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Abstract

This thesis! presents a new approach for automated test data generation of imper-
ative programs containing integer, boolean and/or float variables. A test program
(with procedure calls) is represented by an Interprocedural Control Flow Graph
(ICFG). The classical testing criteria (statement, branch, and path coverage), widely
used in unit testing, are extended to the ICFG.

Path coverage is the core of our approach. Given a specified path of the ICFG,
a path constraint is derived and solved to obtain a test case. The constraint solving
is carried out based on a consistency notion.

For statement (and branch) coverage, paths reaching a specified node or branch
are dynamically constructed. The search for suitable paths is guided by the inter-
procedural control dependences of the program. The search is also pruned by our
consistency filter. Finally, test data are generated by the application of the proposed
path coverage algorithm. We also propose a dynamic approach to statement cov-
erage, by combining random test data generation, program execution and our path
coverage method — but no implementation has been realized for this approach.

A prototype system —called COTTAGE and consisting of 13,000 Java lines of
code— implements our approach for C programs. For each generated test data, the
system also automatically generates an instrumented C program, allowing the user
to verify the correctness of the test data. Experimental results, including complex
numerical programs from [55], demonstrate the feasibility of the method and the
efficiency of the COTTAGE system, as well as its versatility and flexibility to dif-
ferent classes of problems (integer and/or float variables; arrays, procedures, path
coverage, statement coverage).

Keywords software testing, test data generation, path coverage, statement cov-
erage, procedures, arrays, constraint satisfaction, consistency

IThis thesis is an extended version of [63, 64, 62]
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Road map

This thesis is divided into four parts, each in turn is divided into chapters. Although
the titles of these parts and chapters reflect rather well their contents, we give below
a short description for each part and its related chapters.

Part I lays a foundation for all other parts, presenting our problem of test data
generation and its context, as well as necessary background on constraint program-
ming used and developed in this work to tackle such problem. We first study, in
Chapter 1, the testing context in which the problem of test data generation is raised.
Results and contributions of our work are also given. Chapter 2 then describes re-
lated work. Chapter 3 provides the background and notations. Finally, Chapter 4
proposes a new framework on interval logic, developed to handle constraints involved
in our generation of test data.

In Part II, we describe our consistency approach to the problem of test data
generation. We first give, in Chapter 5, an overview of our approach. Chapter 6
illustrates the generation of path constraints (representing constraints for a path of
a program under test). Our underlying consistency technique suitable for test data
generation is then proposed in Chapter 7. Chapter 8 describes the generation of test
data traversing a specified path in the test program. Finally, Chapter 9 deals with
the generation of test data to execute a statement in the test program.

In Part III, we present an implementation of our consistency approach (called
COTTAGE) and experimental results. Chapter 10 describes the COTTAGE system.
Chapter 11 then evaluates the experiments conducted so far on the system.

Part IV, specifically Chapter 12, provides our conclusions and directions for
future work. Appendix A describes our detailed experimental results. Appendix B
shows the C code of the tested benchmarks.

v
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Chapter 1

Test Data Generation

This thesis presents a method and a system of test data generation for structural cri-
teria in software testing. Our approach is based on consistency techniques developed
in this work for test data generation.

1.1 Introduction

1.1.1 Context

The development of reliable programs is one of the most important requirements
in today’s program construction. Several techniques are used in practice; they are
generally divided into the following areas: program proving and program verification
& walidation.

Program proving involves formally proving that the program meets its specifica-
tion without a need to execute the program at all. To do this, one needs to obtain a
precise specification of the program behavior, including an input predicate, an output
predicate, etc. The predicates here define thus the correct behavior of the program.
That is, for all inputs satisfying the input predicate, any results given by the pro-
gram must satisfy the output predicate. One then follows a formal proof method for
verifying the correctness of the program with respect to its input/output predicates.
For example, a well-know formal method —the weakest precondition (wp) calculus
[17]— can be used for such correctness verifications. First, assertions about the
program’s variables are made at various points in the program. Then, (automated)
theorem proving techniques can be exploited to verify these assertions. Note that
input/output predicates is not the only way to do program proving. There are also
other methods based on invariants, temporal logic, etc.

By its nature, program proving seems to be the most important technique for
producing reliable programs. Since proving the correctness of programs is often
a complex and tedious task as described above, especially with realistic programs
of certain size, one should avoid doing such a verification work manually as much
as possible. However, many practical problems —such as the creation of program
assertions, the replacement of human interactions in the theorem proving phase,
etc.— are still to be solved to make an automatic tool for routine use. Hence, with
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the current state of the art in program proving, some drawbacks are possibly present.
For instance, if the program cannot be proved correct, we are facing either of the
following conclusions: (1) an error in the program, (2) a flaw in the assertions, and
(3) a limitation in the theorem proving phase by human or machine. Also, a great
care should be taken to machine-dependent issues such as overflow, rounding, etc.

Program verification and validation (V' &V') includes a wide range of techniques,
as well as their automated tools, that help in analyzing and evaluating programs.
It should be noted that these techniques are designed to develop a more confident
program, but they do not necessarily guarantee the correctness of the program. We
name here only a few tools that have been developed in the literature, each analyz-
ing some aspects of programs. For example, the ARISTOTLE system [33] implements
many program-analysis functionalities such as control-flow analysis (to calculate con-
trol dependences in the program), dataflow analysis (to calculate dataflow depen-
dences), etc. The results of a program analysis are often presented in a readable
form, facilitating thus the detection of anomalies in the dataflow, for instance. The
EFFIGY system [44] algebraically represents a path’s computations by symbolically
executing a path. The SELECT system [7] generates test data and verifies assertions
for program paths.

Among such V&V techniques is abstract interpretation where one tries to ob-
tain a sound and efficient approximation of the possible program executions (sound
means that at least all possible executions are covered by the approximation). An ap-
plication is to check if the program possibly produces unexpected errors, or to prove
their absence. For example, the ASTREE Analyzer [13] —an abstract-interpretation
based static analyzer— is able to prove the absence of runtime errors in large em-
bedded control-command safety critical real-time software. As a part of ASTREE,
[51] proposes a framework for the detection of floating-point runtime errors such as
overflow, division by zero, etc. More precisely, this framework seeks to prove that
such runtime errors will not occur in any execution of the analyzed program.

Program (software) testing [40] —a branch of V&V — involves operation of a
program under controlled conditions (both normal and abnormal conditions) and
evaluating the results. It is an expensive and difficult task, accounting for up to
50% of the cost of software development [45] and even more in critical systems. The
objective of software testing is to detect faults in the program [16], by making things
go wrong with test data, and therefore provide more assurance for the quality of the
software. If the software testing phase could be automated, the cost of software
development would be significantly reduced. A disadvantage of testing is that we
usually take sample test data from the input domain for running, and then carefully
checking the execution results. Therefore, we are not sure as to the correct execution
with inputs not in the sample. Interestingly, testing can be done even when formal
specifications are not given, which is often the case in practice. Furthermore, testing
on a real environment with actual data seems to be a complementary technique to
formal verification, because a formal proof of correctness cannot assure that the
program will run as intended on a given machine.

Notice that testing should be done as close to an equivalence partitioning [14] as
possible. Equivalence partitioning is a technique involving:
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e identifying a finite number of equivalence classes from the input domain of a
program,
e devising a single test case for each equivalence class.

Here are the underlying assumptions for the reliability of equivalence partitioning:

e A test for each member of an equivalence class represents thus the test for the
whole class, and hence an equivalent of exhaustive testing on the input domain
can be expected.

e If one test case in a class detects an error, then all the others in the same class
will detect the same error.

We now describe some typical steps [56, 29] used in a complete testing of large
software.

e Individual procedures are independently tested during unit testing. Unit testing
is thus carried out at the intraprocedural level, namely its application is limited
to the procedure’s body.

e The interactions (interfaces) between procedures are tested during integration
testing. Integration testing is done at the interprocedural level. For example,
we want to exercise certain paths, definition-use associations, ..., across many
procedures.

e The testing of a complete and integrated system prior to delivery is called system
testing. The aim is to verify that the system meets its specified requirements.

e Program changes are often needed, after the first deployment of the software,
to better meet the new requirements of the user. Regression testing consists in
testing the modified or new parts of the software, as well as ensuring that no
errors have been introduced into the remaining unchanged code. This means
that the modified or new parts, and other parts affected by the program changes,
should be subject to testing. During regression testing, some existing test cases
developed during the previous testing can be reused, and new test cases should
be devised to adequately test the modified code.

In this work, we are however concerned with unit testing and integration testing
to a certain degree. All the following discussions on testing are also under the
hypothesis that tested programs (or test programs, for short) are imperative and
deterministic. Other types of programs (concurrent, object-oriented, ... ) based on
other programming paradigms are out of the scope of this thesis.

1.1.2 Test data generation

As it is generally impossible to test the entire input domain of the program, testing
coverage-criteria (testing requirements) are used during the selection of sample test
data. Testing requirements can be the following: program statements, program
paths, definition-use associations (w.r.t. variables), etc. A testing criterion specifies
thus a minimal set of testing requirements, which must be covered by a set of test
cases executed during the testing process. Test data generation is thus a component
of software testing, where one tries to generate test cases covering some testing
criteria. We illustrate, in Figure 1.1 (inspired from a figure in [29]), the steps of a
typical testing process for a testing criteria [29].
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No

! Mark Testing .
. Generate | Execte Program Newly Tested < Criteria Testing
aTest Input on Test Input Requirements Aisfied? Complete

Debug‘Program

Figure 1.1: A typical testing process

When the program is run on a generated test input, the trace of its execution is
analyzed to provide the set of testing requirements, exercised by the test input. Once
the chosen testing criteria is satisfied by the generated test inputs, the testing process
with that criteria finishes. After having executed the program on a test input, if the
program output differs from the expected output, the program is passed through a
debugging process, and then the testing process restarts. Of course, if the software
has successfully gone through a greater number of testing criteria, we have more
confidence in its reliability.

After an initial testing (where the tester often randomly generates test data),
the problem of finding additional test data to satisfy the remaining (not yet cov-
ered) testing requirements can be very labor intensive, increasing thus the cost of
software testing. Because it is commonly accepted |21, 30, 25] that finding test data
exercising certain program elements in complex programs is likely very hard with-
out an automatic test data generator. That is the reason why we propose in this
thesis a new approach for test data generation of imperative programs, supported
by an automatic test data generation system so as to validate the feasibility of the
approach.

1.1.3 Testing Techniques (structural versus functional test-
ing)

One usually distinguishes functional testing (also called specification-based or black-
box testing) from structural testing (code-based or white-box testing) [14, 12, 25].
Functional testing compares the behavior of a program under test (test program)
against a requirements specification, which includes a set of required functions of
the intended program. We thus select test data from such required functions. The
next step consists in assessing whether all the functions are implemented correctly,
by executing the program with the test data. This contrasts with structural testing,
which compares the behavior of the test program against the intention of the source
code. Therefore, the selection of test data is carried out based on some internal
structure (representing the source code) of the program — hence the term structural
testing. Of course, the selected test data must be finally executed to check whether
the software meets a specification. The fundamental difference between structural
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testing and functional testing is, however, that the former selects test data from the
code while the latter from the specification.

Structural testing and many testing-related notions (e.g. testing criteria) were
early introduced in a pioneering work [24]. A mathematical framework for testing
[28] was later developed, generalizing [24| by introducing the fault-detecting ability
in testing criteria. On the other hand, functional testing with formal specifications
was early introduced in [6]. More information on how evolve these two testing
techniques can be found in [14, 25].

It is commonly known that the two testing techniques mentioned above, are
actually complementary [25], and each of them helps in detecting certain kinds of
faults.

On one hand, structural testing may uncover some possible faults in the structure
and logic of the program. This bases on the following assumption [12]: faults relate
to the control flow of the program, and one can expose faults by varying the control
flow. Other assumptions [12, 56| involve unreachable code (dead code), omission of
intended functions, typographical errors, etc. A typical example with control-flow
related faults is: we often believe that a logical path is not likely to be executed while,
in fact, it can be executed. For instance, the instruction “if (16.0+x==16 && x>0)
return 1; else return 0;” may be believed that only one of its branches (namely
“return 0;”) will be taken for every floating-point number, while we can actually
find test data for all of its branches (see our Experiments chapter for the results with
this instruction). This means that our wrong assumptions about the control flow
and the data flow can lead to design errors that are only uncovered once structural
testing starts. Moreover, a program that has been tested with a high structural
coverage may not satisfy its specification, due to the omission in the program of some
functions intended by the specification. Also, test data generated from structural
testing may reveal unwanted functions not concerned by the specification.

On the other hand, functional testing aims to discover faults relating to what the
program accomplishes, without regard to how it works internally. In other words,
test data generated from the specification would prove useful in testing all intended
functions of the program.

Of course, those testing techniques can only expose some plausible faults. They
cannot ensure exposing all classes of faults, or showing their absence. That’s why
other software engineering activities such as code inspection, code verification, etc.,
are also necessary to guarantee the exactitude of software [56]. By verification, we
mean that one must ensure the exactitude of the software with respect to a specific
specification by means of formal proofs, as mentioned above.

Testing techniques can also be classified following another dimension [14]: static
versus dynamic analysis. Static analysis is a testing technique that does not involve
the execution of the software with test data, while dynamic analysis requires that
the software be executed. See also [14] for a taxonomy (classification) of testing tech-
niques on two dimensions: structural v. functional strategy, and static v. dynamic
analysis.
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1.1.4 Oracle

Given the test cases generated for some testing criteria, the tester then runs these
cases, and compares the execution results with the expected results provided by a
specification. If the specification is incomplete, the tester must decide the exactitude
of the execution results based on his comprehension of the program. Even in the
presence of a complete specification, a work involving running a program with many
test cases and evaluation of the results, can be very tedious and error-prone if done
without great care. Therefore, the existence of an oracle [20, 25| —an automatic
procedure to replace the tester in such work— can greatly reduce the effort of testing.

Often, one has to construct an oracle manually from a specification. It is not
easy, indeed, to generate an oracle automatically, since one needs to have a complete
specification, that in turn should be expressed in some formal form of logic descrip-
tion of the program. Unfortunately, requirements or design specifications sometimes
do not exist, or exist in an informal form, or are often incomplete.

Due to practical reasons, it is difficult to obtain a precise oracle, which can
determine the exact execution result for a test case. An example is to work with
a floating-point arithmetic on a machine, which is usually not sound. Because the
result of an operation is usually rounded to make it a floating-point number. And
the rounding can be done upwards or downwards, depending on the rounding mode
being used. In such case, the most precise expectation, that can be given, is a range
of possible values.

1.1.5 Structural Testing

We now focus our attention to structural testing and its criteria. In the testing
literature, structural testing techniques usually fall into the following three types
[29]:  control-flow based testing, data-flow based testing, and mutation (or fault-
based) testing. Note that the differences between these testing types are only in the
coverage measurement, but not in the testing itself. This means that each coverage
criterion only defines a set of tested elements to be covered by the generated test
data. But the process of running test data and verifying test results is the same for
any set of generated test data.

Control-flow testing Control flow criteria consider the elements of the control
flow graph of the program —such as nodes, edges, paths, etc.— for coverage. (The
control flow graph here captures the control flow of the program.) Structural testing
with control-flow criteria will be discussed more in detail in the next subsection.

Data-flow testing Data flow criteria deal with the data-flow dependencies in the
program, such as the definition-use associations present in the program. Each occur-
rence of a variable on the left hand side of an assignment is called a definition of the
variable, while each subsequent reference of the variable is called a use. Exercising
a definition-use association can be viewed as traversing a sub-path from a variable
assignment to a subsequent reference of the variable. For more general discussions
on data flow criteria and their subsumption relationships, see [29].

8
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Mutation testing Mutation (fault-based) testing [14] begins by creating a num-
ber of almost identical programs from the original program. These programs are
called mutants, each is obtained by inserting a (small) change into the original pro-
gram. The changes here refer to the most frequent faults that may exist. Each
mutant and the original program are executed with the same set of test data. The
output from each mutant is compared with the output from the original program.
If the outputs are different, the mutant is said to be “killed”, as the test data has
discovered a difference between the programs; otherwise, the mutant is “live”. Muta-
tion testing relies on the assumption that if test data discovers the change made to
produce the mutant, then the test data will discover more major faults in the pro-
gram. Hence, if a high proportion of the mutants are killed, then more confidence is
gained on the test data, i.e. the program has been well tested. In contrary, a high
proportion of live mutants indicates a poor set of test data. In that case, more test
data must be generated until the number of live mutants becomes small.

One issue that should be carefully considered in mutation testing is the quality
of mutants, or equivalently the quality of faults and fault modeling. Intuitively, a
mutant my is better than a mutant ms, if test data may kill ms, but not m;. In
other words, the test data may discover the change (fault) introduced in ms, but
not the fault introduced in m;. Hence, generating test data to kill a set of better
mutants will give us more assurance on the testing process, because it is hoped that
more types of faults can be discovered by the test data.

[58] proposes a class of fault-based testing criteria. They are however limited
to the very rudimentary faults such as constant reference faults, variable reference
faults, variable definition faults, operational operator faults, etc. A more general
framework on fault modeling and fault seeding, using the program dependence graph,
can be found in [34]. In this framework, the program is represented by a program
dependence graph(PDG) that explicitly represents both data and control dependen-
cies in a program [22]. Therefore, changes (faults) made to the original program can
be viewed as changes to the PDG that can be:

1. changes within the PDG nodes,
2. changes resulting from structural transformations on the original PDG.

Note that all the faults handled by [58] are at the node level, and thus being included
in the first class of changes above.

Discussion

It should be noticed that the above three types of structural testing criteria are
in general orthogonal in their capacities of fault detection. For example, although
control flow criteria is useful in detecting faults related to the control flow [12], it
is generally insensitive to other fault classes related to the data flow [67]. Likewise,
test cases generated to satisfy a fault-based testing criteria [58| could fail to uncover
faults related to the control flow. Therefore, to improve the fault-detecting power
of the generated test cases, one should consider combining testing criteria.
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1.1.6 Structural Test Data Generation with Control-flow Cri-
teria

In this thesis, we are concerned with structural testing (or more exactly, structural
test data generation) with control flow criteria. The control flow of a program is
usually represented by a control flow graph (CFG), where the nodes are either a
decision node or a block of instructions without decision statements, while the edges
represent the possible control flow between nodes. To adequately test the program
at the structural level, one must consider structural elements (nodes, branches, or
paths) of the CFG for coverage. For example, statement coverage requires developing
test cases to exercise a given set of program statements (a set of nodes). The problem
is thus to find, for each program statement, a test case (program input) on which
this statement is executed. Branch coverage is the dual version where an input
must be found, such that the execution traverses a specified edge of the control flow
graph associated to the program. And path coverage requires test cases to execute
certain paths (from the start to some statement). A large variety of other coverage
measures, along with their strengths and weaknesses, are given in [12]. Structural
testing with control flow criteria thus includes the following phases:

1. the choice of a criteria (statement, branch, path, ... ),
2. the identification of a set of nodes, branches or paths, and
3. the generation of test data for each element of this set.

For the second phase, taking the statement-coverage criteria (all-the-statements)
as an example, we simply choose all the nodes of the control flow graph. Of course,
we can take an incremental approach to select elements of the control flow graph,
by identifying all the elements already covered on execution of a test case. By this
way, we can importantly reduce our effort to find test data covering a criteria.

The notion of a minimally-thorough test has been a subject of discussions over
the years. Some examples [14] of what constitutes a minimally-thorough test of a
program are given hereafter:

e All statements in the program should be executed at least once.
e All branches in the program should be executed at least once.

Note that these testing considerations were also proposed in the RTCA/DO-178B
norm for avionic systems [59]. Therefore, at least, one has to achieve one of these to
guarantee a necessary test on a program. The best test is, of course, an exhaustive
test, where all paths of the program are tested. However, this is impractical with
realistic programs for the following reasons: (1) the number of paths can be infinite,
if loops are involved in the program; (2) the number of infeasible paths (i.e. not
executed by any test data) can be very big, compared with feasible paths. It was
reported in [14]| that among a sample of programs, of the 1000 shortest paths, only
18 were feasible. Hence, a big effort could be wasted to find test data for infeasible
paths. To reduce the above obstacles with the all-paths criteria, we can choose, for
instance, only a set of basic paths through the program [56] for test data generation.
The idea of constructing a set of basic paths is as follows: A path going through the
program is first constructed; Each new path is constructed to traverse branches of

10
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the program not yet covered by the current set of paths until all the branches are
considered.

The automation of the last phase (automated test data generation) is a vital
challenge in software testing for the following reasons. First, generating test data
for certain program elements (e.g. profoundly-nested nodes) can be very difficult,
although we need only one solution (a test case exercising the selected program
element). Of course, finding all solutions is not required by a testing criteria. Second,
some program elements (nodes, edges or paths) of the control flow graph may not be
executed by any test case. These program elements are said to be non-executable or
infeasible. Even with a program without faults, the presence of such non-executable
elements is frequent. Furthermore, determining whether a node, an edge or a path
is executable, is undecidable in the general case [68] (reduced to the halting problem
in computability theory). Therefore, it is likely that we try in vain generating test
data for some non-executable program elements.

Although the problem of undecidability in automated (automatic) test data gen-
eration, a lot of approaches have been proposed in the testing literature; they were
also supported by various test data generators. A test data generator is a software
system assisting the tester in the generation of test data. In the next, test data gen-
eration for a node will be referred to as statement coverage, for a branch as branch
coverage, for a path as path coverage.

For path coverage, the main approaches are: symbolic evaluation |10, 44, 11|,
program. execution based (dynamic) approaches [46, 30]. A mixed approach integrat-
ing ideas from symbolic evaluation and dynamic test data generation, has also been
proposed in [53].

For statement coverage, the main approaches go into the following classes: ran-
dom test data generation |19, 67|, program ezecution based (dynamic) approaches
[21, 47, 32, 54|, constraint-programming (and more particularly consistency-based)
approaches [26]. The method in [26] is the nearest method with ours; it is based
on Constraint Logic Programming (CLP) techniques. Constraint logic program-
ming [42] is a framework integrating two declarative paradigms: constraint solving
and logic programming. The test data generation problem for a given statement is
translated into constraints, solved by an instance of the CLP scheme: CLP(FD).
FD here stands for Finite Domains, which means that the variables treated by
CLP(FD) can only take values in finite domains. Note that the solving of such
CLP instance relies on consistency techniques —which are designed to reduce the
search space (reducing the domains of the variables)— and a search process. These
methods will be presented in detail in Chapter 2 of this thesis.

1.2 Results and Contributions

Among the difficulties in the generation of test data is the presence in the program
of arrays, procedure calls, pointers, unstructured control statements (such as goto,
break), and floating-point variables. In this work, we propose a consistency-based
approach [63, 64, 62| —referred to as the consistency approach— for test data gener-
ation of imperative programs containing integer, boolean and float variables, arrays,

11
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and procedure calls. Path and statement coverage are both handled. As a branch is
dual to a statement in the control flow graph, all the results with statement coverage
can easily be extended to branch coverage.

Path coverage is the basic bloc of our approach. It is a constraint solving ap-
proach based on a consistency notion, e-box consistency, generalizing box-consistency
[36] to integer, boolean, and float variables. For statement coverage, paths reaching
the specified statement are dynamically constructed using consistency techniques,
and the path coverage method is applied on these paths to find suitable test input.
We also propose a dynamic approach to statement coverage, by combining random
test data generation, program execution and our path coverage method — but no
implementation has been realized for this approach.

Our method for path coverage includes the following steps:

1. A path constraint is derived from the specified path of the ICFG. Such a con-
straint involves integer, boolean and float variables, as well as operations with
arrays.

2. The path constraint is solved by an interval-based constraint solving algorithm,
generating (very) small boxes containing float solutions of the path constraint.
These small boxes are called interval solutions. Note that in interval program-
ming, each variable is associated with an interval representing its domain. And
by boz, we mean the domains of the variables of the path constraint (intervals).

3. A test case is finally extracted from the interval solutions.

A prototype system —called COTTAGE (COnsistency Test daTA GEnerator),
and consisting of 13,000 Java lines of code— implements our approach for programs
written in (a subset of) the C language. In the current implementation, we focus on
C programs with integer and float variables, arrays, function calls, and a restricted
class of one-dimensional pointers (to simulate by-reference parameters); but without
general pointers and/or dynamic data structures.

Contributions

The main contribution of our work is a new approach (based on consistency tech-

niques) to the generation of test data for numeric programs (programs with integer,

boolean and float variables) with procedure calls and arrays. This approach handles
path and statement coverage criteria. Specific technical contributions include the
following.

e A new system of test data generation, namely COTTAGE as mentioned above.
For each generated test data, the system also automatically generates an instru-
mented C' program, allowing the user to verify the correctness of the test data.
Experimental results, including complex numerical programs from [55], demon-
strate the feasibility of the method and the efficiency of the COTTAGE system,
as well as its versatility and flexibility to different classes of problems (integer
and /or float variables; arrays, procedures, path coverage, statement coverage).

e Inside the system is a constraint solver suitable for test data generation (e.g.
dealing with integer, boolean and float variables).

12
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e An extended framework on interval logic so as to handle interval constraints
involving at the same time, integer, float and boolean variables, as well as the
logical operators such as AND, OR, NOT.

Remark

Floating-point data are only partially handled in COTTAGE due to the following
reasons:

e The generated test data are only potential float solutions in C' (See Definition
3.4 for float solutions). Because they have been calculated with the floating-
point system of Jawva. And therefore they must be validated in the floating-point
system of the programming language used by the program under test — the C
language in our case.

e In Java, the floating-point system uses only one rounding mode nearest —see
Section 3.5.2 for an overview of floating-point arithmetic— while in C, all the
four rounding modes as specified by floating-point standards can be used, and
the rounding modes other than nearest cannot be specified in our Java solver.

The other known method [25, 26], related to our work and also based on con-
sistency, is limited to integer variables, and does not handle interprocedural control
dependence. A constraint solver over float numbers has been proposed [50], where
it was shown how such a solver could be used for test data generation. The solver is
however limited to float variables, and no implementation (using the solver for test
data generation) is provided.

Compared with other approaches handling integer and float variables in the liter-
ature (e.g. [31, 54]), our approach can be seen as an alternative or as a complement.
Our consistency method could be combined with dynamic approaches when search-
ing a test data exercising a specified statement of the program.

1.3 Conclusion

In the first section of this chapter, we first described a general process of software
testing. And the role of test data generation was then located in this testing process.
We made a distinction between two classes of testing techniques: structural testing
versus functional testing. Structural testing deals with some internal structure of
the test program, where the source code is subject to an analysis, while functional
testing deals with how the program works w.r.t. some specification without caring
how the program was coded. These two testing classes are known, however, to
be complementary in software testing, as well as in their ability to detect faults.
While the focus of our work is on structural testing with control-flow criteria, we
also discussed about structural testing with data-flow and fault-based criteria. The
problem of test data generation under the testing criteria such as path coverage,
statement coverage and branch coverage, was informally defined at the end of the
first section. Path coverage has the purpose of finding test data exercising a path,
while statement (branch) coverage aims to find test data traversing a node (branch)

13
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of the control flow graph of the program. Finally, the results and contributions of
our work were given in Section 1.2.
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Chapter 2

Related work

This chapter presents the main existing methods of test data generation. It is
divided into two parts: related work on path coverage, and related work on statement
(branch) coverage.

2.1 Related Work on Path Coverage

Path coverage can be viewed as searching for test data exercising a path of the
control flow graph. For path coverage, one finds the following categories.

2.1.1 Symbolic evaluation

Symbolic evaluation (or symbolic erecution) [44, 10, 7| consists in replacing input
variables by symbolic values, and then symbolically evaluating the statements along
a path. The output from a symbolic execution includes algebraic expressions over
these symbolic values for the output variables, as well as a set of constraints rep-
resenting the conditions on the path, which must be satisfied for the path to be
executed. For short, these constraints are collectively called the path constraint.
The symbolic output here describes thus a sub-domain of test cases (of the input
domain), each executing the specified path. An interesting book on the literature of
symbolic execution can be found in [14].

Since the aim is to generate test data, the path constraint is solved to obtain a
test case(s). If the path constraint is shown to have no solution, the selected path is
thus infeasible. We will summarize hereafter some systems based on this approach,
as well as their underlying techniques used in solving the path constraint. Note that
[14] makes a detailed comparison of these systems in terms of functionalities; a light
comparison of such systems in terms of techniques for solving the path constraint,
is also given in [25].

The EFFIGY system Symbolic evaluation was early introduced in [44]. The idea
was then developed into a system (called EFFIGY) for testing and debugging of pro-
grams written in a simple PL /I style programming language. It was shown how such
a system can be used not only for program testing, but also for program verification
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(e.g. user-supplied assertions can be used to generate verification conditions, which
are then compared with the results of symbolic evaluation). Because the expressions
handled by the system are mainly restricted to integer polynomials over symbolic
values, the simplification of expressions —based on algebraic manipulations— can
be done easily. The operation of the system was illustrated on some examples, show-
ing how symbolic results were obtained from symbolic inputs. Therefore, using the
system to generate test data, the path constraint must be manually solved. It was
also discussed that the EFFIGY system could be used for a more general class of ex-
pressions. However, it can be an ambitious burden on the expression-manipulation
component of the system.

The SELECT system The SELECT system [7| generates test data and creates a
symbolic representation of a path’s computations, for programs written in a subset
of Lisp. SELECT is also a pioneering symbolic execution system as EFFIGY. It
provides similar facilities to EFFIGY —simplified symbolic expressions for the output
variables on a path, statements of correctness for user-supplied assertions, etc.— and,
in addition, automatically generates test data. A minor inconvenience of the system
is that the path constraint and output variables were represented, after a symbolic
execution, as a Lisp list, and hence making difficulty for human reading.

For solving the path constraint, some algorithms have been experimented by the
system. The first algorithm (GOMORY 1963) handles systems of linear equalities
and inequalities among integer variables. This algorithm uses an integer linear pro-
gramming to optimize an objective function, with the path constraint serving as
constraints.

Since the GOMORY algorithm is limited to integer path constraints, a mixed
integer linear programming algorithm (BENDERS 1962) —dealing also with real
variables— was then used. However, the BENDERS algorithm is still limited to
linear constraints.

The last and also the most promising algorithm, used by SELECT, seems to be
a conjugate gradient algorithm (also called hill-climbing algorithm) that seeks to
minimize a potential function constructed from the equalities/inequalities. Because
all kinds of computable functional combinations are allowed between program vari-
ables. Different ways can be envisioned to construct the potential function from
the equalities/inequalities, provided that the desired minimum potential is attained
within the path constraint subregion. Note that we can view a path constraint as
defining a subregion of the whole input domain, such that any point in the sub-
region will lead to execution of the corresponding path of the program. It should
be emphasized that user interaction is usually required to come up with problems
such as: sample data points, decisions involving when to terminate the hill-climbing
algorithm (otherwise, it may loop for ever), etc.

One advantage of SELECT is that all paths of the program are automatically
explored to generate test data. To avoid a possible exploration of an infinity of
paths in the presence of loops , no loop is traversed more than S times, where S
is a looping factor supplied by the user. During automatic construction of paths in
depth-first, any prefix of a path is always checked by the system for its consistency
(i.e. having solutions). If the subpath is proved inconsistent, all of its extensions
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are thus abandoned immediately. Note that when a decision node is reached, and
a branch is taken to continue the path extension, the alternative branch is also
examined for its consistency. If so, a backtracking point is established for future
analysis of the alternative branch and its extensions.

