) 1 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0
(x, 3) 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 1
(y, 1) 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0
(y, 2) 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1
(y, 3) 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1

. . .

(b) Bitsets

Figure 7.2: Illustration of the bitsets supports, supports∗,
supportsMin and supportsMax (light grey highlight the bits for 〈≤ v〉
and dark grey, the bits for 〈≥ v〉).

Algorithm 13: The classical update handling 〈=, 〉 〈6= v〉, 〈∗〉,
〈≤ v〉 and 〈≥ v〉
1 if |∆x|+ 2 < |dom c(x)| then // Classical update

2 foreach value a ∈ ∆x such that dom(x).min < a < dom(x).max
do

3 mask ← mask | supports∗[x, a]

4 mask ← ∼ mask

5 if dom (x).minChanged() then
6 mask ← mask & supportsMin[x, dom(x).min]

7 if dom (x).maxChanged() then
8 mask ← mask & supportsMax[x, dom(x).max]

103

7.2.4 Handling 〈∈ S〉

There is no easy way to handle expressions of the form 〈∈ S〉 (or 〈6∈ S〉)
using incremental updates (on bitsets). To work, an incremental update
would require counters to keep track of the number of remaining values
from each set still in the domain. When such counter drops to zero, the
corresponding tuple would be removed from currtable. Unfortunately,
such a method is conflicting with the bitset philosophy. The sets would
be handled separately, diminishing the use of bitsets. A solution could
be to gather the same sets in the same words and assigning them a
shared counter. In practice, the situation is much improbable to arise.
Because of the combinatorial explosion of the number of possible sets,
the probability of having the same set multiple times in the same table
decreases while the size of the domain increase. Moreover, if we have
sets concerning two different variables, gathering the bit associated with
similar sets on one variable may scatter the bit related to similar sets
on the second one.

We propose to systematically execute reset-based update as done in
[WXYL16] for passing from STRbit to STRbit-C (STRbit is an algo-
rithm based on the STR family of propagator which also use bitsets to
speedup the computations, STRbit-C is its extension, handling c-tuples,
i.e. tuples with 〈∈ S〉 elements). More precisely, as soon as a variable
is involved in an expression of the form 〈∈ S〉 (or 〈6∈ S〉) in one of the
tuples of the basic smart table, a reset-based update is forced.

7.2.5 The CTbs Algorithm

The CTbs algorithm is defined by Algo. 14. It uses supports (Def. 7.3),
supports∗ (Def. 7.8), supportsMin (Def. 7.6) and supportsMax

(Def. 7.7). It classified the variables into two complementary sets: The
variables forwich a set 〈∈ S〉 has been used (S〈∈S〉) and those forwich
not (scp \ S〈∈S〉). These two categories are used during the update
phase. This update is carried with reset only for the first categories
of variable and with incremental or reset, depending on the delta, for
the second. The filtering is then done on the remaining values for the
unbound variables using the supports.

These steps guarantee a GAC propagation since the two invariants
inv. 7.5 and inv. 7.6 are made valid by the modifications.

One can notice that inv. 7.7 is never checked in the algorithms (as
already in CT∗). The issue about counting the number of unique ground
tuples being still there.

104

Complexity. Both complexities remains the same as CT. To recall, the
worst-case time complexity is

O
(
|scp| dc

⌈ |T 0|
w

⌉)
Algorithm 14: CTbs

1 Method updateTable() // Invariant 7.1

2 foreach variable x ∈ Sval do
3 mask ← 064

4 if |∆x|+ 2 < |dom c(x)| ∧ x 6∈ S〈∈S〉 then // Classical

update

5 foreach value a ∈ ∆x such that
dom(x).min < a < dom(x).max do

6 mask ← mask | supports∗[x, a]

7 mask ← ∼ mask

8 if dom (x).minChanged() then
9 mask ← mask & supportsMin[x, dom(x).min]

10 if dom (x).maxChanged() then
11 mask ← mask & supportsMax[x, dom(x).max]

12 else // Reset update

13 foreach value a ∈ dom c(x) do
14 mask ← mask | supports[x, a]

15 currtable ← currtable & mask

16 Method filterDomains() // Same filtering as CT

(Algo. 1), Invariant 7.2

17 foreach variable x ∈ Ssup do
18 foreach value a ∈ dom c(x) do
19 intersection ← currtable & supports[x, a]
20 if intersection = 064 then
21 dom c(x) ← dom c(x) \ {a}
22 currtable ← currtable & ∼supports[x, a]

23 Method enforceGAC()
24 updateTable()
25 count ← nb1s(currtable)
26 if count = 0 then // Invariant 7.4

27 return ⊥ // backtrack triggered

28 filterDomains()

105

where dc = maxx∈Ssup∪Sval{|dom c(x)|} is the size of the largest of the
current domain of the variables unbound at last propagation and w is
the number of bits into a word (i.e, for Java Long type, w = 64).
And the worst-case space complexity is

O
(
|scp| d0

⌈ |T 0|
w

⌉)
where d0 = maxx∈scp{|dom 0(x)|} is the size of the largest initial domain
and w is the number of bits into a word (i.e for Java Long type, w = 64).

7.2.6 Handling Full Smart Elements

Handling the binary constraint into the table leads to lots of challenges.
Two tuples with a given same smart element at the same position may
not lead to the same propagation on all the domains. A smart element
used in two different tuples may not lead to the same propagation. A
table with the scope (w, x, y, z) containing the tuples τ1 = (0, ∗,= x,=
y) and τ2 = (1, ∗,= x, ∗) illustrates this issue. If 1 is removed from
the domain of x, both τ1 and τ2, by the smart element = x, agrees
on removing 1 from the domain of y. The domain of z is unchanged
since every possible value is still possible in at least one of the tuples (in
this case only allowed by τ2). However, if now 1 is removed from the
domain of w, then 1 is not possible anymore for z as this was the only
tuple allowing this value anymore. This example shows how treating the
identical binary element the same way could endanger the GAC property
of the algorithm.

Using a mapping together with the introduction of some additional
variables, a smart table can be transformed into a basic smart table.
The transformation consists of first adding a new variable for each pair
of interacting variables. The value of this variable will be the difference
between their two values. This is achieved using a simple mathematical
constraint. In our example two new variables should be added: aux(x,y)

for the pair (x, y) and aux(y,z) for the pair (y, z). And the two constraints
added are aux(x,y) = X −Y and aux(y,z) = y− z. Secondly, a new table
is created based on the initial one and the addition of the new variable.
For each tuple without any smart element, the corresponding new tuple
is just the old one extended by 〈∗〉 for the new inserted variables. When a
smart element is present, it is replaced when a 〈∗〉 and the corresponding
new variable gets a different value. Figure 7.3 shows all the different
cases. Figure 7.3a shows an initial smart table using all the available
smart elements. The character is used to represent any basic smart
element. Figure 7.3b shows the resulting table after the mapping. The

106

use of this basic smart constraint, in addition to the new variable aux(x,y)

and the additional constraint aux(x,y) = x−y is equivalent to the initial
smart table.

This transformation works even when there is a cycle between the
smart elements. There is a cycle between the smart elements of a tuple
if there is a cycle in the constraint network (CN) corresponding to the
tuple. The vertices of the CN are the tuples’ variables and there is an
edge between two vertices if there is one smart element linking the two
variables. When there is a cycle, some values of the additional variable
may result in the intersection of two values. For example, given the
tuple (≤ y, 6= x), the first smart element would associate the value ≤ 0
to aux(x,y) while the second would associate the value 6= 0. The value
used in the mapping should be the intersection between the two, i.e.
< 0.

As CTbs is GAC, the propagation over this mapped table is GAC. If
the auxillary constraints ara also GAC, the combination of the mapped
table and the additional constraints together are able to achieve GAC
when a stable state is reached (after potentially several iterations switch-
ing between the constraints).

Complexity. The table resulting of the mapping still has t tuples but
may have in the worst case r + r(r−1)

2 variables, with t the number of
tuples contained in the initial smart table and r its arity. The worst-case
time complexity of the propagation of CTbs using the metric of the initial

x y

τ1 = x
τ2 = x+ v
τ3 6= x+ v
τ4 ≤ x+ v
τ5 ≥ x+ v
τ6 = y
τ7 = y + v
τ8 6= y + v
τ9 ≤ y + v
τ10 ≥ y + v

(a) Initial smart table

x y aux(x,y)

τ1 ∗ 0
τ2 ∗ −v
τ3 ∗ 6= −v
τ4 ∗ ≤ −v
τ5 ∗ ≥ −v
τ6 ∗ 0
τ7 ∗ v
τ8 ∗ 6= v
τ9 ∗ ≤ v
τ10 ∗ ≥ v

(b) Correponding basic smart table

Figure 7.3: Illustration of mapping smart tables into basic smart tables.

107

table is thus

O
(
r2 d

⌈ t
w

⌉)
where d is the size of the largest of the current domain of the variables
unbound at last propagation and w is the number of bits into a word
(i.e, for Java Long type, w = 64). And the worst-case space complexity
is

O
(
r2 d

⌈ t
w

⌉)
where d is the size of the largest initial domain and w is the number of
bits into a word (i.e for Java Long type, w = 64).

7.3 Integer Intervals

One could think about an additional interval basic smart element to add
compression to the tables.

An integer interval {a..b} can be represented as the conjunction of a
〈≥ a〉 and a 〈≤ b〉. Given the current definition of the various supporting
bitsets, they would be filled the following way:

– the associated bit in supports[x, v] would be equal to 1 for each
value v ∈ {a..b}, 0 otherwise

– the associated bit in supports∗[x, v] would be equal to 0 for each
value v

– the associated bit in supportsMin[x, v] would be equal to 1 for
each value v ≤ b, 0 otherwise

– the associated bit in supportsMax[x, v] would be equal to 1 for
each value v ≥ a, 0 otherwise

However this does not keep the GAC property of the algorithm in
all cases. The algorithm is still GAC if the domain stays complete (all
integer values from the minimum to the maximum value of the domain
belongs to it) and become weaker if some values are missing. This loss
of consistency level only arises if the incremental update is used.

Figure 7.4 shows an example of a case where the algorithm is not
GAC. Given the table in Fig. 7.4a, if values 2, 3 and 4 are removed from
the domains of x, then, tuple τ2 should be removed from currtable. If
the incremental update is used, the empty mask is first unified to the
supports∗ of the removed values (the orange bitsets in Fig. 7.4b). As
they are all empty, the mask is still empty after this step. Its comple-
mentary is thus a full bitset. It is then intersected with the supportsMin

108

and supportsMax of the current minimum and maximum of the domain
(the blue bitsets). The mask is full at the end and its intersection with
currtable would not remove any tuples which contradicts with the fact
that τ2 should be removed in a GAC propagator. However, using the
reset update, the supports of the remaining values are used (the green
bitsets). The union of these let to a bitset containing only τ1 and τ3,
which is GAC.

7.4 Enforcing Bound Consistency with CT

A simple bound(D) consistency (Def. 2.3) version of Compact-Table can
be created by using only the supportsMin and supportsMax supports
(as defined Def. 7.6 and Def. 7.7) during the update when the domain
contains more than one value left.

This is given by Algo. 15.

7.5 Results

7.5.1 Experiments Results with CT∗

The series used contains 600 randomly generated instances, each with
20 variables whose domain sizes range from 5 to 7, and 40 random

x y

τ1 1 1
τ2 {2..4} 1
τ3 5 1

(a) Table

supports supports∗ supportsMin supportsMax

τ1 τ2 τ3 τ1 τ2 τ3 τ1 τ2 τ3 τ1 τ2 τ3

(x, 1) 1 0 0 1 0 0 1 1 1 1 0 0
(x, 2) 0 1 0 0 0 0 0 1 1 1 1 0
(x, 3) 0 1 0 0 0 0 0 1 1 1 1 0
(x, 4) 0 1 0 0 0 0 0 1 1 1 1 0
(x, 5) 0 0 1 0 0 1 0 0 1 1 1 1

(b) Supports

Figure 7.4: Illustration on how to handle intervalls in tables.

109

positive short table constraints of arities 6 or 7, each table having a
tightness (proportion of tuples from the universe table which are present)
comprised between 0.5% and 2% and a proportion of short tuples equal
to 1%, 5%, 10% and 20%.

Figure 7.5 shows the results obtained on these positive short tables,
mainly comparing CT∗ and ShortSTR2 [JN13]. Clearly, CT∗ outperforms
ShortSTR2 that is at least 7 times slower than CT∗ for 50% of the in-
stances. We have also tested CT and STR2 [Lec11] on these instances
after converting short tables into ordinary tuples. Here, we can can ob-
serve that CT∗ is twice faster than CT on 20% of the instances, while
saving memory space.

One can also notice that CT is slightly better than CT∗ on 12% of
the instances. This can arise with low compression instances. In such
cases, the compression does not reduce much the number of words in the
bitsets. But, the repartition of the tuples among the words may differ,
leading to a different decrease of the active words set in the bitsets,
leading to a slight difference in the performances.

