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de motifs interdits (FP) qui correspondent exactement a MMI®t développe
des outils algébriques originaux comme le recoloriage gungttent de définir
une forme normale et conduisent a une preuve de nature gotigtr: soit le pro-
bleme donné est transformé en un probleme de CSP, soit degs-exemples sont
construits. Je contraste par ailleurs ce résultat avecauitaé réecent, dd a Tardif
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Chapitre 1
Introduction

La complexité descriptive est une branche de la théorie derfglexité, dont
I'objet est de caractériser des problemeas des ensembles finis de structures, par
rapport a leur définissabilité dans des logiques spécifiquesésultat fondateur
de cette théorie est le théoreme de Fagin [13], qui relie fenidéabilité en lo-
gique du second ordre avec la classe de compl&ktétemps polynomial non
déterministe).

Theorem 1.1 (Fagin)

Un probleme est définissable en logique du second ordreeexist si, et seule-
ment, si il peut étre résolu en temps polynomial non détast@nEn d’autres
mots,NP=ESO.

(Notez comment on met en équation une logique avec la classerdblemes que
cette derniére capture).

Le présent travail tire ses origines d’'une tentative deataresation logique
d’'une famille de problémes combinatoires connus sous le d@problémes de
satisfaction de contrainteCes problemes sont d’'un grand intérét en informa-
tigue et en intelligence artificielle ; il existe des lienstéoentre ceux-ci et la
théorie des bases de données, la théorie des graphes oe ¢atg@bre uni-
verselle ; et ainsi les mots-clés suivants sont liés aux|pnobs de satisfaction
de contraintes : conjunctive-query containment problertolouring, probleme
d’homomorphisme, Generalised Satisfiability. Dans cediitala classe des pro-

9



10 CHAPITRE 1. INTRODUCTION

blémes de satisfaction de contraintes (CSP) est définieme @existence d’ho-
momorphismes entre des structures finies. Le plus frappamta la complexité
de ces problemes est qu’ils semblent vérifier une propriétiahotomie: c’est-
a-dire qu’il s’agit soit de problemes tres difficild$R-complet) soit de problemes
gu’on peut résoudre efficacement (appartenant a la classendglexitéP) ; et,
de plus, il semble exister des criteres simples permetadedider dans quel cas
de figure on se place pour un probleme donné. Ces deux phéasrsent d’au-
tant plus surprenants lorsque on les considere a la lueuhdeemes de Ladner
et de Fagin comme dans [7]. De nombreux résultats de graralgégconfortent
cette conjecture : entres autres, citons ceux obtenus paefs [52] dans le cas
de valeurs booléennes, ainsi que ceux obtenus par Hell ettfN¢&3] dans le
cas de contraintes exprimées par des graphes non oriee®sé€liltats ont étés
généralisés plus récemment par Jeaatrad.[28—34] en utilisant des outils issus
de I'algébre universelle, mais aussi par Vaedial.[16, 35, 36] en utilisant Data-
log, des résultats de la théorie des groupes ou encore a baida construction
de jeux adaptés. Ces derniers ont également tenté de camictégiquement la
classe CSP. lIs se sont intéressés a quelques fragmenttod@aylze existentielle
du second ordre (ESO), montrant qu’aucun de ceux-ci nfaatd la propriété
de dichotomie, avant de s’arréter sur la restrictioonotone monadique et sans
symbole# d’une restriction syntaxique de ES€@nnue sous le nom de SNP :
la logigue MMSNP. Bien qu’ils n'aient pas réussi a montree MSNP véri-
fiait la propriété de dichotomie, ils ont pu relier étroitath®IMSNP et CSP par
lintermédiaire du résultat suivant.

Theorem 1.2 (Feder et Vardi)

Tout probleme de CSP est définissable par une formule de MMS&¢tiproque-
ment, tout probléme définissable par une formule de MMSNEa&silatoirement
équivalent a un probléeme de CSP.

(Par «calculatoirement équivalent» on entend I'équivadaénduite par I'existence
deréductionsentre des problemes.)