The ATTEST system A symbolic test data generator for programs written in
ANSI Fortran —called ATTEST— was developed in [10], where the solving of path
constraints is based on a mixed linear programming algorithm for integer and real
variables due to GLOVER. Of course, linear programming algorithm can solve only
systems of linear constraints, and thereby test data generation is confined to paths
that can be described by a set of linear constraints. The general form of a linear
programming problem is

MAX 0(X),
subject to
AX < B and X >0,

where 0 is a linear function called the objective function, X is a N-vector of input
variables, B is a M-vector of constants, and A is a M x N matrix with N > M.
Hence, the constraints must be transformed into the form AX < B.

The constraints generated during the symbolic execution can be in a complicated
form. Therefore, they are first simplified before any attempt to solve them. The
simplification phase here is carried out by Altran, a language designed for algebraic
manipulations.

Little error checking was also integrated into the system, by modeling some
common programming errors by constraints. Such constraints are then added into
the path constraint for solving. Therefore, any solution to the augmented path
constraint may be an indication of such errors in the program. For example, assume
that the allowable indices of an array are between 1 and 100. When an array element
A[I] is referenced on the path, the two constraints I > 100 and I < 1 are created.
If either of these constraints is consistent with the path constraint, the program can
contain out-of-bounds errors.

The CASEGEN system The CASEGEN system [57] generates test data for For-
tran programs. To solve a path constraint consisting of nonlinear equalities and
inequalities, a procedure —based on systematic trial and error, and random number
generation— was developed as follows.

(1) All input variables are arranged in a sequence denoted as vy, vg, ... , Uy.

(2) For each variable v;, the set s; of component constraints of the path constraint
is constructed such that each constraint of s; contains variable v; and variables from
the set {vy,...,v; 1} only.

(3) Assuming values for vy,... ,v; 1, satisfying all constraints in s;,...,s; 1, have
been generated, the procedure assigns a value to v; according to the forms of con-
straints in s; as follows.
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e If there is an equality relation in s;. This will be solved to find a value for v;. The
value for v; is then propagated in all other constraints of s;. If an inconsistency is
detected, backtracking is done to generate a different value for v; ;. Otherwise,
Step (3) is continued to find a value for v;,1; or the procedure terminates when
1 = n, and we obtain thus a test case.

e If there are no equalities in s;, a random value is generated for v; according to its
type. If all constraints of s; are satisfied, Step (3) is repeated for v; 1. Otherwise,
random number generation is still carried out a fixed number of times before a
backtracking to variable v;_; is taken.

Note that it is not precised in the paper which kinds of equalities are actually solved

by the procedure. Even with such a precision, the procedure is still an incomplete

heuristic.

Other symbolic execution systems The above systems are among pioneering
works on symbolic execution, and hence worth a detailed discussion. We will quickly
discuss below the main features of some other symbolic execution systems.

The SMOTL system for programs in Smod (a Cobol-like language) proposes a do-
main reduction method for solving the system of inequalities on integers (the path
constraint). The system of inequalities is repeatedly examined: for each inequal-
ity and for each variable of the inequality, the domain of the variable is corrected
(reduced). Only the following example is given in the paper to illustrate the idea
of domain reduction: if the inequality is z < y, and the corresponding domains for
integer variables z and y are [a,b] and [c, d], then after the reduction, the domains
become [a, min(b,d — 1)] and [maz(a + 1,c¢),d]. The domain reduction process ter-
minates when a fixpoint is reached (no changes in any domain) or some domain
becomes empty. The latter case indicates failure in finding a solution. In the for-
mer case, two subcases are possible. First, if the system of inequalities contains no
arithmetic expressions, then the variables will be assigned the lower bounds of the
corresponding domains. Second, if the system of inequalities contains arithmetic
expressions, a restricted search (not precised in the paper) is conducted to find a
solution from the domains, because an exhaustive search may consume too much
time. Therefore, such a restricted search does not guarantee to find a solution, even
one actually exists. An advantage with SMOTL is, however, an automatic strategy
for combining paths in order to reduce the number of paths covering all branches in
the program before such paths are exploited to generate test data.

The SYM-BOL system for programs written in a subset of Cobol is described in
[14]. By assuming that the path constraint is linear, a linear programming routine
(using some sort of linear optimization) is employed to assess path feasibility. A
strategy for automatic path selection is integrated: path selection and symbolic
execution are undertaken in parallel, allowing thus the intermediate results from the
symbolic execution to help in path selection, and hence reducing the risk of selecting
infeasible paths.

Other systems making use of symbolic execution —such as DissecT, EL1, IPs,
SADAT, IvTs, UNISEX, the Fortran testbed— will not be presented here. See [14]
for references of such systems.
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Weaknesses of symbolic evaluation

Symbolic evaluation systems are usually limited in handling arrays, indeterminate
loops, and procedure calls. Powerful tools may be also required to deal with the
simplification and manipulation of complicated algebraic expressions. Moreover,
they cannot take into account many machine-dependent issues such as overflow,
rounding, division by zero, etc.

Arrays Here is an example of a system having difficulty with arrays, the ATTEST
system, where array references that depend on input variables were not handled.
Consider, for instance, the following segment of code with an array reference A[il:

read(i;
A[1] = 5;
Al2] = 1;

if (A[i]l > 3) ...

Since A[i] is dependent on input variable 4, it is then impossible to determine which
array element is referenced. Of course, one could make an enumeration on the pos-
sible values of the index — e.g. as proposed in EFFIGY, whenever an ambiguous
array reference is encountered, one proceeds with a branch point of N parallel com-
putations, where N is the size of the array. However, it may become too complex in
the general case (e.g. many such array references occur in the program).

In CASEGEN, ambiguous array references are retained during symbolic execu-
tion, and are only resolved when array indices are given a value during test data
generation. To do this, new instances of the array are created whenever array refer-
ences produce uncertainty. For example, if the current instance is k, then after the
statement

A[M] = P;
we obtain a new instance k + 1 of the array in which

Agiali]) = Agld]  for all i # M

Ak+1[M] = P
All such instances of the array allow thus ambiguities to be resolved when test data
are generated.

Note that a solution to resolve ambiguous array references during symbolic exe-
cution actually exists. We will describe that solution later, just after our discussion
now on weaknesses of symbolic execution.

Indeterminate loops Symbolic execution has difficulty in proceeding beyond a
loop, where the number of iterations depends on the values of input variables. A
rather restrictive strategy [14] to treat such a loop is to create three paths: one that
contains zero iteration of the loop; a second with one iteration; a third with two
iterations. Another approach (e.g. [57]) commonly adopted by many systems is to
symbolically execute the loop k times, where £ may be specified by the user. In all
cases, constraints generated may be unsatisfiable.

Procedure calls Symbolic systems (e.g. the SELECT system [7]) generally have
limited capabilities to handle procedure calls. For instance, procedure calls are
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typically handled in a macro-expansion manner: substituting the code of the called
procedures into the main program. This forecloses any possibility of calls to user-
created functions (that are compiled independently from the program under analysis)
or built-in functions (e.g. the sin function), where the code is normally not available.
Of course, as suggested in [7], this situation may be overcome by specifying each
subprocedure by input/output assertions. Then, whenever a subprocedure is called,
it is simply replaced by such input/output assertions. This way ensures not only
program modularity, but an efficient way into the test data generation. However, a
main issue in this direction is how to choose a suitable specification language for the
assertions (sufficiently strong to express the intent of the tester).

Simplification of symbolic expressions The simplification of symbolic expres-
sions can cause a mismatch between symbolic execution and actual execution on a
machine. Consider, for example, the following constraint

A T T T
c(x) = 3+3+3—x

By a simplification, $ + % + % can be simplified into x, thereby the constraint is

always true. But execution of ¢(1) on a computer can be false due to rounding and

truncation of intermediate results. Hence, this can cause execution of an unintended

branch in the program.

An issue not less important is the simplification and manipulation of complex
algebraic expressions, because the simplification relies mainly on rewriting of inter-
mediate expressions. And although this can be done automatically, the time and
space complexity may become excessive with realistic programs.

A solution for arrays in symbolic evaluation

A solution for dealing with arrays in symbolic evaluation was proposed in the SYM-
BAD system for Ada programs [11]. In this method, each variable is associated with
a set of pairs of the form < wal, val_constraint > during symbolic execution, where
val is a symbolic expression and val_constraint is a boolean stating under which
conditions the variable has value val. Therefore,
e a simple variable X is associated with a value-set {(31,Q1), ..., (0n, Qn)}, .. X
has value §; iff (); holds;
e an (one-dimensional) array variable A is associated with a value-set
{{a1, Pi(7)), ..., {am, Pn(i))}, where i represents the formal index of the array.
This means that the j-th array element has value «; iff P;(j) holds.
Note that the elements of a value-set {{31, @1), ..., {0n, @n)} are mutually exclusive,
satisfying the following:

Vi,je(l...n) 1 i#j = Q:NQ,; = false
QiV...VQ, =true

This guarantees that in any state of a symbolic execution, each variable has exactly
one value, as expected by the semantics of program execution.
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This approach to symbolic evaluation thus improves upon other symbolic meth-
ods by the fact that during symbolic execution, each variable is associated with a set
of conditional symbolic values rather than just one symbolic value. We now outline
the idea behind the approach.

During symbolic execution, the symbolic state at any moment is the pair (State, PC'),
where State = {(X, {{01, Q1) - -, (Bn, Qn) }), (A, {{1, P1(i)), ..., {m, Pn(i))}),... }
describes the (variable,value) bindings, and PC represents the path constraint.
First, the evaluation of an expression EFxp with the current State of the variables
—denoted by eval(Fxp, State)— is realized as follows.

e If X is a simple variable, then eval(X, State) = {{01,Q@1),- - ,{0n, Qn)}
e If A is an array variable, and X is a simple variable, then eval(A[X], State) =

{{a1, PL(BL)ANQLV ... VP (B)AQu), -y P (1) AQ1LV ...V P (8n) AQn) }

e For an (boolean) expression Exp(V3,...,V,), assuming the value-sets of the V;

(either simple or array) are:

28 {(Oén,Pu); - 7<a1m7P1m>}

Vn : {<an17Pn1>a s 7<am"7Pm">}a

eval(Exp(Vy,...,Vy), State) =

{{Exp(air,... san1), Pu Ao APy), ... J(Exp(Qim, .. s Qnp)y Pin Ao A Ppp) )
Note that the cardinality of the value-set associated with an expression equals the
product of the cardinalities of the value-sets (of the variables involved in the expres-
sion): |eval(Exp(Vh,...,V,), State)| = |Vi| x ... x |V,
However, since some val_constraint’s of the resulting pairs may be false, the corre-
sponding values are thus infeasible, and hence such pairs can be removed from the
resulting value-set.

Given a statement S and a symbolic state (State, PC), symbolic execution of
S from the symbolic state —denoted by exec(S, (State, PC'))— returns the new
symbolic state (State’, PC").
(1) The initial symbolic state at the beginning of a symbolic execution is:

State = { (X, {{undef,true)}), (A, {{undef,true)}),...}, and PC = true.
That is, simple variable X and all array elements of A are undefined.

(2) For an assignment to a simple variable X := Exp(...) —assuming State is
{(X,X), (A A),...}— exec(X := Euxp(...), (State, PC)) = (State', PC), where
State' is {( X, eval(Exp(...), State)), (A, A),...}.

(3) For an assignment to an array element A[X]:= Exp(...), assuming State is
{(X: X): (A7 A)a cee }: X = {<517 Ql): R </8’n: Q’n>}7 A = {<a1: P1(2)>: Tt <am: P’m(l)>}7
and eval(FEzp(...),State) = {{n,T1), ... ,{Vs; Ts) },
exec(A[X] := Exp(...), (State, PC)) = (State', PC)
where State' is {(X,X), (A, A ®E),...},
A= {0, Pi) AT A By A N0 By (o Pali) AT £ B A N i )},
glz{<’)/1,T1/\(Z:ﬁl\/\/Z:/Bn)>, ,<’}/S,Ts/\(22/81\/\/2:ﬁn)>},
and the operator @ is defined as follows, assuming A = {(ay, P1), ..., (Qm, Pn)},
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B = {<517Q1>7 S :<ﬁn:Qn>}7

A {}=A

A® (BU{(Brt1, @ni1)}) =
{{ar, Pr), ... . {aj, P;V Qui1),y .., {am, Pp)}® B if 3j € [1.m] ]| o = Bni1,
{(Oél, P1>, ceey <Oém, Pm>, <ﬁn+1, Qn+1>} @ B otherwise.

Note that A’ contains the pairs associated with the array elements that are not af-
fected by the assignment while £’ contains the new pairs created by the assignment.

(4) For a sequence of statements Sy;.S;. .. ;Sn,

exec(S1;Ss;. .. ; Sn, (State, PC)) = exec(Sy;. .. ; Sp, exec(Sy, (State, PC)))

(5) When a decision point (conditional or loop) is met, the path constraint PC' is
used by a theorem prover to check whether the encountered condition is true, false,
or undetermined. If the condition is true or false, symbolic execution continues down
the appropriate branch. When undetermined, one of the branches is selected by the
user, and the corresponding condition is added to the path constraint. Hereafter,
only the treatment for conditional statements is given, because treating loop state-
ments follows the same principle. Consider a conditional statement: if C then S;
else S,. Assuming eval(C, State) = {{(71,Q1),.-. ,{Vn,@n)}, then

PC = eval(C, State) = PC = \/,.;cp, Vi N Qi

because the @); are mutually exclusive. In the same way,

PC = eval(—C, State) = PC =\, .., ™ N Qi

Symbolic execution for the conditional statement is formally defined as:

exec(if C then S; else Sy, (State, PC)) =

exec(Sy, (State, PC)) if PC= Ve, i NQi
State, PC)) if PC= Ve, i N Qi

(2, (
exec(Sy, (State, PC' A \/,,,,7i A Qi) or
(S2, (State, PC AV cjcp, ™7 A Qi) otherwise

exec(Ss,

exec(Ss,

Experiments with some simple programs were presented. It is not clear as to
whether the approach has been experimented on more complex programs, since
the approach may create an explosion in the number of pairs associated with each
variable. Furthermore, a major weakness of the related SYMBAD system is that test
cases are not generated.

2.1.2 Program execution based approaches

Program execution based (or dynamic) approaches start by executing the program
with an arbitrary test input(s). This input is then iteratively refined, by execution of
the program, to obtain a final input(s) executing the path. The refinement is done
by applying function minimization search algorithms [46|, an iterative relazation
method [30], etc. We will make an overview of some of these approaches below.

Function-minimization-algorithms method In [46], the refinement of test in-
put is carried out at a branch of the path, where its corresponding condition (or
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predicate) evaluates to an undesired value on the current test input x°. The branch
condition is supposed to be of the following form: FE; op F,, where E; and F, are
arithmetic expressions, and op is one of {<, <, >, > = #}. The condition E; op Es
is first transformed into an equivalent condition of the form, F(x) rel 0, where rel
is one of {<,<,=}, such that E; op E, is satisfied iff F'(x) is negative or zero (de-
pending on rel). For example,

FE, > Es is transformed into Fy — E; < 0,

E, < FE,into E; — Ey <0,

E, = E; into abs(E; — FEy) =0,

E, # E; into —abs(E; — Ey) < 0.

Our refinement problem is therefore reduced to a minimization problem with con-
straints, where F'(x) is minimized using an alternating-variable method for con-
strained minimization, stopping when F'(x) becomes negative or zero. The alternating-
variable method (a local search method) consists in minimizing F'(x) with respect to
each input variable in turn (the other variables becoming constants), from the start-
ing point x°, until a solution is found or no progress can be made for any variable.
The latter case indicates that the search process fails to find solution. Once a test
input x! is found, the program is executed on that input. If the path is traversed,
x! is a solution to the test data generation problem. Otherwise, a branch violation
occurs at some other node, and the whole refinement process is repeated on input

xh.

Iterative relaxation method In contrast with the above function-minimization
search approach, [30] considers all the branch conditions of the path for refinement
with the current test input x°. In this method, each branch condition E, op E, is
also transformed into the equivalent F;(x) op 0. All the F;(x) are first approximated
by the tangent plane of F;(x) at x° (denoted by ﬁ(x)) By this approximation, we
have that F;(x°) = F;(x°), and that Vx # x°, Fj(x) is approximated by F}(x). Of
course, E(X) is the exact approximation, if Fj(x) is a linear function of the input.

For example,

e a function F(X,Y,Z) is approximated by F(X,Y,Z) = aX + bY + ¢Z + d,
where a, b and ¢ are respectively the slopes (or derivatives) of F' —at the point
(Xo, Yo, Zy)— with respect to variables X, Y and Z, and d is the constant.

e In this method, the slopes of F' are however approximated by its divided differ-

ences. For instance,
F(Xo+AX,Yy,Z0) —F(Xo,Y0,Z0

N ), where they choose AX =1 for a unit increment in

a =

variable X.
e Once a, b and ¢ are computed, d is computed from

aXo+bYy + cZy +d = F(Xo, Yo, Zo).
One then finds Ax° (increments to x°) such that all the F;(x°+Ax®) are negative or
zero by using the Gaussian elimination method. Note that Gaussian elimination is a
widely implemented method [55] for solving a system of linear equations. If the F;(x)
are linear functions of the input, the refinement is done in one iteration. For non-
linear functions, it may take more than one iteration to find the new input forcing
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the path executed. If the path is traversed on the refined input, the refinement
terminates. Otherwise, x! = x% + Ax? is further refined to obtain a desired input.

Discussion

These program-execution based approaches exploit its dynamic nature to overcome
some limitations (the handling of arrays, pointers, and dynamic data structures) of
the approaches based on symbolic evaluation. However, the number of iterations
(program executions) required before the finding of a final input depends much on
the complexity of the constraints on the path. Moreover, if the path is infeasible
and /or the associated constraints nonlinear, these approaches may become difficult
to apply. Indeed,

(1) since the alternating-variable method, employed by [46], is a local search method,
it suffers from a well-known problem in local search as also illustrated in [25]: a local
minimum is obtained without being able to reach a global minimum.

(2) The refinement of test inputs in [30] is not carried out on original branch func-
tions, but on their approximations that are in a linear form. Hence, if the original
branch functions are nonlinear and complicated, the refinement may be done in
many iterations without assurance of convergence to a solution.

2.1.3 A mixed approach

An approach, incorporating ideas from symbolic evaluation, constraint-based testing
and dynamic test data generation, is proposed in [53|. It takes an initial set of values
for each input variable, and dynamically moves the values through the control flow
graph of the program. The sets of values are reduced as the branches of the path
are taken. This allows branch conditions of the path to be solved immediately at
each branch. For example, suppose x and y are two integer variables with their
domains being [0, 100], and the constraint x > y is encountered. The new domain
for x will be [51,100], and for y, [0,50]. The new domains are chosen such that
their sizes are balanced, and that the constraint is satisfied for all pairs of values in
the new domains. By this choice, the domain reduction can remove values that are
solutions, such as x = 40 and y = 30. Moreover, it has difficulty in handling general
expressions (e.g. non-linear expressions), as reducing the domains of the variables
involved in a constraint such as exp; > exp,, where exp; and exps are expressions,
is hard in the general case. Once the path is traversed, the domains of the variables
represent thus test cases that will cause execution of the path. If the domain of any
variable is empty, two cases are possible. First, the path is infeasible, and hence no
values can be found. Second, the constraints were complicated, making the approach
inefficient, as discussed above.

2.2 Related Work on Statement Coverage

Statement (or branch) coverage aims to generate test data exercising a node (or
branch) of the control flow graph. Various approaches can be found in the literature.
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They are generally classified [21]| as random, path-oriented, or goal-oriented. Path-
oriented means that one needs to select a path(s) to reach the specified statement,
and then generates test input for the path; while with goal-oriented, the generation of
test data to execute the statement is carried out irrespectively of the path taken, i.e.
the path selection is not needed. We can also classify them following the underlying
technique used by each approach as follows.

2.2.1 Random test data generation

Random test data generation [19] consists in trying test data generated randomly
until the statement is executed. Here are the advantages of a random test data
generator.

e [t is easy to implement, because no program analysis is needed. The only tool
required is a random number generator. Then, we need to verify if the selected
program element is exercised on execution of a randomly generated test input.
This verification can be realized by instrumentation of the program, i.e. by
insertion of code to show that the selected program element is actually traversed.

e A big number of test inputs can be generated in a short time. However, the check-
ing of the execution results with such test inputs would require a considerable
human effort.

Many experiences [21| have shown however that it can be very inefficient to
generate test data for complex programs. Such experimental observations confirm
the following theoretical ones. The program elements corresponding to a bigger
sub-domain (a test input drawn from such a sub-domain will execute such program
elements) will have more chances to be exercised. This goes however in a contrary di-
rection with the program elements corresponding to a smaller sub-domain. They are
more difficult to be exercised. Moreover, infeasible program elements (correspond-
ing to an empty sub-domain) cannot be detected automatically. Let us illustrate
a difficulty with random testing by the following example. Suppose that we want
to construct a program to check the type of a triangle. A triangle is equilateral if
a = b = ¢, where a, b and ¢ denote the lengths of its three sides. Assuming the
input domain for (a,b,c) is ([1,1000], [1,1000], [1,1000]), and a, b and ¢ are of an
integer type, then the probability such that a = b = ¢ is (1/1000) % (1/1000) = 1075.
Of course, a much more smaller probability can be envisioned with floating-point
domains.

2.2.2 Statistical testing

In standard random methods, all elements in the input domain of the program have
the same probability to be selected. This contrasts with statistical testing [67],
a probabilistic method, which consists in selecting test data randomly according
to some distribution over the input domain of the program. The idea is thus to
associate a probability to each sub-domain of the input domain, based on some
functional or structural criteria, e.g. a distribution such that all statements have
the same probability to be traversed.(Note that statistical testing based on structural
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criteria is usually referred to as statistical structural testing.) A code analysis is thus
required to determine a probability distribution over the input domain. Therefore,
its implementation is far more complicated than a random test data generator.
However, as pointed out by [67], if statistical testing is constructed based on the
all-statements criteria, for instance, then the generated test cases can have a more
or less equivalent power in fault detection, compared with an usual deterministic
method for the all-statements criteria.

[27] proposes a new way to deal with statistical structural testing, based on the
uniform random generation of execution paths, but not on the construction of a
probability distribution on the input domain as the above statistical method. Sta-
tistical testing based on a structural criterion weaker than the all-the-paths criterion
is defined as: Given an integer n, we have to generate randomly one or several paths
of length < n such that all possible paths have the same probability to be generated.
Once such paths are generated, each of them is transformed into path constraints,
that are solved by a constraint solver (for constraints over boolean and integer vari-
ables). Statistical testing based on the all-the-statements or all-the-branches criteria
is then proposed. The objective is to generate random execution paths such that all
statements (or branches) have balanced probabilities to be covered.

2.2.3 Program execution based approaches

In program ezecution based (or dynamic) approaches, as discussed above, a first
test data(s) is initiated with a (randomly) chosen input(s). If an undesirable exe-
cution flow is observed at some branch in the program, then a refinement process
is used to find a new input(s) that will change the execution flow at this branch.
The refinement is realized by applying function minimization algorithms [21] (goal-
oriented), an iterative relaxation method [32] (path-oriented), genetic algorithms [54]
(goal-oriented), simulated annealing [65] (goal-oriented), etc. Although dynamic ap-
proaches are powerful in handling arrays and dynamic data structures, they may
require a great number of executions when the program involves many nonlinear
conditions.

Developments The chaining approach proposed in [21] is actually an extension
of [46]. The approach uses data dependencies to identify statements that affect the
execution of the given statement. By requiring that these statements be executed
before the given statement, the chances of executing the given statement may be
increased.

The results of [21] are then extended in [47] to programs with procedures by
considering the possible effect of statements in the called procedures on execution
of the selected element.

[32] is also an extension of [30] to branch coverage. A list of basic paths [56]
reaching the given branch is first calculated. The approach selects a path among
these paths to generate test data. The path selection is guided by a path resistance
measure, that is a function of the following parameters:
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e The complexity of the branch conditions on the path: the path resistance in-
creases much faster with the increase in the number of nonlinear branch condi-
tions.

e The execution behavior of the branch conditions on the path: a path offers a
larger resistance, if the algorithm has switched from the path to another path, a
larger number of times.

When the path offering the least resistance is found at each step, test data generation
for path coverage as proposed in [30] is applied. A major problem that can be faced
by the method lies in the selection of infeasible paths [14]: after identifying a set
of basic paths covering a branch(s), some of the selected paths may be found to be
infeasible.

We will summarize hereafter the approach [54], based on genetic algorithms.

A genetic-algorithms based approach [54] Test data generation for a testing
requirement target (a node or branch) starts with an initial set (or population, in
genetic terms) of random test inputs. If target is satisfied by any test input from
the current population, the search process terminates. Otherwise, a new population
is constructed from the current population such that it is hoped to come closer to
covering target. The first step of the construction consists in selecting a part of the
current population as parents in the next generation of test inputs. All test inputs of
the current population are evaluated with a fitness function, and thereby test inputs
with the highest fitness values are selected first. In this work, the fitness function
is derived from the control-dependence information [22] of the program. Control
dependencies capture the conditions required for execution of the target. Therefore,
a test input satisfying a higher number of conditions on execution, will have a higher
fitness value. Once a part of the current population is selected, it is then passed
through recombination and mutation operations to generate a new population.

e A recombination operation takes as input, two test inputs (ag,aq,...,a;) and
(bo, by, ... ,bg), and produces two new test inputs (ag, a1, ... ,a; 1,b;,...,b;) and
(bo, bl, c. ,bi_l, Ajy o ,ak).

e A mutation operation takes as input, a test input (aq, ... ,a;_1,a;, Gip1,--. ,ax),
and produces a new test input (ag, ... ,a; 1,0, a;41,... ,a;), where b is a randomly

generated value.
The whole cycle is thus repeated with the resulting population, until either the
target is satisfied, or a maximum number of attempts (each attempt corresponds to
a newly generated population) or the time limit is exceeded.

2.2.4 A consistency-based approach

A goal-oriented approach, closely related to our work and based on Constraint Logic
Programming (CLP) techniques, is given in [26]. The test data generation problem
for a given statement is translated into constraints, solved by an instance of the
CLP scheme: CLP(FD) (the variables can only take values in finite domains). The
general idea is to transform an imperative program (a program under test) into a
CLP(FD) program.
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e Each variable of the initial program is transformed into a set of logic variables.

e Each instruction is transformed into a constraint or an operator of the CLP(FD).
Note that two specific operators have been introduced in the underlying C LP(FD)
to model the instructions of the control flow such as if, while, etc.

The choice of a point (statement) in the program results in a system of constraints.
A test case reaching the selected point is then a solution of the constraint system.
If there is no solution for the constraint system, it is a proof that the selected point
is non-executable, i.e. no test case can make its execution.

Note that the solving of the CLP(FD) relies on consistency techniques and a
search process. Consistency techniques are designed to reduce the search space (of
test data) by reducing the domains of the variables. The search process combines
an enumeration process with an inference process of new constraints.

The approach offers advantages such as the handling of arrays and a restricted
class of pointers. However, only integer inputs are treated. Note that a constraint
solver over float numbers has later been proposed in [50]. It was shown how such
a solver could be used in test data generation. The solver is however limited to
floating-point data. In [26], procedure calls are handled, but only intraprocedural
control dependences of the test program are used in the search process, even with
the presence of procedure calls. Therefore, this is not precise for certain classes of
programs as will be shown later.

Note that in [26], a state of the art on the use of CLP in software testing was
given. For example, in an approach [48] to functional testing based on algebraic
specifications, test cases (input data and expected output) are generated by using
CLP. In such work, the operations of a program are specified by axioms (formulas of
the first order logic). A test is therefore defined by an instance of one of these axioms.
A further step is needed to transform such axioms into Horn clauses, allowing the
use of Prolog to generate test cases.

2.3 Conclusion

In this chapter, we presented a state of the art of existing methods for structural
test data generation. Such methods fall into two classes: path coverage vs statement
(branch) coverage. By path coverage, we mean that the method is primarily intended
to generate test data for a path of the program; by statement (branch) coverage,
test data generation is oriented towards a statement (or a branch).

It should be emphasized that our classification of methods may face the follow-
ing confusion: a path coverage method may be finally used to deal with statement
coverage. A naive approach consists in selecting a set of paths covering a given state-
ment. Test data generation for path coverage can be applied to each of these paths
until a path is generated test data successfully. Unfortunately, such an approach
faces a big problem: many paths going through a statement may be infeasible [14].
Therefore, an excessive effort may be wasted on such paths. To lift the confusion,
a path-oriented method for statement coverage must be accompanied by an “intel-
ligent” strategy to select more likely feasible paths among a (infinite) set of paths
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going through a statement. [32| is an example of that case. To deal with branch
coverage, a set of paths traversing a given branch is first selected. At each step
(iteration), a strategy is used to switch to the most likely feasible path among the
paths, based on execution behavior of all previous iterations.

An important point is worth discussion again: the problem of test data generation
for a node, a branch or a path is unsolvable in the general case [68], thereby every
approach to such problem cannot thus be complete by nature. Despite that fact,
many “partial” methods and systems as presented in this chapter, and many others
never mentioned in this thesis, have been developed over the years to help the tester
to a maximum extent possible. In some restricted cases (e.g. linear path constraints,
programs without loops, ... ), solvability can however be established to a certain
degree.

Our classification of methods can also take another dimension: static vs dynamic.
For a static method, test data generation is carried out without any execution of
the test program in a real environment while execution of the test program or a
simulation of such an execution is an indication of a dynamic method. Among
static methods are symbolic execution, the consistency or CLP based method [26]
as presented above, etc. Among dynamic methods are random test data generation,
program execution based methods, ...

A possible strong point of static methods is that a related test data generator
can be written in a fixed language independent of the languages used by the test
program. The purpose is thus to make it possible to test programs written in
many different languages with common features. To build such a generator, an
internal representation (e.g. by the control flow graph) common to such different
languages can be used. And whenever a new language is used for the test program,
an extension to the generator can be built by only transforming the test program
into the internal representation. A weak point of static methods is however that the
generated test data are not guaranteed to execute the selected program elements,
because no program execution or run-time verifications (unsoundness of floating-
point arithmetic, underflow, overflow, ... ) on an actual environment are realized.
On the other hand, the reliability of test data generated by a dynamic method is
assured. Therefore, ideally, one should build a test data generator in using the same
language as used by the test program, as the same environments are used both
for running the test program and for generating test data. However, extensions
of the generator to other languages for the test program may be far more difficult
because of such dependence on real environments. In the worst case, a new test
data generator would even be constructed from scratch. It should be noted that in
the testing literature, a test data generation method is, to our knowledge, either a
totally static or a totally dynamic method.

One can, of course, apply a hybrid approach: test data are first generated stati-
cally, and then run by the user or automatically, on a real environment, to assure that
they actually execute the chosen program elements. Such an approach is actually
used in our work:

e The test program is written in C.
e Our test data generator is written in Jawva.
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e Test data resulted from the solving of path constraints in Java, are verified by
running a corresponding instrumented program in C with that test data.

A possible drawback of such approach is however that the solution space in C and
that in Java may be different, because in Java, only one rounding mode is used
for floating-point data (a rounding mode specifies how the result of an operation is
rounded to make it a floating-point number) while in C, four rounding modes can
be used, and each rounding mode corresponds to a different solution space. This
also support the above ideal that a test data generator and a test program should
be written in the same language. Hence, the use of a hybrid approach in our work,
although not ideal, guarantees at least the reliability of test data, but also the facility
of extension to other languages for the test program such as Pascal, . ..