7.5.2 Experiments Results with CTbs

To assess the efficiency of CTbs, notably the interest of using the different
forms of expressions, tables have been compressed using our algorithm
in three different related ways: (1) compression with 〈≤ v〉 and 〈≥ v〉,
(2) compression with 〈≤ v〉 and 〈≥ v〉 followed by a post-processing
to detect 〈∗〉 and 〈6= v〉 and (3) compression with 〈≤ v〉 and 〈≥ v〉
followed by a transformation into set restrictions (e.g., ≤ v is written

Algorithm 15: Bound consistent version for CT

1 Method updateTable()
2 foreach variable x ∈ Sval do
3 if |dom(x)| == 1 then
4 currtable ← currtable & supports[x, x.value]
5 else
6 mask ← ∼ 064

7 if dom (x).minChanged() then
8 mask ← mask & supportsMin[x, dom(x).min]

9 if dom (x).maxChanged() then
10 mask ← mask & supportsMax[x, dom(x).max]

11 currtable ← currtable & mask

110

as {i : i ≤ v}). The initial set of instance consists of the instances
containing only table constraints in the XCSP3 repository [BLP16]. The
compression algorithm used on the initial set is the greedy compression
decribed in Sec. 5.4.2.2.

Figure 7.6 shows the performance profile [DM02b] for CTbs with these
three related compression approaches and also for standard CT on un-
compressed tables. A point (x, y) on the plot indicates the percentage
of instances that can be solved within a time-limit that is at most x
times the time taken by the best algorithm. The performance profile
was based only on instances showing enough compression (rate ≤ 0.9)
and requiring at least 2 seconds of solving time. With a timeout set to
10 min, only 60 instances matched out these criteria out of the 4, 000
tested instances.

Obtained results show that simple compression (1) brings a slight
speedup compared to CT. Notice, however, that the computation time
for an instance was reduced up to a factor of 7. Because post-processing
(2) brought less than 3% of additional compression, it is not surprising
that CTbs with approaches (1) and (2) are close.

As expected, handling tables with set restrictions only, approach (3),
induces an overhead as no incremental updates can be performed. The
overhead is however limited (at most a factor two). The computation
time taken by Method updateDomain() in Algo. 1 is not much reduced
when using basic smart tables (mainly, because of the residue caching
described in [DHL+16]). This explains why the observed speed-ups are

Figure 7.5: Performance profile comparing CT∗ with algorithms CT, STR2
and ShortSTR2.

111

not proportional to the compression ratios.

7.6 Conclusion

This chapter presented the extension of CT to handle short, basic smart,
and smart tables. The resulting algorithms are CT∗ and CTbs. Their
structure is very similar to the one of CT, using an update and a filtering
phase. In addition, several new bitsets have been introduced to improve
with the update phase.

Efficient handling of such compressed tables has several benefits. In
some problems where it is relevant to generate tables, such as using
a technique such as auto-tabling [DBC+17], users could now generate
compressed tables directly. Compression can also be applied to store
tables in order to reduce their size. The handling of such tables also
helps handling bigger equivalent ground tables.

The CT∗ extension was published as part of the [VLS17a] paper. The
CTbs extension was published as part of the [VLDS17] paper.

Figure 7.6: Performance profile comparing CTbs (on the same benchmark
with different level of compression) with algorithm CT.

112

Chapter 8

Filtering Negative
Smart Table Constraints

I think of feedback as constructive, not positive or nega-
tive. You choose to do what you want with it.

- Denise Morrison

8.1 Introduction

This chapter deals with the propagation of negative tables (Sec. 5.2.1).
A negative table constraint takes as input a negative table T of arity
r (called the initial table T 0) and a sequence X of r variables (called
the scope scp). Each tuple of the table corresponds to an forbidden
instantiation of the variables (i.e. the constraint should fail if ∃τ ∈
T ,∀x ∈ scp, x = τ [x]).

The propagation of negative tables follows the invariants inv. 8.1,
which states which tuples belong to T c and inv. 8.2, which states which
values belong to dom c. Respecting these invariant leads to a GAC propa-
gator as stated by Prop. 8.1. Two additional invariants (inv. 8.3, which
states when there is no solution, and inv. 8.4, which states when any
assignement is a solution) are derived from inv. 8.2. They do not change
the propagation strength. However, as checking inv. 8.3 is cheaper than
checking inv. 8.2 for each variable, exploiting it may speed up the prop-
agation. Adding inv. 8.4 may help detect earlier if the constraint may
be deactivated (always valid).

Invariant 8.1 (Current table update). Given the notations: T 0, the
initial table (i.e. before any propagation occurs), T c, the reduced table
at a given current state c of the propagation, and, dom c(x), the domain

113

of x at the current state c. A ground tuple τ belongs to the current table
T c if and only if it was a ground tuple of the initial table and all its
values still belongs to the respective current domains of the associated
variables from scp.(

τ ∈ T 0 ∧ ∀x ∈ scp, τ [x] ∈ dom c(x)
)
⇔
(
τ ∈ T c

)
Remark: This invariant is the same as inv. 7.1 for the positive table
propagator.

Invariant 8.2 (Domain filtering). Given any variable x ∈ scp, a
value v is in dom c(x) if there is a valid tuple satisfing τ [x] = v that does
not belong to T c.

∀x ∈ scp, ∀v ∈ dom c(x),
∣∣{τ ∈ T c : τ [x] = v}

∣∣ < ∏
y∈scp:y 6=x

∣∣dom c(y)
∣∣

Proposition 8.1. A negative table constraint enforces GAC if inv. 8.1
and inv. 8.2 hold.

Proof. By means of inv. 8.1, the set of conflicting tuples is maintained.
Invariant 8.2 detects when a given value (x, a) can be removed.

Invariant 8.3 (Entailement). A negative table containing all current
valid tuples does not have a solution.(∣∣{τ : τ ∈ T c}

∣∣ =
∏
x∈scp

∣∣dom(x)
∣∣)⇔ ⊥

Remark: This invariant has the opposite effect as inv. 7.3 for the positive
table propagator.

Invariant 8.4 (Emptiness). An empty negative table allows any pos-
sible instantiation. (

T c = ∅
)
⇔ >

Remark: This invariant has the opposite effect as inv. 7.4 for the positive
table propagator.

In the following sections, the CTneg propagator, Compact-Table for
negative table, is explained. Then, a first extension to CTneg, called
CT∗neg, dealing with negative short tables, is presented. The chapter
also emphasizes some difficulties behind the propagation of compressed
negative tables using bitsets.

114

8.2 CTneg: CT for Negative Tables

The CTneg algorithm is an adaptation of the CT algorithm to negative
tables. The propagator is similar to the one of CT, i.e. there is an update
phase followed by a filtering phase. The data structures used and their
computations are also the same. However, as the context is different, as
the tuples are conflicts (i.e. forbidden instantiations).

The pseudo-code of CTneg is given by Algo. 16. It requires the func-
tion nb1s() (Algo. 2) which allows to count the total number of bits set
to 1 in a bitset by executing an optimized bitwise statement such as
java.lang.Long.bitCount [War13].

The following subsection explains how the update is performed.
Then, the filtering process is described. Finally, the complete algorithm
is detailed.

8.2.1 The Update Phase

The update phase (Algo. 16 line 1) is exactly the same as for CT. This is
a direct consequence of sharing the same invariant about the update of
the current table (inv. 8.1) and the same data structures. More details
about the code and the complexity can be found in Sec. 3.2.10.2.

8.2.2 The Filtering Phase

The filtering phase (Algo. 16 line 12), however, differs from CT.

When filtering, we try each of the values v from the domains of the
unbound variables x from scp. The goal is to identify those that can
lead to inconsistencies. To do so, the filtering invariant (rule 8.2) is used.

The idea is to count, for each pair (x, v), with x ∈ Ssup and v ∈
dom(x), how many valid tuples satisfying τ [x] = v are in the table T c.
This count is then compared to the total number of valid tuples satisfying
τ [x] = v. When these two numbers are equal, by inv. 8.2, v may be
removed from dom(x).

Optimization of the computation of the threshold (Algo. 16
line 16). By definition of Ssup, we know that only the variables within
Ssup have

∣∣dom∣∣ > 1, therefore

∏
y∈scp:y 6=x

∣∣dom c(y)
∣∣ =

∏
y∈Ssup:y 6=x

∣∣dom c(y)
∣∣

115

Optimization of the update of currtable within the filtering
(Algo. 16 line 19). Updating currtable at each modification im-
plies two things. First, as it is a reversible structure, this operation may
take more time to check if a partial save should be done. Second, com-

Algorithm 16: CTneg

1 Method updateTable() // Same update as CT (Algo. 1),

inv. 8.1

2 foreach variable x ∈ Sval do
3 mask ← 064

4 if
∣∣∆x

∣∣ < ∣∣dom c(x)
∣∣ then // Classical update

5 foreach value a ∈ ∆x do
6 mask ← mask | supports[x, a]

7 mask ← ∼ mask

8 else // Reset update

9 foreach value a ∈ dom c(x) do
10 mask ← mask | supports[x, a]

11 currtable ← currtable & mask

12 Method filterDomains()
13 foreach variable x ∈ Ssup do
14 foreach value a ∈ dom c(x) do
15 intersection ← currtable & supports[x, a]
16 threshold ←

∏
y∈scp:y 6=x

∣∣dom c(y)
∣∣

17 if nb1s(intersection) = threshold then
// Invariant 8.2

18 dom c(x) ← dom c(x) \ {a}
19 currtable ← currtable & ∼supports[x, a]

20 Method enforceGAC()
21 updateTable()
22 count ← nb1s(currtable)
23 if count = 0 then // Invariant 8.4

24 return > // desactivation of the cst

25 if count =
∏
x∈scp

∣∣dom(x)
∣∣ then // Invariant 8.3

26 return ⊥ // backtrack triggered

27 filterDomains()

116

puting the threshold must be done for each variable. To avoid this, we
must compute this product initially. The threshold is thus obtained by
dividing it by the current domain size. Removed tuples are collected in
mask and currtable is modified only once at the end.

These two optimisations lead to the second version of the
filterDomains() method Algo. 17.

Complexity. The worst-case time complexity of the filtering phase of
CTneg is

O
(⌈ |T 0|

w

⌉
k
∑
x∈Ssup

∣∣dom c(x)
∣∣)

where w is the number of bits into a word (i.e, for java Long type,
w = 64) and k is the complexity of the bitcount operation used in the
nb1s method (Algo. 2 line 4). k = log(w) when using Long.bitCount

(in Java) or can even be k = 1 on some architectures. The worst-case
space complexity of the filtering phase of CTneg is

O(1)

as it uses only a fixed number of temporary variables and preallocated
variables.

Algorithm 17: Optimized version of the filtering phase of CTneg

1 Method filterDomains()
2 initthreshold ←

∏
y∈Ssup

∣∣dom c(y)|
3 mask← 064

4 foreach variable x ∈ Ssup do
5 foreach value a ∈ dom c(x) do
6 intersection ← currtable & supports[x, a]
7 threshold ← initthreshold∣∣dom c(x)

∣∣
8 if nb1s(intersection) = threshold then

// Invariant 8.2

9 dom c(x) ← dom c(x) \ {a}
10 mask ← mask | supports[x, a]

11 currtable ← currtable & ∼mask

117

8.2.3 GAC and Complexity

enforceGAC() (Algo. 16 line 20) is the entry point of the propagator. It
first updates the table (using inv. 8.1), then it tests emptiness (inv. 8.4)
and entailment (inv. 8.3) and finally filters the arc-unconsistent values
from all domains (using inv. 8.2).

Proposition 8.2. Algorithm 16 with the optimized filtering phase of
Algo. 17, applied to a negative table constraint enforces GAC.

Proof. By means of Method updateTable() and statement at Algo. 16
line 19, we maintain the set of conflicts in currtable. This respects
inv. 8.1. At line 17, we can detect if no more support exists for a
given value (x, a), and delete it if necessary. This respects inv. 8.2. By
Prop. 8.1, the algorithm is GAC.

Complexity. The worst-case time complexity is

O
(⌈ |T 0|

w

⌉ ∑
x∈Sval

min
(
|∆x|, |dom c(x)|

)
︸ ︷︷ ︸

update

+

⌈ |T 0|
w

⌉
k︸ ︷︷ ︸

inv. 8.3 & inv. 8.4

+
⌈ |T 0|
w

⌉
k
∑
x∈Ssup

∣∣dom c(x)
∣∣

︸ ︷︷ ︸
filtering

)

Since |scp| ≥ |Ssup| and |scp| ≥ |Sval|, this can be globally reduced to

O
(
|scp| d

⌈ |T 0|
w

⌉
k
)

where d is the size of the largest of the current domains, w is the number
of bits into a word (i.e, for Java Long type, w = 64) and k is the complex-
ity of the bitcount operation used in the nb1s method (i.e. for Java API
method java.lang.Long.bitCount, k = log(w)). This corresponds to
the complexity of CT times k. The worst-case space complexity is

O
(⌈ |T 0|

w

⌉ ∑
x∈scp

|dom 0(x)|
)

which can be simplified to

O
(
|scp| d

⌈ |T 0|
w

⌉)
where d is the size of the largest of the initial domains. This corresponds
to the size taken by the precomputed structures.

118

8.3 CT∗neg: Handling Negative Short Table

First of all, let us notice that it is not trivial to apply inv. 8.2 and inv. 8.3
on any negative short table. This is due to the possibility of having the
same ground tuple represented by several short tuples at the same time.
In this thesis, this phenomenon will be called overlapping. Actually,
finding a solution in a negative short table with overlapping tuples (and
in extension any compressed negative table with overlapping tuples) is
NP-complete (as proved in the next subsection).