A summary of existing approaches with functionalities close to our method is
also given in Table 11.4 (Chapter 11).
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Chapter 3

Background and Notations

As suggested by its title, this chapter aims at presenting the background and no-
tations used in this work. A background on test data generation is first given. We
then study a background on constraint programming and consistency. Basic notions
of the classical interval programming used in constraint solving are next presented.
We finally discuss on how interval arithmetic is defined and actually implemented
on machine.

3.1 Background on Test Data Generation

3.1.1 Transforming a Test Program into an Equivalent one

The purpose of this transformation is to isolate all embedded function calls from
their enclosing expressions. For each embedded function call, a new variable is
added to hold its return value into the test program [1|. The transformed program
is equivalent to the original one, assuming that, in an expression, all embedded
function calls are evaluated. This might not be the case for non-strict operators
such as the conditional AND (&&) in Java. In an expression like x>1 && f(x),
if x>1 evaluates to false, the value of the expression is false, and f(x) is not
evaluated. This restriction can easily be lifted by a more elaborated transformation,
e.g. conditional AND are transformed into conditional statements.

For example, the C program (Program-1) in Figure 3.1 contains the function
B with two embedded function calls. Figure 3.2 shows the transformed function B
without embedded function calls. In the sequel, when we refer to a program, we
mean an equivalent one without embedded function calls.

3.1.2 Control Flow Graph

The control flow of a program is usually represented by a Control Flow Graph (CFQG)
[61]. Formally, the CFG for a procedure P is a directed graph, where the nodes rep-
resent statements and the edges represent possible flow of control between nodes.
The CFG contains two distinguished nodes, Entryp and Exitp, representing re-
spectively a unique entry node and a unique exit node of P. A node, representing a
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void M(double af[10], int c) { void B(double a[10]) {
int i = 1; int i,3;
while (i <= ¢) { scanf ("%d %d", &i, &j);
B(a); if (F(i) < F(3j))
i=i+1; C(&alil, &aljl);
¥ else C(&aljl, &alil);
} }
void C(double *x, double *y) {
double t; int F(int 1) {
if (kx> *y) { if (4 >=0 && i <= 9)
t = *x; return i;
*X = *y; else exit(1);
¥y = t; 3
}

Figure 3.1: Program-1

B(double a[10]) {
int i,j,fi,fj;
scanf ("%d %d", &i, &j);

fi = F(i);
fj = F(j);
if (fi < £j)

C(&alil, &aljl);
else C(&aljl, &alil);

Figure 3.2: An equivalent of Program-1’s function B

(conditional or loop) statement, is called a decision node (a point where control flow
can split in several branches). A list of assignments without decisions is grouped
in a basic block node. Each procedure call is represented by two nodes, a call node
and a return node. An outgoing edge from a decision node is called a branch. Each
branch of the CFG is associated with a condition.

Control-flow interactions among a procedure and its related called procedures
are usually represented by an Interprocedural Control Flow Graph (ICFG) [61, 49].
Formally, the ICFG for a procedure P is a directed graph, which consists of a unique
global entry node Entrygpa, a unique global exit node Ezitypq, and the CFGs
(for P and all procedures called directly or indirectly by P). Apart from the edges
of the individual CFGs, the ICFG also contains the following kinds of edges:

o the edges (Entrygopa, Entryp) and (Exitp, Exitgopa);
e cach procedure call (represented by a call node ¢ and a return node ) to procedure

M corresponds to a call edge (¢, Entryyr) and a return edge (Exity,r);

e the edges that connect the nodes (representing a halt statement) to node Exit gopa-
Note that a halt statement represents an unconditional program halt such as the
exit () system call in C. Each statement such as x:=f(...), where £(...) is a
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function call, is represented by a pair of call and return nodes as in a procedure call.
However, these nodes are now associated with x:=f(...). Informally, an ICFG is
constructed by connecting the individual CFGs at call sites.

1.Globa Entry M
8 Entry B

14a. call:C(&a[j].&d[i])

14b return:C(&a[j],&di])

-

Figure 3.3: Interprocedural control flow graph for M

Figure 3.3 shows the ICFG for procedure M of Program-1 in Figure 3.1. The
individual CFGs are connected by edges shown in dashed lines. If node 7 is a
decision node, its true branch is labeled with a condition 77, while its false branch
is labeled with a F', that is the negation of T (Fi = —T4%). In this ICFG, the
conditions T4, T12, T'17, and T22 are respectively 1 < ¢, fi < fj7,1> 0&& i <9,
and xx > *y.

3.1.3 Path

A Path is a sequence of nodes from the global entry node Entrygoa to a node
of the ICFG. Note that a (partial) execution of a procedure P corresponds to an
execution path in the ICFG for P. Paths, where a return edge does not match the
corresponding call edge, are obviously infeasible execution paths. We thus restrict
paths to feasible execution paths, where every return edge is properly matched with
its corresponding call edge. Note that a path can be an unbalanced-left path [49],
representing an execution in which not all of the procedure calls have been completed,
i.e. there are more call edges than return ones in the path.
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3.2 Notations and Definitions

The following notations and definitions are borrowed directly from, or based on,

those in [36]. They are rather standard in interval programming.

e R denotes the set of real numbers (reals).

e F denotes the set of floating-point numbers (float numbers) represented on a

computer. F is thus a finite subset of R. The elements of F are called F-

numbers.

Bool denotes the set { false, true}.

Capital letters denote intervals.

The set of intervals is denoted by Z.

The set of boolean intervals is denoted by BZ, where BZ = {[0, 0], [0, 1],[1, 1]} (0

and 1 represent respectively false and true). BZ is thus a subset of Z.

e If a is a real, a™ denotes the smallest F-number greater than or equal to a, and
a~ the largest F-number smaller than or equal to a. This means that if a is a
real equal to an F-number, then a= = a = a™; otherwise, a= and a* are two
successive F-numbers.

e If ¢ is an F-number, at denotes the smallest F-number strictly greater than a,
and a~ the largest F-number strictly smaller than a. This means that a~, a and
a™ are three successive F-numbers.

e If x is a real, | x | denotes the largest integer that is not larger than = and [ z |
the smallest integer that is not smaller than z.

e The lower and upper bounds of an interval X are F-numbers and denoted re-
spectively by left(X) and right(X).

e Boldface letters denote vectors of objects.

e The domain of a simple variable x is denoted by dom(z). If a is an array variable,
dom(a) denotes the domain for its array elements and length(a) its length (i.e.
the number of elements).

e Let O be any object, O[z/v] denotes the substitution of v for z in O.

Definition 3.1 (canonical interval). A canonical interval is an interval of the
form [a, a] or [a,a™], where a is a F-number.

Definition 3.2 (e_interval). An interval X is an e_interval (¢ > 0) if X is canon-
ical or right(X)—left(X) <.

Definition 3.3 (e_box). A box (Xq,...,X,) is an ebox if X; (1 < i < n) is an
e_interval.

3.3 Background on Consistency

3.3.1 Path Constraint

A basic constraint is a simple relational expression of the form E; op E5, where F;
and F, are arithmetic expressions and op is one of the following relational operators
{<,<,>,>,=,#}. A constraint is a basic constraint or a logical combination of
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basic constraints using the following logical operators { NOT, AND ,OR}. We as-
sume that the logical operators of the programming language of the program under
analysis correspond to those constraints. Otherwise, the constraints can easily be
extended. A path of the ICFG can be represented by a list of constraints with one
constraint for each condition on the path. This list of constraints is called a path
constraint where the constraints of the list are connected by the logical AND.

3.3.2 CSP, Consistency, and Constraint Solving

Many important problems in areas like artificial intelligence and operations research
can be viewed as Constraint Satisfaction Problems (CSP). A CSP (V, D, C) is defined
by a finite set of variables V taking values from finite or continuous domains D and
a set of constraints C between these variables. A solution to a CSP is an assignment
of values to variables satisfying all constraints and the problem amounts to finding
one or all solutions. Most problems in this class are ANP-complete, which means
that backtracking search is an important technique in their solution.

Consistency techniques are constraint algorithms that reduce the search space
by removing, from the domains and constraints, values that cannot appear in a
solution. Consistency algorithms play an important role in the resolution of CSP
[66], and have been used extensively in many constraint softwares such as Numerica
[36], Prolog IV [3], CLP(BNR) [2], etc.

3.3.3 Test cases

An (integer, boolean or float) input variable is either an input parameter or a vari-
able in an input statement of program P. The domain of a boolean variable is an
element of BI. The domain of an integer variable is an interval, representing a set
of consecutive integers. The domain of a float variable is an interval of F-numbers.
Note that since our work relies on interval programming as will be presented in the

next section, the domain of a variable is represented by an interval. Let z,...,x,
be n input variables of P, and Dy be the domain of variable 2 (1 < k < n). Then
a test input is a vector of values (iy,... ,i,), where iy € Dy, (1 < k < n).

The execution of the program (on the specified path) uses operators defined on
JF-numbers, integers, and booleans. We assume here that the test program is written
in some fixed imperative language L.

Definition 3.4 (eval). Let ¢ be a constraint, and v be a test input. The predicate
eval(c,v) holds if execution of ¢ with v using the operators of the programming
language L yields true. The test input v is said to be a float £ solution.

Definition 3.5 (Path Constraint). A constraint c¢ is said to be a path constraint
for a path p if for all test input v, eval(c, v) holds iff the execution of the program
traverses the path p.

Definition 3.6. Given a path p (of an ICFG), a test input v is a test case for p if
eval(c,v) holds, where ¢ is a path constraint for p.
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Definition 3.7. Given a node n (of an ICFG), a test input v is a test case for n if
there exists a path p traversing n such that v is a test case for p.

A test case is thus a test input traversing the specified path or reaching the
specified statement. When no test case exists, the path is said to be infeasible.

The predicate eval(c,v) can be realized in different ways by either executing
the program under analysis, or by simulating such an execution (when the real
environment is not available).

It is important to distinguish the real (or mathematical) solutions of a path
constraint from its test cases (float £ solutions). First, a mathematical solution
may not be a float number. Second, a float (mathematical) solution v of a path
constraint may not traverse the specified path, i.e. ¢(v) 7% eval(c, v). For example,
the constraint, ¢(z) £ z = £+Z+Z is mathematically true for all Z-number in F.
However eval(c,1) may evaluate to false in some programming languages. Likewise,
constraints may have float £ solutions, while having no mathematical solution, i.e.
eval(e,v) # ¢(v). [50] illustrates that the constraint, 16.0 + z = 16.0 A = > 0,

actually possesses many float £ solutions.

3.4 Classical Interval Programming

Computation with the reals is actually difficult, since only a finite subset of reals can
be represented on a computer. This means that the computer can only work with
F-numbers, and all real operations are actually operations on F-numbers, which
are commonly known as non-sound. Because the result of an operation may not
be computed exactly (due to round-off errors with sub-operations), or may not be
representable in F. One must approximate a real r by r* (upward rounding), or
by r~ (downward rounding). To solve continuous constraints (over the reals) with
traditional numerical methods, one thus obtains F-numbers that are approximations
of the mathematical solutions.

Interval methods solve the constraints by a different approach, which returns
small intervals enclosing the mathematical solutions. They automatically bound
numerical errors, and so ensure the reliability of the results. The basic idea consists
in associating with each variable an interval representing its domain. The original
problem is then pruned (by some consistency techniques) before divided into sub-
problems (by splitting the interval associated with a variable), until all solutions are
obtained. Such consistency techniques (on intervals) are designed to reduce the size
of the intervals without removing solutions of the constraints [36].

We now give an example to illustrate the difference between traditional numerical
methods and interval methods. Given the numerical equation 2?2 = 2, one thus
obtains x = 1.41421356 —an approximation of the mathematical solution— by a
numerical method. On the other hand, with an interval method, one obtains the
interval X = [1.41421356, 1.41422357], containing the mathematical solution. Since
the resulting interval is larger than the exact solution, interval methods ensure thus
reliable solutions.
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We give here some important definitions of interval programming [52], borrowed
directly from, or based on, those in [36]. Since the goal is to work with intervals, all
objects of the real space —such as reals, real sets, real functions, and real relations—
should have an interval extension in the interval space. Note that interval extensions
are not unique.

Definition 3.8 (Interval). An interval I = [a,b], with a,b € F, denotes the set

e {reR|a<z<b} — if we work with the real space (i.e. our concern is real
solutions),

e or {z € F|a<z<b}— if we work with the float space (i.e. our concern is
float solutions).

Also, given an interval I, left(I) and right(I) denote respectively a and b. The set

of intervals is denoted by Z.

Definition 3.9 (Interval Extension). Let S be a subset of R. The interval ex-
tension of S, denoted by OS, is the smallest interval I such that S C I. When
S = {r}, we denote its interval extension by Or, and its value is the interval [r, r] if
r is an F-number, and [r~, "] otherwise.

An interval function F' : Z" — T is an interval extension of f : R" — R if
VIeZ": f(I) C F(I), where f(I) = {f(r) | r € I}.

Figure 3.4 gives an example of interval extension for a function.

Y A

Figure 3.4: Interval extension of a function

The objective of an interval extension is to preserve the mathematical solutions.
Given a function f, the optimal interval extension is the interval function returning
O(f(I)). Many usual functions possess an optimal interval extension. For example,
the interval function @, [ay, bi] @ [as, bs] = [(a1 + a2)~, (b1 + b2)T], is an optimal
interval extension of the addition of two reals. Note that a; + a9 and by + by are
real operations, i.e. their results are reals. [15] reported however that there exist
functions, for which one do not know any optimal interval extension due to practical
reasons, e.g. f(z) =z * sin(x).
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Given an arbitrary function, one can obtain several (non-optimal) interval ex-
tensions [15], based on interval extensions for its primitive operations. The natural
interval extension is however used in our work so as to also conserve float solutions,
as illustrated later.

Definition 3.10 (Natural Interval Extension). Given an expression f, the nat-
ural interval extension of f is obtained by replacing in f, each constant k by its ap-
proximation (Ok), each real variable = by the interval variable X, each real operation
g by any interval extension G' (not always optimal).

Proposition 3.1 ([52]). If F : I" — T is the natural interval extension of f :
R™ — R, then F is an interval extension of f,i.e. VI € Z" : f(I) C F(I).

By Proposition 3.1, F(I) contains thus at least all real solutions of f(I).

For instance, the natural interval extension of, f(z) = 2?® — 2z + sin(x), is the
interval function, FI(X) = (X ©023) 6 02®@ X & SIN(X), where 6, ®, ®, and
SIN are the interval extensions of subtraction, multiplication, exponentiation, and
the trigonometric sin function.

The natural interval extension is often an over-estimation of the optimal interval
extension. Consider, for example, the following function [36]:

flzx)=x—2x
which always returns 0. The optimal interval extension is the following:
F(X)=10,0].
However, the natural interval extension, F/(X) = X & X, is over-estimated, since
F([0,1]) = [0,1]e[0,1] = [-1,1]

contains the exact result with much noise. The reason for this problem is that
although the two occurrences of X mean the same variable, the natural-extension
evaluation considers each occurrence of X as independent of others. This over-
estimation problem is due to the fact that several occurrences of the same variable
appear in an expression. Also illustrated in [36] is the following interesting example.
Consider the function

filz) =2*—2
which is equivalent to

fo(z) = x(x —1).

Unfortunately, the natural extensions of these functions do not yield the same re-
sults. For example, Fi([0,5]) = [—5, 25] while F,([0,5]) = [-5,20]. Note that nei-
ther of these natural extensions is optimal, since an optimal interval extension will
yield [—0.25,20]. To reduce the over-estimation with the natural interval extension,
some other forms of interval extension have been proposed in interval programming,
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namely mean-value interval extension, Taylor interval extension, ... An overview
of these forms can be found in [15]. Although these drawbacks, using the natural
extension in our work is however a reliable way (as shown later) to preserve float
solutions.

Definition 3.11 (Interval extension for a relation). An interval relation C :
1" — Bool is an interval extension of the relation ¢ : R" — Bool if
VIeZI™ : 3rel:ce(r))=CxI)

For example, the interval relation =, defined in [36] as
11%12 £ Ilﬂlg#q)

is an interval extension of the equality relation on real numbers.

3.5 Interval Arithmetic

We will first show in this section how interval arithmetic is mathematically defined
(exact interval arithmetic). We then show how exact interval arithmetic is actually
implemented on a finite-precision (floating-point) machine.

3.5.1 Exact Interval Arithmetic

Interval arithmetic was first introduced in [52]. From the interval-programming
background given in the previous section, exact (or mathematical) interval exten-
sions for the real arithmetic operators {+, —, %, /} are defined as follows.

Definition 3.12. Let [} = [a,b] and I, = [¢,d] be two intervals such that a, b, ¢
and d are reals, then

LeL=[a+cb+d

[1@[2: [a—d,b—c]

L @I, =[min{axc,axd,bxc,bxd}, max{a*c,a*xd bxc,bxd}]
I, © I = [min{a/c,a/d,b/c,b/d}, max{a/c,a/d,b/c,b/d}] if O ¢ I,

Note that for the sake of simplicity, the real operators {4, —, *, /} will sometimes
be overloaded, denoting also their corresponding interval operators.

In interval programming, interval division is often defined under the condition
that 0 is not contained in I,. [38] remedies however such a restriction by providing
explicit formulas for this quotient when I; and I, are any real intervals. Their
formulas are actually an extension of the following Ratz theorem (also given in |38|
for comparison with their formulas), which is an original corner-stone in dealing with
the above problem of interval division.
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Theorem 3.1 (Ratz). Let [a, b] and [c, d] be two non-empty bounded real intervals.
Then

([a,b) @ [1/d,1/d] if 0 ¢ [c, d]
[—00, +0o0] if 0 € [a,b) A O € [c,d]
[b/c, +o<] ifb<O0Ac<d=0

[—00,b/d] U [b/c,+x] ifb<O0ANc<0<d
la,b] @ [c,d] = < [—o0,b/d ifb<O0ANO=c<d

]
[—00,a/c] if0<anec<d=0
[—o0,a/cUa/d,+oc] if0<anec<0<d
[a/d, +o0] if0<an0=c<d
L@ if0¢[a,b)]ANc=d=0

The formulas for interval division as proposed in [38] will not however be pre-
sented here; They are somewhat different and more complicated than the above
theorem. Note however that such formulas are more general than Ratz’s, because
they can also be used for unbounded intervals (connected intervals). Moreover,
they are more efficient than Ratz’s, because Ratz’s formulas rely on the multipli-
cation formulas by converting many quotients into [a,b] * [1/d,1/¢]. And this can
unfortunately introduce additional round-off errors when evaluated in floating point
arithmetic, e.g. a/d will generally be more precise than a  (1/d).

Note that in the above presentation of exact interval arithmetic, we have only
considered the properties of the reals (R) and the extended reals (R U {—o0, +0o0})
in constructing interval extensions for the arithmetic operators. Intervals are repre-
sented by pairs of extended reals. That is, the endpoints of any interval (as the result
of an interval operation) are calculated according to the arithmetic of extended reals
(when infinity is involved).

In the rest of this section, we will first give an overview of the IEEE 754 standard
for floating-point arithmetic. We then show how to use it to ensure correct (in the
sense of not losing any mathematical solutions) and optimal (the resulting IEEE-754
floating-point interval is the narrowest interval containing the exact real interval)
computations of interval extensions.

3.5.2 Overview of the IEEE-754 standard

The IEEE-754 floating-point standard [41] is the most common representation today
for real numbers on computers, and most of the floating-point number systems as
implemented on Intel-based PC’s and most Unix platforms conform to it. We give
here a brief overview of the IEEE 754 standard and its representation. A lot of
this material was drawn from [39], [50], [38] and [23]|. Note that [23]| gives the most
comprehensive presentation on floating point standards, including also the IEEE 854
standard for floating-point numbers. IEEE 754 uses binary base for representing
numbers while IEEE 854, by extending IEEE 754, allows the use of both binary and
decimal bases. It is however sufficient to restrict our presentation to IEEE 754.
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Table 3.1: Storage layout of floating-point formats

Formats | Sign | Exponent | Mantissa | Bias
Single | 1 [31] | 8 [30-23] | 23 [22-00] | 127
Double | 1[63] | 11 [62-52] | 52 [51-00] | 1023

Floating-point representation The standard (i.e. IEEE 754) defines several
formats —such as single (single precision), double (double precision), single extended
and double extended— which are different only in the sizes of certain fields. While
the first two formats are well defined and implemented by most floating-point units,
the two latter are not really well specified and therefore not sure to be available in
a floating-point unit.

For any format, the floating-point numbers (also called floats) have three basic
fields: the sign, the ezponent, and the mantissa (also known as the significand). Ta-
ble 3.1 shows the layout for single (32-bit) and double (64-bit) floating-point values.
The number of bits for each field are shown (bit ranges are in square brackets).

e The sign field (denoted by s) is 0 for positive numbers, and 1 for negative.

e The exponent field (denoted by e) follows the following convention so as to repre-
sent both positive and negative exponents: A bias is added to the actual exponent
in order to get the stored exponent. For single floats, the bias value is 127 (as
shown in Table 3.1). Thus, an exponent of zero means that 127 is actually stored
in the exponent field. A stored value of 100 indicates an exponent of -27 (100-127).

e The mantissa field (denoted by f) represents, in fact, the fraction bits (the preci-
sion bits) of the actual mantissa. That is, the actual mantissa is composed of an
implicit leading digit and the fraction: The actual mantissa is assumed to be 1.f
for normalized floats, or 0.f for denormalized floats (as will be discussed below),
where 1.f and 0.f are binary values.

For any format, we assume that e,,,, is the maximum value that can be stored
in the exponent field (an exponent of all 1s). For instance, €,,,, = 255 for the single
format. Then, the set of possible bit patterns for < s,e, f > is divided into the
following classes of floats.

e Normalized numbers are defined when 0 < e < e,,,, and a leading 1 is assumed
before the binary point of the actual mantissa. This represents thus the number
(—1)% x 1.f x 2¢°%as_ Hence, for single format, the range of positive normalized
numbers is [27126(2 — 272) x 2!%7]. And the range for negative normalized
numbers is given by the negation of the above range.

e Zero is not directly representable in the normalized form above, because given
the actual mantissa being 1.f, we cannot specify a true zero mantissa to yield a
value of zero. Hence, signed zeros (—0 and +0) are defined as special values when
e =0 and f = 0. And the sign field decides —0 and +0 as two distinct values,
though by the standard, —0 = +0. Note that signed zeros are used in specific
cases (e.g. —10/ — oo = +0) to get a more precise result. Furthermore, signed
zeros can be returned in underflow situations (underflow means that values grow
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too small —near zero— for representation). It is then easy to distinguish negative

underflow from positive underflow.

e Denormalized numbers are defined when e = 0, f # 0, and a leading 0 is assumed
before the binary point of the actual mantissa. This represents thus the number
(—1)% x 0.f x 27¥ast1 Note that we can consider signed zeros as a special type of
denormalized numbers, if we lift the condition f # 0 above. For single format, the
range of positive denormalized numbers is [27'%9, (1 — 2723) x 27!%6]. Therefore,
denormalized numbers are closer to zero than normalized ones, and they continue
to fill the region near zero, left uncovered by normalized numbers.

e Infinities (—oo and +o00) are denoted with e = €,,4, and f = 0, and the sign bit
distinguishes between —oo and +o0o. In practice, infinities provide a way allowing
computations to continue past overflow situations. Ouverflow means that values
grow too large for representation. Note that returning infinities in such situations
is much safer than simply returning the largest representable number.

e NaN'’s (Not a Number) are represented by a bit pattern with e = e,,,, and f # 0.
They are used for an operation where the result is not mathematically defined,
or for signaling an exception in executing operations. For example, a good way
to handle exceptional situations like taking the square root of a negative number
(traditionally, such situation would cause the computation to halt), is to return
a NaN.

We now give an example to sum up the above presentation of floating-point
numbers. Assume that the sign field contains 0, the exponent field 130. And the
mantissa field contains the following bits:

1100000 00000000 00000000

This gives then the following number (in decimal):
LI x 21307127 — (2 - 972) x93 = 14

Floating-point operations and exceptions As discussed earlier, floats (de-

noted by F-numbers) are a finite and discrete version of the real numbers on a

computer. And all real operations are thus replaced by operations over F-numbers.

Since the result of an operation over F-numbers may not be an F-number, rounding

is necessary to close the operations over F. The IEEE 754 standard proposes the

following four rounding modes:

e +00 : which maps x to the smallest F-number zj;, such that z < z;.

e —0o0 : which maps x to the greatest F-number z; such that z; < z.

e 0 : which is equivalent to the rounding mode +oc if x < 0 and to —oo if x > 0.

e nearest even (or near, for short) : which maps x to the nearest F-number.
When x has the same distance to two F-numbers, it is then mapped to the one
having 0 in the least significant bit of its mantissa field.

Definition 3.13. Let f : R™ — R be a real expression. Then we denote by f,, a
corresponding float expression of f, where r represents one of the following rounding
modes {400, —00, 0, near}.
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Note that for all r € {400, —00, 0, near}:

f—oo(v) < fr(v) < f-i—oo(v)
f—oo(v) S f(V) S f—l—oo(v)'

For many reasons (better accuracy, more precise reasoning with floating-point
proofs, portability of floating-point softwares, ... ), the standard requires that the
result of arithmetic operations (addition, subtraction, multiplication and division) be
exactly rounded. That is, the result must be computed exactly and then rounded to
the nearest float (following the used rounding mode). For example, with Definition
3.13 above, the result of f,(v) must be the nearest float to f(v) according to rounding
mode 7. In other words, the rounding of an operation f(v) is exact if the rounding
towards —oo, f (v), will return the biggest F-number smaller than or equal to
the exact operation f(v), and the rounding towards +o0, fi.o(v), will return the
smallest F-number greater than or equal to f(v). In addition to the basic operations
(+, —, x and /), IEEE 754 also specifies that square root, remainder, and conversion
between integer and floating-point be correctly rounded. The standard does not
require transcendental functions (e.g. exp) to be exactly rounded because of many
practical problems as illustrated in [23].

When an exceptional condition —such as division by zero, underflow, overflow or
invalid operation— occurs in IEEE 754 arithmetic, the default is to deliver a special
result and continue. Typical default results are NaN for 0/0 and /—1 (invalid
operation), and oo for 1/0 and overflow, etc. When an exception occurs, a status
flag is also set. And testing the flags is the only way to distinguish 1/0 (an actual
infinity) from an overflow. The standard also requires each floating-point operation
to raise an inezxact exception when the result is not mathematically exact.

Given the effect of rounding on floating-point arithmetic —causing the so-called
round-off errors— many properties on the reals are not preserved by the floats. For
example, assuming a, b and ¢ are floats, we cannot ensure that

(a+b)+c=a+(b+¢)
in floating-point arithmetic. As a consequence already illustrated in Sub-section
3.3.3, the mathematical-solutions space of a path constraint can be totally differ-
ent from its float-solutions space. Moreover, each rounding mode also produces a
different float-solutions space.

Operations with special numbers Operations involving special numbers (—0,
+0, —o0, +00, and NaN’s) are well defined by the standard. In the simplest case,
any operation with a NaN yields a NaN result. Assuming NF stands for negative
(normalized or denormalized) float and PF for positive float, Table 3.2 gives some
arithmetic operations (in all rounding modes) with special numbers for the purpose
of illustration. More detailed information of the arithmetic operations on floating-
point numbers, can be found in [38]. For example, (—0)+,(4+0) = +0 for all rounding
modes r # —oo, and (—0) +_4 (+0) = —0.
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Table 3.2: Some operations with special numbers

Result Operations

NaN | (+00) + (—00) (—00) = (—=00) (+00)—(+00) *0x+oo +0/£0 Zoo/=+ o0
- —00 + (—00) —00 X +00 —o00/+0 NF/+0 PF/—-0 +4o00/—0
+oo +00 + (400) —00 X —0C —o00/ =0 NF/—-0 PF/4+0 +oo/+0
+0 NF/ - -0/ — 0

3.5.3 IEEE-754 Interval Arithmetic

[38] proposes an interval arithmetic framework based on the IEEE-754 standard,
that we will refer to as the IEEE-75/ interval arithmetic. Given the purpose that
interval arithmetic must preserve the mathematical solutions, interval extensions for
the addition and subtraction are defined as follows.

Definition 3.14. Let I} = [a,b] and I, = [¢,d] be two intervals such that a, b, ¢
and d are F-numbers, then

Il +IQ = [a +_ C,b++oo d]
[1 — IQ = [Cl — 0 d,b —4oo C],

where the floating-point addition and subtraction with rounding towards —oc (or
+o0) are denoted +_,, and —_, (or +,4 and — ), according to Definition 3.13.

Definition 3.14 gives thus an idea of how interval arithmetic should be imple-
mented on a machine using floating-point arithmetic. By outward rounding, one
claims thus that the computed interval contains the exact interval. For example,
with the addition, one informally claims (both in [38] and [23])

[a+c,b+d Cla+_0 ¢, b+100d] (3.1)

by the possible fact that a +_c<a+c<b+d < b+, d.

We find however an exception to the above claim (Property 3.1). Suppose that
a=b=c=d= MAX_F, where MAX_F denotes the largest representable float
in a given format. Then, we possibly obtain

0+ o c=+0c and b+, d = +00
by the handling of the floating-point standard for overflow situations. In that case,
Property 3.1 is violated, because

[a+c,b+d =[2% MAX_F,2x MAX F| £ ]a+_0 ¢,b+ 100 d] = [+00, +3].

To overcome the above problem, we propose the following definition for interval
addition.

Definition 3.15. Let I} = [a,b] and I, = [¢,d] be two intervals such that a, b, ¢
and d are F-numbers. Let MIN_F and M AX _F be respectively the smallest and
the largest representable F-numbers. Then

[~ o0, MIN_F] R ——
Il+12: [MAX_F,+OO] ifa+_ooc:+oo
[a4+_0 ¢,b+100d] otherwise

44



3.5 — INTERVAL ARITHMETIC

It is easy to show that by Definition 3.15, Property 3.1 still holds. Note first that
if b+, d = —00, then b+ d must be infinite or a negative overflow value, and that
if a +_,, ¢ = 400, then a + ¢ must be infinite or a positive overflow value. However,
it is possible that b + d is a negative overflow value while b +,,, d = MIN_F, and
that a + ¢ is a positive overflow value while a +_,, ¢ = M AX_F. Second, a possible
application of such definition should be investigated as well.

It is not very helpful if the computed interval turns out to be large, since the
mathematical solution could be anywhere in that interval. When a floating-point
operation is assumed to be exactly rounded (like the basic operations), this is a nec-
essary condition to construct an optimal interval extension (the computed interval
is the smallest IEEE-754 interval containing the exact interval). Otherwise, optimal
interval extensions are not assured. For the basic operations above, it is a simple
matter to show that their interval extensions are optimal.

IEEE-754 interval extensions for the operations of multiplication and division,
follow the same principle (outward rounding) in their definitions. See [38] for more
details. In that work, any IEEE-754 interval is required to satisfy the following: —0
can only appear as a right endpoint, and +0 can only appear as a left endpoint.
This is a nice property to facilitate dealing with interval division.

In the next, we will discuss about how interval arithmetic has been implemented
in Java, a programming language that uses only the rounding mode near.