This is why we focus on negative short tables without overlapping.
In this case, CT∗neg can be seen as the evolution of both CTneg and CT∗. As
negative short tables have the same structures as positive short tables,
their update is carried out in the same way as CT∗, using the additional
precomputed bitset supports∗. As the table is negative, there is a need
to count the remaining tuples related to a given value for a given variable.
The filtering is therefore inspired by CTneg.

The following subsections first detail the demonstration of the NP-
completeness of the problem with overlapping tuples. Then, the update
and the filtering of the algorithm tackling the problem without overlap
is explained. Finally, the complete algorithm handling negative short
tables (Algo. 18 and Algo. 19) is explained.

8.3.1 NP-Completeness of the Problem with Overlapping
Tuples

Proposition 8.3. The problem of finding a solution in negative short
table with overlapping is NP-Complete.

Proof. We can show this by reducing the well-known NP-complete 3-Sat
problem (determining the satisfiability of a Boolean formula in conjunc-
tive normal form where each clause is limited to at most three literals)
to a negative short table through a polynomial algorithm and by proving
that verifying a solution is possible with a polynomial algorithm [Kar72].

Polynomial reduction of 3-Sat to negative short table. Let us
take the following example of a 3-Sat instance:

(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ ¬x5) ∧ (¬x1 ∨ ¬x2 ∨ x5) (8.1)

This instance, containing 3 clauses and involving 5 literals, is false if
either one of the clauses is false.

The 3-Sat problem corresponds to a CNF (i.e. conjunctive normal
form) formula. As already seen in Sec. 5.3, a CNF is equivalent to

119

a negative Boolean table. Let us recall the transformation. The first

Algorithm 18: CT∗neg

1 Method updateTable() // Same update as CT∗ (Algo. 12),

Invariant 8.1

2 foreach variable x ∈ Sval do
3 mask ← 064

4 if
∣∣∆x

∣∣ < ∣∣dom c(x)
∣∣ then // Classical update

5 foreach value a ∈ ∆x do
6 mask ← mask | supports∗[x, a]

7 mask ← ∼ mask

8 else // Reset update

9 foreach value a ∈ dom c(x) do
10 mask ← mask | supports[x, a]

11 currtable ← currtable & mask

12 Method filterDomains()
13 initthreshold ←

∏
y∈Ssup

∣∣dom c(y)
∣∣

14 mask ← 064

15 foreach variable x ∈ Ssup do
16 foreach value a ∈ dom c(x) do
17 intersection ← currtable & supports[x, a]
18 threshold ← initthreshold

|dom c(x)|
19 if nb1s∗(intersection,weights) = threshold then

// Invariant 8.2

20 dom c(x) ← dom c(x) \ {a}
21 mask ← mask | supports[x, a]

22 currtable ← currtable & ∼mask

23 Method enforceGAC()
24 updateTable()
25 count ← nb1s∗(currtable,weights)
26 if count = 0 then // Invariant 8.4

27 return > // desactivation of the cst

28 if count =
∏
x∈scp |dom(x)| then // Invariant 8.3

29 return ⊥ // backtrack triggered

30 filterDomains()

120

clause (x1 ∨x2 ∨¬x4) is false for each instantiation where x1 and x2 are
false and x4 is true. The instantiations allowing this to happen can
be represented by the single short tuple

(false, false, ∗, true, ∗)

where x1 and x2 are false, x4 is true and the other variables can take
any values (represented by the universal value ∗).

If the same reasoning is applied to all the clauses, we obtain a short
table of forbidden instantiation, i.e. a negative short table. Figure 8.1
contains the negative table corresponding to the 3-Sat instance Eq. (8.1).

The process of creating a tuple for each clause is in O(r), r being the
number of literals (i.e. arity of the resulting table). The total complexity
of the transformation of the 3-Sat into a table is thus O(rt), r being the
number of literals (i.e. arity of the resulting table) and t being the
number of clauses (i.e. the tuples in the resulting table). The reduction
is polynomial.

Verification of a solution in polynomial time To verify if a tuple
is a solution of a negative short table, we need to verify it is not included
in any of the tuples. To do so, we need to compare each of the values of
the solution to the values of the tuples, this is done in O(r), with r the
arity of the table. And as we have to do it for possibly all tuples, the

Algorithm 19: The nb1s∗ method

1 Method nb1s∗(bs:Bitset)
2 count ← 0
3 foreach i ∈ 1..bs.length do
4 count ← count + nbSubsumedTuples(i) ×

java.lang.Long.bitCount(bs.words[i])

5 return count

x1 x2 x3 x4 x5

τ1 false false ∗ true ∗
τ2 ∗ false true ∗ true
τ3 true true ∗ ∗ false

Figure 8.1: The negative short table corresponding the the 3-Sat prob-
lem Eq. (8.1).

121

total complexity is O(rt), r being the arity and t being the number of
tuples. The verification is polynomial.

8.3.2 The Update Phase

The update phase (Algo. 18 line 1) is exactly the same as for CT∗. This
is a direct consequence of sharing the exact same invariant about the
update of the current table (inv. 8.1). More details about the code and
the complexity can be found in Sec. 7.2.1.

8.3.3 The Filtering Phase

As in CTneg, the idea of the filtering phase (Algo. 18 line 12) requires
to count, for each pair (x, v), with x ∈ Ssup and v ∈ dom(x), how many
ground tuples satisfying τ [x] = v are represented by the table T c. This
count determines whether we are to keep or remove v from dom(x).

Unfortunately, here, each tuple may represent several ground tuples
simultaneously. However, counting the number of ground tuples does not
require to decompose the tuple. For each tuple, the number of ground
tuples it represents depends on the number of universal value used and
where there are used. The number of ground tuples represented by a
short tuple is the cardinal product of the size of the domains for which
the universal values are used. For example, in the table in Fig. 8.2a,
τ1 represents |dom(y)| ground tuples and τ4 represents |dom(x)||dom(y)|.
One can notice that two tuples with the same number of ∗ at the same
positions represent the same number of ground tuples. We call them
∗-similar (Def. 8.4).

Definition 8.4. ∗-similarity
Two (ordinary or short) tuples are ∗-similar iff they contain the same

number of ∗ and at the same positions.

For each tuple, the count of the ground tuples satisfying τ [x] = v
is the cardinal product of the size of the domains of the variables wich
are not x and which for the universal values are used. If the condition
τ [x] = v or τ [x] = ∗ is not met, the number of ground tuples represented
is 0. For example, in Fig. 8.2a, if (x, c) is the pair of interest (i.e.
we want to count how many ground tuples satisfy τ [x] = c), τ1 in
the table in Fig. 8.2a represents |dom(y)| ground tuples, τ4 represents
|dom(x)||dom(y)|
|dom(x)| = |dom(y)| and τ2 represents 0.

One difficulty is to count (efficiently) the number of tuples subsumed
by short tuples. In order to speedup the counting operation, the idea is
to group the tuples such that each computer word of the current table

122

only refers to ∗-similar tuples. To make things clear, let us consider
the negative short table depicted in Fig. 8.2a. It contains 5 tuples, and
one can observe the ∗-similarity of τ2 with τ3 (since they are both or-
dinary tuples), and of τ1 with τ5. We then split this table of 5 tuples
into three groups. Importantly, in order to have only ∗-similar tuples
in each computer word (important property for counting, as seen later),
we propose a very simple procedure that consists in padding entries for
each incomplete word with dummy tuples (i.e. tuples only containing a
special value ⊥ that is not present in the initial domains of the variables)
until the word is complete. Assuming computer 4-bits words, on our ex-
ample, we obtain 3 words as shown in Fig. 8.2b. The restructured bitset
currtable is shown in Fig. 8.2c; note the presence of bits initially set to
0 to discard dummy tuples. Of course, we need to take dummy tuples
into account when building the supports and supports∗ structures in
order to keep all bitwise operation sound.

Once the bitset currtable has been restructured, counting can be
advantageously achieved for a given computer word in conjunction with
bitwise operations. Indeed, the number of ground tuples subsumed
by any short tuple referred to in a given word of currtable is nec-
essarily the same due to the ∗-similarities. For example, assuming
that dom(y) = {a, b, c}, τ1 and τ5, referred to in the second word of
currtable, subsume exactly 3 ordinary tuples each. For simplicity, in
what follows, we consider that nbSubsumedTuples(i) indicates the num-
ber of ordinary tuples subsumed by any (short) tuple referred to in the
ith word of currtable. On our example, nbSubsumedTuples(2) returns
3. With this auxiliary function, which can benefit from a cache in prac-
tice, counting is now performed by Function nb1s∗ (Algo. 19).

Complexity. The worst-case time complexity of the filtering phase of
CT∗neg is

O
(⌈ |T 0|

w

⌉
k
∑
x∈Ssup

∣∣dom c(x)
∣∣)

where w is the number of bits into a word (i.e, for java Long type,
w = 64) and k is the complexity of the bitcount operation used in the
nb1s∗ method. k = log(w) when using Long.bitCount (in Java) or can
even be k = 1 on some architectures. The worst-case space complexity
of the filtering is

O(1)

as it uses only a fixed number of temporary variable and preallocated
variables.

123

8.3.4 GAC and Complexity

enforceGAC() (Algo. 18 line 23) is the entry point of the propagator.
It first updates the table (inv. 8.1), then tests the entailment (inv. 8.3)
and the emptiness (inv. 8.4) property and finally filters the values from
the domains (inv. 8.2).

Proposition 8.5. Algorithm 18, applied to a negative short table (with-
out overlaps) constraint c enforces GAC.

Proof. Using supports∗ to update currtable allows the algorithm to
respect inv. 8.1. inv. 8.2 is respected by the filtering. By Prop. 8.1, the
algorithm is GAC.

x y z

τ1 c ∗ a
τ2 a b c
τ3 b c b
τ4 ∗ ∗ d
τ5 b ∗ a

(a) A negative short table

x y z

τ2 a b c
τ3 b c b

⊥ ⊥ ⊥
⊥ ⊥ ⊥

τ1 c ∗ a
τ5 b ∗ a

⊥ ⊥ ⊥
⊥ ⊥ ⊥

τ4 ∗ ∗ d
⊥ ⊥ ⊥
⊥ ⊥ ⊥
⊥ ⊥ ⊥

(b) Tuples of the table grouped by ∗-
similarity on 4-bit words

τ2 τ3 τ1 τ5 τ4

1 1 0 0 1 1 0 0 1 0 0 0

(c) Restructured Bitset currTable

Figure 8.2: Restructuration of negative short tables to a negative short
table.

124

Complexity. The worst-case time complexity is

O
(⌈ |T 0′|

w

⌉ ∑
x∈Sval

min
(
|∆x|, |dom c(x)|

)
︸ ︷︷ ︸

update

+

⌈ |T 0′|
w

⌉
k︸ ︷︷ ︸

inv. 8.3 & inv. 8.4

+
⌈ |T 0′|

w

⌉
k
∑
x∈Ssup

∣∣dom c(x)
∣∣

︸ ︷︷ ︸
filtering

)

where T 0′ is T 0 with the dummy tuples added. Since |scp| ≥ |Ssup| and
|scp| ≥ |Sval| this can be globally reduced to

O
(
|scp| d

⌈ |T 0′|
w

⌉
k
)

where d is the size of the largest of the current domains, w is the number
of bits into a word (i.e, for Java Long type, w = 64) and k is the complex-
ity of the bitcount operation used in the nb1s method (i.e. for Java API
method java.lang.Long.bitCount, k = log(w)). This corresponds to
the complexity of CT times k. The worst-case space complexity is

O
(⌈ |T 0′|

w

⌉ ∑
x∈scp

|dom 0(x)|
)

which can be simplified to

O
(
|scp| d

⌈ |T 0′|
w

⌉)
where d is the size of the largest of the initial domains. This corresponds
to the size taken by the precomputed structures.

8.4 Results

The series we used contains 600 instances, each with 20 variables whose
domain sizes range from 5 to 7, and 40 random negative short table
constraints of arities 6 or 7, each table having a tightness comprised
between 0.5% and 2% and a proportion of short tuples equal to 1%,
5%, 10% and 20%. Figure 8.3 shows that CTneg and CT∗neg are slightly
outperformed (at most 1.4 and 1.6 times slower, respectively) by STRNe

[LLGL13], which is an adaptation of STR2 for negative tables; for CTneg
and STRNe, note that short tables had to be converted into ordinary
tables.

125

The second series we used does not involve short tables and contains
45 (more difficult) instances, each with 10 variables whose domain size
is 5, and 40 random negative table constraints of arity 6, each table
having a tightness of 10%, 20%, . . . , 90%. Figure 8.4 shows the results
we obtained with CTneg and STRNe. We also plot the curve for CT∗neg
even if only ordinary tables are present, so as to observe the overhead
introduced by the handling of the *-similarity groups. Clearly, CTneg
outperforms STRNe that requires at least 3 times more time for around

Figure 8.3: Results on Negative Short Tables – Small Domains.

Figure 8.4: Results on Negative Tables.

126

half of the hardest instances. Unlike the previous series that only con-
tains satisfiable instances, about half of the instances of this series are
unsatisfiable, making CTneg more suitable in general when the outcome
of the problem is not known in advance.

The third series contains 100 instances, each with 3 variables whose
domain size is 100, and 40 random negative short table constraints of
arity 3, each table having a tightness ranging from 0.5% to 2% and a
proportion of short tuples equal to 5%, 10% and 20% (with no over-
lapping between short tuples). Here, we want to emphasize that CT∗neg
can be very efficient, compared to STRNe, when the domain sizes and
the number of short tuples are very large. This is visible in Fig. 8.5.
Roughly speaking, CT∗neg is about 10 times speedier on average.

8.5 Conclusion

In this chapter, we presented CTneg and CT∗neg, two extensions of CT.
These are two propagators able to propagate a negative table (i.e. con-
flict table) representing the forbidden instantiations.

The adaptations required for CTneg are pretty straightforward. How-
ever, handling negative short table raises issues due to the NP-complete
nature of the problem. Polynomial handling of negative short tables is
only reachable with a non-overlapping hypothesis on the table’s struc-
ture. This led to the design of the CT∗neg algorithm.

Handling negative (basic) smart tables using bitwise operation would

Figure 8.5: Results on Negative Short Tables – Large Domains.

127

be even more challenging. First, the hypothesis of non-overlapping
would still be in application. Secondly, it would still be necessary to
compute the number of ground tuples represented by each of the com-
pressed tuples. To use bitsets efficiently, this would require the words
to contain, again, only similar tuples. The use of any (basic) smart ele-
ments increases the number of combinations possible of these elements.
This increases significantly the number of additional words required to
construct a bitset with only similar tuples by words. This may lead to a

situation where |T
0′|
w approaches the value of |T 0|, removing any benefits

of using bitsets.
The CTneg and CT∗neg extensions were published as part of the

[VLS17a] paper.

128

Chapter 9

Filtering Basic Smart
Diagram Constraints

There’s a difference between being ignorant and being
stupid... For me, an ignorant person is someone who makes
the wrong decision or a bad choice because he or she does not
have the proper facts. If you give that person the facts and
the proper information you have alleviated that ignorance,
and they make the right decision.

- Daryl Davis

9.1 Introduction

This chapter describes some algorithms based on bitwise operation for a
diagram-based version of the extensional constraint type. The diagram
we focus on is the Multi-Valued Variable Diagram (MVD). The MVD con-
straint takes as input an MVD (Ω,Θ) of arity r (called the initial diagram
(Ω 0,Θ 0)) and a sequence X of r variables (called the scope scp)1. Each
path of the MVD corresponds to an instantiation of the variables.

Due to strong links existing between MVDs and tables, one can say
that the propagation of MVDs follows the invariants inv. 9.1, which states
which paths (and thus which edges) belong to (Ω c,Θ c), and inv. 9.2,
which states which values belong to the current domain dom c. These
invariants are directly derived from the ones underlying the propagation
of CT. As a result, respecting these invariants leads to a GAC propagator

1The domain of the MVD used should be included in the sequence of the domains
(i.e. given D = (D1, . . . ,Dr), the domain of (Ω,Θ), ∀i ∈ [1; r],Di ⊆ dom(X[i])). If
it is not the case initially, the input diagram should be restricted to the path valid
w.r.t. the domains of the variables

129

as stated by Prop. 9.1. Again, two additional invariants (inv. 9.3, which
states when any instantiation is a solution, and inv. 9.4, which states
when there is no solution) can be added. In practice, inv. 9.3 is not tested
by our algorithms as the bitwise representation makes it too difficult to
count the number of paths.

Invariant 9.1 (Current Diagram Update). Given the notations:
(Ω 0,Θ 0), the initial diagram (i.e. before any propagation occurs),
(Ω c,Θ c), the reduced diagram at a given current state c of the propa-
gation, and, dom c(x), the domain of x at the current state c. A ground
arc ζ belongs to the current diagram (Ω c,Θ c) if and only if it is a
ground arc of the initial diagram, its label still belongs to the current
domain of the associated variable from scp and its tail and head nodes
still belong to the diagram.(

ζ ∈ (Ω 0,Θ 0) ∧ l(ζ) ∈ dom c(La(ζ)) ∧ h(ζ), t(ζ) ∈ (Ω c,Θ c)
)

⇔
(
ζ ∈ (Ω c,Θ c)

)
A node belongs to the current diagram (Ω c,Θ c) if and only if it is a
node of the initial diagram and if it exists at least one arc entering and
one arc exiting the node.(
n ∈ (Ω 0,Θ 0)∧∃ζi, ζj ∈ (Ω c,Θ c), h(ζi) = t(ζj) = n

)
⇔
(
n ∈ (Ω c,Θ c)

)
The combination of these two subrules defines how to update the diagram.

Invariant 9.2 (Domain Filtering). Given any variable x ∈ scp, each
value v in dom c(x) should appear as label of at least one of the arcs
ζ ∈ Θ c[x].

∀x ∈ scp, ∀v ∈ dom c(x), ∃ζ ∈ Θ 0[x], l(ζ) = v

Proposition 9.1. A diagram constraint enforces GAC if and only if
inv. 9.1 and inv. 9.2 hold.

Proof. By means of inv. 9.1, the set of valid paths is maintained. In-
variant 9.2 detects when a given value (x, a) can be removed.

Invariant 9.3 (Entailement). A diagram in entailed if and only if it
contains all the paths representing all the possible combinations of the
values of each domain. For diagrams with the path uniqueness property
(Prop. 6.9) such as MDDs, this is verifiable using the number of paths.(∣∣{τ : path(τ) ∈ (Ω c,Θ c)}

∣∣ =
∏
x∈scp

∣∣dom(x)
∣∣)⇔ >

130

Invariant 9.4 (Emptiness). An empty diagram does not have any
solution. (

(Ω c,Θ c) = (∅, ∅)
)
⇔ ⊥

This chapter details first CD, the adaptation of CT to diagrams. Then,
its extension, named CDbs, aiming at handling basic smart diagrams, is
presented. Finally, results on those two algorithms are given.

9.2 Compact-Diagram

Compact-Diagram borrows some principles from both CT [DHL+16] and
MDD4R [PR14]. As for the previous algorithms, the propagation of CD

is divided into the two usual steps. First, the update phase, whose
goal is to update the representation of the remaining diagram (here the
bitsets currdiagram (Def. 9.2)). Then, the filtering phase that finds
which values have to be removed from the domains of the unbound
variables. The pseudo-code of the algorithm can be found in Algo. 20
and in Algo. 21.

This section first describes how to construct the bitset structures
currdiagram and its supports, then explains the two parts of the algo-
rithm.

9.2.1 Data Structures

As in CT, the current state is maintained using reversible sparse bitsets.
currdiagram[x] (Def. 9.2) represents the valid arcs of the level associated
to variable x. Each of the arcs is associated to a bit from the bitset.
The arc is valid iff the bit is set to 1.

Definition 9.2. currdiagram (as Used in CD)
currdiagram is a collection of reversible sparse bitsets. Given an initial
diagram (Ω 0,Θ 0), for each variable x associated to a given layer of the
diagram, currdiagram[x] associates one bit to each of the arcs of Θ 0[x]
(i.e. the arc level associated to x). At a given time c, currdiagram rep-
resents the arcs of a given (Ω c,Θ c), subset of (Ω 0,Θ 0), valid regarding
the values of the domains at that time. For each variables x, given any
arc ζ ∈ Θ 0[x],

currdiagram[x]〈ζ〉 =

{
1 iff ζ ∈ Θ c[x]
0 iff ζ 6∈ Θ c[x]

Figure 9.1 shows an example of currdiagram.

131

Algorithm 20: Compact-Diagram (part 1)

1 Method enforceGAC()
2 Sval ← {x ∈ scp : lastSizes[x] 6= |dom(x)|}
3 Ssup ← {x ∈ scp : |dom(x)| > 1}
4 updateDiagram()
5 filterDomains()
6 foreach variable x ∈ Sval do
7 lastSizes[x]← |dom(x)|

8 Method updateDiagram()
9 foreach variable x ∈ scp do

10 currdiagram[x].clearMask()

11 updateMasks()
12 propagateDown(x1, false)
13 propagateUp(xr, false)

14 Method filterDomains()
15 foreach variable x ∈ Ssup do
16 foreach value a ∈ dom(x) do
17 if currdiagram[x] & supports[x, a] = 064 then
18 dom(x)← dom(x) \ {a}

x0

x1

x2

x3

x4

ROOT

A B

C D E

F G IH

J K L

END

e1 e2 e4e3

(a) Example MDD

e1 e2 e3 e4

currdiagram[x3] 1 1 1 1

supports[x3, 0] 1 0 1 1
supports[x3, 1] 0 1 0 0

arcsT[F, x3] 1 0 0 0
arcsT[G, x3] 0 1 0 0
arcsT[H,x3] 0 0 1 0
arcsT[I, x3] 0 0 0 1

arcsH[x3, J] 1 0 0 0
arcsH[x3,K] 0 1 1 0
arcsH[x3, L] 0 0 0 1

(b) Bitsets

Figure 9.1: An example of currdiagram, supports, arcsT and arcsH

for a given MDD.

132

To ease computations, at each level we find three types of pre-
computed (i.e. computed at the begining) immutable bitsets. First,
supports[x, a] (Def. 9.3) indicates for each arc on the variable x whether
or not the value a is initially supported by this arc. Second, arcsH[x, i]
(resp. arcsT[i, x]) (Def. 9.4) indicates for each arc on x whether node i
is the head (resp. tail) of the arcs.

Algorithm 21: Compact-Diagram (part 2)

1 Method updateMasks()
2 foreach variable x ∈ Sval do
3 if |∆x| < |dom(x)| then // Incremental update

4 foreach value a ∈ ∆x do
5 currdiagram[x].addToMask(supports[x, a])

6 else // Reset-based update

7 foreach value a ∈ dom(x) do
8 currdiagram[x].addToMask(supports[x, a])

9 currdiagram[x].reverseMask()

10 Method propagateDown(xi, localChange)
11 if xi ∈ Sval or localChange then
12 currdiagram[xi].removeMask()
13 if currdiagram[xi].isEmpty() then
14 return ⊥
15 if xi 6= xr then
16 localChange← false

17 foreach node
ν ∈ {ν : currdiagram[xi+1]&arcsT[xi+1, ν] 6= 0} do

18 if currdiagram[xi] & arcsH[xi, ν] = 064 then
19 currdiagram[xi+1] .addToMask(arcsT[xi+1, ν])
20 localChange← true

21 propagateDown(xi+1, localChange)

22 else if xi 6= xr then
23 propagateDown(xi+1, false)

24 Method propagateUp(xi, localChange)
/* Similar to propagateDown with x1 instead of xr,
xi−1 instead of xi+1 and inverted use of arcsT and

arcsH. */

133

Definition 9.3. supports (as Used in CD)
The bitset supports[x, v] contains the arcs of Θ 0[x], the level associated
to x, supporting the value v from dom(x).
Given a diagram (Ω 0,Θ 0), given a variable x and given an arc ζ ∈ Θ 0,
∀v ∈ dom(x),

supports[x, v]〈ζ〉 =

{
1 iff l(ζ) = v
0 iff l(ζ) = v

Figure 9.1 shows an example of supports.

Definition 9.4. arcsH and arcsT (as Used in CD)
The bitset arcsH[x, n] contains the arcs of Θ 0[x], the level associated to
x, for which the node n ∈ Ω 0 is the head.
Given a diagram (Ω 0,Θ 0), given a variable x and given an arc ζ ∈ Θ 0,
∀n ∈ Ω 0,

arcsH[x, n]〈ζ〉 =

{
1 iff head(ζ) = n
0 iff head(ζ) 6= n

The bitset arcsT[n, x] contains the arcs of Θ 0[x], the level associated to
x, for which the node n ∈ Ω 0 is the tail.
Given a diagram (Ω 0,Θ 0), given a variable x and given an arc ζ ∈ Θ 0,
∀n ∈ Ω 0,

arcsT[n, x]〈ζ〉 =

{
1 iff tail(ζ) = n
0 iff tail(ζ) 6= n

Figure 9.1 shows an example of arcsH and arcsT.

9.2.2 The Update Phase

As in MDD4R, the goal of updateDiagram() (Algo. 20 line 8) is to remove
the arcs that are no more part of a valid path. An arc can be:

– directly removed when the value of the label of the arc has been
removed from the variable domain (since the previous call)

– indirectly removed when all paths involving the arc are no more
valid.

Method updateDiagram() follows this observation: it identifies first the
arcs that can be trivially removed before identifying those that can be
untrivially removed. Figure 9.2 illustrates the whole updating process,
considering the effect of having two deleted values on the MDD depicted
in Fig. 9.1a. We shall refer to this illustration all along the description
of this part of the algorithm.