3.5.4 An Interval Arithmetic in Java

In Java, to our knowledge, only the rounding mode near is used. Interval arithmetic
was implemented in Java in an interval library [37] as in Definition 3.16 below. Note
that Definition 3.16 was derived from our reading of the code in [37]. And following
us, no other facts, except some references such as [38], have ever been published
concerning detailed implementation information for such Java code. Unfortunately,
[38] can only be applied to construct interval arithmetic when the rounding modes
toward —oo and 400 are available, while with only one rounding mode near, Java
cannot satisfy such condition.

Definition 3.16. Let I; = [a,b] and I, = [¢,d] be two intervals such that a, b, ¢
and d are F-numbers, then

Il + I2 — [(a +near C)_7 (b +near d)+]
Il - I2 — [(a “near d)ia (b “near C)+]-

We omit here interval extensions for the multiplication and division.

If the floating-point arithmetic in Java was implemented to satisfy a recommen-
dation of [EEE 754 —the rounding of all arithmetic operations should be exact—
then, the above Java interval extensions will ensure preserving all mathematical so-
lutions. We have to show, for instance, for the addition that

la+c,b+d] C [(a+near ¢)7 (b +near d)T].
This is equivalent to proving
(1) (@ 4+pear )~ <a+cand (2) b+ d < (b +near d)T.
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Proof. To prove (1), we consider the following two cases.

e If a +peqr ¢ < a+ ¢, then we obtain (1) by default. Note that by our notations in
Section 3.2, given a float f, f~ is the preceding float of f.

o If a+,eqr¢ > a+c, then we must have (a+yeqr €)™ < a+c. Suppose otherwise that
(@ +near )~ > a+c. Then, a+pear ¢ > (@ +near €)= > a+ c. This is contradictory,
because .4 is exactly rounded. And hence, the above supposition is thus
invalid.

The proof for (2) can be done by applying the same principle with that for (1). O

Note that the above proof is only valid if no overflow situations actually take place
during the calculation of such interval extensions, as was illustrated in the previous
subsection.

Of course, if the Java floating-point arithmetic is not exactly rounded, such Java
interval extensions are thus unreliable in preserving all mathematical solutions. Let
us take an example with the interval addition in Definition 3.16 to illustrate this
claim. Suppose that f;, fo and f; are three consecutive floats such that f; < a+c¢ <
fa < f3, where a + ¢ is the left endpoint of the mathematical interval addition. If
+near 18 Ot exactly rounded, then it is possible that a 4,0 ¢ = f3, from which
(@ +near ¢)~ = fo (the computed left endpoint). Since a+ ¢ < f,, we cannot preserve
all mathematical solutions.

We can conclude that if only one rounding mode is used, it seems difficult to
construct a reliable interval library, where one handles not only the arithmetic oper-
ations, but also analytic ones such as the sin function, etc. Because by the IEEE 754
standard, exact rounding is not assured, for example, for transcendental functions.

3.6 Conclusion

We presented in this chapter the background of our work. In Section 3.1, we gave the
background related to test data generation, e.g. the control flow graph. Section 3.3
introduced some important notions such as CSP (constraint satisfaction problem),
constraint solving (the resolution of CSP), as well as describing consistency tech-
niques as underlying techniques in the solving of CSP. General notations were also
given. The formal definitions of path constraints and test cases were then presented.
We made a distinction between mathematical solutions of a path constraint and its
test cases (float solutions of a path constraint with the boolean, integer and float
operators of the programming language £, used by the test program). In Section
3.4, we described a basis of the classical interval programming. We showed how
to extend into intervals (obtaining thus interval extensions), the objects of the real
space such as real numbers, real sets, real functions, and real relations. We then
introduced the natural interval extension, which is used in our work for conserving
float solutions in our constraint solving algorithms, as will be shown later. In Section
3.5, we were finally concerned with how to construct interval arithmetic in practice.

In the next chapter, we will present our new framework on interval logic devel-
oped so as to deal with our problem of test data generation. We show how to extend
the classical definition of interval extension in order to build this framework.
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Chapter 4

Extended Framework on Interval
Logic

We here extend the classical definition of interval extension, and build a new interval
logic framework to handle interval constraints involving at the same time, integer,
float and boolean variables, as well as the logical operators such as AND, OR, NOT.
Such a framework is needed for the following reasons. First, Definition 3.11 means
that C is a mapping from I" to the set {false,true}. Assuming C' is an interval
extension of relation ¢, let us denote ¢(I) = {c(r) | r € I} with I € Z". If (3r € I)
¢(r), then we have {C(I)} C ¢(I). This leads to the following consequence: [2,4] <
[1, 3] evaluates to true, from which one can deduce that not([2,4] < [1, 3]) evaluates
to false, whereas the negation can evaluate to true if one treats not([2,4] < [1, 3])
as [2,4] > [1,3]. This consequence is due to the fact that relations on intervals
do not have a strict order, i.e. [2,4] < [1,3] and [1,3] < [2,4] are both true on
intervals. Second, we need a framework in which we can define interval extensions
for constraints involving boolean variables as well as the logical operators, such as
c(b,r,y) = mnot(b) and (x > 1) or (y < 2), where b is a boolean variable, while
x,y are (integer or float) variables. We must then be able to evaluate C'(b: [0, 1],z :
[2,3],y : [3,5]), for instance.

Definition 4.1 (Interval Extension of a Relation (constraint)). An interval
relation C' : 7" — BZ is an interval extension of the relation ¢ : R" — Bool if
VI € 7" : ¢(I) € C(I), where ¢(I) = {c(r) | r € I}, and the convention that
{false} =10,0], {true} = [1,1], and { false, true} = [0,1].

Interval extensions for the relational operators {<, <, >, >, =, #} are developed,
based on the following definition.

Definition 4.2. Given a relation ¢ : R™ — Bool, the corresponding interval relation
C :I" — BT is constructed such that for all I € I"

if Ax € 1:¢(x) then C(I) = |0,0]

if IxeI:e(x) A\Jy €1: —c(y) then C(I) =0, 1]

if Vx € I: ¢(x) then C(I) = [1,1]

Proposition 4.1. The interval relation C', as defined in Definition 4.2, is an interval
extension of the relation c.
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Proof. We must prove the proposition with reference to Definition 4.1, namely for
VI € 7" : ¢(I) C C(I). Because we have to consider all the elements of any I €
Z™ in the definition of C(I), and because of the convention that {false} = [0, 0],
{true} = [1,1] and { false,true} = [0,1], it is easy to check that ¢(I) = C(I), from
which ¢(I) C C(I) is proved. O

For instance, an interval extension of the relational operator < is the following:
[a1, as] < [b1,b] is [0,0] if a3 > bo, [1,1] if ay < by, and [0, 1] otherwise. We now

define interval extensions for the logical operators not, and, and or.

Definition 4.3. Let ay, by, ag, and by be values taken in {0, 1} such that a; < by
and ay < by, then the interval logical operators NOT, AND, and OR are defined
as follows

e NOT([ay,b1]) =11 —by,1 — aq],

e [a1,b1] AND Jas,bs] = [min(ay,as), min(by, by)l,

e [a1,01] OR [ag, bs] = [mazx(ai,az), max(by, by)].

Proposition 4.2. The interval logical operators NOT, AND, and OR, as defined
in Definition 4.3, are respectively interval extensions of the logical operators not,
and, and or.

Proof. The interval operator NOT can be seen as a mapping NOT : BI — BZ,
the interval operator AND as a mapping AND : BI*> — BT,

and the interval operator OR as a mapping OR : BI*> — BT.

We must prove the proposition with reference to Definition 4.1, namely for VI € BZ"
(with n =1 for NOT, n =2 for AND and OR)

not(I) C NOT(I)
and(I) C AND(I)
or(I) C OR(I)

where not(I) = {not(r) | r € I} as usual, and the same for and(I) and or(I).

With the operator NOT', we have the following.
NOT([0,0]) =[1 —0,1—0] =[1,1] by Def. 4.3, while not(]0,0]) = {true} = [1,1];
NOT([0,1]) =[1 = 1,1 — 0] = [0, 1], while not([0, 1]) = { false, true} = [0, 1];
NOT([1,1]) =[1 = 1,1 —= 1] = [0, 0], while not([1,1]) = { false} = [0,0].
This means that for VI € BZ : not(I) = NOT(I), thereby not(I) C NOT(I) is
assured.

With the operator AND, it should be noted first that if a; and a, are values
taken in {0, 1}, then ay and as = min(ay, az). Given the fact that
e Yu; € [ay,bi],Yuy € [ag, bo] : min(ay, as) < min(vy, vy) < min(by, by),
e [a1,b1] and [as, by] = {v1 and vy | v1 € [ay,b1], v € [ag, bo]}

= {min(vi,v2) | v1 € [a1,b1],v2 € [az, bs]},
we can conclude that for VI € BZ? : and(I) C AND(I).

A proof for the operator OR follows the same principle as for the operator AND.
O
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An interval solution of a set of constraints is a box containing solutions of the
different constraints. It is defined as follows.

Definition 4.4 (Interval Solution). Let S = {ci,..., ¢} be a set of constraints.
A box X € Z™ is an interval solution of S if right(C;(X)) = 1, for all i (1 < i < m),
where the C; are respectively the natural interval extension of the ¢;.

For simplicity, C'(X) will denote right(C(X)) = 1 (i.e. C(X) is [0,1] or [1,1])
and —C(X) for right(C(X)) =0 (i.e. C(X) is [0,0]).

49






Part 11

The Consistency Approach
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Chapter 5

Overview of the consistency approach

We are now able to precisely state our test data generation problem.

Problem statement Given a node n, a branch b or a path p of the ICFG associ-
ated with a tested procedure P (possibly with procedure calls), generate a test input
1 such that P when executed on i will cause n, b or p to be traversed.

This chapter describes the consistency approach for test data generation with
path and statement coverage. It is a constraint solving approach based on a consis-
tency notion, e-box consistency, generalizing box-consistency [36] to integer, boolean,
and float variables.

5.1 Path coverage

Path coverage is the core of our approach. It includes the following steps.

1. A path constraint is derived from the specified path of the ICFG. Such a con-
straint involves integer, boolean and float variables, as well as operations with
arrays.

2. The path constraint is solved by an interval-based constraint solving algorithm.
The idea of such a solving algorithm is as follows.

e An initial box is provided.

e Consistency techniques are used to prune the box.

e The box is split into some parts, which are then explored recursively until
obtaining epsilon boxes —very small boxes— containing float solutions of the
path constraint. These epsilon boxes are called interval solutions.

3. A test case is finally extracted from the interval solutions.

We now illustrate the operation of path coverage on the nThRootBisect pro-
gram, given in Figure 5.1. The associated control flow graph of the nThRootBisect
program is depicted in Figure 5.2, as well as the path 1-2-3-4-6-7-2-3-4-6-8 shown in
dashed lines.

A path constraint is first generated step by step as follows:

1: l(] =1A h(] = Qg
2(True): A (hg —lo)* > eg
3: ACOZ(ZQ+h0)/2
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float nThRootBisect(float a, int n, float e)
POST Let r > O such that r" = a
Return r* with (r* —1)? < e

float 1, h, c;
function float f(float x) = (x**n - a) ;
1=1; h = a;
while ((h—1)? >= e) do
c=(1+ nh)/2;
if (f(c) = 0)
return c;
if (£(1)*f(c) < 0)
h =c;
else 1 = c;
return h;

© 00 N O O W N -

Figure 5.1: Program nThRootBisect (bisection method)

Figure 5.2: A path in the CFG of program nThRootBisect

4(False): A not(cg® —ag = 0)
6(True): A (Ip° — ao) * (¢5° —ag) <0

7 N hl = C
2(True): A (hy —lo)* > eg
3: /\Clz(lg—Fhl)/Q

4(False): A not(cf® —ag=0)
6(False): A (I5° — ag) * (c]° —ap) <0
&: N ll =C

The path constraint with an initial box (ag € [5,20],n9 € [2,20],eq € [le —
4,1e — 2]) forms a CSP, solved by our constraint solver to generate the test case
(ap = 7.000000010011718, 179 = 2, €9 = 0.00505). Note that the input variables ay,
ng and eq represent here the input parameters of program nThRootBisect.
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5.2 Statement coverage

For statement coverage, paths reaching the specified statement are dynamically con-
structed. The search for such paths is guided by the interprocedural control depen-
dences of the program, as well as pruned by our e-box consistency filter to avoid
exploring infeasible paths. Our algorithm for path coverage is then applied on these
paths to generate test data.

(CFG) (CDG)

Figure 5.3: CFG and CDG of the nThRootBisect program

In the CFG of program nThRootBisect, shown in the left hand side of Figure 5.3,
let us choose node 8. The reachability graph for node 8, depicted with solid edges,
is first constructed. It is the smallest subgraph of the CFG, containing all the paths
from the start node to node 8. The search is therefore carried out on the reachability
graph. The search is guided by the control dependence graph (CDG) of program
nThRootBisect, shown in the right hand side of Figure 5.3. The CDG captures
the control dependences between nodes (see Definition 9.1 for control dependence).
The idea is that nodes which must be reached in order to reach the specified node
(the specified node is control-dependent on such nodes) will be considered first. For
example, the control dependences for node 8 are <2-T2, 4-F4, 6-F6>. First, the
path 1-2-3-4-6-8 will be constructed by the algorithm. Assuming the corresponding
path constraint is inconsistent, the path 1-2-3-4-6-7-2-3-4-6-8 is next constructed.
For node 5, the control dependences are <2-T2, 4-T4>. The path 1-2-3-4-5 will be
first constructed, then path 1-2-3-4-6-7-2-3-4-5.

It should be noted that as a branch is dual to a statement in the control flow
graph, all the above results with statement coverage can easily be extended to branch
coverage. For example, to generate test data for a branch (a,b) where a and b are
nodes, we must generate test data for paths reaching node a first and followed
immediately by node b.

95




5 — OVERVIEW OF THE CONSISTENCY APPROACH

5.3 Specificities of our approach

It is important to precise the specificities of solving a path constraint compared to
classical interval-based constraint solving.

e A path constraint is usually under-constrained; there usually exist many test
inputs traversing the specified path (except for an infeasible path) while we are
interested by finding one of them. Existing constraint systems, such as Numerica
[36], are not always appropriate for under-constrained systems as they try to
generate all the solutions.

e Existing solvers —Numerica, Prolog IV 3|, and CLP(BNR) [2]— will produce
(small) intervals containing the mathematical solutions of the path constraint.
A mathematical solution can be a real which is not a float number. Moreover,
even if a mathematical solution is a float number, this mathematical solution
as test input is not guaranteed to traverse the specified path as the path con-
straint is executed using the programming language float operators, which are
not mathematically sound.

e The goal of existing consistency techniques is to preserve all mathematical solu-
tions in pruning the search space, and therefore may not ensure preserving all
float solutions (solutions with the programming language operators) [50]. In con-
trast, the goal of our consistency techniques is to preserve float solutions. Our
constraint solver in turn returns float solutions as test cases, and therefore ensure
traversing the path. These differences make that existing constraint solving ap-
proaches cannot be used solely to generate test data for programs with integer,
boolean, and float variables.

e It should be noticed that any constraints solving system may produce an interval
containing neither float solutions nor mathematical solutions.

In the next chapter, we will present an algorithm for the construction of a path
constraint from a specified path of the ICFG.
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Chapter 6

(Generation of Path Constraints

6.1 Algorithm

Given a path of an ICFG, we propose an algorithm (Algorithm 6.1) to construct a
path constraint. Indexed variables are used to hold the definitions of the original
variables in the path. Note that assignments to a variable are referred to as its
definitions. For example, for variable x, its first definition in the path is assigned
to xg, its second to x1, and so on. All uses of this variable are renamed accordingly
and refer to its last definition. Since indexed variables have a unique definition, we
will refer to them as wvalue instances of the original variables.

Algorithm 6.1 Path constraint generation for a path in the ICFG
function PathConstraintGeneration(P: Procedure,G:ICFG,p:Path) : CSP;
PRE G is the ICFG for test procedure P
p is a path pi,...,pp in G
POST return a path constraint for path p
declare
PC : path constraint for path p
begin
PC := (; {PC is initially empty}
for each ¢ from 1 to n do
PC = PC A ConstraintsForNode(p;);
if (p; is a decision node) and (¢« < n) then
PC := PC A ConstraintsForBranch(< p;,pi11 >);
return PC;
end

The algorithm PathConstraintGeneration (Algorithm 6.1) takes as input a
path in the ICFG. It makes a traversal of the path to generate constraints for its
nodes and branches. The generated path constraint is the conjunction of all these
constraints.

ConstraintsForNode and ConstraintsForBranch respectively generate con-
straints for a node and a branch of the ICFG. They will be described by the following
definition.
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Definition 6.1. Let p be a path of the ICFG, p; be a node of p, and < p;, p;y1 > bea
branch of p. Then PC(p,p;) and PC(p, < p;, pi+1 >) respectively denote constraints
generated for p; and < p;, piv1 >.

Let PC(p) denote the path constraint generated for the path p, then from Algo-
rithm 6.1 and Definition 6.1, we have

PCp)= N\ PCp.p) N PC(p, < pis Piv1 >)

pi :anodeof p <pi,pi+1> :abranch of p

Depending on the type of p; (which can be a global entry, an assignment, an
input statement, a call node, etc.), PC(p, p;) and PC(p, < p;, piy1 >) are constructed
accordingly as follows.

6.1.1 Global Entry Node

p; is the global entry node of the ICFG associated with a test procedure P. Suppose
that P has the following parameters: z (a simple variable), a (an array variable).
Then, PC(p, p;) is

Xg € dom(x) A /\ agli] € dom(a)
0<i<length(a)

where dom(z) denotes the domain for z, and dom(a) the domain for all array el-

ements of a. These constraints thus aim to define input variables from the formal

parameters of procedure P.

Note that:

e The initial domain (interval) may depend on the programming language £, but
can also be fixed by the user.

e We focus our presentation to one-dimensional arrays, but the approach itself can
be easily generalized to multi-dimensional arrays.

e We suppose that the size of array variable a is specified. If it is not the case, i.e.
length(a) is unknown, we note only that ag is an input variable, and hence no
ao[i] are created at this node. Later, when we deal with an ag[i] (7 is a number),
and if no input variable representing ag[i] exists, then an input variable ag[i] is
created once for all.

Definition 6.2. Let exp be an expression. Then exp denotes a version of exp in

which each variable is substituted by its last value instance.

6.1.2 Assignment

e If p; is an assignment to a simple variable, x := exp, then PC(p, p;) is

Ty = €xTp
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where £ is the smallest integer not yet used for identifier x. Note that this sort of
equality constraints, associated with assignments, will be denoted as z; := exp.
e If p; is an assignment to an array element, a[j]:=exp, then PC(p,p;) is

na4(ak’7 ag, j: m)

where ay, is the last value instance of a; k" is the smallest integer not yet used for
identifier a. The constraint na4 (na represents New Array) is defined hereafter.

Definition 6.3. The constraint na4(b,a, j,v) states that b is an array which is of
the same size as a and has the same component values, except for v as the value of
its j-th component. It can be defined more formally as follows.

nad(b, a, j,v) = bj] =v /\bli] = ali]
i)

Definition 6.4. By convention, when all the elements of array a are null (non-
initialized), we will denote this as a = null.

Example 6.1. Here is an example of constraint generation involving arrays:
Initial code: int a[5]; al0] = 8; all]l = 7;
Generated constraint: na4(ag, null,0,8) A nad(ay, ag, 1, 7).

6.1.3 Input Statement

e If p; is an input statement to a simple variable, read x (in C, this is realized by
scanf), then PC(p, p;) is

xy € dom(x)

where k is the smallest integer not yet used for identifier x. This constraint
defines x; as an input variable.
e If p; is an input statement to an array element, read aljl, then PC(p,p;) is

na3(ax, ax, j)

where a;, is the last value instance of a; k" is the smallest integer not yet used for
identifier a. The constraint na3 is defined as follows.

Definition 6.5. The constraint na3(b, a, j) is formally defined as

na3(b,a,j) £ bj] € dom(b /\b = ali]
i#]

The goal of this constraint is to define b[j] as an input variable.
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6.1.4 Decision Node

If p; is a decision node, then PC(p, p;) is empty.
However PC(p, < p;, pir1 >) is ¢, where ¢ is the condition associated with the branch

< Pis Di+1 >

6.1.5 Procedure Call

If p; is a call node to a procedure P (the control is going to pass to P), then for each
pair (2', z) —where 2’ is an actual parameter of the call, and z is the corresponding
formal parameter of P (that is a by-value or by-reference parameter)— an assignment
x := x' is generated. These assignments are converted into constraints, that are then
affected to PC(p, p;).

If p; is the return node of a call to procedure P (the control just quits P), an
assignment x' := x is generated if x is a by-reference parameter. Moreover, if the
return node is associated with z := P(...), an assignment is also generated. All
these assignments are converted into constraints, that are then affected to PC(p, p;).

This way of handling parameters is commonly known as the call by value-result
mode of parameter passing [18], where the parameters of the procedure are not
directly bound to the variable’s address. Rather, they have their own space within
their scope, and the new values of the parameters are copied back into the caller’s
variables only when the procedure is terminated.

To illustrate the difference between the call by reference and the call by value-
result modes, consider the following C code [18]:

void a(int *x, int *y) {
*x = 1;
Xy = 2;

}

int t;
a(&t,&t);

Then with the call by value-result mode, the value of t after the call depends on the
order of parameter copies when the call is finished; while with the call by reference
mode, the value of t will always be 2. This problem is due to aliasing (i.e. if z and y
refer to the same variable or address, then = and y are aliased). Since in this work,
we rather focus our attention to the feasibility of applying our consistency approach
for test data generation, the aliasing problem is left for future work.

6.2 Example
Example 6.2. We illustrate the operation of the algorithm on the path 1-2-3-4-5a-8-

9-10a-16-17-18-20-10b-11a-16-17-18-20-11b-12-13a-21-22-23-24-13b-15-5b-6-4-7-25 (in
Figure 3.3). Constraints are generated for the nodes as follows.
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Node 1: Aj<;<10a0li] € dom(a) A cq € dom(c); (a and c are the parameters of pro-
cedure M in Figure 3.1. The constraint defines thus input variables.)
Node 2: no constraints are generated;

Node 3: iy :=1;

Node 4-T'4: ig < cy;

Node 5a: a; := ag;

Node 8: no constraints;

Node 9: i; € dom(i) A jo € dom(j);

Node 10a: iy := iy;

Nodes 16, 17-T'17, 18, 20: i, > 0 Aiy < 9;

Node 10b: fig := is;

Node 11a: i3 := jo;

Nodes 16, 17-T17, 18, 20: i3 > 0Aiz3 < 9;

Node 11b: fj, :=i3; Node 12-7'12: fiy < fj,;

Node 13a: Xp = ap [11] VAN Yo ‘= al[jo];

Nodes 21, 22-T22, 23, 24: xq > yg A tg :=Xg A X1 := Yo A Y1 := to;
Node 13b: na4(aq,aq, iy, x1) A nad(as, as, jo, y1);

Nodes 15, 5b: a4 := ags;

Nodes 6, 4-F4, 7, 25: iy := 1+ 1 A =(ig < ¢o).

6.3 Analysis

A path constraint is composed of:

1. constraints defining input variables: simple input variable and input array ele-

ment (na3 constraints),

2. assignment constraints: equality constraints with “:="

ables, and na4 constraints for array elements,

notation for simple vari-

3. branch constraints (constraints for the branches of the path).

However, only the branch constraints (3) represent the conditions which must be
satisfied so that the path is traversed. The other types of constraints (1) and (2), as
will be shown later, are used in the simplification of the branch constraints in terms
of input variables. The solving of the path constraint is the solving of its branch
constraints. In the CSP associated with a path constraint, only the input variables
will have a domain. There is no need to define a domain for the other variables as
they are defined in terms of input variables or constraints. If it is not the case, the
program is referring to non-initialized variables, and is thus incorrect.

Proposition 6.1. The constraint generated by Algorithm 6.1 is a path constraint.

Proof. We only present here a sketch of the proof.

The path can be seen as a program (called path program) if we replace every
condition ¢; of the path by an assignment b; := ¢;, where b; is a boolean. A test
input v will traverse the path if after executing the path program, all the b; will
become true. To prove that the constraint generated by Algorithm 6.1 —as denoted
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above by PC(p)— is a path constraint, we must show that A b; is equivalent to
PC(p).

As the above abstraction of the algorithm (namely, the idea of using indexed
variables) follows the same principle as the Static Single Assignment (SSA) [8] (which
is an equivalent representation of a program), we can conclude that the generated
constraint PC(p) is actually equivalent to the path program. In other words, PC(p)
is a path constraint. This means that if a test input v traverses the path p, then the
constraint PC(p) (evaluated by using the operators of the programming language
L) will be satisfied by that input. O

Note that in an SSA form, there is only one assignment to each variable in the
entire program, and each use of a variable refers to only one assignment. Thanks
to this form, one can reason easily about variables because if two variables have the
same name, then they contain the same value wherever they occur in the program.
Here is an example of a simple sequence of assignments and its corresponding SSA
form :

Original form: x = 0; y = x+1; x = x+y; y = x+y;
SSA form:  x; = 0; y1 = x1+1; X9 = X1+y1; Y2 = Xotyi;

Our constraints dealing with arrays such as na3 and na4 constraints, are also
inspired from SSA form. Indeed, SSA form provides a special expression, among
others, to handle arrays: update(a, j, w), which evaluates to an array that has the
same size and the same elements as a, except for the j-th element where the value
is w.

In another work [26], also based on SSA form, a definition statement a; =
update(ay, j, w) is translated into

element(.J, A;, W) /\ (element (7, Ap, V') A element(], A1, V))
47

where the constraint element(I, L, V') expresses that V is the I-th element in the
list L. Note that in [26], the initial program is first transformed into an SSA form,
and constraints reaching a node (statement) are then constructed from this form;
while in our work, given a specified path, we rather make a traversal of the path to
construct directly an SSA-form-like path constraint.

6.4 Conclusion

In this chapter, we first described an algorithm for constructing a path constraint
from a given path of the ICFG. The output path constraint is actually the con-
junction of the constraints generated for the nodes and branches of the path. For
each type of nodes (global entry, assignment, ... ), we showed in detail how spe-
cific constraints are generated. Special constraints dealing with arrays, na3 and na4,
were introduced. How these constraints are actually treated will be discussed in a
following chapter. We then illustrated the working of the algorithm on an example.
Finally, we informally analyzed its correctness.
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6.4 — CONCLUSION

In the next chapter, we will talk about our consistency technique and the basis
for its conservation of float solutions.
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Chapter 7

A New Consistency Technique

This chapter presents a new consistency technique, the core of our constraint solver
developed for the test data generation problem. The ideas underlying the conserva-
tion of float solutions in our filtering algorithms will also be highlighted. We first
define a consistency notion, called e-box consistency.

7.1 Consistency

We introduced e-box consistency in [63] as an extension of the classical box-consistency
[36] to integer, boolean, and float variables. The objective is to reduce the domains
of the variables (i.e. their intervals) without removing solutions.

Definition 7.1 (e-box consistency). Let P = (V,D,C) be a CSP where V =
(x1,...,2,), aset of (float and integer) variables; D = (X7, ..., X,,) with X; = [l;, ;]
the domain of z; (1 < i < n); C = (c1,...,¢m), a set of constraints defined on
Z1,...,%, and ¢ € C be a k-ary constraint on the variables (xi,...,z;). The
constraint ¢ is e-box consistent in D if for all z; (1 < i < k)
L] C(Xl, P ,Xifl, [l“ li]aXH»l: ce ,Xk) /\

C(Xl, e ,Xi,l, [7“2', /rz'],XZ'+1, e ,Xk) when l1 7£ T;
L] C(Xl, c. ,Xi,l, [l“ 7"1'], Xri+1, c. ,Xk) when l1 =T
where C' is the natural interval extension of constraint c.

The CSP P is e-box consistent in D if for all ¢ € C, ¢ is e-box consistent in D.

Note that in the definition of the classical box-consistency, the above two bullets
are replaced by the following;:

L] C(Xl, P ,Xifl, [l“ l:—], Xi+1, P ,Xk) /\

C(Xl, PP ,Xi,l, [T;,TZ'],XZ'+1’ N ,Xk) When lz 7§ T
L] C(Xl, c. ,Xi,l, [l“ 7"1'], Xri+1, c. ,Xk) when l1 =T
where C'is any interval extension of constraint c.

The latter definition states the potential existence of real solutionsin small boxes
([t;, ;] and [r; ,7;]) on all sides of the domains, whereas Figure 7.1 describes the
intuition of our e-box consistency where small boxes on all sides of the domains may
contain float solutions.
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Initial box

eBox-consistent box

=

Solutions space

Figure 7.1: Example of e-box consistency

Given the initial domains of the variables (the initial box), the purpose of fil-
tering is to obtain the smallest box, satisfying the e-box consistency, and without
removing any solutions from the initial box. In constraint programming, one finds a
lot of sophisticated consistencies dealing with real solutions, such as used in Prolog
IV, CLP(BNR), or Numerica. A consistency dealing with float solutions was also
proposed in [50], where it concentrates only on float variables.

Definition 7.2 (Filtering by e-box consistency). Filtering by e-box consistency
ofa CSP P = (V,D,C) is a CSP P' = (V,D’,C) such that (1) D' C D, (2) P and
P’ have the same float solutions, and (3) P’ is e-box consistent in D'.

Our filtering algorithm is based on the property that if C'(X) does not hold, i.e.
right(C(X)) = 0, then no solution of ¢ lies in box X, that can then be pruned. We
denote by @, .. (P), the filtering by e-box consistency of P. Note that the filtering
by e-box consistency of a CSP, by its definition, always exists and is unique. An
implementation of ®, 4, (C'SP), called PhiEBox, is presented in Algorithm 7.1, that
uses standard mechanisms of pruning such as in [36, 15|. Therefore, the use of an
open solver may facilitate the implementation of this algorithm.

We now detail the operation of PhiEBox. A queue is first initialized (line 1). It
contains all the constraints of the input CSP. The objective of the main loop in line
2 is to make a filtering operation on each constraint until the e-box-consistent CSP
is obtained (line 10). The filtering operation for each constraint ¢ (extracted from
queue in line 3) in turn is realized by the loop in line 4, which consists in a filtering
operation on each pair < ¢, z; >. For each variable xz; of ¢ —wvariables(c), in line 4,
denotes all variables involved in ¢— an univariate interval constraint on X, C, is
generated (line 5) by replacing all variables of ¢, except x;, by the intervals corre-
sponding to their domains. By convention, variable x; of ¢ is also replaced by interval
variable X in interval constraint C'y. The leftmost and rightmost zero canonical in-
tervals of X; (the domain for variable z;) are then computed respectively by the
functions LeftNarrow and RightNarrow (line 6). The leftmost (rightmost) “zero”
canonical interval is the leftmost (rightmost) canonical interval I such that Cx(I).
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Algorithm 7.1 &, 4,
function PhiEBox(V : Variables, D : Box, C : Constraints) : CSP;
PRE
V a set of variables
D a box of their corresponding domains
C a set of constraints over V
POST
Return a CSP (V,D',C) such that (V,D',C) = ®,_ps,(V,D,C)
begin
1: queue := C;
2: while queue # () do

3: ¢ := dequeue(queue); {Suppose c is a constraint over zi,...,zp}
updatedDomVars := (); {A set of variables with domain updated}

4. for x; € wariables(c) do

5: Cx := C(Xy,..., X1, X, Xs41,...,Xg) ;{univariate interval constraint}

6: left(X]) := left(LeftNarrow(Cx, X;));

right(X]) := right(RightNarrow(Cx, X;));
if X; # X/ then

7: X; = X/;
8: if X; = 0 then return (V,0,C);
updatedDomVars := updatedDomVars |J {z;};
endfor

9: queue := queue |J {c’ € C | updatedDomVars ()| wvariables(c’) # 0};

endwhile
10:return (V,D,C);
end

Only function LeftNarrow is described in Algorithm 7.2. Function RightNarrow
can be derived easily from LeftNarrow as a symmetric version.