134

In Method updateDiagram(), after reinitializing all masks associated
with the variables in the scope of the constraint, all arcs that can be di-
rectly removed are handled by calling updateMasks() (Algo. 21 line 1).
For each variable x ∈ Sval, updateMasks() operates on their associated
masks. This method assumes an access to the set of values ∆x removed
from dom(x) since the last call to enforceGAC(). There are two ways of
updating the masks (before updating currdiagram from these masks,
later): either incrementally or from scratch after resetting as proposed in
[PR14]. This is the strategy implemented in updateMasks(), by consid-
ering a reset-based computation when the size of the domain is smaller
than the number of deleted values. In case of an incremental update
(Algo. 21 line 3), the union of the arcs to be removed is collected by
calling addToMask() for each structure supports corresponding to re-

x0

x1

x2

x3

x4

ROOT

A B

C D E

F G IH

J K L

END

7 7

7

(a) After x2 6= 1 and x3 6= 1

x0

x1

x2

x3

x4

ROOT

A B

C D E

F G IH

J K L

END

7 7

7 7

7 7

(b) Downward Pass

x0

x1

x2

x3

x4

ROOT

A B

C D E

F G IH

J K L

END

7

77 7

7 7

7 7

(c) Upward Pass

x0

x1

x2

x3

x4

ROOT

A B

C E

F I

J L

END

(d) New State of the MDD

Figure 9.2: Updating the MDD from Fig. 9.1a after x2 6= 1 ∧ x3 6= 1.

135

moved values, whereas in case of a reset-based update (Algo. 21 line 6),
we perform the union of the arcs to be kept. To get masks ready to
apply, we just need to reverse them when they have been built from
present values. Unlike CT, the update of currdiagram from the com-
puted masks is not done immediately. Figure 9.2a shows in gray the
arcs that are added to the masks.

We need now to determine which arcs can be indirectly removed: this
is achieved by calling the methods propagateDown() and propagateUp(),
which, similarly to MDD4R, perform two passes on the diagram. During
the downward (resp., upward) pass, each level is examined from the ROOT
(resp., END) to the END (resp., ROOT)2.

In Method propagateDown(), for a specified variable xi, provided
that some arcs on xi have been removed (the presence of arcs directly re-
moved are tested at line 11 of Algo. 20 with xi ∈ Sval, and the presence of
arcs indirectly removed are given by the Boolean variable localChange),
we have to process (and propagate) them. To start, currdiagram is first
updated (line 12 of Algo. 20), and if no more arcs on xi remain, a back-
track is forced because there is necessarily a domain-wipe-out. If xi is
not the last variable in the scope of the constraint, we have to deal with
xi+1. Specifically, every node3 ν that is the tail of a currently valid arc
on xi+1 is tested: when there is no more valid arcs on xi with ν as head,
all arcs on xi+1 with ν as tail are then indirectly removed. In other
words, if there is no more valid incoming arc for a node ν at level i,
then all outgoing arcs of ν become invalid: this is implemented by the
code at Algo. 20 line 19. Note that the search of supporting arcs is im-
proved by the use of residues. This increases the odds of not testing too
many words of currdiagram. Also, note how the variable localChange

becomes true as soon as an arc is untrivially removed.
Figure 9.2b shows the behavior of downward propagation on our

example. For the first two levels, nothing happens. However, at the level
of x2, we can see that all incoming arcs of the nodeH have been removed.
Hence, the outgoing arcs of H are added to the mask associated with the
next level, and removed when reaching this level. On the other hand,
the node F has still one valid incoming arc. Figure 9.2c shows the result
of upward propagation (after the downward one has been completed)
and Fig. 9.2d shows the resulting current MDD.

Complexity. The worst-case time complexity of the update phase is
the sum of the complexities of its two steps, i.e. the direct edge re-

2Actually, we can start propagation from the first and last unbound variables. For
experiments, we used this code optimization.

3Those are maintained in practice in a reversible sparse-set as in [PR14].

136

moval (updateMasks) and the indirect edge removal (propagateDown
and propagateUp).

The worst-case time complexity of updateMasks is

O
(∑
x∈Sval

(
min(|∆x|, |dom c(x)|)

⌈ |Θ 0[x]|
w

⌉))
where w is the number of bits into a word (i.e, for java Long type,
w = 64).

The worst-case time complexity of the propagateDown and
propagateUp is

O
(∑
x∈scp()

|Ω c[x]|
⌈ |Θ 0[x]|

w

⌉)
The worst-case space complexity of the update phase is

O(1)

as it uses only a fixed number of temporary variable and preallocated
variables.

9.2.3 The Filtering Phase

The process of filtering domains is very similar to that described in CT.
This is given by Method filterDomains() in Algo. 20 line 14. For each
remaining unbound variable x in Ssup and each value a in dom(x), the
intersection between the valid arcs on x, currdiagram[x], and the arcs
labeled with value a, supports[x, a], determines if a is still supported.
An empty intersection means that a can be deleted. This is correct
because all remaining arcs in currdiagram[x] are necessarily part of a
valid path in the graph thanks to the update.

Back to our example, remaining arcs as defined by currdiagram

corresponds to the MDD depicted in Fig. 9.2d. Regarding x4,
currdiagram[x4] is 1001. Because supports[x4, 0] is 0101 and
supports[x4, 1] is 1010, we can deduce (from bitwise intersections) that
both values are still valid for x4.

Complexity. The worst-case time complexity of the filtering phase is

O
(∑
x∈Ssup

(|dom c(x)|)
⌈ |Θ 0[x]|

w

⌉)
where w is the number of bits into a word (i.e, for java Long type,
w = 64). The worst-case space complexity of the filtering phase is

O(1)

137

as it uses only a fixed number of temporary variables and preallocated
variables.

9.2.4 GAC and Complexity

The main method in CD is enforceGAC(). After the initialization of
the sets Sval and Ssup, calling updateDiagram() allows us to update the
diagram, and more specifically currdiagram to filter out (indices of)
arcs that are no more valid. Once the graph is updated, it is possible to
test whether each value has still a support, by calling filterDomains().
If ever a domain wipe-out (failure due to a domain becoming empty)
occurs, an exception is thrown during the update of the graph (and
so, this is not directly managed in this main method). At the end of
enforceGAC(), lastSizes is updated in view of the next call.

Proposition 9.5. The CD algorithm (Algorithm 20 and Algorithm 21)
applied to a positive MVD constraint C enforces GAC.

Proof. By means of Method updateDiagram(), we maintain the
set of valid arcs in currdiagram. This respects inv. 9.1. Method
filterDomains() allows to check if a given value (x, a) is still supported
and delete it if not. This respects inv. 9.2. By Prop. 9.1, the algorithm
is GAC.

Complexity. The worst-case time complexity is

O
(∑
x∈Sval

(
min(|∆x|, |dom c(x)|)

⌈ |Θ 0[x]|
w

⌉)
+

∑
x∈scp()

|Ω c[x]|
⌈ |Θ 0[x]|

w

⌉)
︸ ︷︷ ︸

update

+

O
(∑
x∈Ssup

(|dom c(x)|)
⌈ |Θ 0[x]|

w

⌉)
︸ ︷︷ ︸

filtering

Since |scp| ≥ |Ssup| and |scp| ≥ |Sval| this can be globally reduced to

O
(
|scp| (d+ n)

⌈ |A|
w

⌉
k
)

where d is the size of the largest current domain, n is the size of the
current largest layer of nodes, A is the size of the initial largest layer
of arcs, w is the number of bits into a word (i.e, for Java Long type,
w = 64) and k is the complexity of the bitcount operation used in the

138

nb1s method (i.e. for Java API method java.lang.Long.bitCount,
k = log(w)).

The worst-case space complexity is

O
(∑
x∈scp

(|dom 0(x)|+ |t(Θ 0[x])|+ |h(Θ 0[x])|)
⌈ |Θ 0[x]|

w

⌉)
which can be globally reduced to

O
(
|scp| (d0 + n0)

⌈ |A|
w

⌉)
where d0 = maxx∈scp{|dom 0(x)|} is the size of the largest initial domain,
n0 is the maximum number of node in one node layer and w is the
number of bits into a word (i.e, for Java Long type, w = 64).

9.3 Compact-Diagram for Basic Smart Dia-
grams

CD and CT are quite similar in terms of design. Basically, both of them
use bitsets called supports to respectively indentify the tuples or arcs
that must be discarded. In the same spirit, we show how the ideas of
CTbs can be reused to adapt the method updateMask() of CD, leading to
CDbs.

9.3.1 Simple Adaptation of CTbs

As in CTbs, in addition to bitsets supports, we introduce auxiliary bit-
sets:

– supports∗[x, a], the exclusive supports: for each arc for which the
label of arc ω is exactly a (’= a’), the bit is set to 1,

– supportsMin[x, a], the lower bound supports: for each arc which
would be still valid if the minimum of the domain was a, the bit
is set to 1,

– supportsMax[x, a], the upper bound supports: for each arc which
would be still valid if the maximum of the domain was a, the bit
is set to 1.

Algorithm 22 displays the method updateMasks() for the simple ver-
sion of CDbs. This is the simpliest adaptation for Compact-Diagram of
the modifications made to pass from CT to CTbs. Resetting (and recom-
puting) is performed when the number of removed values (i.e. values

139

in ∆x) is too large by collecting the supports of every value in the cur-
rent domain. As in CTbs, resetting is also chosen if the layer contains
〈∈ S〉 elements. Otherwise an incremental update is performed, us-
ing supports∗, supportsMin and supportsMax in order to handle 〈∗〉,
〈6= v〉, 〈≤ v〉 and 〈≥ v〉.

Complexity. The time complexity of one call to updateMasks(), for
a given variable x, is

Θ
(
d
⌈ |Θ 0[x]|

w

⌉)
where d is min(|∆x|, |dom(x)|) if x 6∈ S〈∈S〉 and |dom(x)| if not.

9.3.2 Optimized Version of CDbs

Contrary to CTbs, where one bit in currtable is involved with every
variable, in CDbs, one bit only affects one layer of arcs and thus one
variable. This allows us to introduce an optimized version that strongly
relies on a partition of the arcs at each level i, defined as follows:

– Cbas[x] = {ϑ ∈ Θ[x] : op(l(ϑ)) ∈ {〈=〉, 〈6=〉, 〈∗〉}},

Algorithm 22: Simple Version of CDbs

1 Method updateMasks()
2 foreach variable x ∈ Sval} do

3 if |∆x| < |dom(x)| ∧ x 6∈ S〈∈S〉 then // Incremental

update

4 foreach value a ∈ ∆x do
5 mask[x] ← mask[x] | supports∗[x, a] // bitwise

OR

6 if dom(x).minChanged() then
7 mask[x] ← mask[x] | ∼ supportsMin[x, x.min]

8 if dom(x).maxChanged() then
9 mask[x] ← mask[x] | ∼ supportsMax[x, x.max]

10 else // Reset-based update

11 foreach value a ∈ dom(x) do
12 mask[x] ← mask[x] | supports[x, a] // bitwise

OR

13 mask[x] ← ∼ mask[x] // bitwise NOT

140

– Cmin[x] = {ϑ ∈ Θ[x] : op(l(ϑ)) ∈ {〈<〉, 〈≤〉}},

– Cmax[x] = {ϑ ∈ Θ[x] : op(l(ϑ)) ∈ {〈>〉, 〈≥〉}},

– Cset[x] = {ϑ ∈ Θ[x] : op(l(ϑ)) ∈ {〈∈〉, 〈/∈〉}}

The time complexity of Algo. 22 can be improved to reach Ω(|Θ
0[x]|
w)

and O(d |Θ
0[x]|
w). For that, let us consider the hypothetical case of a

variable with an operator in {〈<〉, 〈≤〉, 〈>〉, 〈≥〉} for each of its associated
arc labels. In such a case, one can collect invalid arcs using lines 6 and
8 from Algo. 22, and there is no need to iterate over the sets dom(x) or
∆x. This favorable situation can be partially forced by sorting arcs in
bitsets supports so that the bits in a computer word only represent arcs
from a given category (Cbas, Cset, Cmin, Cmax). If each computer word is
filled with (bits for) arcs belonging to the same category (dummy invalid
arcs are used to complete a word if necessary), then only the required
specific operations can be systematically applied to this word. This
leads to Algo. 23 that iterates over the valid words and only applies the
operations required by the category of the word (note that the category
for the jth word is given by currdiagram[x].category[j]). Arcs from
Cbas are updated using supports∗ or supports (incremental or reset
case). Arcs from Cset are updated using supports in all cases. Arcs
from Cmin and Cmax are updated using supportsMin and supportsMin,
respectively. It appears that the categories Cmin and Cmax are particularly
cheap to treat as they only imply one value.

An Interesting Observation. In Algo. 23, each valid word is asso-
ciated with a (unique) category. From this fact, one can observe that
supportsMin and supportsMax are useless.

Proof. For any variable x, and any word index j of currdiagram[x], we
have:

currdiagram[x].category[j] = Cmin ⇒
supportsMin [x,a][j] = supports[x, a][j]

Similarly,

currdiagram[x].category[j] = Cmax ⇒
supportsMax [x,a][j] = supports[x, a][j]

141

Proof. (sketch for Cmin) By restricting the scope of the definitions of the
bitsets to the word (index) j whose bits are exclusively associated with
arcs from Cmin, supports[x, a][j] contains arcs represented by this word
that accept the value a, i.e. arcs labeled by ≤ v with v ≥ a, whereas
supportsMin[x, a][j] contains arcs for which ∃b ∈ dom(x) accepted by
the arcs such as a ≤ b, i.e. arcs labeled by ≤ v with v ≥ a. The
two words end up to be equal: the exact same bits are set for both

Algorithm 23: Optimized Version of CDbs

1 Method updateMasks()
2 foreach variable x ∈ {x ∈ scp : |∆x| > 0} do
3 foreach index j ∈ currdiagram[x].validWords do
4 switch currdiagram[x].category[j] do
5 case Cbas do
6 if |∆x| < |dom(x)| then // Incremental

update

7 foreach value a ∈ ∆x do
8 mask[x][j]← mask[x][j] |

supports∗[x, a][j]

9 else // Reset update

10 foreach value a ∈ dom(x) do
11 mask[x][j]← mask[x][j] |

supports[x, a][j]

12 mask[x][j] ← ∼ mask[x][j]

13 case Cset do
14 foreach value a ∈ dom(x) do
15 mask[x][j]← mask[x][j] | supports[x, a][j]

16 mask[x][j] ← ∼ mask[x][j]

17 case Cmin do
18 if dom(x).minChanged() then
19 mask[x][j]← mask[x][j] | ∼

supportsMin[x, x.min][j]

20 case Cmax do
21 if dom(x).maxChanged() then
22 mask[x][j]← mask[x][j] | ∼

supportsMax[x, x.max][j]

142

supports[x, a][j] and supportsMin[x, a][j].

This observation is illustrated by Fig. 9.3. For any literal (x, a)
and any word index j of category Cmin (resp., Cmax), the word
supportsMin[x, v][j] (resp., supportsMax[x, v][j]) is equal to the word
supports[x, v][j]. Therefore, we can simply use supports at lines 19
and 22. It means that the only required auxiliary bitset is supports∗

for words attached to Cbas.

Overall Complexity of the Propagator. Regarding the time com-
plexity of the propagator (and not only the updateMasks() method), CD
is O(max(n, d)r aw) where r is the arity of the constraint, d the greatest
domain size, n (resp. a) the maximum number of nodes (resp. arcs) per
level and w the size of computer words (w = 64 for Java long integer
type). CDbs keeps the same complexity. Regarding the space complexity,
the maximum number of words of one bitset is d awe+3. Per level, there is
one currdiagram, d supports and supports∗ (its length is min 0 words,
if Cbas = φ and d awe max, if |Cset| ≤ w, |Cmin| ≤ w and |Cmax| ≤ w) and
n arcsH and arcsT. The space complexity is thus O((d+ n)r aw).

9.4 Results

The performances of CD and CDbs have been evaluated. The benchmark
used are the instances available on the XCSP3 website restricted to
tables only. The results are compared using performance profiles.

9.4.1 Experiments Results with CD

To evaluate the performance of CD, two benchmarks were built from the
instances from XCSP3. The first one results from the transformation of
each table into an MDD using pReduce [PR15]. CDp is the performance
of CD on this benchmark. The second one results from the transforma-
tion of each table into an sMDD using sReduce (Sec. 6.2.3). CDs is the
performance of CD on this benchmark.

On Fig. 9.4, execution times of MDD4R, CDp and CDs are compared.
Times are given for a complete exploration of the search space (i.e. to
find all solutions), using each time the same variable and value ordering.
Clearly, CD outperforms MDD4R, even when it is executed on “simple”
MDDs. Using sMDDs just makes it more robust. For example, CDs, CDp

and MDD4R are at least twice slower than the best (virtual) algorithm on
5%, 20% and 35% of the instances, respectively. On Fig. 9.5, CT is ad-
ditionally considered. In general, CT still outperforms decision diagram

143

approaches, but the gap is reduced: 40% of the instances are solved by
CDs within a factor 2 compared to the time taken by CT, instead of 5%
previously with MDD4R.

It is important to note that these global results do not tell the en-
tire story. Indeed, when the compression is high, using decision dia-
grams remains the appropriate approach. For example, on the instance

x

ω0 = 1
ω1 ≤ 2
ω2 ≥ 1
ω3 ∈ {1, 3}
ω4 6= 1

x

ω5 > 2
ω6 6∈ {0, 3}
ω7 < 2
ω8 6= 2
ω9 ∗

(a) Labels of Arcs

word 0 word 1 word 2 word 3
(Category) Cbas Cset Cmin Cmax

ω0 ω4 ω8 ω9 ω3 ω6 ω1 ω7 ω2 ω5

[x, 0] 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0
[x, 1] 1 0 1 1 1 1 0 0 1 1 0 0 1 0 0 0
[x, 2] 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0
[x, 3] 0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0
[x, 4] 0 1 1 1 0 1 0 0 0 0 0 0 1 1 0 0

(b) Bitsets supports for literals on x

word 0 word 1 word 2 word 3
(Category) Cbas Cset Cmin Cmax

(From) supportsMin no auxiliary supportsMin supportsMax

ω0 ω4 ω8 ω9 ω3 ω6 ω1 ω7 ω2 ω5

[x, 0] 0 0 0 0 - - - - 1 1 0 0 0 0 0 0
[x, 1] 1 0 0 0 - - - - 1 1 0 0 1 0 0 0
[x, 2] 0 0 0 0 - - - - 1 0 0 0 1 0 0 0
[x, 3] 0 0 0 0 - - - - 0 0 0 0 1 1 0 0
[x, 4] 0 0 0 0 - - - - 0 0 0 0 1 1 0 0

(c) Auxiliary bitsets for literals on x

Figure 9.3: Bitsets related to a variable x, assuming 10 associated arcs
ω0, ω1, . . . in the bs− MVD. The size of computer words is assumed to be
4, for simplicity.

144

pigeonsPlus-11-06, the execution times of CT, MDD4R, CDp and CDs are
respectively T.O.(> 600s), 328s, 128s and 126s. This confirms the real
interest of approaches based on decision diagrams.

Figure 9.4: Comparing MDD4R, CDp and CDs.

Figure 9.5: Comparing MDD4R, CDp, CDs and CT.

145

9.4.2 Experiments Results with CDbs

The benchmarks here are all derived from the initial benchmark from
the XCSP3 website. They are defined as:

20 21 22
0%

20%

40%

60%

80%

100%

τ (time)

%
in
st
an

ce
s

CDbs on βbsmdd

CD on βmdd

CDbs on βbsmvd

Figure 9.6: Comparing MDD4R, CDp and CDs.

20 21 22 23 24 25 26 27 28 29
0%

20%

40%

60%

80%

100%

τ (time)

%
in
st
an

ce
s

CT on βt

CTbs on βbst

CDbs on βbsmdd

CD on βmdd

Figure 9.7: Comparing MDD4R, CDp, CDs and CT.

146

– βt: the initial benchmark. It is a set of roughly 4, 000 instances
only containing (positive) table constraints, and available on the
XCSP3 website [BLP16].

– βbst: instances of βt have been transformed into instances where
bs− tables replace (ordinary) tables. The compression used is
the one presented in Sec. 5.4.2.2.

– βmdd: instances of βt have been transformed into instances where
MDDs replace (ordinary) tables. The algorithm pReduce [PR15]
was used.

– βbsmvd: instances of βbst have been transformed into instances
where bs− MVDs replace bs− tables. The algorithm pReducebs
was used.

– βbsmdd: instances of βmdd have been transformed into instances
where bs− MDDs replace MDDs.

Figure 9.6 shows the results of a comparison between CD and CDbs.
The filtering algorithm CDbs, as it could be expected, obtains a larger
speedup when applied on graphs with fewer nodes and arcs, i.e. on
instances from βbsmdd.

In particular, we can see that on the benchmark βbsmvd (based on
a compression into bs− tables, followed by a generation of bs− MVDs)
CDbs performs worse than CD applied on βmdd (standard MDDs). The rea-
son is that graphs in βbsmvd have generally a greater number of nodes
than other equivalent graphs as shown before in Sec. 6.3.3. This fol-
lows the same conclusions regarding why CD was more efficient on sMDDs
(having fewer nodes than MDDs).

An interesting remark is that, contrarily to CTbs, the presence of
expressions ’∈ S’ does not induce any overhead for CDbs. Since the
arcs involving expressions of the form ’∈ S’ are gathered on the same
bitwords, they don’t prevent from doing an incremental update when
considering the other categories of expressions, as it was the case for CT.

CT was shown to remain faster than CD despite the introduction of
bitwise operations. We revisit the same experiment with the newly pre-
sented algorithm. Figure 9.7 compares four scenarios, including the use
of CT: CT on βt, CT

bs on βbst, CD on βmdd and CDbs on βbsmdd.
One can see that CT is still the best approach, followed by CTbs.

Nevertheless, as it can be observed in the figure, the gap is shrinking
when using the new algorithm CDbs. Also, there is now around 10% of
the instances where CDbs is the fastest algorithm. A post analysis has
shown that instances with larger domains are the most favorable for

147

CDbs. In such cases, we could observe for some tables a reduction by a
factor of up to 8 on the number of arcs.

The main advantage of CD thus lies in the potential compactness of
the diagrams, although this is really problem/constraint dependent. On
the one side, some graphs, when expanded into tables, can’t even fit in
memory. On the other side, some constraints, like AllDifferent [Per17]
are not well suited for an MDD representation because there is almost no
compression. When CD can benefit from a large compression, it becomes
faster.

For a fair comparison, the choice was made not to evaluate the new
algorithm on a priori favorable problems, hence the benchmarks com-
posed of problems that initially contain table constraints. Also the or-
der of variables remained unchanged (order as described in the initial
instances used). Optimizing this order may also have an impact on the
size of the graphs [CGBR19].

In our opinion, having both CT and CD is useful: if, for a given con-
straint, a high compression (by an MDD or another diagram) is possible,
CD should be used, otherwise CT is more suited. Also, the new algo-
rithm should typically be used for solving combinatorial problems with
complex constraints that can’t even be represented in memory as sim-
ple tables. One good example of work in that direction is [RPR+16].
Another promising direction for applying this propagator is for solving
combinatorial problems on Strings.

9.5 Conclusion

This chapter introduces the Compact-Diagram algorithm. Globally, it
follows the same operational steps as CT. Contrary to tables, updating a
diagram requires to propagate the removal of edges through the graph.
This result in the addition of a two-way visitation of the diagram (from
top to bottom and from bottom to top) to make the diagram consistent
again. The CDbs algorithm is inspired from the corresponding basic smart
table propagator CTbs. However, the structural difference between tables
and diagrams helps to make an improved adaptation. In CTbs, one bit is
associated to each tuples, making the bit involved with all variables at
once. In CDbs, this is not the case as each bit is associated to one arc and
thus one variable. This allows an efficient sorting of the edges among
the words of the bitset, allowing the most efficient update for each word.

The results on both algorithms show an improvement of the perfor-
mance of the diagram-based propagator. However, compared to CT and
CTbs on equivalent tables, there is still a (now reduced) gap in perfor-

148

mance.
One final thing to notice is that contrary to MDD4R, CD and CDbs are

not designed only for MDDs but for MVDs in general, i.e. any layered
diagram and not only the ones constructed with decision nodes.

The CD algorithm was published as part of the [VLS18] paper (the
algorithm is named Compact-MDD in this paper). The CDbs extension was
published as part of the [VLS19a] paper.

149

150

Part IV

Conclusion

151

Chapter 10

Conclusion

The last ever dolphin message was misinterpreted as a
surprisingly sophisticated attempt to do a double-backwards-
somersault through a hoop whilst whistling the ’Star Spangled
Banner’, but in fact the message was this: So long and thanks
for all the fish.

- Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Conclusion

In this thesis, we have presented some developement that we have made
concerning Compact-Table. This articulates upon two aspects of exten-
sional constraints. First, some extensional representations were studied.
Second, some propagators designed to handle these representations were
explained.

Extentional representations

Two of the most used representations, tables, and MDDs, were studied on
several aspects. The goal was to establish some of their limitations and
try to enhance them in order to make them more efficient.

From the table point of view, we studied their compression into basic
smart tables. These maintain the classical organization of tables using
tuples with values. This is one of the aspects which makes the adaptation
of CT possible. In addition, they add the possibility of using unary and
binary constraints as values. Optimal compression is difficult to achieve.
However, some greedy algorithms can achieve sufficiently good results.
Tractable incompressibility of some tables has also been established.

From the diagram point of view, we studied how to create a new
structure allowing more non-determinism, easy construction and usage

153

(as for MDDs). This conducted us to introduce the sMDD data structure.
The top half of the structure is like an MDD, composed of decision nodes.
The bottom half of the structure is like an inverted MDD, composed of
inverted decision nodes. The two middle node layers are composed of
totally non-deterministic nodes. The main improvement brought by
sMDDs is the high reduction in the number of nodes required. In addition,
we studied the use of the same unary constraints as in basic smart tables
in order to compress these diagrams into basic smart diagrams. The
work on basic smart diagrams includes methods to create them from
the equivalent table. The most efficient way to do it is by creating the
corresponding MDD (or sMDD) and merging edges sharing the same tail
and head.

Propagators

All extensions of CT share the same global structure as CT, using the
improvements brought by the various algorithms through the history of
extensional constraints. First, as CT, they keep track of the reduction of
the representation in a structure representing the current representation
using reversible sparse bitsets. Second, they use precomputed bitsets to
store the supports used to speed up the computations. Third, their prop-
agation is divided into two phases: the update phase and the filtering
phase. The update phase, consisting of a combination of an incremental
update and a reset update, proceeds with the reduction of the represen-
tation in order to update the current representation. The filtering phase
proceeds with removing the values that are no longer supported by the
current representation.