The new domain for z; will be X/ (line 7) if X; # X/. If the new domain for
x; is empty, an inconsistent CSP is returned (line 8). Following the pruning for
constraint ¢, we add into queue constraints which can be pruned further (line 9).
When we reach line 10, no constraint is left to be pruned. In other words, all the
constraints from C have gone through filtering, and no further domain reductions

can be realized — i.e., a fixpoint is reached. We obtain thus the e-box-consistent
CSP.

We now go into details for Algorithm 7.2 (LeftNarrow). If Cyx is satisfied on
interval I, two sub-cases (corresponding to line 2 and line 3) are possible; otherwise
an empty interval (denoted by ) is returned (line 9). If I is canonical (line 2), it
will be returned as the leftmost zero canonical interval. If I is not canonical (line
3), it will be divided into two sub-intervals that are then explored recursively. The
division of an interval into two parts is different following X is an integer variable
(line 4) or float variable (line 5). If the exploration of I;.;, (line 6) is successful, the
result is returned (line 7). Otherwise, the result of exploring I,y is returned (line
8).
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Algorithm 7.2 Finding the leftmost zero canonical interval
function LeftNarrow(Cx : IntervalConstraint, I : Interval) : Interval;
PRE
Cx an univariate interval constraint on X
I an interval
POST
Return the leftmost zero canonical interval L € I such that Cx(L)
if it exists; otherwise return (

begin
1: if Cx (I) then
2: if [ is canonical then return [
3: else
m = (left(I) + right(I))/2;

4: if X is an integer variable then

Liege = [left(I) , |m]]s Irigne = [[m] , right(I)];
5: else

Diepe = [left(I) , m]; Lyigne = [m , right(I)];

6 L := LeftNarrow(Cx, Iicft);

7 if L # 0 then return L;

8: else return LeftNarrow(Cx, Irignt);
9: else return §;

end

Analysis

Technically, our LeftNarrow algorithm (Algorithm 7.2) is simpler than a standard
one [15] for the classical box-consistency [36], but safe for float solutions. Our
algorithm consists in applying recursively a domain-splitting on the initial interval
to obtain the leftmost zero canonical interval. On the other hand, the standard
LeftNarrow recursively applies two operations, an iterator of Newton and a domain-
splitting on the initial interval. Because of the use of the Taylor interval extension,
and of the fact that the iterator of Newton aims to prune parts —which do not have
mathematical solutions— to make the algorithm converge more quickly, it may not
be safe for float solutions as shown in [50].

The correctness of LeftNarrow follows directly if all the primitive interval opera-
tions and relations are monotonic. For example, an interval relation C' is monotonic
if VX, X, € I @ Xy C Xy = C(Xy) € C(X3). As natural interval extensions
are used in our work, and they are known to be monotonic [36], the assumption is
naturally satisfied. With LeftNarrow, we see that if a sub-interval I’ C I is refuted,
i.e. =Cx(I"), then from the monotonicity of Cx, we can deduce that there exists
no zero canonical interval in I’. Combined with the fact that LeftNarrow proceeds
from the left first, the returned canonical interval, if it exists, must be the leftmost
zero canonical interval.

Note that for efficiency reasons, it is common practice to work with epsilon inter-
vals rather than with canonical intervals in the definition of the e-box consistency, as
well as in the functions LeftNarrow and RightNarrow. The efficiency of the filtering
algorithm is therefore influenced by the chosen epsilon. The choice of such a value
is analyzed in the experimentation chapter.
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The correctness of PhiEBox (Algorithm 7.1) must be verified in reference to
Definition 7.2. Remark first that PhiEBox can be viewed as applying repeatedly a
filtering operation on each pair < constraint,variable > until a fixpoint is reached.
Point (1) of Definition 7.2 is evident. Point (3) follows from the fact that a filtering
operation on each pair < constraint,variable > by LeftNarrow and RightNarrow
makes that the pair < constraint,variable > is e-box consistent following Defini-
tion 7.1. Point (2) concerns the conservation of float solutions by LeftNarrow and
RightNarrow, which will be the subject of the next section. Since PhiEBox con-
verges to a fixpoint, it returns either the e-box-consistent CSP (because all the pairs
< constraint, variable > are e-box consistent at the fixpoint), or an inconsistent
CSP (if some inconsistency is detected).

7.2 Conservation of Float Solutions

Since interval libraries are traditionally constructed to preserve mathematical solu-
tions, it may be that float solutions will not be preserved when using such libraries.
As introduced in Chapter 3, our aim is to obtain float solutions. We describe here
the core results related to the conservation of float solutions in our filtering algo-
rithms. We first present the following proposition given in [50]|, which is the basis
for the conservation of float solutions.

Proposition 7.1. Assuming every basic operation has an optimal interval exten-
sion, if F': I™ — T is the natural interval extension of a real expression f : R" — R,
then for all rounding mode r € {400, —00,0,near} and VI € Z", we have f,(I) C
F(I),

where f, is a corresponding float expression of f, and f,.(I) = {f.(v) |[vE€Tland v €
Fn}.

Note that for all r € {400, —00,0,near}, f (V) < fr(v) < fie(V).

This proposition states that natural interval extensions conserve float solutions,
when all the basic operations have an optimal interval extension. Conservation of
float solutions here is reflected by the fact that for whatever rounding mode r being
used, interval evaluation on interval I, F(I), contains at least all float solutions of
fr(D).

A sketch of the proof for Proposition 7.1 is presented in [50|, which is based on
the following observations.

e If f is a basic operation with an optimal interval extension, we then have:
VI €I F(I) = [min(f-o(I)), maz(fioo(I))] (7.1)

Property (7.1) is also stated in [38] for arithmetic operators. It means that
left(F(I)) < fr(v) < right(F(I)) for all float v € I and for any rounding mode
r.

e If f is a composition of basic operations, the proposition still holds by induction.
Indeed, since F'is the natural interval extension of f, we can assume that f,.(v)
and F'(I) are computed by evaluating the same sequence of basic operations.
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Proposition 7.1 requires the interval extension of the basic operations to be op-
timal, what may not be the case for some basic operations (e.g. sin, In, etc.). The
following property extends Property (7.1), when the interval extensions of some basic
operations are not optimal.

VI € I [min(f-o (1)), maz(f1o0(I))] € F(I) (7.2)

If Property (7.2) is satisfied by the non-optimal basic operations, then the interval
extension F' conserves float solutions, because f,(I) C [min(f_o(I)), max(fis(I))],
whatever rounding mode 7 being used.

Note that ideally we expect to have Property (7.1) for all basic operations. But
since calculating min(f_(I)) and maz(f(I)) can be too difficult for certain basic
operations, due to the reasons given later in Section 10.11.5 (e.g. the monotony of
a real operation f cannot ensure that f ., is monotone), we have to guarantee at
least Property (7.2) so that float solutions are preserved.

Conservation of float solutions in Java In practice, it is sometimes difficult to
have Property (7.2) for basic operations when only the rounding mode near is used
such as in Java. However, if Properties (7.3) and (7.4) below are satisfied, then one
can show that float solutions are also preserved. Because for any I € 77,

[min(f-oo(1)), maz(f1oo(1)] € [min(fre,, (1)), maz(fi., ()] € F(T).

VL€ I% [min(fear (1)), maz(freq, ()] € F(T) (7.3)
where fo.,.(I) = {(foear(v))™ [ v € Tand v € F} and [, (1) = {(faear (V)T [ v €
I and v € F"}.

VV € fnﬂ (fnem"(v))i S f*OO(V) S fnear(v) S f+00(v) S (fneaT(V))+ (74)

Remark If any interval library in Java is implemented such that Property (7.3)
and Property (7.4) hold for all of its basic operations, then conservation of float
solutions is ensured by that library. Unfortunately, Property (7.4) is only correct
if the rounding of an operation is exact. We illustrate this claim by an example.
Recall that if f(x) is a real operation such that f; < f(z) < fo —where f; and
fo are two consecutive floats— then the rounding of f is exact if f (z) = f; and
fioo(x) = fo. If the rounding of f is not exact, it is possible that f . (z) = f; and
fioo(x) = f3, where fi1, fo and f3 are three consecutive floats. Note that fpeq ()
is either f_(x) or fi(x), depending on which of these is closer to f(x) than the
other.

o If fnear(x) = fla then (fnea'r(m))Jr - f2 < f—l—oo(m)-
o If fnear(x) = f3a then (fnea'r(m))i = f2 > f—oo(m)-
In all of these cases, Property (7.4) does not hold.

It is known that arithmetic operations are exactly rounded [50]. However, also
following [50], Intel-387 provides transcendental functions with up to 4.5 ulps error,
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where an ulps corresponds to the size of the gap between two consecutive float
numbers. As a consequence, if transcendental functions provided by Java are not
exactly rounded, we cannot state whether Property (7.4) still holds or not.

In practice, since interval libraries are rather constructed to preserve mathemat-
ical solutions, and these interval libraries are then used in constraint solving to find
mathematical solutions, it can be that Property (7.2) will not always hold. There-
fore, one must construct an interval library satisfying Property (7.2), if the aim is to
preserve all float solutions. Using such an interval library, our filtering algorithms
will ensure preserving all float solutions. Because the functions LeftNarrow (Algo-
rithm 7.2) and RightNarrow —the heart of our filtering algorithms— are based on
the property that if C(I) does not hold, where C' is the natural interval extension
of a constraint ¢, then no float solution lies in I, that can then be safely pruned.

Note that Property (7.2) is only necessary for the general framework on the
floating-point numbers such as proposed by the IEEE 754 standard. Because for
whatever rounding mode being used, float solutions with that rounding mode are
preserved by interval operations. It is actually the case, when the programming
language under test £ is the C language. However, if the programming language
under test uses only one rounding mode such as in Java, and the purpose is to
generate test data for Java, one can easily observe that Property (7.3) is already
sufficient to preserve all float solutions in Java. Because for any I € 7",

Jrear(I) € [min(frea, (1), maz(fyloe, ()] € F(I).

In summary, using an interval library —where the basic interval operations are
conservative on the floats— and the natural interval extensions for all real expres-
sions, provides a safe way to preserve all float solutions.

7.3 Conclusion

In this chapter, we presented a new consistency technique for test data generation,
the e-box consistency, as well as the basis for its conservation of float solutions. We
defined, in Section 7.1, the e-box consistency. Such consistency aims at reducing as
much as possible the domains of the variables without removing any solution of a
CSP. We then gave detailed algorithms to achieve consistency for the CSP. In Section
7.2, we presented an important proposition, which is the basis for the conservation
of float solutions in [50], as well as in our filtering algorithms. We then proposed
a general way to implement any interval library such that its basic operations are
conservative on the floats. Using such an interval library, our filtering algorithms
will ensure the conservation of all float solutions.

In the next chapter, we will talk about test data generation for path coverage,
more particularly the solving of the path constraint. We will show how our consis-
tency algorithms are integrated in a constraint solver to generate test data.
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Chapter 8

Test Data Generation for Path
Coverage

This chapter describes constraint-solving algorithms for test data generation under
the path coverage criteria (searching for test data executing a path of the ICFG).
Our algorithms are divided into two sections corresponding to two cases, one where
arrays are not involved in the test program (simple case) and one with the presence of
arrays (general case). Our purpose is that readers can read only the simple version,
without any need to read the general version where we discuss, among others, how
constraints with arrays are actually handled.

8.1 Simple algorithm

Our algorithm for path coverage (given in Algorithm 8.1) includes the following
steps.

1. A path constraint is derived from the specified path of the ICFG (by Function
PathConstraintGeneration given in Chapter 6). Such a constraint involves
integer, boolean and float variables, as well as operations with arrays. Note that
the branch constraints BC' mean constraints generated for the branches of the
path. They represent the conditions which must be satisfied so that the path is
traversed. The other types of constraints (OC') are used in the simplification of
the branch constraints in terms of input variables. In this simple case (no presence
of arrays), the branch constraints on the path can always be expressed in terms
of input variables, because they are initially the constraints on program variables
and those variables depend on input variables with assignment constraints along
the path. This means that the solving of the path constraint (in the next step)
is in fact the solving of BC'’, a simplified version of BC where all the branch
constraints are expressed in terms of input variables. Note that for every non-
input variable x, there must exists an assignment constraint,  := def(x), in
OC'. The replacement of a non-input variable by its definition is only carried out
in a “symbolic” manner. We illustrate our idea hereafter. Assuming x appears
in a data structure DSy, and def(x) is represented by a structure DS, then a
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Algorithm 8.1 Generation of test data for path coverage (simple version)

function TestDataGenPC(P:Procedure,G:ICFG,p:Path):F";
PRE G the ICFG for test procedure P
p a path in G

POST a test case on which the path p is executed
begin

PC':= PathConstraintGeneration(P,G,p);

BC := the branch constraints of PC;

oC := PC \ BC;

B(C' := a version of B(C, simplified from OC and expressed in terms of input vars;
V := the input variables in B(C';
D := the domains of the variables in V;
return SolvePathConstraints(V, V, D, BC");
end

function SolvePathConstraints(V,V’:Variables,D:Box,BC:BranchConstraints) : F";
PRE V the input variables in BC

V' a subset of V (V! C V)

D a box representing the domains of the variables in V
POST Return some float solution v€&€ D of BC

Otherwise it returns ()

begin
qs := QuickFindSolution(BC, D); // Appendiz A will make reference
if ¢s # ( then return g¢s; // to these 2 lines

(V, Dy, BC) := PhiEBox(V, D, BC);
if D; is () then return (;
else
if D; is an e_bor then return FindSolution(BC,D;);
else
if V' is not empty then
Choose arbitrarily a variable z in V';
m = (left(Xy) + right(Xy))/2;
if x is an integer variable then
ms := SolvePathConstraints(V, V'\ {z}, DX:/[|m],|m]]], BC);
else ms := SolvePathConstraints(V, V'\{z}, D[X:/[m,m]], BC);
if ms # 0 then return ms;
if x is an integer variable then
ls := SolvePathConstraints(V, V'\ {z}, D:X:/[left(X:),|m|—1]], BC);
else ls := SolvePathConstraints(V, V'\ {z}, DX./[left(X:),m~]], BC);
if Is # () then return ls;
if x is an integer variable then
rs :=SolvePathConstraints(V, V'\{z}, D:[X:/[|m]| + 1,right(X:)]], BC);
else rs := SolvePathConstraints(V, V'\ {z}, Di[X;/[m*,right(X;)]], BC);
if rs # ( then return rs else return (;
else return SolvePathConstraints(V,V,D;, BC);

end
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link is established between DS; and DS,. Therefore, we are not dealing with
important-sized expressions as resulted from an actual simplification.

2. The path constraint (represented by BC") is solved by an interval-based constraint
solving algorithm (Function SolvePathConstraints). If function
QuickFindSolution (specified in Specification 8.1) gives a test case, that is then
returned. This step is theoretically unnecessary, but it may quickly find a solution
of an under-constrained path constraint. Otherwise, function PhiEBox (given
earlier in Algorithm 7.1) prunes first the path constraint before it is explored
further by a domain-splitting.

3. Given a path constraint, the output of the constraint solver is either a test case
returned by function QuickFindSolution, a (set of) interval solutions of size
epsilon (e_box), or that the path constraint has no interval solution. When the
path constraint has no interval solution, the path is actually infeasible. When an
e_box is returned, a test case is extracted by function FindSolution, as specified
hereafter.

Specification 8.1 (QuickFindSolution). Let C be a path constraint, and b be
a box. The function QuickFindSolution(C,b) returns the middle point v € b if
eval(C,v) holds. Otherwise it returns (.

Specification 8.2 (FindSolution). Let C be a path constraint, e be an e_box and

T'S be a representative set of floating-point vectors in e. The function FindSolution(C, ¢)
returns, if it exists, some vector v € T'S such that eval(C,v) holds. Otherwise it
returns ().

Note that a more detailed discussion of the FindSolution function is given later
in Section 10.6.

8.1.1 Incremental construction of the path constraint

In Algorithm 8.1, once a path constraint is constructed for a given path, it is then
solved to obtain a test case. We can however improve the algorithm by incrementally
filtering the path constraint during its construction. Figure 8.1 illustrates such

‘D

Figure 8.1: Incremental Construction of Path Constraint

incremental handling of the path constraint, where the path is represented by the
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float nThRootBisect(float a, int n, float e))
POST Let r > O such that 1" = a
Return r* with (r* —r)? < e

float 1, h, c;
function float f(float x) = (x**n - a) ;
1=1; h=a;
while (h—1? >= e) do
c=(Q +h)/2;
if (£(c) = 0)
return c;
if (£(1)*£(c) < 0)
h =c;
else 1 = c;
return h;

O 00N U WN =

Figure 8.2: Two paths in Program nThRootBisect

arrow-headed curve; U, (%, ... represent the branches on the path; A;, A;, ... the
assignments on the path; and Dy, Dy, D, ..., D,, the successive domains of the input
variables.

Our idea is that filtering is done at each branch C; of the path. Therefore, if
D; = (, then the path is infeasible, and no more path construction is needed. As a
consequence of the successive filtering steps, we have
D, C...C Dy C Dy
Finally, if no inconsistency is detected at the end of the path-constraint’s construc-
tion (D,, # 0), then the solving of the path constraint is actually started.

8.1.2 Possible ways to perform path constraint solving

The objective of solving the path constraint is to get a solution for the input vari-
ables. Some approaches to path constraint solving are possible, as will be discussed
below with an example of how to generate test data for the path 1-2-3-4-6-8 of the
nThRootBisect program shown in Figure 8.2.

As presented in Chapter 6, the path constraint generated for the above path is
1: l() =1A h(] = Qo
2(True): A (hg —lo)* > eg
3: ACOZ(ZQ+h0)/2
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4(False): A not(cy® — ag = 0)
6(False): A not((l° — ao) * (¢5° — ag) < 0)
&: N ll = (g

The branch constraints (denoted BC') generated for the branches of the path are:
(ho — 10)? > eq, not(cy® — ag = 0), not((I5° — ag) * (cg® — ag) < 0).

The other constraints (denoted OC') generated for the assignments of the path are:
l(] = 1, ho = g, Cop = (l(] + ho)/?, l1 = (g.

(Recall that these are equality constraints, where we can also denote “=" by “.=” to
mean assignment constraints.)

We now discuss three possible ways to handle the path constraint, as well as
their characteristics.

Substitution of BC' in terms of input variables We substitute the branch
constraints BC' in terms of input variables by using the information from the as-
signment constraints OC. We then solve only these BC' constraints. In other words,
the constraints system includes only the branch constraints BC' reexpressed in terms
of input variables, as follows:

(ag—1)% > eg, not(((14ag)/2)™ —ag = 0), not((1™ —ag) * (((1+ag)/2)™ —ag) < 0).
The constraints system together with an initial box representing the domains of the
input variables ag, ng and eg, will finally be solved by Function SolvePathConstraints
in Algorithm 8.1.

This way of handling the path constraint, although possible, can results in very
large expressions and many redundant evaluations (e.g. a non-input variable, defined
by an assignment constraint, may occurs many times in an expression before the
substitution).

Classical constraint solving The constraints system is composed of the whole
set of contraints involved in the path constraint, i.e. including both BC' and OC.
With the above path constraint, we obtain the following constraints system:

e (ho—1o)* > ey, not(cy® —ag = 0), not((I§° — ag) * (cg® — ag) < 0) (BC)

o ly=1, hg =ag, co = (lo + ho)/2, l1 = co (00)

By contrast with the above substitution approach, the set of variables of the con-
straints system now includes also non-input variables. An initial box is provided
only to the input variables. The other non-input variables (ly, ho, o, 1) can be
given the biggest domain, following their type. Because non-input variables are
in fact dependent upon input variables by OC', and their domains can be actually
calculated later during filtering.

This approach does not exploit the unique definition property of the variables.
Moreover, the number of constraints increases considerably, if there are lots of non-
input variables. The big question is whether in some cases, this approach could lead
to more pruning, compared with the substitution approach.

Separating BC' and OC The approach used in this work consists in separating
the branch constraints and the assignment constraints. This means that we perform
the solving on the branch constraints BC' (i.e. the constraints system includes
solely the BC' constraints), and use the assignment constraints OC' only for keeping
intermediate results.
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To achieve our aim, (1) the path constraint is represented by establishing links
between BC' and OC'. For example, a link is established between not(cy® — ag = 0)
and ¢g := (lop + hg)/2, meaning that the former is dependent on the latter during
calculations. The other links are established by the following pairs of constraints:
< ¢ = (l(] +h0)/2,l0 =1> < ¢ = (l(] +h0)/2,h0 =ay >, < (h(] — lg)2 >
eo,ho == ag >, ... (2) From these links, we know the input variables involved
directly or indirectly in each branch constraint.

(ho — 1o)* > e : ag , €g
not(cg® — ag = 0) : ag , ng
not((l5° — ag) * (c° — ap) < 0) : ag , N

This approach improves upon the substitution approach by working with BC
as if they were directly expressed in terms of input variables, and therefore does
not have to deal with important-sized expressions (following an actual substitution
of BC in terms of input variables). This also means that pruning is performed
only on the input variables. Furthermore, optimizations can be realized during the
evaluation of BC' as follows:

e If any branch constraints involve directly or indirectly many occurrences of an
intermediate variable (defined by an OC' constraint), this variable is evaluated
only once.

e Intermediate variables are evaluated only if the domain of its dependent variables
has changed.

Regarding the capacity of pruning, this approach is equivalent to the substitution
approach. More research is however needed to determine if this approach is better
or worse than the classical constraint solving approach; or rather, for some classes
of path constraints, it is better, and for others, it is worse.

8.1.3 Example

Ezample 8.1. As an example for path coverage, let us look again at the path 1-2-3-
4-6-8 shown in Figure 8.2. The path constraint generated is:

lo:=1 A hg:=a9 AN (hg—1)*>ex N co:= (log+ ho)/2 N not(cy® —ag =
0) A not((lg° — ag) * (c§° — ag) < 0).

The input variables, generated during the path constraint generation, are ag, ny and
eo. With the initial box (ag : [2,1000],n9 : [2,20],eq : [le — 4,10]), here are the
results of the incremental filtering of the path constraint (as discussed in Subsection
8.1.1)

e At the branch T2 : (ap : [2,1000], ng : [2,20], €0 : [le — 4,10])
e At the branch F4 : (ag : [2,1000],ng : [2,20], e : [1e — 4,10])
e At the branch F6 : inconsistency is detected

The path is thus infeasible and no test case is found. Note that the path constraint
together with the initial box is detected inconsistent before reaching Node 8.
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Example 8.2. As another example for path coverage, let’s look at the path 1-2-3-4-
6-7-2-3-4-6-8 shown in Figure 8.2. The path constraint generated is:

l(] =1 A hO = Qp AN (h,() — l0)2 Z €o A\ Cy ‘= (l(] + ho)/2 A nOt(CgO — Qg =
O) N (Z(T]LO — Cl()) * (Cgo — Cl()) <0 AN hy = ¢ A (hl — lo)z > e N ¢ =
(lo+ h1)/2 A not(c!® —ag=0) A (I5° —ag) * (] —ag) <0 A Iy :=c.

With the initial box
(ag : [2,1000],ng : [2,20], ¢ : [1e — 4,10]),
the results of incremental filtering when reaching Node 8 are
(ag : [2,9.000000000000046], ng : [2,9], €0 : [1e — 4, 10]).
We finally obtained the test case (aq = 7.236079157811748,ng = 2,e9 = 5.00005),
with the path constraint solving.

8.2 General algorithm

Our general algorithm for path coverage is given in Algorithm 8.2. It is interesting
to highlight the main difference between this algorithm (the path constraint with
arrays) and the algorithm given in the previous section (the path constraint without
arrays). Given a path constraint without arrays, its branch constraints are sim-
plified once for all, in terms of input variables by recursively replacing non-input
variables by their definitions in some assignment constraints of the path constraint.
These simplified branch constraints together with an initial box (representing the
domains of the input variables) are then solved to develop test cases executing the
path. However when a path constraint involves arrays, it is not always possible to
simplify all of its branch constraints in terms of input variables with the initial box.
For example, suppose ali] (i is an expression involving input variables) is an array
reference occurring in a branch constraint, then it is generally impossible to deter-
mine which array element a[i] is. Therefore, the branch constraints will be simplified
incrementally along with their resolution. The simplification is thus integrated in
the filtering (function Filtering in Algorithm 8.3), which in turn is integrated in
the path constraint solving (function SolvePathConstraints) as illustrated above.
Note also that the number of (currently identified) input variables can change over
the solving process. Indeed, input variables are defined by a constraint x € dom(x)
(defining input variable x) or na3(b, a,j) (defining input variable b[j]). If j is not
a number, b[j] can only be added to the set of input variables when j can be sim-
plified into a number. The function Filtering realizes the filtering on the path
constraint. The path constraint is represented by the branch constraints and the
other constraints. As explained in Chapter 6, the pruning is only performed on the
branch constraints. The function Simplify (Algorithm 8.4) simplifies the branch
constraints by extracting information from the other constraints. The number of
known input variables may increase after a simplification.

In Algorithm Filtering, the branch constraints are first simplified (line 1). The
pruning of the branch constraints involving only input variables is performed in
line 3. When the resulting box (D) is empty, the CSP is inconsistent. If there
are branch constraints not involving input variables, these are simplified using the
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Algorithm 8.2 Generation of test data for path coverage (general version)

function TestDataGenPC(P:Procedure,G:ICFG,p:Path):F";
PRE G the ICFG for test procedure P
p a path in G
POST a test case on which the path p is executed
begin
PC':= PathConstraintGeneration(P,G,p);
BC := the branch constraints of PC;
oC := PC \ BC;
V := the currently identified input variables in BC;
D := the domains of the variables in V;
return SolvePathConstraints(V, V, D, BC, OC);
end

function SolvePathConstraints(V,V’:Variables,D:Boz,
BC: BranchConstraints ,OC : OtherConstraints) : F™;
PRE V the currently identified input variables in BC
V' a subset of V (V! C V)
D a box representing the domains of the variables in V
POST Return some float solution ve& D of BC
Otherwise it returns ()

begin
if BC involves only input variables then // Appendiz 4
qs := QuickFindSolution(BC, D); // will make reference
if ¢s # 0 then return gs; // to these 3 lines

(V;, Dy, BCy, OC:) := Filtering(V, D, BC, OC);

if D; is () then return (;

else

if D; is an e_boxr then return FindSolution(BC;,D;);
else
if V' is not empty then
Choose arbitrarily a variable z in V';
m = (left(Xy) + right(Xy))/2;
if x is an integer variable then
ms := SolvePathConstraints(V;, V'\{z}, DiX:/[|m],|m]]], BC:, OC%);
else ms := SolvePathConstraints(V;, V'\{z}, Di[X:/[m,m]], BC;, OC});
if ms # 0 then return ms;
if x is an integer variable then
Is := SolvePathConstraints(V;, V'\{z}, D X:/[left(X:),|m|—1]], BC:, OC%);
else ls := SolvePathConstraints(V;, V'\{z}, D:[X:/[left(X:), m~]], BC:, OC});
if Is # () then return ls;
if z is an integer variable then
rs :=SolvePathConstraints(V;, V'\{z}, D:[X:/[|m]+1,right(X:)]], BC:, OC:);
else rs := SolvePathComnstraints(V;, V'\{z}, Di[X:/[m*,right(X};)]], BC;, OC);
if rs # ( then return rs else return (;
else return SolvePathConstraints(V;, Vi, Dy, BC, OCY);

end
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Algorithm 8.3 Filtering of path constraints

function Filtering(V:Variables,D:Bozx,
BC': BranchConstraints,OC : OtherConstraints) : CSP;

PRE
(V*,D,BC A OC) is a CSP where V* = wars(BC A OC)
V the set of input vars currently identified in branch comnstraints BC (V C V*)
D a box representing the domains of the variables in V
POST
Return a CSP (V,0,BC A OC) if BC is detected as inconsistent.
Otherwise return (V', D', BC' A OC')
with ¢ V. C V' C V*
e (V*, D', BC'" N OC'") CSP equivalent to (V*,D,BC A OC)
e BC' = BC; N BC;

e B(| e-box consistent

begin

1:(Vs, Dy, BC:, OCy) := Simplify(V, D, BC, OC);
C1 := branch constraints (involving only input variables) of BC:;
CQ = BCt \ 01;
Store := C4;

2:while C; # 0 do
3: (W, Dj, Store) := PhiEBox(V;, D, Store);
if D, = { then return (V,0,BC,00C);

if D; = D; then break;
D; := Dj;
if C, = ( then break;
4: (V/, D;, C4, OC}) := Simplify(V;, Dy, Ca, OC%);
Cy := branch constraints (involving only input variables) of C};

CQ = Cé \ C1;
Store := Store N Ci;
Vi :=V/y Dy := Dy OCy := OCy;
endwhile
5:return (V;, D;, Store A Csy, OCY);

end

reduced domains. This is performed until C; = () (nothing to prune), or no pruning is
achieved (D} = D), or all branch constraints only involve input variables (Cy = ().
Finally the function returns a new CSP (line 5), satisfying (1) Store (all branch
constraints involving only input variables) is e-box consistent in box Dy, and (2)
C5 (the other branch constraints involving non-input variables) cannot be simplified
further with box D;.

We now analyze in detail the function Simplify. The function Simplify returns
an equivalent but simplified CSP. The objective is to simplify the branch constraints
BC' in terms of the input variables in V' with the box D. If BC' involves only
input variables (line 1), the function returns the input CSP without modifications.
Otherwise, it enters in the main loop until no more simplification can be done. The
following simplifications are performed. In line 2, every non-input simple variable x
is replaced by its definition. A variable is simple if it is neither an array variable nor
an array element. This simplification of simple variables is performed only once in
the first call of Function 8.4. The simplification of array variables is however more
complex and must be done incrementally during the solving process.
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Algorithm 8.4 Simplification of path constraints

function Simplify(V:Variables,D:Boz,
BC': BranchConstraints,OC : OtherConstraints) : CSP;

PRE
(V*,D,BC A OC) is a CSP
V the set of input vars currently identified in branch comnstraints BC (V C V*)
D a box representing the domains of the variables in V
POST
Return a CSP (V,0,BC A OC) if BC is detected as inconsistent.
Otherwise, return (V',D',BC' A OC")
withe V C V' C V*
e (V*, D', BC' N OC") CSP equivalent to (V*,D,BC A OC)
begin
1:if BC involves only input variables then return (V,D,BC,0C);
else
2: while 3 a simple and non-input variable z in BC A OC do
BC[z/def(x)]; {There must exists a comnstraint, z:=def(z), in OC}
OC|z/def(z)]; {simplification for variable z once for all}
simplify := true;
3: while simplify do
simplify := false;
4: foreach constraint na3(b, a, j) in OC with b[j] not in V such that
j involves only input variables with their domains being point intervals do
jJ is simplified into a number jval;
OC[na3(b, a, j)/na3(b, a, jval)]; BC[b[j]/bljval]];
V =V U {bjjvall};
stmplify := true;
5: foreach na4(b,a,j,v) in OC such that
j involves only input variables with their domains being point intervals do
j is simplified into a number jval;
OC[na4(b, a, j, v)/na4(b, a, jval, v)];
simplify := true;
6: foreach b[i] in BC such that
1 involves only input variables with their domains being point intervals do
1 is simplified into a number ival;
BCb[i]/bival]];

simplify := true;

7: foreach b[i] in BC such that i is a number and b[i] is not an input variable do
Ta: case 3 (b := a) in OC : BCIbli|/ali]]; simplify := true;
7b: case 3 na3(b, a, j) in OC | j is a number :

if a # null then BC[bi]/ali]]; simplify := true; else return (V,0,BC,0C);
Tc: case J na4(b, a, j, v) in OC | j is a number :

if ¢ = j then BC[b[i]/v]; simplify := true;
else if a # null then BCIb[i]/a[i]]; simplify := true;
else return (V,0, BC,0C);
endcase
endwhile
8: return (V, D, BC, OC);
endif

end
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Following the simplification of non-input simple variables, the next steps have
the purpose of simplifying constraints involving arrays. Lines 4 and 5 simplify the
constraints na3 and na4 in OC. Line 6 simplifies reference to array element b[i],
where the index is known. Finally, in line 7, every reference to such array element
b[i] is propagated in some constraint of OC, which can be one of the following
constraints:

e b := a (this kind of constraints is generated only during parameter passing of
array variables), in line 7a;

e na3 (line 7b);

e and na4 (line 7c).

Note that see Definition 6.4 for the definition of null arrays. An inconsistency can

be detected when an array element is used in an expression without being initialized.

Example

Ezxample 8.3. As an example for path coverage, let us take the path 1-2-3-4-5a-8-9-
10a-16-17-18-20-10b-11a-16-17-18-20-11b-12-13a-21-22-23-24-13b-15-5b-6-4-7-25 in the
ICFG given in Figure 3.3. As illustrated in Example 6.2 (Chapter 6), the generated
path constraint is:

No<icio @0li] € dom(a) A co € dom(c) A ip:=1 A ig <cy A aj:=ag A iy
dO’I”I_’L(’L) N j0€d0m(j) N ig Z:il N 1220 VAN 12§9 N ﬁ(] Z:iz VAN iglzj(] VAN i3
0N 13<9 A fj0§:i3 N ﬁ0<fj0 N Xg>y0 N tog:i=X9 N X3 : =Yg N ¥1
to A nad(ag, as, iy, x1) A nad(as,as,jo,yv1) A ag:=ag A ig:=ig+1 A =(ig < co).

v m

Note that ay (array variable), co, i1, and jy are the input variables generated during
the path constraint generation. Given the initial box (a¢ : [5,20], ¢ @ [1,10],4; :
[—5,20], jo : [-5,20]), we obtained the test case:

ao = (12.5,12.5,12.5,12.5,12.5,12.5,12.5,8.75,12.5,12.5), co = 1, i = 4, jo = 7.

8.3 Analysis

Our constraint solving algorithm for path coverage (Algorithm 8.2) is sound but
not complete, because the FindSolution function is incomplete. If it does not find
test data, it could be that the path is infeasible. Indeed, given an epsilon interval
solution, we take only some points in it to check if they are test cases. Of course,
we can make a complete labeling in interval solutions, and hence having a complete
solver, but then the complexity may become too expensive. However, since path
constraints are usually under-constrained (there are many test cases traversing the
path if it is feasible), and the epsilon can be chosen very small (usually Ze-16 in our
experiments), even a middle point in the interval solution turns out to be sufficient
as will be illustrated by our experiments.

The constraint solving problem handled in this work, as well as some other
constraint solving problems in constraint programming, are N P-complete, because
they can be reduced to the SAT problem in Computability Theory. This means that
backtracking search is, in general, an important technique in solving them. As a
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consequence, our constraint solving algorithm can be considered as belonging to the
class of algorithms based on backtracking search with propagation (in Constraint
Programming). The propagation is realized here by our e-box consistency filter.

8.4 Conclusion

We presented, in Section 8.1, a simple version of our test data generation algorithm
for path coverage. We particularly showed how our earlier consistency algorithms
are integrated in a constraint solving algorithm to generate test data. The purpose
of this section is thus to allow the reader to skip the general version (given in Section
8.2), without any problem to understand the rest of this thesis. Section 8.2 deals with
how constraints involving arrays —na3 and na4 constraints— are actually handled.
The notion of filtering is also reviewed in the presence of arrays in the test program.
In Section 8.3, we gave an analysis of our test data generation algorithm for path
coverage.

In the next chapter, we will present a test data generation algorithm for statement
coverage. Such algorithm intensively uses consistency, as well as the results of our
algorithm for path coverage, to generate test data exercising a node of the ICFG.
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Chapter 9

Test Data Generation for Statement
Coverage

This chapter proposes an algorithm of test data generation for statement coverage
(searching for test data traversing a node of the ICFG). Note that as a branch is
dual to a statement in the control flow graph, all the following algorithms can easily
be adapted for branch coverage. Given a node, different paths reaching the node
will be dynamically generated. The search will be guided by a Control Dependence
Graph, as well as pruned by our e-box consistency filter. First, two different control
dependences for programs with procedure calls are introduced: the intraprocedural
and the interprocedural control dependences. We will show that the interprocedural
control dependence is better for our purpose.

9.1 Control Dependence Graph

Control dependence captures the effects of predicate statements (if, while, ... )
on the program’s behavior. Intuitively, a node a is linked to a node b in the control
dependence graph if any execution path reaching b contains also a. In other words,
reaching statement a is a necessary condition to reach statement b. Technically,
control dependence is defined in terms of a CFG and the post-dominance relation
among the nodes in the CFG [22].

Definition 9.1. A node V is post-dominated by a node W in a CFG G, if every
directed path from V' to Exitg (not including V') contains W.

A node Y is control dependent on node X with condition C' (where C'is a condition
associated with a branch from X) iff

1. there exists a directed path P from X to Y going through branch C such that
all Z in P (excluding X and Y') are post-dominated by Y, and

2. X is not post-dominated by Y.
Note that if node Y is control dependent on (node X, condition C') then node X

must have two branches. Following one of the branches corresponding to condition
C results in Y being executed while taking the other results in Y not being executed.
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Table 9.1: Intraprocedural control dependences of

Program 1

Nodes Control Dependent On

3,4,7 (2, true)

4,5a,5b,6 (4, T4)

9,10a,10b,11a,11b,12,15 (8, true)

13a,13b (12, T12)

14a,14b (12, F12)

17,20 (16, true)

18 (17, T17)

19 (17, F17)

22,24 (21, true)

23 (22, T22)

Table 9.2: Interprocedural control dependences of

Program 1
Nodes Control Dependent On

3.4 (2, true)
5a,8,9,10a,16,17 (4, T4)

7 (4, F4)
13a,13b (12, T12)
14a,14b (12, F12)
4,5b,6,10b,11a,11b,12 (17, T17)
15,16,17,18,20,21,22 (17, T17)
19 (17, F17)
23,24,25 (22, T22)

Intraprocedural control dependence analysis is carried out independently on in-
dividual procedures, calculating thus control dependences that exist within them.
Concretely, given the CFG for each procedure, intraprocedural control dependences
for the procedure are obtained by applying an existing algorithm for control depen-
dence computation [22] to the CFG. Table 9.1 illustrates the intraprocedural control
dependences for all procedures of Program 1, given in Figure 9.1. Note that (1) the
CFGs for those procedures are extracted from the ICFG (in Figure 9.1) by ignoring,
for each call site, its pair of call and return edges, and connecting directly its call
node with its return node; (2) we view the entry node of the CFG associated with a
procedure as a predicate node representing the conditions that cause the procedure
to be executed, and therefore nodes in the CFG that are not control dependent on
any condition nodes are control dependent on the entry node. In the table, for ex-
ample, node 3 is control dependent on node Entry M (node 2) with condition true,
and node 5a on node 4 with condition 7T'4.

Interprocedural control dependence analysis accounts for interactions between
individual procedures. Those interactions are reflected by call and return edges,
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void M(double af[10], int c) { void B(double a[10]) {
int i = 1; int i,j,fi,fj;
while (i <= ¢) { scanf ("%d %4d", &i, &j);
B(a) ; fi = F(1); £j = F(j);
i= i+l if (fi < £3)
} C(&alil, &aljl);
} else C(&aljl, &alil);
}
void C(double *x, double *y) {
double t; int F(int 1) {
if (kx> xy) { if (i >= 0 && i <= 9)
t = *x; return i;
XX = *y; else exit(1);
¥y = t; }
}

¥

1.Globa Entry M
8 Entry B

AT 9

18 return |

,

25.Global Exit M

Figure 9.1: Program-1 and its ICFG
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connecting the individual CFGs, in the ICFG. Interprocedural control dependence
can be computed for the nodes of the ICFG by an existing technique [61]. Table
9.2 illustrates the interprocedural control dependences for Program 1.(Note that a
graphical representation of Table 9.2 is also given in Figure 9.2.) A comparison
between these dependences and those computed intraprocedurally (in Table 9.1)
shows several differences.

1. There are intraprocedural dependences which are ignored in the interprocedural
context, e.g. mnode 9 is intraprocedurally control dependent on node EntryB
(node 8) while this dependence is not interprocedurally necessary.

2. There are interprocedural dependences between nodes in different procedures
while these dependences cannot be computed intraprocedurally, e.g. node 6
is interprocedurally control dependent on node 17. Note that the presence of
embedded halt statements in called procedures are not the only cause of such
dependences [61].

3. There are interprocedural dependences between nodes in the same procedures,
yet these dependences are not intraprocedurally established, e.g. node 7 is inter-
procedurally dependent on node 4 while this is not intraprocedurally detected.

All these differences show that intraprocedural control dependences can be im-
precise to guide the search of test data for programs with procedure calls. We hence
choose to use an interprocedural control dependence graph for this purpose.

Definition 9.2 (ICDG). An interprocedural control dependence graph (ICDG) for
a procedure P is a directed graph where the nodes are the nodes of the ICFG
associated with P. The edges represent the interprocedural control dependences
between nodes. Edges are labeled with conditions. An edge (X, V) labeled with
a condition C' in an ICDG means that Y is interprocedurally control dependent on
(X, C). There will be however no edge for a node that is interprocedurally control
dependent on itself.

Figure 9.2 depicts the ICDG for Program 1, which is actually a graphical repre-
sentation of Table 9.2. Note that, for simplicity, additional nodes are introduced in
the ICDG to group all nodes with the same control conditions together, e.g. nodes
5a,8,9, ... (interprocedurally control dependent on node 4 with condition 74) are
grouped together under an additional node.

Definition 9.3 (Reachability graph). The reachability graph for a node n in a
directed graph G (with a unique start node) is the smallest subgraph of G, containing
all the paths from the start node to node n.

Definition 9.4 (Decision graph). The decision graph for a node n in an ICDG
G is the reachability graph for n in G.

Note that Definition 9.3 is general for any directed graph while Definition 9.4 is
specific to an ICDG.

The construction of the reachability graph and the decision graph for a node is
straightforward. For example, the decision graph for node 7 is depicted in dashed
lines in Figure 9.2. Given the decision graph for a node, a path from the root of the
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Figure 9.2: ICDG for Program 1 and the decision graph for node 7 in dashed lines

graph to the node contains a set of constraints that must be satisfied by a class of
inputs causing the node to be executed. For example, the path 2-4-7 in the decision
graph for node 7 corresponds to inputs executing node 7 with no passage in the loop
(associated with condition node 4), while the path 2-4-17-4-7 corresponds to inputs
executing node 7 with one passage in the loop. Therefore, the decision graph for a
node captures all the possible constraints to satisfy to reach the node.

9.2 Algorithm

The generation of test data for statement coverage is described in Algorithm 9.1
(TestDataGenerationSC). Paths reaching the input node (node N) are dynamically
constructed. When a path reaches this node, test data generation for path coverage
is used to find a test case. Note that the search for such paths is carried out on
the reachability graph for the input node in the ICFG. As the potential number of
paths reaching the node can be large (or infinite), heuristics and pruning are used
during the search. First, the search is guided by the ICDG, and more particularly
by the decision graph. The algorithm always extends a path by first choosing nodes
in the decision graph, as such nodes are required in the path. Second, the exit of the
loop is also selected first to avoid infinite paths. Third, the search is pruned by our
e-box filtering operator (function Filtering in Algorithm 8.3). A path (or prefix)
is abandoned as soon as we detect that it is an infeasible path. Given such infeasible
prefixes, we can memorize them in order to avoid choosing them uselessly later.

This algorithm can be optimized in many ways (incremental construction of path
constraints, ... ). We however prefer to present a simple and comprehensive version.
Note also that when node b is control dependent on node a with condition ¢, then
reaching node a and traversing the branch corresponding to condition c is already
sufficient to reach node b. As a consequence, if the aim is to generate test data for
node b, the construction of paths can be stopped as soon as <node a, condition ¢>
is traversed.
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Algorithm 9.1 Statement coverage

function TestDataGenerationSC(P:Procedure, G:ICFG, N:Node) : F";
PRE G The ICFG for test procedure P
N a node in G
POST a test case traversing node N
begin
G1 := reachability graph for node N in G;
G2 := ICDG for G;
DG := decision graph for node N in G2;
return TestGen(P, G1, <START>, START, N, DG);
{START is the start node in G1}
end

function TestGen(P:Procedure, G:ReachabilityGraph,
path: Path, start:Node, end:Node, DG :DecisionGraph) : F";
PRE path a path in G
DG the decision graph for node end
POST a test case traversing node end
begin
for each successor s of start in G do
{If start in DG, the successors in D@ are selected first,}
{if start is a loop, the exit of the loop is selected first}
newPath = path . s ;
PC := PathConstraintGeneration(P,G,newPath) ;
BC := the branch constraints of PC;
oC := PC \ BC;
V := the input variables currently identified in BC;
D := the domains of the variables in V;
(V', D', BC', OC") := Filtering(V, D, BC, OC); //this line will be referenced
if (D' # () then
if (s = end) then
{test data generation for path coverage}
result = SolvePathConstraint(V',V',D’,BC',0C");
if result # () then return result;
else return TestGen(P,G ,newPath,s,end,DG) ;
endfor
return 0;

end
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As an example, consider node 7 in Figure 3.3, as well as its decision graph
shown in dashed lines in Figure 9.2. First, the path 1-2-3-4-7 will be constructed
by the algorithm. Assuming that the corresponding path constraint is inconsis-
tent, the path 1-2-3-4-5a-8-9-10a-16-17-18-20-10b-11a-16-17-18-20-11b-12-13a-21-22-
23-24-13b-15-5b-6-4-7 (entering in the main loop) is next constructed. Generation
of test data for the latter path was already given in Example 8.3 (Chapter 8.2).

9.3 Analysis

Our algorithm of test data generation for statement coverage (Algorithm 9.1) is
sound but not complete. It may loop or fail to find test data. This follows from
the fact that determining whether a node of the control flow graph is executable,
is undecidable in the general case (reduced to the halting problem in computability
theory) [68]. Also, it was reported in [25] that there exist loops, for which the
termination with some data is unknown up till now. So it is impossible to determine
if an instruction placed after a loop is executable in the general case.

9.4 Towards a dynamic approach to statement cov-
erage

This section aims to propose a dynamic approach to statement coverage, where
random test data generation, program execution, and any method for path coverage
such as ours, can be integrated.(The idea of this dynamic approach is closely related
to [69].) There are some reasons to develop such a dynamic approach.

e Intuitively, our static consistency approach to statement coverage may be time-
consuming or even impractical for programs of certain size. For example, we want
to find test data for a statement placed after loops executed a great number of
times. In that case, numerous constraints can be generated, and the time taken
to solve them can be large, while random test data generation may be sufficient
to apply.

e Given the fact that the selection of paths reaching a node relies only on our e-box
consistency filter, a possible drawback is that a path accepted by such filter may
not be executable. This is due to that a constraints system being e-box consistent
does not guarantee having float solutions.

We below present the main steps of our dynamic approach.

Step 1 (Random test data generation): Test data are generated randomly (exist-
ing techniques for test data generation can also be applied) for a maximum number
of times fixed by the user. Program execution is used to run each test data to verify
if a given statement (Node) is executed. If so, the test data is returned, and the
approach terminates. The next step takes place only if no test data thus generated
are proved to execute the node. Note that during this step, when a test data is
executed, the trace of its execution (i.e. the execution path) is memorized for later
uses.
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Step 2 (Selection of useful prefizes): Useful prefixes of all paths (either memorized
in the previous step, or obtained from Step 5) are derived. Informally, a prefiz of a
path is defined as a subpath starting from the first node in the path.

Step 3 (Extension of prefizes, one step towards the specified Node): Construct
extended prefixes from such prefixes, by adding a node to each prefix. Note that
extended prefixes are possibly not paths attaining Node.

Step 4: Apply our path coverage algorithm to each extended prefix to generate
candidate test data. Note that any method for path coverage such as ours, [30] or
[46] can be used here. This step should be done in an incremental manner so that
information can be reused from one iteration to the next to improve performance
— e.g. prefixes that are detected as infeasible should be memorized so that we will
not explore any further paths from such prefixes.

Step 5: Execute candidate test data to see if its execution path reaches Node.
If not the case, goto Step 2.

(CFG) (CDG)

Figure 9.3: CFG and CDG of the nThRootBisect program

We now take an example to illustrate our idea. Suppose that we want to generate
test data for node 8 in Figure 9.3 (the same as Figure 5.3), and that with a randomly
generated test data, we obtain the path 1-2-3-4-6-7-2-3-4-5-STOP.

In Step 2, by using the control dependences in the right hand side of Figure 9.3,
more exactly the decision graph for node 8, we obtain the following prefixes from
the above path: 1-2-3-4-6 and 1-2-3-4-6-7-2-3-4. Note that each prefix is derived
whenever we are at a decision node where the branch taken is not as proposed by
the decision graph; that is, we should better take the other branch.

In Step 3,

e from prefix 1-2-3-4-6, we obtain extended prefix 1-2-3-4-6-8

e from prefix 1-2-3-4-6-7-2-3-4, we obtain extended prefix 1-2-3-4-6-7-2-3-4-6.

As illustrated by the above example, each path results in a set of prefixes, and each
prefix in turn leads to the construction of an extended prefix. This set of extended
prefixes will be used by our method for path coverage to generate candidate test
data. To be efficient, at each time, we should select the most “promising” extended
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prefix among such extended prefixes by some of the following possible criteria (other

criteria can be used as well):

e an extended prefix with the shortest length in terms of the number of branches

e an extended prefix with the shortest length in terms of the number of nodes

e an extended prefix ending in a node that is “nearest” to the specified Node (i.e.
taking such an extended prefix leads us closer to Node). For example, with node
8 above, extended prefixes ending in node 8 are hence in priority, compared with
extended prefixes ending in node 6 and extended prefixes ending in node 2.

In Steps 4 and 5, when a test data is generated for an extended prefix by our
path-coverage method, it will be run to verify if node 8 is executed. If so, it is
returned as a test case. Otherwise, its execution path is exploited to derive new
extended prefixes as above, and they are then added to the set of extended prefixes
for generating test data. For example, assuming a test data is generated for the
extended prefix 1-2-3-4-6-7-2-3-4-6 above, and its execution results in the path 1-2-
3-4-6-7-2-3-4-6-7-2-9-STO P, we then obtain the following new prefixes and extended
prefixes:

e prefixes: 1-2-3-4-6-7-2-3-4-6 and 1-2-3-4-6-7-2-3-4-6-7-2

e extended prefixes: 1-2-3-4-6-7-2-3-4-6-8 and 1-2-3-4-6-7-2-3-4-6-7-2-3.

The whole test data generation process is carried out until all the allowed resources
(e.g. timeout, ... ) are exhausted. Our above ideas are finally summarized in
Algorithm 9.2.

9.5 Conclusion

We presented in this chapter an algorithm of test data generation for statement
coverage. Our algorithm searches the ICFG for paths reaching a specified node.
The search is guided by the interprocedural control dependences of the program, as
well as pruned by our e-box consistency filter. When such a path if found, test data
generation for path coverage is then applied to find test data.

In Section 9.1, we introduced the two different kinds of control dependences for
programs with procedure calls: the intraprocedural and the interprocedural control
dependences. We showed that interprocedural control dependence is more precise
to use in the presence of procedure calls in the test program, e.g. when called
procedures contain halt statements. It should be noted that existing methods of test
data generation [54, 26|, based on the control flow graph, use only intraprocedural
control dependence to guide the search process. Therefore, they may be unable to
determine the possible effect of the called procedures on execution of the selected
statement. Note however that a method for programs with procedures [47] uses some
sort of interprocedural data dependence analysis to guide the search. In Section 9.2
and Section 9.3, we dealt with our algorithm of test data generation for statement
coverage and its analysis. Since the generation of test data executing a node —
the problem— is undecidable in the general case, any approach to the problem —a
solution— is thus incomplete. And so is our method. Therefore, in such case, one
should consider using heuristics. In Section 9.4, we proposed a dynamic approach to
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Algorithm 9.2 Dynamic algorithm for statement coverage

function DynamicTestDataGenSC(P: Procedure, G:1CFG, N:Node, Maz:integer) : F™;
PRE G the ICFG for test procedure P

N a node in G
Maz the maximum number of times for random test data generation

POST a test case traversing node N

begin
{Step 1}
memorized_paths := 0;
for ¢ from 1 to Maz do
rtd := a randomly generated test data for procedure P;
if (execution of P with rtd reaches N) then return ritd;
else
path := the execution path in G for executing P with rtd;
memorized_paths := memorized_paths U path;

{Step 2,3,4,5%

G2 := ICDG for G;

DG := decision graph for node N in G2;
set_extendedPrefires := (;

for each path of memorized_paths do

derive prefixes and extended_prefizes from path, based on DG,
set_extendedPrefires := set_extendedPrefires U extended_prefizes;

while set_extendedPrefizes #  do

extendedPrefiz := the most ‘‘promising’’ extended prefix in set_extendedPrefizes;
PC' := PathConstraintGeneration(P,G,extendedPrefix) ;
BC := the branch constraints of PC;
OC := PC \ BC;
V := the input variables currently identified in BC;
D := the domains of the variables in V;
{test data generation for path coverage}
td := SolvePathConstraint(V,V,D,BC,0C);
if (td # () and execution of P with td reaches N) then return td;
else
path := the execution path in G for executing P with td;
derive prefixes and extended_prefixes from path, based on DG}
set_extendedPrefires := set_extendedPrefires U extended_prefizes;

endwhile
return 0;

end
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statement coverage. However, it has not been implemented yet in our COTTAGE
system (presented in Chapter 10).
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Chapter 10

The COTTAGE System

This chapter describes the system (called COTTAGE) that has been developed to
validate our consistency method, as well as the facilities provided by COTTAGE.
We will first describe COTTAGE from a “black-box” viewpoint: the development
of COTTAGE, the subset of C treated by COTTAGE, as well as its input and
output, are discussed. The parameters of COTTAGE are however presented during
our “white-box” presentation of the system, because the former is dependent on the
latter. The white-box presentation includes the following issues: the implementation
of COTTAGE (especially its architecture), how function calls are actually handled,
type analysis and its role in our system, soundness and completeness of COTTAGE.
Finally, possible extensions of the system are discussed along with their technical
issues.

10.1 Development

The COTTAGE system —written in Java— is intended for test data generation of
programs written in (a subset of) C. The system is an extension of our previous pro-
totype [64]. Note that our previous prototype used only our internal representation
of the test program as input. To build COTTAGE, we thus constructed a parser in
Java (by using JavaCC, a well-known Java tool) to translate the C' program under
test into such internal representation. The system uses
e an interval library [37], relying on [38|, for the implementation of the constraint
solving algorithm,
e and algorithms from [61] to construct the interprocedural control dependences of
the test program.
Without these libraries, the COTTAGE system is about 13,000 Java lines. The
implementation is designed, however, to be independent from the programming lan-
guage used by the program under test. This means that the source code, written in
some imperative language L, is first translated into an internal representation that
is common to many languages, such as C, Pascal, etc.
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10.2 The subset of C

The COTTAGE system is able to generate test data for programs written in a subset

of C. The following features are not yet supported by our system:

1. non-numeric types such as string, two (and more) dimensional arrays (note how-
ever that our approach can easily be extended to multi-dimensional arrays), enum,
struct, union, general pointers, ... ;

2. type-qualifiers: const and volatile;

3. storage-class-specifiers: auto, register, static, extern (since we handle only
a single source file), typedef;

4. labeled-statements such as case, default, and switch;

5. jump-statement goto (note that continue and break statements are both han-
dled);

6. operators: %, <<, >>, &, A, |, 7, sizeof;

7. control-lines, except #define for numeric constants, and #include, are both
handled.

10.3 Input

The input to the system is composed of two things:

e a single source program (possibly containing multiple procedures) that is written
in a subset of C (described later),

e afile containing the initial data (such as the name of a test procedure in the source
program, the domains for the input variables) and the values for the parameters
of the system (described later).

10.4 Output

Given an input source program, it is transformed into an internal representation,
namely the interprocedural control flow graph (ICFG) of the program. The primary
output from the system is an indication of coverage for the criteria all-the-statements
on the ICFG. Such a coverage indication is the percentage of the ICFG’s nodes
executed by the generated test data, and is calculated by:
(Total executed nodes / Total nodes of the ICFG) x 100.

For each generated test data, the system also automatically generates an instru-
mented C program (a file of test data ready for execution), allowing the user to
verify the correctness of the test data.

Note that we have not handled the all-the-paths criteria yet in our system. Our
current objective is to cover only all the statements in the test program.
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Figure 10.1: Dataflow diagram of the COTTAGE system

10.5 Implementation

A dataflow diagram of the COTTAGE system is given in Figure 10.1. A single
source program and initial data —the name of a test procedure, the domains for the
input variables, etc.— are input to the Parser/Analyzer component.

The TestGenerator component inputs an ICFG and its corresponding ICDG
(Interprocedural Control Dependence Graph) from the Parser/Analyzer compo-
nent. It tries to generate test cases for all nodes of the ICFG. This component
implements thus our algorithm of test data generation for statement coverage. For
each node of the ICFG, a path(s) reaching the node is dynamically constructed. A
path constraint is then generated and passed to the ConstraintSolving component.

The ConstraintSolving component generates a test input following Algorithm
8.2, and passes it to the TestInputProgram-Gen component. Since our implemen-
tation (more specifically our constraint solving algorithm) is written in Java, the
generated test input is thus a float solution, in Java, of the path constraint. Since
the program under test is in C, we must also verify that the test input is a float
solution, in C, of the path constraint. In other words, we must verify that the test
input actually traverses the path on execution of the C program under test. This can
be verified by running a corresponding instrumented C program with the test input.
It should be noted however that a program can have different behaviors following
the compilation options selected, or following the compiler selected. Therefore, we
should rather instrument the executable (or binary) program to avoid such prob-
lems. An instrumentation at the level of the C program is acceptable in our case,
because our focus is rather developing a prototype in order to validate the ideas
developed in the thesis.
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The TestInputProgram-Gen component therefore receives a test input and an
instrumented C-program. It then generates a C program (referred to as a TestIn-
putProgram) for running the instrumented C-program on the test input. Note that
generating an instrumented C program for each generated test data is potentially
costly when the program is big enough. In that case, it is better to generate only
one instrumented C program with an execution for each test data. However, if
the test program contains some halt statements, like exit( ... ) in C, the sole
instrumented program will halt immediately following an execution on a test data
generated for a halt statement, making it impossible to execute tests for the other
test data placed after this test data’s execution. A possible solution is to generate
(1) an instrumented program for a test data of a halt statement, and (2) a sole
instrumented program for the other test data.

The Execution component first compiles, and then runs the TestInputProgram.
Currently, the user carries out this component, and verifies the execution results
for the actual coverage of the test inputs generated. However, the component
should ideally be automated. And the execution results should be sent back to
the TestGenerator component. Therefore, a test input not traversing the node will
be rejected, and other test inputs will be generated for the node until obtaining a
test input actually executing the node (a test case for the node).

Finally, the TestGenerator component reports all test inputs found, as well
as the predicted statement coverage for all the nodes of the ICFG. The predicted
coverage means the coverage, calculated without connection with the C language.

10.6 FindSolution function

In our implementation, given an epsilon interval-solution, we often simply select
its middle point to check if it satisfies the path constraint. If so, it is actually a
float solution (in Java), and it is returned as a predicted test case for the path.
Experiments will show that this simple and efficient implementation turns out to be
sufficient. Furthermore, a general labeling strategy, such as described in [50], can
also be applied to the epsilon interval solution. The labeling is based on an uniform
exploration of the domain. It is parameterized by the number of levels of exploration
(labeling level, for short). Figure 10.2 illustrates this enumeration process on one
variable. The numbers correspond to the levels. Using this labeling strategy, on our

Figure 10.2: Labeling level

test cases (see Appendix A for details), we only observed little change (in time) to
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find a test case, compared with the default labeling level (one) where only a middle
point is chosen. This is, without doubt, due to the following reasons:

e The size (epsilon) of interval solutions is usually chosen very small, such as Ze-16,
in our experiments.

e Path constraints are usually under-constrained, i.e. they have a lot of solutions.
Therefore, when we obtain an epsilon interval solution, and one float solution is
found in it, it is possible that such an interval solution also contain many other
float solutions. This is a continuity argument that justifies that taking limited
samples on a small interval as in FindSolution, will give a solution if there is
one in the interval.

10.7 Parameters

Many parameters have been used by the COTTAGE system. Here are the main
parameters:

e The size of epsilon: the size of interval solutions. The smaller the epsilon is,
the more time is required to find an interval solution, but the resulting epsilon
interval is more precise, and the FindSolution function has more chances to find
a solution.

e timeout: a time limit for solving a path constraint. This allows the system to
escape complex (and usually unsound) path constraints.

e labeling-level: the number of levels of labeling (as discussed above).

Other parameters allow the user to have more control over the system during test
data generation such as:

e to fix a global timeout for the test data generation (covering the all-the-statements
criteria).

e to print out all the generated paths reaching a node.

e to limit the number of paths reaching a node. Such a choice can be used when
a lot of paths reach the timeout for solving their corresponding path constraint
without generated test data.

e to make an exhaustive enumeration over the found interval solutions, i.e. an
enumeration over all the float values in the interval, in order to find a test data.
Such a choice can be used to examine the efficiency of the FindSolution function
(Specification 8.2), because FindSolution selects only some points in the interval
solution to verify if they are test data for a path. Note that for intervals near
zero, such as [0, le — 16], it can take several hours (in our case, about 8 hours)
without terminating even only an exhaustive enumeration (the time for path-
feasibility verification is not included here). However, for intervals far from zero,
an exhaustive enumeration is possible.

e to change the default branch taken at a node during the path generation (when
the two branches have the same priority to be selected).

e to print out the generated test data for a node, together with its corresponding
solved path constraint.
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10.8 Function calls and Conservation of float solu-
tions

Function calls to built-in functions such as exp (Euler number e raised to the power
of a number), log (the natural logarithm of a number), sin, etc, are treated as basic
operators, i.e. these function calls are not developed in the ICFG. The interval
extensions of these functions were already available in [37| or constructed in our
Java implementation. It is not clear whether the Java implementation in [37] of
transcendental functions satisfies the property for conserving float solutions as stated
in Section 7.2. We however checked this property experimentally. Note that to make
our approach work, interval extensions for built-in functions, relations, and operators
of the C programming language have been implemented in Java. There is thus a
possibility that a float solution found by the constraint solving system is discarded
as a solution by the TestInput part of the system (executing the instrumented C
program).