CT∗ and CTbs were the first designed types of extension. They target
respectively short and basic smart tables. The modifications required
the design of new additional precomputed bitsets: supports∗ (mostly
used to handle 〈∗〉 and 〈6= v〉), supportsMin (mostly used to handle
〈≤ v〉) and supportsMax (mostly used to handle 〈≥ v〉). In addition,
a modification is required to the classical update in other to make it
work. This results in efficient algorithms to handle these kinds of positive
compressed tables.

CTneg and CT∗neg were the second designed types. They target re-
spectively negative and negative short tables. Their design necessitated
changing the way to verify the support of a value. Due to the conflict-
ing nature of the tuples from the table, a value is still valid if it exists
one possible instantiation (containing the value) not in the table. This
required counting the supporting tuples and comparing the count to the
total number of valid tuples possible. The CTneg extensions require thus a

154

modification to the filtering phase. This results in an efficient algorithm
to handle negative tables. The GAC propagation on negative short ta-
bles is NP-complete. Adapting CT to this case is therefore complicated.
We chose to set a hypothesis on tables to render the problem polyno-
mial. This hypothesis imposes that there are no overlapping tuples in
the table. This allows keeping a polynomial counting of the supporting
tuple from the table. CT∗neg also uses the concept of supports∗ in its in-
cremental update in order to handle the 〈∗〉 contained in the table. The
results on CT∗neg are more dependent on the structure of the table. To
allow easy counting, some dummy tuples need to be added to the table
in order to have words containing similar tuples, which can in some case
impact the efficiency of the algorithm.

Finally, CD and CDbs were designed. One of the main modifications is
the break of the main reversible sparse set into one for each layer of the
diagram. The other essential modification comes from that removing an
edge with an unsupported value is not enough. In addition, a two-way
pass has to be performed on the diagram to make it consistent again.
On MDDs, the results of CD allow an improvement compared to the state-
of-the-art MDD propagator. However, it is still insufficient to close the
gap between the performances of CT and the best MDD propagator. The
use of basic smart MDDs with the propagator CDbs helps to close a bit
more the gap.

Finally, the use of the new diagram representations base on more
non-determinism, i.e. sMDDs and bs− sMDDs, due to their reduction of
the number of nodes compared to the equivalent MDDs and bs− MDDs,
leads to a better propagation than using MDDs. However, it still does
not close the gap with the performances using the equivalent table rep-
resentation.

Perspectives

This thesis has introduced several new propagators and had increased
the variety of available extensional representations. However, the topic
is far from being closed. There are at least three paths of further research
that can be investigated.

Non-determinism in Diagrams

From the diagram point of view, this work has highlighted the use-
fulness of non-determinism with the new sMDD data structure. This
structure only has non-deterministic nodes on two precise chosen lay-
ers. Evaluating the impact of the position of these two layers could lead

155

to improvements in the structure. Also, studying ways to have more
non-determinism inside diagrams in order to reduce even more their size
could help speed up the resolution of some problems. Finally, finding
procedures to generate such diagrams with non-determinism not limited
to some specific layers could be crucial to help speed up the resolution
of some problems.

Closing the Gap between Diagrams and Tables Propagators

A more extensive study of the non-determinism in diagrams is one way
to close the gap. Another would be to improve even more the CD prop-
agator. Even if the gap is not closed yet, it has already been acknowl-
edged that some diagrams represent tables too big to be stored. This
is the main reason why research on diagram propagators should not be
abandoned even if the actual table propagators outperform the current
diagrams propagators.

Direct Use of Compressed Tables and Non-Deterministic
(Compressed) Diagrams

Now that efficient propagators are available for compressed tables, these
modeling tools can be used more broadly. Adapting existing processes,
such as auto-tabling [DBC+17] or automatic compilation of constraints
into MDDs [HHOT08, dUGSS19], to generate automatically compressed
table or non-deterministic (compressed) diagrams is also something that
should be studied, now that enhanced propagators are available.

156

Bibliography

157

Bibliography

[AFNP14] Jérôme Amilhastre, Hélène Fargier, Alexandre Niveau,
and Cédric Pralet. Compiling csps: A complexity map
of (non-deterministic) multivalued decision diagrams.
International Journal on Artificial Intelligence Tools,
23(04):1460015, 2014.

[AHHT07] H. Andersen, T. Hadzic, J. Hooker, and P. Tiedemann. A
constraint store based on multivalued decision diagrams.
In Proceedings of CP’07, pages 118–132, 2007.

[ALM20] Gilles Audemard, Christophe Lecoutre, and Mehdi Maa-
mar. Segmented tables: An efficient modeling tool for
constraint reasoning. Frontiers in Artificial Intelligence
and Applications, 325:315–322, 2020.

[ANS20] Gaël Aglin, Siegfried Nijssen, and Pierre Schaus. Pydl8.
5: a library for learning optimal decision trees. In In-
ternational Joint Conference on Artificial Intelligence,
2020.

[Apt03] Krzysztof Apt. Principles of constraint programming.
Cambridge University Press, 2003.

[ASS+88] A Aiba, K Sakai, Y Sato, D Hawley, and R Hasegawa.
Constraint logic programming language cal. Proc. In-
ternational Conference on Fifth Generation Computer
Systems, pages 263–276, 1988.

[BCvH14] D. Bergman, A. Ciré, and W. van Hoeve. MDD prop-
agation for sequence constraints. Journal of Artificial
Intelligence Research, 50:697–722, 2014.

159

[BCvHH16] D. Bergman, A. Ciré, W. van Hoeve, and J. Hooker.
Decision diagrams for optimization. Springer, 2016.

[Bes94] Christian Bessiere. Arc-consistency and arc-consistency
again. Artificial intelligence, 65(1):179–190, 1994.

[Bli96] Christian Bliek. Wordwise algorithms and improved
heuristics for solving hard constraint satisfaction prob-
lems. Citeseer, 1996.

[BLP16] F. Boussemart, C. Lecoutre, and C. Piette. XCSP3: An
integrated format for benchmarking combinatorial con-
strained problems. Technical Report arXiv:1611.03398,
CoRR, 2016. Available from http://www.xcsp.org.

[BLPN12] Philippe Baptiste, Claude Le Pape, and Wim Nuijten.
Constraint-based scheduling: applying constraint pro-
gramming to scheduling problems, volume 39. Springer
Science & Business Media, 2012.

[BOP20] Behrouz Babaki, Bilel Omrani, and Gilles Pesant. Com-
binatorial search in cp-based iterated belief propagation.
In International Conference on Principles and Prac-
tice of Constraint Programming, pages 21–36. Springer,
2020.

[Bor12] Christian Borgelt. Frequent item set mining. Wiley in-
terdisciplinary reviews: data mining and knowledge dis-
covery, 2(6):437–456, 2012.

[BR01] Christian Bessière and Jean-Charles Régin. Refining the
basic constraint propagation algorithm. In IJCAI, vol-
ume 1, pages 309–315, 2001.

[Bry86] Randal Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Comput-
ers, 35(8):677–691, 1986.

[BRYZ05] Christian Bessière, Jean-Charles Régin, Roland HC Yap,
and Yuanlin Zhang. An optimal coarse-grained arc con-
sistency algorithm. Artificial Intelligence, 165(2):165–
185, 2005.

[CGBR19] Quentin Cappart, Emmanuel Goutierre, David
Bergman, and Louis-Martin Rousseau. Improving

160

optimization bounds using machine learning: Deci-
sion diagrams meet deep reinforcement learning. In
Proceedings of AAAI’19, 2019.

[CHLS06] Chiu Wo Choi, Warwick Harvey, Jimmy Ho-Man Lee,
and Peter J Stuckey. Finite domain bounds consistency
revisited. In Australasian Joint Conference on Artificial
Intelligence, pages 49–58. Springer, 2006.

[CMR+20] Quentin Cappart, Thierry Moisan, Louis-Martin
Rousseau, Isabeau Prémont-Schwarz, and Andre Cire.
Combining reinforcement learning and constraint pro-
gramming for combinatorial optimization. arXiv
preprint arXiv:2006.01610, 2020.

[Col90] Alain Colmerauer. An introduction to prolog iii. Com-
munications of the ACM, 33(7):69–90, 1990.

[CY08] Kenil Cheng and Roland Yap. Maintaining generalized
arc consistency on ad-hoc r-ary constraints. In Proceed-
ings of CP’08, pages 509–523, 2008.

[CY10] Kenil Cheng and Roland Yap. An MDD-based gener-
alized arc consistency algorithm for positive and nega-
tive table constraints and some global constraints. Con-
straints, 15(2):265–304, 2010.

[DBC+17] Jip J. Dekker, Gustav Björdal, Mats Carlsson, Pierre
Flener, and Jean-Noël Monette. Auto-tabling for sub-
problem presolving in minizinc. Constraints An Int. J.,
22(4):512–529, 2017.

[DHL+16] Jordan Demeulenaere, Renaud Hartert, Christophe
Lecoutre, Guillaume Perez, Laurent Perron, Jean-
Charles Régin, and Pierre Schaus. Compact-table: effi-
ciently filtering table constraints with reversible sparse
bit-sets. In International Conference on Principles and
Practice of Constraint Programming, pages 207–223.
Springer, 2016.

[DM02a] Adnan Darwiche and Pierre Marquis. A knowledge com-
pilation map. Journal of Artificial Intelligence Research,
17:229–264, 2002.

161

[DM02b] Elizabeth D Dolan and Jorge J Moré. Benchmarking
optimization software with performance profiles. Math-
ematical programming, 91(2):201–213, 2002.

[DRGN10] Luc De Raedt, Tias Guns, and Siegfried Nijssen. Con-
straint programming for data mining and machine learn-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 24, 2010.

[DSVH87] Mehmet Dincbas, Helmut Simonis, and Pascal Van Hen-
tenryck. Extending equation solving and constraint han-
dling in logic programming. In Colloquium on Resolution
of Equations in Algebraic Structures (CREAS), Texas,
1987.

[dUGSS19] Diego de Uña, Graeme Gange, Peter Schachte, and Pe-
ter J Stuckey. Compiling cp subproblems to mdds and
d-dnnfs. Constraints, 24(1):56–93, 2019.

[DVH] Y Deville and P Van Hentenryck. An efficient arc con-
sistency algorithm for a class of csps. In Proceedings of
IJCAI-91, pages 325–330.

[FM01] Filippo Focacci and Michaela Milano. Global cut frame-
work for removing symmetries. In International Confer-
ence on Principles and Practice of Constraint Program-
ming, pages 77–92. Springer, 2001.

[Fre96] Eugene Freuder. In pursuit of the holy grail. ACM Com-
puting Surveys (CSUR), 28(4es):63–es, 1996.

[GHLR14] Nebras Gharbi, Fred Hemery, Christophe Lecoutre, and
Olivier Roussel. Sliced table constraints: Combining
compression and tabular reduction. In International
Conference on AI and OR Techniques in Constriant
Programming for Combinatorial Optimization Problems,
pages 120–135. Springer, 2014.

[GJMN07] Ian Gent, Chris Jefferson, Ian Miguel, and Peter Nightin-
gale. Data structures for generalised arc consistency
for extensional constraints. In Proceedings of AAAI’07,
pages 191–197, 2007.

[Gun15] Tias Guns. Declarative pattern mining using constraint
programming. Constraints, 20(4):492–493, 2015.

162

[HHOT08] T. Hadzic, J. Hooker, B. O’Sullivan, and P. Tiedemann.
Approximate compilation of constraints into multivalued
decision diagrams. In Proceedings of CP’08, pages 448–
462, 2008.

[HvHH10] S. Hoda, W. van Hoeve, and J. Hooker. A systematic
approach to MDD-Based constraint programming. In
Proceedings of CP’10, pages 266–280, 2010.

[IS18] Linnea Ingmar and Christian Schulte. Making compact-
table compact. In International Conference on Prin-
ciples and Practice of Constraint Programming, pages
210–218. Springer, 2018.

[JMSY92] Joxan Jaffar, Spiro Michaylov, Peter J Stuckey, and
Roland HC Yap. The clp (r) language and system. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 14(3):339–395, 1992.

[JN13] Christopher Jefferson and Peter Nightingale. Extend-
ing simple tabular reduction with short supports. In
Twenty-Third International Joint Conference on Artifi-
cial Intelligence, 2013.

[Kar72] Richard M Karp. Reducibility among combinatorial
problems. In Complexity of computer computations,
pages 85–103. Springer, 1972.

[KS08] Subhash Khot and Rishi Saket. Hardness of minimizing
and learning dnf expressions. In 2008 49th Annual IEEE
Symposium on Foundations of Computer Science, pages
231–240. IEEE, 2008.

[KW07] G. Katsirelos and T. Walsh. A compression algorithm
for large arity extensional constraints. In Proceedings of
CP’07, pages 379–393, 2007.

[Lab03] Philippe Laborie. Algorithms for propagating resource
constraints in ai planning and scheduling: Existing
approaches and new results. Artificial Intelligence,
143(2):151–188, 2003.

[Lau78] JL Lauriere. Alice, a language for intelligent combinato-
rial exploration. Artificial Intelligence, 10:29–127, 1978.

163

[Lau18] Laurent Michel, Pierre Schaus, Pascal Van Hen-
tenryck. MiniCP: A lightweight solver for con-
straint programming, 2018. Available from
https://minicp.bitbucket.io.

[lCdSMSSL13] V. le Clément de Saint-Marcq, P. Schaus, C. Solnon, and
C. Lecoutre. Sparse-sets for domain implementation. In
Proceeding of TRICS’13, pages 1–10, 2013.

[LCKLD] Baudouin Le Charlier, Minh Thanh Khong, Christophe
Lecoutre, and Yves Deville. Automatic synthesis of
smart table constraints by abstraction of table con-
straints.

[Lec11] Christophe Lecoutre. Str2: optimized simple tabular
reduction for table constraints. Constraints, 16(4):341–
371, 2011.

[LLGL13] Hongbo Li, Yanchun Liang, Jinsong Guo, and Zhanshan
Li. Making simple tabular reductionworks on negative
table constraints. In Twenty-Seventh AAAI Conference
on Artificial Intelligence, 2013.

[LLY15] Christophe Lecoutre, Chavalit Likitvivatanavong, and
Roland HC Yap. Str3: A path-optimal filtering algo-
rithm for table constraints. Artificial Intelligence, 220:1–
27, 2015.

[LM12] Michele Lombardi and Michela Milano. Optimal meth-
ods for resource allocation and scheduling: a cross-
disciplinary survey. Constraints, 17(1):51–85, 2012.

[LRSV18] Philippe Laborie, Jérôme Rogerie, Paul Shaw, and Petr
Viĺım. Ibm ilog cp optimizer for scheduling. Constraints,
23(2):210–250, 2018.

[LV08] Christophe Lecoutre and Julien Vion. Enforcing arc con-
sistency using bitwise operations. Constraint Program-
ming Letters (CPL), 2:21–35, 2008.

[Mac77] Alan K Mackworth. Consistency in networks of relations.
Artificial intelligence, 8(1):99–118, 1977.

[McG79] James J McGregor. Relational consistency algorithms
and their application in finding subgraph and graph iso-
morphisms. Information Sciences, 19(3):229–250, 1979.

164

[MDL15] Jean-Baptiste Mairy, Yves Deville, and Christophe
Lecoutre. The smart table constraint. In International
Conference on AI and OR Techniques in Constriant
Programming for Combinatorial Optimization Problems,
pages 271–287. Springer, 2015.

[MH86] Roger Mohr and Thomas C Henderson. Arc and path
consistency revisited. Artificial intelligence, 28(2):225–
233, 1986.

[MM88] Roger Mohr and Gérald Masini. Good old discrete re-
laxation. In Proceedings of the 8th European conference
on artificial intelligence, pages 651–656, 1988.

[Per17] G. Perez. Decision diagrams: constraints and algo-
rithms. PhD thesis, Université de Nice, 2017.

[PR14] Guillaume Perez and Jean-Charles Régin. Improving
gac-4 for table and mdd constraints. In International
Conference on Principles and Practice of Constraint
Programming, pages 606–621. Springer, 2014.

[PR15] Guillaume Perez and Jean-Charles Régin. Efficient op-
erations on MDDs for building constraint programming
models. In Proceedings of IJCAI’15, pages 374–380,
2015.

[Rég95] JC Régin. Développement d’outils algorithmiques pour
l’intelligence artificielle. Applicationa la chimie or-
ganique. These de doctorat, Université des Sciences et
Techniques du Languedoc, Montpellier, 1995.

[Rég11] Jean-Charles Régin. Improving the expressiveness of ta-
ble constraints. In The 10th International Workshop on
Constraint Modelling and Reformulation (ModRef 2011),
2011.

[RP97] Jean-Charles Régin and Jean-François Puget. A filtering
algorithm for global sequencing constraints. In Interna-
tional Conference on Principles and Practice of Con-
straint Programming, pages 32–46. Springer, 1997.

[RPR+16] Pierre Roy, Guillaume Perez, Jean-Charles Régin,
Alexandre Papadopoulos, François Pachet, and Marco
Marchini. Enforcing structure on temporal sequences:

165

the allen constraint. In International conference on
principles and practice of constraint programming, pages
786–801. Springer, 2016.

[RVBW06] Francesca Rossi, Peter Van Beek, and Toby Walsh.
Handbook of constraint programming. Elsevier, 2006.

[SAG17] Pierre Schaus, John OR Aoga, and Tias Guns. Coversize:
A global constraint for frequency-based itemset mining.
In International Conference on Principles and Practice
of Constraint Programming, pages 529–546. Springer,
2017.

[SJ80] Guy L Steele Jr. The definition and implementation of a
computer programming language based on constraints.
1980.

[Sut64] Ivan E Sutherland. Sketchpad a man-machine graphical
communication system. Transactions of the Society for
Computer Simulation, 2(5):R–3, 1964.

[Tea] OscaR Team. Oscar: Operational research in
scala, 2012. Available under the LGPL licence from
https://bitbucket. org/oscarlib/oscar.

[THS+92] Satoshi Terasaki, David J Hawley, Hiroyuki Sawada,
Ken Satoh, Satoshi Menju, Taro Kawagishi, Noboru
Iwayama, and Akira Aiba. Parallel constraint logic
programming language gdcc and its parallel constraint
solvers. ICOT Technical Report, 1992.

[Tsu92] Hiroshi Tsuda. cu-prolog for constraint-based grammar.
In Proc. Int. Conf. 5th Generation Computer Systems’
92, pages 347–356, 1992.

[Ull76] Julian R Ullmann. An algorithm for subgraph isomor-
phism. Journal of the ACM (JACM), 23(1):31–42, 1976.

[Ull07] Julian R Ullmann. Partition search for non-binary con-
straint satisfaction. Information Sciences, 177(18):3639–
3678, 2007.

[vH01] Willem-Jan van Hoeve. The alldifferent constraint: A
survey. arXiv preprint cs/0105015, 2001.

166

[VLDS17] Hélène Verhaeghe, Christophe Lecoutre, Yves Deville,
and Pierre Schaus. Extending compact-table to basic
smart tables. In International Conference on Principles
and Practice of Constraint Programming, pages 297–307.
Springer, 2017.

[VLDS18] Hélène Verhaeghe, Christophe Lecoutre, Yves Dev-
ille, and Pierre Schaus. Extension de compact-table
aux tables simplement intelligentes. In Quatorzièmes
journées Francophones de Programmation par Con-
traintes (JFPC18), 2018.

[VLS17a] Hélène Verhaeghe, Christophe Lecoutre, and Pierre
Schaus. Extending compact-table to negative and short
tables. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence and the Twenty-Ninth
Innovative Applications of Artificial Intelligence Confer-
ence, volume 5, 2017.

[VLS17b] Hélène Verhaeghe, Christophe Lecoutre, and Pierre
Schaus. Extension de compact-table aux tables négatives
et concises. In Treizièmes journées Francophones de Pro-
grammation par Contraintes (JFPC17), 2017.

[VLS18] Hélène Verhaeghe, Christophe Lecoutre, and Pierre
Schaus. Compact-mdd: Efficiently filtering (s) mdd con-
straints with reversible sparse bitsets. 2018.

[VLS19a] Hélène Verhaeghe, Christophe Lecoutre, and Pierre
Schaus. Extending compact-diagram to basic smart
multi-valued variable diagrams. 2019.

[VLS19b] Hélène Verhaeghe, Christophe Lecoutre, and Pierre
Schaus. Compact-diagram propagateur efficace pour la
contrainte (s)MDD. In Quinzièmes journées Franco-
phones de Programmation par Contraintes (JFPC19),
2019.

[VLS19c] Hélène Verhaeghe, Christophe Lecoutre, and Pierre
Schaus. Extension de compact-diagram aux smart MVD.
In Quinzièmes journées Francophones de Programma-
tion par Contraintes (JFPC19), 2019.

[VNP+19a] Hélène Verhaeghe, Siegfried Nijssen, Gilles Pesant,
Claude-Guy Quimper, and Pierre Schaus. Learning opti-
mal decision trees using constraint programming. In The

167

25th International Conference on Principles and Prac-
tice of Constraint Programming (CP2019), 2019.

[VNP+19b] Hélène Verhaeghe, Siegfried Nijssen, Gilles Pesant,
Claude-Guy Quimper, and Pierre Schaus. Learning opti-
mal decision trees using constraint programming. In Ka-
trien Beuls, Bart Bogaerts, Gianluca Bontempi, Pierre
Geurts, Nick Harley, Bertrand Lebichot, Tom Lenaerts,
Gilles Louppe, and Paul Van Eecke, editors, Proceedings
of the 31st Benelux Conference on Artificial Intelligence
(BNAIC 2019) and the 28th Belgian Dutch Conference
on Machine Learning (Benelearn 2019), Brussels, Bel-
gium, November 6-8, 2019, volume 2491 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2019.

[VNP+20a] Hélène Verhaeghe, Siegfried Nijssen, Gilles Pesant,
Claude-Guy Quimper, and Pierre Schaus. Learning opti-
mal decision trees using constraint programming. pages
1–25. Springer, 2020.

[VNP+20b] Hélène Verhaeghe, Siegfried Nijssen, Gilles Pesant,
Claude-Guy Quimper, and Pierre Schaus. Learning op-
timal decision trees using constraint programming (ex-
tended abstract). In Christian Bessiere, editor, Proceed-
ings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI 2020, pages 4765–4769.
ijcai.org, 2020.

[VNP+21] Hélène Verhaeghe, Siegfried Nijssen, Gilles Pesant,
Claude-Guy Quimper, and Pierre Schaus. Apprentissage
d’arbres de décision optimaux grâce à la programmation
par contraintes. In Seizièmes journées Francophones de
Programmation par Contraintes (JFPC21), 2021.

[Wal72] DI Waltz. Generating semantic description from draw-
ings of scenes with shadows, aitr-271, 1972.

[War13] Henry S Warren. Hacker’s delight. Pearson Education,
2013.

[WXYL16] R. Wang, W. Xia, R. Yap, and Z. Li. Optimizing Sim-
ple Tabular Reduction with a bitwise representation. In
Proceedings of IJCAI’16, pages 787–795, 2016.

168

[XY13] Wei Xia and Roland HC Yap. Optimizing str algorithms
with tuple compression. In International Conference
on Principles and Practice of Constraint Programming,
pages 724–732. Springer, 2013.

169

	Introduction
	Introduction
	Contributions

	I Background
	The Constraint Programming Paradigm
	Introduction
	A Brief History
	What is CP?
	Modeling a Problem
	Searching for a Solution

	Components of a CP Solver
	The Variables
	The Constraints Propagators
	The Fix-Point Algorithm
	The Search Algorithm
	The State Restoration Mechanism

	Conclusion

	Extensional Constraints
	Introduction
	History of Extensional Constraints
	Genesis of Constraints, Propagation, and Filtering
	AC4 and the Support
	GAC4
	AC3bit and the First Bitwise Approaches
	The Simple Tabular Reduction (STR) Family
	MDDC: Arrival of the mdd
	ShortSTR2, SmartTable,... : The Arrival of Compressed Tables
	STRNe: Introducing Negative Tables
	GAC4R & MDD4R: Interest of Reseting
	Compact-Table: The bitwise Computation Revolution

	Conclusion

	About Sets and Reversible Structures
	Introduction
	Sets
	Dense versus Sparse Implementation
	Array versus Bitset Implementation

	Reversibles Data Structures
	Used Implementations
	Conclusion

	II Structures
	Tables for Constraints
	Introduction
	Definitions
	Positive and Negative Tables
	Compressed Tables

	CNF and DNF are Tables
	The Compression Problem
	Incompressibility of some Tables
	Compression Algorithms

	Conclusion

	Diagrams for Constraints
	Introduction
	Ground Diagrams
	Multi-Valued Variable Diagrams (mvd)
	Multi-Valued Decision Diagrams (mdd)
	Semi Multi-Valued Decision Diagrams (smdd)
	pReduce versus sReduce

	Basic Smart Diagrams
	From Basic Smart Table to Basic Smart mvd
	From Diagram to Basic Smart Diagram
	Comparison of the Different Transformations

	Incompressibility of some Diagrams
	Conclusion

	III Propagation Algorithms
	Filtering Positive Smart Table Constraints
	Introduction
	Adaptations to Compact-Table
	CT*: Handling Short Tables
	Handling the =v
	Handling v and v
	Handling S
	The CTbs Algorithm
	Handling Full Smart Elements

	Integer Intervals
	Enforcing Bound Consistency with CT
	Results
	Experiments Results with CT*
	Experiments Results with CTbs

	Conclusion

	Filtering Negative Smart Table Constraints
	Introduction
	CTneg: CT for Negative Tables
	The Update Phase
	The Filtering Phase
	GAC and Complexity

	CTneg*: Handling Negative Short Table
	NP-Completeness of the Problem with Overlapping Tuples
	The Update Phase
	The Filtering Phase
	GAC and Complexity

	Results
	Conclusion

	Filtering Basic Smart Diagram Constraints
	Introduction
	Compact-Diagram
	Data Structures
	The Update Phase
	The Filtering Phase
	GAC and Complexity

	Compact-Diagram for Basic Smart Diagrams
	Simple Adaptation of CTbs
	Optimized Version of CDbs

	Results
	Experiments Results with CD
	Experiments Results with CDbs

	Conclusion

	IV Conclusion
	Conclusion