Function calls to user-supplied functions where the code is not available (i.e.
already separately compiled), are not currently handled by the system. However,
a possible way to deal with user-supplied functions is to consider them as basic
operators as is the above case with built-in functions. Interestingly, this way may
also consolidate the objective of modularity in software development, especially in
software testing. Once a functionality has been carefully tested, it can simply be
replaced, during testing, by a “black box” accompanied by input/output specifica-
tions — that is, the code in the functionality is not required to be covered by the
generated test data. As discussed above, treating user functions as basic opera-
tors, it is necessary to provide interval extensions for user functions during test data
generation.

10.9 Type analysis and interval evaluation

Type analysis is important in our system to ensure the precision of interval evalu-
ations. The purpose is that all sub-expressions involved in an expression are asso-
ciated with a type. And for integer-typed sub-expressions, the result of an interval
evaluation over such sub-expressions must be rounded to make it more precise. This
is due to the fact that the used interval library makes no distinction between the
interval evaluation of an integer-typed expression and that of a float-typed expres-
sion, and that all expressions are rather considered as float-typed. This can give rise
to imprecise interval evaluations for integer-typed expressions.

Let us take an example to illustrate our above idea. Suppose an expression
(x + y) * 2.0, where x and y are integer variables. Then the type of the whole
expression is float, while sub-expression z + y is of type integer. Suppose also that
x is associated with the interval [2,4], and y with [5,6]. Since we work with an
interval library where the bounds of an interval are floats, [2, 4] and [5, 6] are in fact
represented respectively by [2.0,4.0] and [5.0,6.0], and the bounds of their intervals
are always rounded to integer values.
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10.10 Soundness and Completeness of COTTAGE

Since the system verifies that the generated test inputs actually traverse the corre-
sponding paths on execution of the C program under test, soundness of COTTAGE
is ensured. However, three incompleteness cases may arise.

1. The constraint solver provides solution boxes covering all mathematical solutions
and float Java solutions of a path constraint. But a float C solution could not be
covered by the provided boxes.

2. An (efficient) implementation of FindSolution could fail to find a float C solution
in an interval.

3. The system could fail to find a solution for a path constraint because of the time
limit for solving a path constraint.

Case (1) is a limitation of our approach as we perform the search for a solution
in a programming language independent from the program under test. This how-
ever provides more flexibility, and allows our system to handle testing with different
programming languages. In practice, as illustrated by our experiments, the result-
ing theoretical limitation has little effect on the system. First, most solvable path
constraints have many possible test cases. The objective is to find one test case
per node (or branch), not to find all of them. Second, the implementation of the
constraint solver is designed to limit this problem. For instance, the basic interval
operations preserve the float solutions in Java.

Cases (2) and (3) are necessary limitations to ensure the efficiency of our system.
However, as shown by the experiments, the choice of the epsilon value reduce this
problem while increasing the overall efficiency of the system.

10.11 Extensions of COTTAGE

10.11.1 Handling other testing criteria

Currently, the COTTAGE system generates test data to reach a statement (state-
ment coverage), or to traverse a path in the program (path coverage). An immediate
extension of the system for branch coverage (test data generation for a branch) can
be done easily based on our method for statement coverage.

Our method for path coverage can be used to generate test data for data-flow
criteria in the same manner as the approach in [29]: Their path-coverage method
[30] was exploited so as to deal with data-flow criteria. Note that in data-flow
testing, a definition-use association is a basic bloc for any data-flow criteria. For
instance, the all-uses criteria is satisfied if a (definition-clear) subpath from every
definition to each of its uses, must be covered by the generated test data. The
idea behind exercising a definition-use association is that we first select a program
path(s) traversing such association; The next task consists of the generation of test
data to execute the selected path.

Fault-based criteria such as proposed in [58], can also be integrated into our
system. In that work, each type of faults is modeled by certain constraints. For
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example, assume that the possible range of indices for an array is between 1 and 10.
Index-out-of-bound faults with that array can be modeled by two testing require-
ments such as: I > 10 and I < 1. Each of such requirements can be added to the
path constraint during test data generation. Failure to generate test data for the
augmented path constraint thus may be an indication of absence of such faults.

10.11.2 Test data generation for other imperative languages

Although our method of test data generation is suited for any imperative language
L, we currently handle only test programs written in C. To treat other imperative
languages used for writing test programs, such as Pascal, we need to construct a
parser to translate the Pascal program under test into our internal representation.
This can be done in the same way as was constructed the system from our previous
prototype [64]: a parser was constructed to translate the C program under test
into the internal representation. A point not less important is that given a path
constraint, since its solution space in Java and that in Pascal may be different, we
should automatically construct an instrumented Pascal program for running each
generated test data, as is the case with the current system (Java vs C). This way
aims to ensure that the generated test data is actually a test case for a path when
executing in a real environment.

10.11.3 Procedure calls

Procedure calls are currently handled by constructing the ICFG for the test pro-
cedure — the CFGs for all called procedures (except called built-in functions) are
integrated into the CFG for the test procedure. We then try to generate test data
for all the nodes of the ICFG. An advantage with such approach is that the set of
generated test data covers not only all statements of the test procedure, but also
all statements of the called procedures. Because the set of test data seems to be
more prone to detect faults related to interactions among several procedures. For
example, suppose that we have two procedures A and B such that

e in A, there are calls to B.

e In B, there is a branch point to check whether an exceptional case occurs. If so, a
halt statement is raised, resulting in an unconditional halt of the main program.

Assume that we want to generate test data for A, and that a test data is found to
reach the exceptional case. The tester is then informed that perhaps some faults
may appear in A, or that at least, some treatments with such exceptional case would
be integrated in A in order to avoid sudden halt during execution of A, caused by
execution of B.

The above advantage comes however at the expense of the fact that we possibly
have to deal with long paths during test data generation, when many procedure
calls appear in the test procedure. Other disadvantages, as discussed in Section
10.8, involve the inability to deal with user procedures (the code is not available), as
well as the possible loss of modularity in software testing. In the case where a called
(user) procedure can be supplied with an interval extension, a possible extension
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of the system consists in leaving, to the tester, the choice between (1) treating the
called procedure as an operator, and (2) extending it in the ICFG.

10.11.4 Handling multi-dimensional arrays

Although our current system is limited to one-dimensional arrays, our approach
to dealing with one-dimensional arrays can naturally generalize to any-dimensional
arrays. For example, an assignment like

ali][j] := exp;
can be transformed into the constraint

nab(ay, ax, i, j, €xp)
where a;, is the last value instance of a, and k' the smallest integer not yet used
for identifier a; 7, j and exp are defined by Definition 6.2. The constraint na5 is
defined and handled in the same manner with the constraint na4 (Definition 6.3).
Informally, the constraint na5(b,a, i, j,v) states that b is an array which is of the
same size as a, and has the same component values, except that v is the value for
its (4, j)-component.

10.11.5 Interval extensions

Interval extensions for some operators not yet handled by our system such as %,
<<, >>, ..., should be constructed, thus allowing the handling of such operators.

One issue, that seems very important, is how to construct interval extensions for
complex functions such as sin, so that they preserve all float solutions. The reasons
for that issue are the following.

e The interval library [37] used by our implementation was aimed at preserving all
mathematical solutions. Unfortunately, such aim was only achieved to a certain
extent: interval extensions for arithmetic operations guarantee to preserve the
mathematical solutions, but not for transcendental functions as was stated by
the library.

e Even if the interval library is assured to preserve all mathematical solutions as
intended, it is out of its scope to deal with float solutions, because the space of
mathematical solutions for the path constraint is totally different from that of
float solutions (as illustrated in Subsection 3.3.3).

e Since properties for real operations may not be preserved for their corresponding
float operations, it appears to be difficult to construct interval extensions preserv-
ing all float solutions. We illustrate this idea by the example hereafter, inspired
from [15].

The function f(z) = log(1 — x)/z is monotone and continuous for z < 1. Its
representation for x € [—1,1] is given in Figure 10.3. Unfortunately, the shape of
the same function for x near 0, when evaluated on the floats, is totally different with
the former case, as illustrated in Figure 10.4. It is interesting to note that the “float”
representation is no longer monotone, and seems unpredictable.
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Figure 10.3: “Real” figure of log(1 — x)/x
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Figure 10.4: “Float” figure of log(1 — z)/x

10.11.6 Handling pointers, aliases and dynamic data struc-

tures

Pointers (and dynamic data structures) are not currently handled by COTTAGE.
The notion of pointers is related to the possibility of using the address of a memory
zone (memory space) to access to its content, i.e. pointers are variables whose values
are addresses. In C, the address of a variable or a dynamically allocated memory
zone, can be assigned to a pointer variable. The main problem [25| in dealing with
pointers by any static methods is that one must be able to compare the memory
zones read or written by a dereferenced pointer (in C, if p is a pointer, then *p
denotes its dereference). We illustrate that problem by the following example.

int 1 = 0;
int *p = &i;
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*p = 10;

if (1 > B) ...
In this case, dereferenced pointer *p and variable i represent the same memory zone
at some point in the program, and are called aliases. Hence, a definition for an alias
is also a definition for all other ones. With the above example, any static method
should be able to detect that the instructions in the if branch must be executed.

In a closely related work [25] with ours, only pointers that refer to a memory
zone associated with a name (a variable declaration creates such a memory zone),
were handled. To treat such pointers, a points-to analysis was used to statically
calculate an over-estimated set of all possible pointing relations among the variables
of the program. Pointers to anonym memory zones dynamically allocated by a call
such as malloc in C, pointers to dynamic data structures (linked lists, trees, ... ),
as well as the arithmetic on pointers as defined by C, were not handled. Notice that
if an input variable is a pointer to a dynamic data structure, automatic inference of
the form of the data structure is not an easy task.
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Chapter 11

Experiments

The objective of this chapter is to present our first experiments on the COTTAGE
system. We first give a short description of the programs (benchmarks) used in
our experiments. Our set of benchmarks consists of de facto programs used by the
testing community, and of numerical programs drawn from a well-known numerical
book [55]. Our test generation procedure and experimental results are then given.
Many issues such as —efficiency, coverage and completeness, how to choose the
parameters for our COTTAGE system, and comparison with related work— will
finally be discussed.

11.1 Benchmarks

We have performed our experiments on a 900MHz UltraSparcIIIl-+ machine, with

the following programs.

e NthRootBisect (given in Figure 5.1) calculates the n-th root of a number using
the Newton-Raphson method. This program uses integer and float variables, but
no arrays nor procedures.

e Sample is the “sample” program with arrays, described in [21]. This program
contains arrays whose values determine the control flow, as well as many data
dependences.

e Tritype is a classical program [54], testing if three input integer numbers (repre-
senting the sides of a triangle) can actually form a triangle, and if so, determining
the type of the triangle (equilateral, isosceles, ... ). It only contains integer vari-
ables, but has nested conditional instructions and many infeasible paths.

e Proc is the program Program-1 in Figure 3.1, with nested procedure calls and a
halt statement in a called procedure (which results in unconditional halt of the
main program).

e BSearch |21, 26] is a binary search program involving arrays.

e The CMichel program is a small example from [50] with the instruction if
(16.0+x==16 && x>0) return 1; else return 0;. Although the test is al-
ways mathematically false, there exist float values satisfying this test in C.
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Table 11.1: Programs and Experimental results

Programs [Int.|FloatjArrayProc{TimeoutEpsilonNodesAverage] Max | Total [PredictedActual
(sec.) (sec.) | (sec.) | (sec.) | Cover. |Cover.

NthRootBisect|yes| yes | no | no 15 le-16 | 10 | 0.04 0.2 0.4 100% |100%

Sample |yes| no | yes | no 15 le-16 | 15 | 0.02 0.2 0.3 100% |100%
Tritype |yes| no | no | no 15 |1le16| 24 | 0.01 | 0.1 0.3 100% |100%
Proc yes| yes | yes | yes 15 le-16 | 27 | 0.03 0.6 0.7 100% |100%
BSearch |yes| yes | yes | no 15 le-16 | 10 | 0.02 0.1 0.2 100% |100%
CMichel |no| yes | no | no 15 le-16 | 4 0.02 | 0.08 0.09 100% |100%
gaujac yes| yes | yes | yes 15 le-16 | 40 34 | 1359 | 136.2 | 100% |100%
expint yes| yes | no | no 15 le-16 | 35 | 047 | 151 16.6 100% |100%
gamdev  |yes| yes | yes | yes 15 le-16 | 46 | 0.01 0.3 0.5 100% |100%
bessi yes| yes | no | yes 15 le-16 | 27 | 0.06 1.6 1.62 100% |100%
ei yes| yes | no | no 15 le-16 | 22 | 0.14 1.3 3 95% 95%

ei yes| yes | no | no 15 le-32 | 22 | 0.13 1.3 2.8 100% |100%
ei-dead  |yes| yes | no | no 15 | 1e-32| 27 | 0.14 1.9 3.8 92% | 92%

The other programs are real scientific programs taken from [55], and involving

math library functions (e.g. log, exp, pow, sqrt).

The gaujac program calculates the Gauss-Jacobi integration formula. This pro-
gram involves complex (nonlinear) expressions, 3 nested loops, arrays, and pro-
cedure calls.

The expint program [55], which has also been experimented in [32], calculates
exponential integrals, and involves nonlinear expressions and nested loops.

The gamdev program [55] (also experimented in [32]) generates random numbers,
and involves nonlinear expressions, nested loops, arrays, and procedure calls.
The bessi program [55] calculates the modified Bessel functions, and involves
procedure calls.

The ei program [55] also calculates exponential integrals, and involves a very
small constant (Ze-30).

Finally, ei-dead is the ei program extended with two unreachable statements,
in and after the main loop.

The C code of these programs is given in Appendix B, as well as available at

www.info.ucl.ac.be/people/YDE/yde.html. Table 11.1 also summarizes these
programs.

1

1.2 Test generation procedure and experiments

Our test generation procedure consists in trying to generate a test case for each node
of the ICFG, and then reporting the predicted statement coverage (the percentage
of nodes for which the constraint solving algorithm found a float Java solution) and
the actual coverage (the percentage of nodes for which the float Java solution is a
test case of the C program). Note that when a test data is generated for a node, we
also obtain a path traversing the node. Hence, all other nodes involved in the path
are then marked as covered by the same test data.
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Our experimental results are given in Table 11.1. For each program, Table 11.1
lists the values of the following parameters: epsilon (the size of the interval solutions)
, timeout (timeout for solving a path constraint), Nodes (the number of nodes of the
corresponding ICFG), Average (the average time in seconds spent on a node), Max
(the maximum time in seconds spent on a node), Total (the total time in seconds to
generate test cases for all the nodes), Predicted-Coverage (the predicted statement
coverage), and Actual-Coverage (the actual statement coverage). Note that the value
of parameter labeling-level, used in these experiments, is one by default.

For more detailed information on our experimental results, refer to Appendix A.

To determine whether the use of filtering during the selection of paths in Algo-
rithm 9.1 (as indicated in Algorithm 9.1) or during the path constraint solving in
Algorithm 8.2, is actually effective, we also carried out the same experiments where
such filtering operations were deactivated. These experimental results will be given
in Sections 11.10 and 11.11.

11.3 Efficiency

Even with the complex scientific programs, gaujac, expint, gamdev, bessi and ei,
the time performance indicates that our method is practical. It is difficult to provide
a time complexity analysis as the general problem of solving a set of constraints is
NP-hard. Efficiency should therefore be measured on specific classes of problems.
Moreover, choosing a “good” path reaching a node, where one quickly gets a test
case, is another problem. Indeed, at a decision node, where its two successors have
the same priority to be chosen during the path construction, the choice of the next
successor has a great influence on the time complexity. Taking the gaujac program
as an example, its related results reported in Table 11.1 correspond to the default
behavior of our test data generator. However, when we change the branch taken
by default at a node, the time needed to cover all the nodes is only 3.6 seconds!
The speed-up here is thus around 38.7. Note that our implementation allows us to
observe all paths reaching a node during the path construction, as well as to specify
at specific node, the strategy for the path generation.

11.4 Coverage and completeness

For programs without dead code, the COTTAGE system is able to achieve 100%
coverage on all the experimented programs, even the complex scientific ones. On all
our experiments, the actual coverage is also the predicted coverage. This illustrates
that the completeness issue raised in the previous chapter is, in practice, not really
problematic. The CMichel example illustrates that the constraint solver is also able
to find non mathematical solutions (here it found the value z=1.3322...F-15 for
the test). The coverage of the ei-dead example is only 92% because 2 nodes are
unreachable; they have been detected by the system.

The achieved coverage justifies our approach to use an implementation language
(Java) different from the language of the tested programs (C). This generic approach
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allows us to use the COTTAGE system for testing programs in other programming
languages.

11.5 Procedures

Our interprocedural control dependence analysis, as described in [64], enables the
system to handle procedures with greater precision than the classical intraprocedural
analysis. In the proc example, the halt statement in a nested procedure is handled
without any problem.

Benchmark nThRootBisect
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Figure 11.1: Experiments with nThRootBisect

11.6 Choosing the parameters

For some programs, the default value of the parameters (epsilon and timeout)
has to be adapted to achieve completeness. The epsilon value may influence not
only the coverage, but also the execution time, as illustrated in Figure 11.1 on
the nThRootBisect example. With small epsilon values, our implementation of
FindSolution with the default labeling-level (choosing the middle point) has more
chance to find a float Java solution. With larger epsilon values, the system could
generate many interval solutions before FindSolution finds a float Java solution,
increasing thus the execution time, or reducing the coverage. More sophisticated
implementation of FindSolution could be designed, but this is not a central point
given the efficiency of the constraint solver for small epsilon values.

The ei program, involving a Ie-30 constant, illustrates the necessity to choose
the epsilon value according to the constants used in the program. The default Ze-16
epsilon value achieves only 95% coverage while a 1e-32 value achieves 100% coverage.
The execution time is even better (pruning is slightly more efficient).

For some programs such as expint, increasing the timeout parameter can affect
the execution time. A too small timeout could also reduce the coverage.

114




11.7 — COMPLEX PATHS

It should be noted that the values chosen for the epsilon parameter are fix in
our experiments. We could however choose a variable epsilon value, representing the
following possibilities:

e The epsilon value corresponds to a fix number of floats.
e The epsilon value is proportional to the size of the initial box given to the path
constraint.

11.7 Complex paths

In the expint and ei programs, a constant MAXIT is used to indicate the maximum
number of iterations such programs are allowed in order to converge to a solution;
they raise an error, by exit (1), if no solution is found after MAXIT iterations. Our
system is of course not able to find a test case achieving these error statements with
the original value of MAXIT (100) as the number and the complexity of the path
constraints is too high. In the experiments reported in Table 11.1, the value of
MAXIT is 10 for expint, and 17 for ei.

11.8 Initial domain values

The choice of the initial domains of the input variables may influence the coverage
and the efficiency of the system. A too small initial domain could not cover some
of the nodes. A large domain may increase the computation time. In our experi-
ments, we choose large initial domains to favor coverage. In the expint program for
instance, the initial domains are n = [1,30] and =z = [-1000, 1000]. For ei, we set
x = [—1,10000] because = < 0 is an error case.

11.9 Over-estimation of interval solutions

Interval programming suffers from the well-known problem of multi-occurrences of
the same variables in an expression. Consider, for example, the function f(z) = z—u,
which always returns 0. However, its natural interval extension F'(X) is much less
precise. For example, with the used interval library, F'([0,1]) returns the interval
[—1.0000000000000002, 1.0000000000000002], which contains much noise because we
ideally hope for the interval [0,0]. More surprisingly, a constraint such as ¢(z) :=
x —x # 0, has no float solutions while any point interval such as [1,1] is its interval
solution, because F'([1,1]) returns the interval [—4.9¢ — 324, 4.9F — 324].

As a consequence, the ei-dead program generates 246 interval solutions (see
columns 13, 14 and 15 in Figure A.2), out of which only 6 interval solutions ac-
tually contain float solutions (found by FindSolution). The other 240 interval
solutions contain no float solution (following an exhaustive enumeration). Notice
however that the corresponding ei program generates only 6 interval solutions, all
of which contain float solutions (found by FindSolution). We can conclude that
the two unreachable instructions inserted in ei-dead are the cause of such 240
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Table 11.2: Experimental results without the filtering in path generation

Programs |#path with#path without Error TimeoutEpsilonNodesTotal[Predicted
filtering filtering (sec.) (sec.) Cover.
NthRootBisect] 5 5 no 15 le-16 | 10 | 0.4 | 100%
Sample 2 950 StackOverflow| 15 le-16 | 15 | * *
Tritype 10 39 no 15 le-16 | 24 | 1.5 | 100%
Proc 4 4 no 15 le-16 | 27 | 0.7 | 100%
BSearch 3 8 no 15 le-16 | 10 | 0.3 | 100%
CMichel 2 2 no 15 le-16 | 4 ]0.09| 100%
gaujac 12 * out-of-bounds| 15 le-16 | 40 | * *
expint 10 30 no 15 le-16 | 35 |16.6| 100%
gamdev 6 * out-of-bounds| 15 le-16 | 46 | * *
bessi 22 22 no 15 le-16 | 27 |1.62| 100%
ei 22 453 StackOverflow| 15 le-32 | 22 * *
ei-dead 39 340 StackOverflow| 15 le-32 | 27 | * *

bad interval solutions. The purpose of the two unreachable instructions is: all the
path constraints going through such instructions must involve two conditions not
mutually satisfiable such as exp; < exps and exp; > exps. Then these path con-
straints will have no float solution (i.e. the corresponding paths are infeasible).
However such constraints can have interval solutions. For example, the constraint
r4+y <1& x+y > 1 has no float solution, while it can have z = [0.5,0.5] and
y = [0.5,0.5] as an interval solution, because interval evaluation of x 4+ y returns the
interval [0.9999999999999999, 1.0000000000000002]. Likewise, the CMichel program
generates 3 interval solutions, one of which actually contains no float solution after
an exhaustive enumeration.

The relative weakness of interval solutions in the above extreme situations does
not influence, however, the feasibility of many software based on interval program-
ming such as Numerica [36], as well as that of our system as indicated by our
experimental results.

11.10 Influence of filtering on the path generation

Table 11.2 presents our experimental results where the filtering was deactivated
during the path generation in Algorithm 9.1 (i.e. the line as indicated in Algorithm
9.1 was removed). The two columns named #path with filtering (the total paths
generated when the filtering is active in Algorithm 9.1) and #path without filtering
(the total paths generated in this case, i.e. without the filtering) aim at showing
the actual influence of filtering on the path generation. The Error column aims to
explain the programs with some of their columns marked by an * (i.e. unknown),
whose experiments were halted due to the following reasons:

e Too many paths were generated, resulting in StackOwverflow exceptions.
e Invalid paths were generated due to index-out-of-bounds exceptions with arrays.

We now take an example to illustrate the latter case. In the gaujac program, let’s
consider the following else branch
for (i=1;i<=N;++i) {
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Table 11.3: Experimental results without the filtering in constraint solving

With filtering Without filtering
Programs [TimeoutfEpsilonNodes{Total| Predicted | Total [Predicted Error
(sec.) (sec.)| Cover. (sec.) | Cover.
NthRootBisect] 15 le-16 | 10 | 04 100% 300.5 45%
Sample 15 le-16 | 15 | 0.3 100% 0.2 100%
Tritype 15 le-16 | 24 | 0.3 100% 0.3 100%
Proc 15 le-16 | 27 | 0.7 100% 0.14 | 100%
BSearch 15 | le-16| 10 | 0.2 100% 0.1 100%
CMichel 15 le-16 | 4 ]0.09 100% 0.09 100%
gaujac 15 | le-16 | 40 [136.2] 100% 31.1 | 100%
expint 15 le-16 | 35 |16.6 100% 300.4 13%
gamdev 15 | le-16 | 46 | 0.5 100% * *  IStackOverflow]
bessi 15 le-16 | 27 [1.62| 100% 300.4 3%
el 15 | 1e-32| 22 | 28| 100% | 300.5 | 91%
ei-dead 15 le-32 | 27 | 3.8 92% 300.6 14%
if @==10{... }
else {
z=3.0*x[1-2]-3.0*x[i-3]+x[i-4];
}

This branch can only be reached if i >= 4. But since no filtering was used during
the selection of paths, this branch was chosen in the first iteration of the loop (cor-
responding to i = 1). Therefore, an indez-out-of-bounds on arrays was generated
by the system, because x[i-4] becomes x[-3], for instance.

For other programs such as tritype, more infeasible paths were generated, with
a consequence that the Total time was increased considerably (1.5 seconds vs. 0.3
seconds in Table 11.1).

The experiments as reported in Table 11.2 confirm thus the necessity of using
filtering during the generation of the paths in Algorithm 9.1.

11.11 Influence of filtering on the constraint solving

Table 11.3 presents our experimental results where the filtering was deactivated
during the path constraint solving in Algorithm 8.2. The columns With filtering
(related to Table 11.1) and Without filtering (this case) aim to show the influence
of filtering on the path constraint solving.

For the half of the programs, the Total time is slightly better. This is perhaps due
to the fact that when the path constraints have a lot of solutions, the filtering could
be a waste of time. Moreover, in such cases, many test data could be generated
by chance with the QuickFindSolution function. For other programs, although
we fixed the timeout for the test data generation to five minutes, the coverage
results were too bad compared with the presence of filtering. Regarding the gamdev
program, even a StackOverflow exception was raised.
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Table 11.4: A summary of test data generators

Methods | Ref. | Int. | Float [Arrayq Proc. | Path [Statement

Coverage Coverage
Consistency this | yes | yes | yes | yes yes yes
Testgen | [47] | yes | yes | yes | yes yes yes
Relaxation| [32] | yes | yes yes | yes yes yes
InKa [26] | yes | mno yes | yes no yes
Genetic | [54] | yes | yes yes no no yes
Symbolic | [10] | yes | yes | yes'| yes yes no

! Array references depending on input variables are not handled

In conclusion, the use of filtering in the path constraint solving is necessary in
the general case.

11.12 Comparison with existing methods

Table 11.4 summarizes the existing methods with functionalities close to our method
(first line in the table). Two other methods offer the same functionalities, [47] and
[32]. As in these methods, our prototype is able to achieve 100% coverage on the
examples, but our set of examples contains more complex programs. It is difficult
to compare the efficiency of the different methods because efficiency information
is sometimes partial or missing. When this information is available, the measures
can be incomparable (number of iterations versus execution time versus theoretical
complexity). When it is comparable, one should consider the differences in the
underlying hardware.

In [32], an execution time of 98 and 42 seconds (Windows NT, 400MHz Pentium
IT) is reported to find test data for two branches of the benchmark expint, and an
execution time of 117.4 seconds to find test data for one branch of the benchmark
gamdev. For the expint program, our system generates 10 path constraints to
achieve a full coverage in 16.6 seconds; and for the gamdev program, our system
generates 6 path constraints to achieve a full coverage in 0.5 seconds.

The experimented scientific programs taken from [55| are so far the most com-
plex (in terms of the complexity of expressions) of our examples. In the literature,
we rarely find such complex examples used by other methods. We do not claim
however that our method is the best. Rather, it can be used as an alternative or
a complement with other methods in test data generation. More importantly, our
system strengthens the possibility of applying constraint programming for test data
generation as stated in [26].
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Chapter 12

Conclusion and Future Work

This chapter recalls the main contributions of this thesis, presents our conclusions
from such contributions, and outlines possible directions for future work.

12.1 Conclusion

This work first described our consistency approach to the problem of structural test
data generation, namely the generation of test data for imperative programs with
float, integer and boolean variables, as well as procedure calls and arrays. Test
programs (with procedure calls) are represented by an interprocedural control flow
graph (ICFG). The testing criteria (path coverage, statement coverage, and branch
coverage) are then defined in terms of the ICFG. Our purpose was thus to generate
test data that will cause the program to traverse a specified path, node, or branch
of the ICFG.

For path coverage, the search for test data is reduced to the solving of path
constraints. Such a solving is based on consistency techniques, aiming at reducing
the domains of the variables. A main originality of our method is thus a constraint
solver dealing with float, integer and boolean variables, thereby suitable for test data
generation. Included in that solver is a new interval logic framework able to deal
with interval constraints involving integer, boolean and float variables, as well as the
logical operators and, or and not. Conservation of float solutions is also a central
point in building a “conservative” solver, where its filtering algorithms ensure not
losing any float solutions. To reach such aim, we used the natural interval extension,
such as also proposed in [50]. Moreover, as an extension of some results in [50], we
proposed further theoretical ideas in order to build an interval library ensuring the
conservation of float solutions. For example, in the case where only the rounding
mode near is used such as in Java, we showed interval-extension formulas, as well
as conditions that must be satisfied for such conservation. It should be noticed
however that in practice, it is sometimes difficult to obtain a total conservation of
float solutions due to the following reasons:

e The rounding of floating-point operations may be inexact.
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e Since the properties of real operations are not preserved for their corresponding
floating-point operations, we may be incapable to predict the variation of floating-
point operations, as illustrated in Figure 10.4, for the calculation of their interval
extensions so as to preserve all float solutions.

For statement coverage, suitable paths reaching the specified node are dynami-
cally constructed. The search is guided by the interprocedural control dependence
graph, as well as pruned by our e-box consistency filter. When such a path is found,
our algorithm for path coverage is then applied. A dynamic approach to statement
coverage was also proposed, by combining random test data generation, program
execution and our path coverage method — but has not yet been implemented. An
implementation for this dynamic approach should be investigated in future work.

Note again that our algorithms of test data generation for both statement cover-
age and path coverage, are incomplete. This is due to the undecidability of determin-
ing whether a node (or a path) is executable in the general case. As a consequence,
our algorithms may loop to find test data for certain program elements of the test
program.

We then presented our COTTAGE system, a 13,000 Java lines software, imple-
menting our method, for test data generation of C programs. Various experiments,
including complex programs (in terms of nonlinear expressions) taken from the nu-
merical computing book [55], have been reported. These experiments showed the
coverage of our system, as well as its versatility and flexibility to different classes of
problems (integer and/or float variables; arrays, procedures, path coverage, state-
ment coverage). They demonstrate the feasibility of the method, its efficiency and
its potential to handle complex programs.

Our constraint solver could be combined with existing approaches based on dy-
namic methods (e.g. [32, 54|), especially when searching a test data exercising a
specified statement of the program.

12.2 Future Work

Below are some directions for future work related to our current method. Note that
possible extensions for our COTTAGE system were already discussed in greater
detail in Section 10.11.

e The development of different strategies for the FindSolution function, such as
using local search in epsilon interval solutions, should be investigated.

e Extension of the considered subset of C, such as pointers, is necessary to the
testing of more realistic programs. One possibility may be to extend the partial
work on pointers in [25]. Beside pointers, more research should be focused on
dealing with dynamic data structures (graphs, trees, ... ). Many problems remain
to be solved, such as the automatic determination of shape for dynamic data
structures when they are used as input.

e The possibility of error detection will also be considered, by adding new kinds of
constraints modeling error conditions such as in [58].
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e Data flow testing and its criteria can be incorporated in our work by inspiring
ideas from [29], where paths covering data flow dependences are first constructed,
and then used by our path coverage method to generate test data.

Notice that in this thesis, we focus our attention to the generation of test data for
imperative programs. Therefore, all of our discussions on testing, testing criteria,
and test data generation to cover some criteria, were limited to (traditional) im-
perative paradigm. However, some other programming paradigms (object-oriented,
declarative, functional, ... ) exist in parallel. And testing in the context of each
paradigm should be a specific subject on its own, because of underlying differences
among them. Even so, we present below some links of our work and traditional test-
ing with object-oriented paradigm (more specifically object-oriented testing), which
becomes more and more used in practice, such as Java, C+-+, etc.

Testing with object-oriented programs faces new concepts such as polymorphism,
inheritance and encapsulation, which can present new kinds of errors and difficulties
[4] that do not exist in traditional testing. This means that new criteria should
be derived to help decide when we have done enough testing. However, traditional
methods can still be adapted to a certain extent for object-oriented testing. For
example, as reported in [4], a technique for testing all intra-class data flows was
developed based on ideas from data-flow testing, where it offers a systematic means
to exercise all possible data flows over all possible method activation sequences. As
another example, an inter-method flow graph constructed during class testing [5| can
be viewed as an interprocedural flow graph in our work, which in turn may be used
by classical structural criteria for generating test data. For general discussions on
testing of object-oriented software and its characteristics compared with traditional
testing example, see [43, 5|. Notice that such work rather focused on black-box test-
ing, which does not use the program’s code to select tests. In other words, selection
of tests is based on specifications, or from state models (state graphs) constructed
from specifications. Since many software systems are not totally formally specified
or not even informally specified, these methods may not be applicable. Even when
applicable, specification-based testing may not be able to detect all faults caused by
implementation details, as is the case in traditional testing.

White-box approaches to testing object-oriented software include the following,
to name only a few. (1) [35] proposes a method for performing data flow testing on
classes. Sequences of methods (can be called in any order from outside the class)
that should be executed to test a class, are calculated by using possible data flow
interactions between these methods. (2) A class of adequacy criteria used to test
the behavior of exception-handling constructs in Java programs, is described in [60].
The approach presents techniques for generating testing requirements for the criteria
using its control flow representations. It also gives a methodology for applying the
criteria to unit and integration testing of programs containing exception-handling
constructs. (3) [9] can be viewed as an extension of [35], where data flow analysis,
symbolic execution and automated deduction are combined to generate method se-
quences for structural testing of classes. In this work, test case generation is realized
to a certain extent, when instance variables are scalar and symbolic execution can
be completed successfully.

123



12 — CONCLUSION AND FUTURE WORK

The above approaches to object-oriented testing provide a basis for testing, but
do not totally attack the problem of automatic test data generation. [9] seems to be
an important step-stone in dealing with that problem, but further work still remains,
for example, for the case where instance variables are objects. Moreover, dealing
with input variables being objects, is likely the similar situation in traditional testing
where input variables are (pointers to) dynamic data structures.
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Appendix A

Detailed Experimental Results

In this appendix, we present our experimental results in more detail. They are
divided into two cases respectively corresponding to Figure A.1 and Figure A.2:
The first case represents the normal operation of Algorithm 8.2 while the second
case removes the three lines indicated in the same algorithm, where exists a call to
QuickFindSolution. We will first explain our experiments presented in Figure A.1.

A.1 With QuickFindSolution

In Figure A.1, the number of vertices (or nodes) of the ICFG is represented in column
numbered 1. The parameters for each experiment —the 0 level, the size of interval
solutions (epsilon), the timeout for constraint solving— are represented in columns
numbered 2, 3 and 4. Note that in column 3 (epsilon), —16 stands for 1le — 16, and
SO on.

Information on the path constraints created during the generation of test data
for all nodes of the ICFG, is given in the columns numbered 5, 6, 7, 8 and 9. We
have the following equality:

5=6+7+84+9
That is, the total generated path constraints (in column 5) are divided into four
categories:
e 6: the path constraints that were successfully solved to provide a test data,
e 7: the path constraints that were interrupted during their solving, due to time-
out,
e 8: the path constraints having no interval solutions,
e 9: the path constraints having interval solutions, but no float solution is found.
If a path constraint belongs to category 8, it may possibly be infeasible. Because it
may be that float solutions actually exist, but they are not preserved during filtering.
Note that as discussed earlier, our filtering algorithms were designed to preserve
float solutions by using natural interval extensions. In the case where all interval
extensions for the basic arithmetic operators, as well as for functions such as sin
treated as basic operators, are guaranteed to preserve all float solutions, our filtering
algorithms will not lose any float solutions. As a consequence, the path constraint
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WITH QuickFindSolution
1: Total vertices
2: Labelling level
3: epsilon
4: timeout for constraint solving (sec.)
5: Total path constraints generated
6: Total solved path constraints
7: Total path constraints with timeout
8: Total path constraints with no interval solution
9: Total path constraints with interval solutions but no float solution
10: Total calls to QuickFindSolution
11: Total failed QuickFindSolution(s)
12: Total winning QuickFindSolution(s)
13 Total calls to FindSolution
14: Total failed FindSolution(s)
15: Total winning FindSolution(s)
16: Total solution-tests
17: The time needed to cover all ICFG vertices (sec.)
18: The maximum time spent on a vertex (sec.)
19: The average time spent on a vertex (sec.)
20: Goverage (%)

Parameters  |Path constraints QuickFindSolution FindSolution Tests Exec. ime
Function 112 3 456 7 8 9/10 11 12|13 14 15| 16 17 18 19 20
NthRootBisect [ 101 -6 155 3 0 2 0| 14 11 3 0 0 0 14 04 0.2 0.040] 100
NthRootBisect [ 101 -30 155 3 0 2 0| 14 11 3 0 0 0 14 04 02 0.040[ 100
sample 511 16 1502 2 0 0 0] 0 0 0 2 0 2 2 0.3 02 0.020[ 100
tritype 2411 16 1510 8 0 2 0| 42 & 5 3 0 3 45 0.3 0.1 0.013] 100
proc 2711 16 15(4 4 0 0 0| 5 4 1 453 450 3 458 0.7 06 0.026( 100
proc 2712 16 154 4 0 0 0| 4 3 1 3 0 3 7 042 0.5 0.004] 100
bsearch 10(1 -6 15(3 3 0 0 0] 0 0 0 3 0 3 3 0.2 0.1 0.020[ 100
cMichel 411 16 152 2 0 0 0| 4 2 2 1 1 0 5 009 0.08 0023 100
gaujac 001 16 15(12 2 9 1 0] 1 0 1| 4277 4276 1 4278 | 1362 1359 3405 100
gaujac 405 16 1512 2 9 1 0] 1 0 1| 3460 3459 1 | 28357 | 1364 136 3.410( 100
gaujac 40010 16 1512 2 9 1 0] 1 0 1 782 781 1 | 108815 | 1364 1361 3410 100
expint BH|1 -16 15|10 8 1 1 0| 80 72 8 0 0 0 80 166 151 0474/ 100
ei 201 -2 15(2 6 0 16 0] 28 22 6 0 0 0 28 1.9 09 0.086| 100
giDead 2701 -3 15039 6 0 17 16| 399 393 6 | 240 240 0 639 38 19 0141 92
eiDead 2705 -3 15039 6 0 17 16/ 399 393 6 | 240 240 O 1311 39 2 0144 92
gamdev 611 16 15|16 5 0 1 0| 5 3 2 3 0 3 8 05 03 0.011] 100
bessi 2701 16 152 4 0 18 0] 25 22 3 1 0 1 26 162 16 0.060[ 100

Figure A.1: With QuickFindSolution

having no interval solutions is surely infeasible. But in reality, since the interval
library used in our implementation was designed mainly to preserve mathematical
solutions, our only conclusion is that the path constraint may be infeasible.

If a path constraint belongs to category 9, one of the following conclusions can be
drawn. (1) The path constraint has interval solutions, but they are all over-estimated
due to the well-known problem in interval evaluation (multiple occurrences of the
same variables) already mentioned in Section 11.9; This means that no float solutions
actually exist in them. (2) The path constraint has interval solutions containing
float solutions, but function FindSolution cannot find them. If so, we can, for
example, increase the value of the labeling level, or make an exhaustive enumeration
on interval solutions. The latter case can become problematic for interval solutions
near zero. Indeed, in an experiment, it took us more than five hours without being
able to finish enumerating all floats in the interval [0,1e — 16]. Of course, the
five hours here do not include the time to test whether floating-points are actually
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float solutions. If such tests were carried out, many days would be required for
testing such floats generated during these five hours. This means that exhaustive
enumeration may be impossible for certain interval solutions. As also reported in
[15], the interval [1,1.000001], although of very small size, contains not less than
four billions and half of floats. Furthermore, it is important to note that the number
of floats near zero increases far more considerably, i.e. the region near zero contains
the most of floats. And the farther we go from zero, the lesser the number of floats
is. Given the above difficulty with exhaustive enumerations, in the future work, we
should envision more intelligent approaches to explore interval solutions.

The columns 10, 11 and 12 represent calls to function QuickFindSolution, in-
tegrated in Algorithm 8.2 and specified in Specification 8.1. Recall that the aim of
QuickFindSolution is to test whether the middle point in the current domains box
for all input variables is a test data. If so, no more filtering (may be very expensive)
is needed to converge to a domains box of size epsilon (an epsilon interval solution),
from which the finding of test data actually takes place. We have the following
equality:

10=11+12

This means that the total calls to QuickFindSolution (10) are divided into two
categories: 11 (the calls to QuickFindSolution where no test data is found) and 12
(the calls to QuickFindSolution with test data successfully generated).

The columns 13, 14 and 15 represent calls to function FindSolution, also integrated
in Algorithm 8.2 but specified in Specification 8.2. The total calls to FindSolution
given in column 13, are also divided into two parts given in columns 14 and 15, as the
above case with QuickFindSolution. The purpose of the columns from 10 to 15 is to
examine the “efficiency” of both QuickFindSolution and FindSolution. Note that
the total calls to FindSolution is equal to the total interval solutions generated; Col-
umn 16 represents all solution tests done in QuickFindSolution and FindSolution,
where each test verifies whether an assignment of values to the input variables is a
float solution. Given the fact that the integration of QuickFindSolution in Algo-
rithm 8.2 aims at the possibility of quickly finding test data for a path constraint,
the results involving QuickFindSolution really play less important role, and they
are there rather for our statistical purposes. On the contrary, it is more interesting
to analyze the results with FindSolution in columns 13, 14 and 15.

e For the NthRootBisect benchmark, all test data were found by QuickFindSolution.
That is, no epsilon interval solutions were actually generated. This illustrates
the possible benefit of integrating QuickFindSolution in Algorithm 8.2: Reach-
ing epsilon interval solutions first prior to finding test data, may be more time-
consuming than having QuickFindSolution integrated, as will also be confirmed
when we bring into comparison Figure A.1 and Figure A.2.

e For the sample benchmark, contrary to the above case, all test data were found by
FindSolution, i.e. test data were only generated once each interval solution had
been found. We may wonder why no calls to QuickFindSolution were carried
out. This is because QuickFindSolution is called only if the path constraint is
completely expressed in terms of input variables. However, it is not the case, for
example, if the path constraint involves arrays dependent on input variables.
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e For the tritype benchmark, test data were however generated from both
QuickFindSolution and FindSolution.

e For the proc benchmark, when the labeling level is one by default, out of 453
interval solutions, only 3 were successful with FindSolution in searching a test
data. When we increased the labeling level to 2, test data were immediately found
in all the three interval solutions generated. This illustrates the possible advan-
tage of increasing the labeling level in other situations. The time performance is
also far better for the latter case. For instance, the total time to generate test
data for all ICFG vertices (column 17) is 0.12 (sec.), compared with 0.7 for the
former case. Notice that the higher the value of the labeling level is, the more
time is needed to find test data in an interval solution, but the more chance we
have in obtaining test data. If the value of the labeling level is lower, more in-
terval solutions can be generated, and thus the more time is required to generate
them.

e For the benchmarks cMichel, gaujac and eiDead, the results with FindSolution
were bad. Because the situation didn’t change too much although our increas-
ing in the labeling level. We wondered whether this is due to the labeling of
FindSolution or the over-estimation of interval solutions (discussed in Section
11.9). As was also discussed in Section 11.9, for cMichel and eiDead, we success-
fully made an exhaustive enumeration on their interval solutions. Indeed, such
interval solutions were all over-estimated (i.e. no float solutions exist in them).
Unfortunately, an exhaustive enumeration on interval solutions of gaujac was not
possible. However, in analyzing gaujac, we can easily see the problem of multi-
occurrences of the same variables, the cause of the over-estimation of interval
solutions.

The columns 17, 18 and 19 report the time performance of our experiments while
column 20 reports the predicted coverage of all the nodes of the ICFG. Note that
the actual coverage was the same as the predicted coverage in all of our experiments.
That’s why it doesn’t occur in Figure A.1. Except for the eiDead program, where we
inserted two unreachable lines of code (dead code), a 100% coverage was attained for
all other programs. Moreover, the dead code introduced in eiDead was successfully
detected. The time performance (execution times) was also reasonable and practical.
After all, the time performance as well as the coverage, are actually a function of
many factors such as the machine, the initial domains for the input variables, the
parameters for each experiment (columns 2, 3 and 4), ... Since the time performance
is relative, it should be understood as indicative. Likewise, since the coverage is
relative, a bad choice of some of the above factors may results in a poor coverage.

A.2 Without QuickFindSolution

We are now in a position to give a short analysis of Figure A.2. Our purpose
is double: measuring the effects of removing QuickFindSolution from Algorithm
8.2, as well as evaluating both the results involving FindSolution and the possible
over-estimation of interval solutions. Note that in this context, test data are only
generated once each interval solution is found. This also explains why the columns
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WITHOUT QuickFindSolution
1: Total vertices
2: Labelling level
3: epsilon
4: timeout for constraint solving (sec.)
5: Total path constraints generated
6: Total solved path constraints
7: Total path constraints with timeout
8: Total path constraints with no interval solution
9: Total path constraints with interval solutions but no float solution
10: Total calls to QuickFindSolution
11: Total failed QuickFindSolution(s)
12: Total winning QuickFindSolution(s)
13: Total calls to FindSolution
14: Total failed FindSolution(s)
15: Total winning FindSolution(s)
16: Total solution-tests
17: The time needed to cover all ICFG vertices (sec.)
18: The maximum time spent on a vertex (sec.)
19: Coverage (%)

Parameters Path constraints QuickFindSolution FindSolution Tests Exec. time
Function 112 3 4|5 6 7 8 9|10 11 12| 13 14 15 16 17 18 | 19
NthRootBisect 101 16 155 3 0 2 0 0 0 0 3 0 3 3 0.4 0.2 | 100
sample 511 16 152 2 0 0 0 0 0 0 2 0 2 2 0.3 0.2 | 100
tritype 2401 -16 1510 8 0 2 0 0 0 0 8 0 8 8 0.3 0.1 | 100
proc 2711 <16 154 4 0 0 0 0 0 0 454 450 4 454 0.7 0.6 | 100
proc 2705 -6 1504 4 0 0 0 0 0 0 4 0 4 4 0.1 0.05 | 100
bsearch 101 16 153 3 0 0 0 0 0 0 3 0 3 3 0.2 0.1 | 100
cMichel 411 16 15(2 2 0 0 0 0 0 0 3 1 2 3 0.09 006 | 100
gaujac 4011 16 1512 2 9 1 0 0 0 0 | 4576 4574 2 4576 1419 1358 | 100
gaujac 4015 16 1512 2 9 1 0 0 0 0 | 4360 4358 2 17464 142 1358 | 100
gaujac 4010 16 15 (12 2 9 1 0 0 0 0 | 1815 1813 2 172311 | 1421 1359 | 100
gl 201 32 15(2 6 0 16 0 0 0 0 6 0 6 6 2 0.9 [ 100
giDead 27(1 32 15 (39 6 0 17 16| 0 0 0 246 240 6 246 3.7 1.9 2
eiDead 2705 -32 1539 6 0 17 16| 0 0 0 246 240 6 918 3.8 1.9 R
gamdev 4611 16 15(6 5 0 1 0 0 0 0 5 0 5 5 0.5 0.3 [ 100
bessi 2701 -6 15 (2 4 0 18 0 0 0 0 4 0 4 4 1.86 1.84] 100
expint 3|1 -6 1519 7 11 1 0 0 0 0 | 3450 3443 7 3450 165.7 1502 | 97
expint B(5 -6 1519 7 11 1 0 0 0 0 | 334 3347 7 9706 165.7 1501 | 97

Figure A.2: Without QuickFindSolution

related to QuickFindSolution were all filled with zeros. It is important to note also
that the experiments reported in this figure were done on the same environment
(with the same machine, the same parameters, ... ) as those reported in Figure
A.1. Otherwise, our comparison below is senseless.

The effects of removing QuickFindSolution are clearly seen when we make
a comparison between Figure A.2 and Figure A.1 in terms of time performance,
indicated by columns 17 and 18 in Figure A.2 and by columns 17, 18 and 19 in
Figure A.1. For all the programs under test, the execution time generally increased
when without QuickFindSolution. A little increase in execution time was seen
in most cases, except for program expint, where the total time to cover all ICFG
vertices (column 17) was 165.7, compared with 16.6 (with QuickFindSolution).
The coverage in the case with expint was even worse. Only a 97% coverage was
reached, even when we increased the labeling level.
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We now focus our attention to columns 13, 14 and 15 related to FindSolution.
We find again the same situation as was already discussed in the previous section:
a lot of “failed” calls to FindSolution for gaujac, eiDead, as well as expint (Note
however that for expint in Figure A.1, all test data were found by QuickFindSolution.),
even when we increased the labeling level. By going into detailed reading of these
programs, we find the following common characteristic: They contain loops whose
body consists of many calculations involving many variables with multiple occur-
rences. In that case, any path going through such loops several times, may lead to a
possible explosion of the effects of multi-occurrences of the same variables, which in
turn is the original cause of the over-estimation of interval solutions. Our conclusion
is that if there are many over-estimated interval solutions, it is obvious to see results
concerning FindSolution such as those shown in Figure A.2 and Figure A.1.
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Benchmarks

B.1 NthRootBisect.c
#include <math.h>

double nThRootBisect(double a, int n, double e) {
double 1, h, c;

1=1; h=a;
while ((h - D*(h - 1) >= e) {
c = (1 +nh)/2;
if (pow(c, n) - a == 0) return c;
if ((pow(1l, n) - a)*(pow(c, n) - a) < 0) h = c;
else 1 = c;
}

return h;

B.2 Sample.c

int sample(int a[10], int b[10], int target) {
int i, fa, fb;

i=0;

fa = 0;

fb = 0;

while (i <= 9) A
if (al[i]l == target) fa = 1;
+41;

}

if (fa == 1) {
i=20;
fb = 1;
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while (i <= 9) A
if (b[i] !'= target) fb = 0;
++1i;
}

}

if (fb == 1) return O;

else return 1;

}

B.3 Tritype.c

int tritype(int i, int j, int k) {
int trityp;

if (G ==20) Il (j==0 |l (k==0)) trityp = 4;
else {
trityp = O;
if (i == j) trityp = trityp+i;
if (i == k) trityp = trityp+2;
if (j == k) trityp = trityp+3;
if (trityp == 0) {
if ((i+j <= K) |1 (G+k <= D) || (i+k <= j)) trityp = 4;
else trityp = 1;

}
else if (trityp > 3) trityp = 3;

else if ((trityp == 1) && (i+j > k)) trityp = 2;
else if ((trityp == 2) && (i+k > j)) trityp = 2;
else if ((trityp == 3) && (j+k > i)) trityp = 2;

else trityp = 4;

}

return trityp;
}
B.4 Proc.c

#include <stdio.h>

void b(double al[10]);

void c(double *x, double *y);
int f(int i);

void proc(double a[10], int c¢) {

int 1i;
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i=1;
while (i <= ¢) {
b(a);
++1;
}
}

void b(double a[10]) {
int i, j, fi, fj;

printf("i j ? "); scanf("%d %d", &i, &j);
fi = f£(i);
fj = £(j);
if (fi < fj) c(&ali]l, &aljl);
else c(&aljl, &alil);
}

void c(double *x, double *y) {
double t;

if (xx > xy) {

t = *x;
*X = Xy,
Xy = t;

}
}

int f(int i) {
if (1 >= 0 & i <= 9) return i;
else exit(1);

3

B.5 BSearch.c

int bsearch(double a[10], double elem) {
int low = 0;
int high = 9;
int mid;
while (high >= low) {
mid = (low + high)/2;
if (elem == a[mid]) return 1;
if (elem > al[mid]) low = mid + 1;
else high = mid - 1;
+

return O;
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B.6 CMichel.c

int cMichel(double x) {
if (16.0+x == 16.0 && x > 0) return 1;
else return O;

3

B.7 gaujac.c

#include <math.h>
#define EPS 3.0e-14
#define MAXIT 10
#define N 6

double gammln(double xx);

void gaujac(double x[N], double w[N], double alf, double bet) {
int i,its,j;
double alfbet,an,bn,rl,r2,r3;
double a,b,c,pl,p2,p3,pp,temp,z,z1,gll,gl2,gl13,g14;

for (i=1;i<=N;++i) {

if A ==1) {
an=alf/N;
bn=bet/N;
r1=(1.0+alf)*(2.78/(4.0+N*N)+0.768*an/N) ;
r2=1.0+1.48*%an+0.96%bn+0.452*an*an+0.83*an*bn;
z=1.0-r1/r2;

} else if (i == 2) {
ri=(4.1+alf)/((1.0+alf)*(1.0+0.156*alf));
r2=1.0+0.06*%(N-8.0)*(1.0+0.12*alf) /N;
r3=1.0+0.012xbet*(1.0+0.25xfabs(alf))/N;
z -= (1.0-z)*rl*r2*r3;

} else if (i == 3) {
r1=(1.67+0.28*alf)/(1.0+0.37*alf);
r2=1.0+0.22%(N-8.0)/N;
r3=1.0+8.0%bet/ ((6.28+bet) *N*xN) ;

z -= (x[0]-z)*ri1*r2*r3;

} else if (i == N-1) {
r1=(1.0+0.235%bet)/(0.766+0.119*bet) ;
r2=1.0/(1.0+0.639%(N-4.0)/(1.0+0.71%x(N-4.0)));
r3=1.0/(1.0+20.0*alf/((7.5+alf)*Nx*N)) ;
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z += (z-x[N-4])*ri*r2*r3;

} else if (i == N) {
r1=(1.0+0.37*bet)/(1.67+0.28*bet) ;
r2=1.0/(1.0+0.22%(N-8.0) /N);
r3=1.0/(1.0+8.0%alf/ ((6.28+alf)*N*N)) ;
z += (z-x[N-3])*ri1*xr2*r3;

} else {
z=3.0%x[1-2]-3.0*x[1-3]+x[i-4];

alfbet=alf+bet;
for (its=1;its<=MAXIT;++its) {
temp=2.0+alfbet;
pl=(alf-bet+temp*z)/2.0;
p2=1.0;
for (j=2;j<=N;++j) {
p3=p2;
p2=pl;
temp=2*j+alfbet;
a=2xj*(j+alfbet)*(temp-2.0) ;
b=(temp-1.0)*(alf*alf-bet*bet+temp* (temp-2.0)*z) ;
c=2.0%(j-1+alf)*(j-1+bet)*temp;
pil=(b*p2-c*p3)/a;
}
pp=(N* (alf-bet-temp*z) xpl+2.0* (N+alf) * (N+bet) *p2) / (temp* (1.0-z*z) ) ;
zl=z;
z=z1-pl/pp;
if (fabs(z-zl1l) <= EPS) break;
}
if (its > MAXIT) {
printf ("too many iterations in gaujac\n");
exit(1);
}
x[i-1]=z;
gll = gammln(alf+N);
gl2 = gammln(bet+N) ;
gl3 = gammln(N+1.0);
gld = gammln(N+alfbet+1.0);
wli-1]=exp(gli+gl2-gl3-gld) *temp*pow(2.0,alfbet)/ (pp*p2) ;

double gammln(double xx) {
double x,y,tmp,ser;
static double cof[6]={76.18009172947146,-86.50532032941677,
24.01409824083091,-1.231739572450155,
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0.1208650973866179e-2,-0.5395239384953e-5};
int j;

Y=X=XX;
tmp=x+5.5;

tmp -= (x+0.5)*log(tmp);
ser=1.000000000190015;

for (j=0;j<=5;++j) ser += cofl[jl/++y;
return -tmp+log(2.5066282746310005*ser/x) ;

B.8 expint.c

#include <math.h>

#define MAXIT 10

#define EULER 0.5772156649
#define FPMIN 1.0e-30
#define EPS 1.0e-7

double expint(int n, double x) {
int i,ii,nmi;
double a,b,c,d,del,fact,h,psi,ans;

nml=n-1;
if (n <0 ||l x<0.0 || (x=0.0 & (n==0 || n==1)))
exit(1);
else {
if (n == 0) ans=exp(-x)/x;
else {
if (x == 0.0) ans=1.0/nmil;
else {
if (x> 1.0) {
b=x+n;
c=1.0/FPMIN;
d=1.0/b;
h=d;
for (i=1;i<=MAXIT;++i) {
a = -ix(nmi+i);
b += 2.0;
d=1.0/(axd+b) ;
c=b+a/c;
del=cx*d;
h *= del;
if (fabs(del-1.0) < EPS) {
ans=h*exp (-x) ;
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return ans;
}
+
exit(1);
} else {
if (nml != 0) ans = 1.0/nml; else ans = -log(x)-EULER;
fact=1.0;
for (i=1;i<=MAXIT;++i) {
fact *= -x/1i;
if (i '= nml1) del = -fact/(i-nml);
else {
psi = -EULER;
for (ii=1;ii<=nml;++ii) psi += 1.0/ii;
del=fact*(-log(x)+psi);
}
ans += del;
if (fabs(del) < fabs(ans)*EPS) return ans;
+
exit(1);
}
}
}
+
return ans;

3

B.9 gamdev.c
#include <math.h>

#define IA 16807

#define IM 2147483647

#define AM 4.656612875245797e-10
#define IQ 127773

#define IR 2836

#define NTAB 32

#define NDIV 67108864

#define EPS 1.2e-7

#define RNMX 0.99999988

long iy=0;
long iv[NTAB];
double ranl(long *idum);

double gamdev(int ia, long *idum) {
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int j;
double am,e,s,vl,v2,x,y;
double r1,r2,r3;

if (ia < 1) exit(1);
if (ia < 6) {
x=1.0;
for (j=1;j<=ia;++j) {
rl = ranl(idum);
X *= ri;
}
x = -log(x);
} else {
do {
do {
do {
vi=rani (idum) ;
r2 = ranl(idum);
v2=2.0xr2-1.0;
} while (vixvi+v2*v2 > 1.0);
y=v2/v1;
am=ia-1;
s=sqrt(2.0*am+1.0) ;
x=s*y+am;
} while (x <= 0.0);
e=(1.0+yx*y) *exp (am*log(x/am) -s*y) ;
r3 = ranl(idum);
} while (r3 > e);
+
return X;

3

double ranl(long *idum) {
int j;
long k;
double temp;

if (kidum <= 0 || iy == 0) {

if (-(*idum) < 1) *idum=1;

else xidum = -(*idum);

for (j=NTAB+7;j>=0;--) {
k=(*idum) /IQ;
*idum=IA* (*idum-k*IQ)-IR*k;
if (*idum < 0) *idum += IM;
if (j < NTAB) iv[j] = *idum;
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iy=iv[0];
}
k=(*idum) /IQ;
*idum=IA* (*idum-k*IQ) -IRx*k;
if (xidum < 0) *idum += IM;
j=iy/NDIV;
iy=iv[j];
iv[j] = *idum;
temp=AMx*iy;
if (temp > RNMX) return RNMX;
else return temp;

B.10 bessi.c

#include <math.h>
#define ACC 40.0
#define BIGNO 1.0el0
#define BIGNI 1.0e-10

double bessiO(double x);

double bessi(int n, double x) {
int j;
double bi,bim,bip,tox,ans,bsilOx;

if (n < 2) exit(1);
if (x == 0.0)
return 0.0;
else {
tox=2.0/fabs(x);
bip=ans=0.0;
bi=1.0;
for (j=2#(n+(int)sqrt(ACC*n));j>0;--3)
bim=bip+j*tox*bi;
bip=bi;
bi=bim;
if (fabs(bi) > BIGNO) {
ans *= BIGNI;

bi *= BIGNI;
bip *= BIGNI;
}
if (j == n) ans=bip;

}

bsiOx = bessiO(x);
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ans *= bsiOx/bi;
if (x < 0.0 & n '= ((int)n/2)*2) return -ans;
else return ans;
}
}

double bessiO(double x) {
double ax,ans,y;

ax=fabs(x);
if (ax < 3.75) {
y=x/3.75;
Y*=Ys
ans=1.0+y*(3.5156229+y*(3.0899424+y* (1.2067492
+y*(0.2659732+y* (0.360768e-1+y*0.45813e-2))))) ;
} else {
y=3.75/ax;
ans=(exp(ax) /sqrt(ax))*(0.39894228+y*(0.1328592e-1
+y*(0.225319e-2+y*(-0.157565e-2
+y*(0.916281e-2+y* (-0.2057706e-1+y* (0.2635537e-1+y*(-0.1647633e-1
+y%0.392377e¢-2)))))))) ;

}

return ans 5
}
B.11 eil.c

#include <math.h>
#include <stdio.h>

#define EULER 0.57721566
#define MAXIT 17

#define FPMIN 1.0e-30
#define EPS 6.0e-8

double ei(double x) {
int k;
double fact,prev,sum,term;

if (x <= 0.0) exit(1);
if (x < FPMIN) return log(x)+EULER;
if (x <= -1log(EPS)) {

sum=0.0;

fact=1.0;

for (k=1;k<=MAXIT;++k) {
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fact *= x/k;
term=fact/k;
sum += term;
if (term < EPS*sum) break;
}
if (k > MAXIT) exit(1);
return sum+tlog(x)+EULER;
} else {
sum=0.0;
term=1.0;
for (k=1;k<=MAXIT;++k) {
prev=term;
term *= k/x;
if (term < EPS) break;
if (term < prev) sum += term;
else {
sum -= prev;
break;
}
}
return exp(x)*(1.0+sum)/x;
+
+

B.12 ei-dead.c

#include <math.h>
#include <stdio.h>
#define EULER 0.57721566
#define MAXIT 17

#define FPMIN 1.0e-30
#define EPS 6.0e-8

double eiDead(double x) {
int k;
double fact,prev,sum,term;

if (x <= 0.0) exit(1);
if (x < FPMIN) return log(x)+EULER;
if (x <= -log(EPS)) {
sum=0.0;
fact=1.0;
for (k=1;k<=MAXIT;++k) {
fact *= x/k;
if (k > MAXIT) return O;
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term=fact/k;
sum += term;
if (term < EPS*sum) break;
}
if (k > MAXIT) exit(1);
if (term >= EPS*sum) return O;
return sum+log(x)+EULER;
} else {
sum=0.0;
term=1.0;
for (k=1;k<=MAXIT;++k) {
prev=term;
term *= k/x;
if (term < EPS) break;
if (term < prev) sum += term;

else {
sum -= prev;
break;
}
}
return exp(x)*(1.0+sum)/x;

}
}
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