De plus ces auteurs ont exhibé des exemples de problemesshifiies par des
formules de MMSNP qui ne sont pas dans CSP : leur preuve regzssatielle-

ment sur des arguments de dénombrement. Nous avons donnesg'axemples
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de tels problémes dans [43]. Notre preuve est d'une nattiératite et repose
sur laconstructionde familles particulieres de graphes. Avec en téte le bunalt
de donner une caractérisation logique de CSP, j'ai essagéraliser cette ap-
proche an'importe quelprobléme définissable par une formule de MMSNP. Plu-
tét que de travailler dans un cadre purement logique, j'éf§pé introduire une
nouvelle classe de problemes combinatoires qui corregmrekactement aux
problemes définissables par des formules de MMSNP : la oflesgoblemes de
motifs interdit FP). Dans ce cadre la question précédente est reformuiémeo
suit. Quels problemes appartiennent a FP mais pas a CSP uf)eéfant donné
un probleme dans FP, peut-on décider si oui ou non il appardieCSP ; et, si
c’est le cas, peut-on le présenter en tant que probléme de €&f-a-dire, peut-
on construire son patrér? Un probléme de motifs interdits est donné par une
représentationqui consiste en la donnée d’un ensemble finsttectures colo-
riées Cette reformulation du probléme me permet d’introduir@dgion clé de
recoloriaged’une représentation vers une autre ; Notez que les notiomsrd-
coloriage et d’'une représentation généralisent resmeungwnt celles d’'un homo-
morphisme et d’une structure. Ce concept de recoloriagacasa deux autres
notions implicites dans la preuve du théoreme de Feder eli @ notion de
patron d’'une représentatioet une transformation permettant de décomposer des
motifs interdits en leurs composantes biconnexes, tramsftion qu’'on appellera
transformation de Feder-Varflpermet de transformerimporte quelprobléme

de motifs interdits donné en un probleme équivalent définupareprésentation
normale Etant donnée une telle représentation, on peut alors efégdr rapport

a un critére simple) si le probléme considéré est dans CSPmuet, si c’est le
cas, je montre comment construire son patron. En d’autrés, tes questions pré-
sentées ci-dessus ont été résolues. La preuve de ce résptiaé principalement
sur la construction de familles de structures particutietesfamilles de témoins
On peut voir une telle famille de structures comme la donngeedstratégie ga-
gnante pour leenseurdans le jeu a deux joueurs suivant. Le censeur est opposé
au tartouilleur; étant donné une représentation, le tartouilleur exhileestruc-
ture et annonce gu'il s’agit d’un patron pour le probléme t@mt que probléeme

1sontemplateen anglais ; un lexique francais-anglais est disponible20# pour les mots
dont la traduction n’est pas priori évidente.



12 CHAPITRE 1. INTRODUCTION

dans CSP); ensuite, le censeur tente de trouver I'erreugxhibe une instance
qui est acceptée par le probléeme de motifs interdits origimas qui n'est pas
accepteée par le probléeme de CSP donné par le tartouillewmcewersa

En fait, il se trouve que les notions de représentation etdeloriage, dé-
passent le cadre de la question précédente et présententéuét ien tant que
tel. En effet, le résultat décrit ci-dessus est lié a un tastiles élégant obtenu
récemment par Tardif et Nesétdans [45]. Ces derniers ont élégamment établi
I'existence d’un lien entrelualité et densitéen construisant une correspondance
entre lespaires dualeset certainegaires couvrantesLes paires duales corres-
pondent a des problémes de FP qui sont dans CSP d’un typeattésufier : ces
problemes n’ont qu'une couleur et un seul motif interdit’¢guappellerapro-
blemes monochromes de motif interdinotez I'absence de pluriel). Les paires
couvrantes, quant a elles, correspondent aux intervafldeire partiel sur les
structures (induit par I'existence d’homomorphisme) qeisont pas denses. Nos
travaux gagnent a étre comparés et s’enrichissent I'utréadeur approche per-
met d’obtenir une meilleure caractérisation des problém&sochromes de motif
interdit. Ces problémes sont dans CSP si, et seulement @oéar du) motif
interdit est un arbre. Par contre, la construction du padp ces auteurs four-
nissent est quelque peu alambiquée, puisqu’ils ont reclascorrespondance
mentionnée ci-dessus ; ainsi, cette construction réseltedx constructions im-
briquées qui ne sont pas elles-mémes des plus simpdsponentielde structure
et la construction Sip (du tcheque Sip qui signifie flech@xplique briévement
leurs résultats et les comparent aux miens, puis je donng@aure simplifiée
de la correspondance entre dualité et densité dans le cag@héral d’'une al-
gebre de Heyting (I'approche n’est pas originale et suittment celle de Tardif
et NeSéiil). Le fait que les notions de représentation et recogigénéralisent
celles de structure et d’homomorphisme se trouve renfangéew plus, puisque
je montre que représentation et recoloriage sont eux aassalune algebre de
Heyting. De ce fait découle donc une correspondance enslé@&lat densité dans
un cadre plus général. Cependant, ce résultat n’est padé&mment satisfaisant
et engendre quelgques questions ouvertes intéressantgsmogve.

Je me suis aussi intéressé a la complexité des problémestidg imerdits et
j'exhibe des exemples de problemes qui ne sont pas dans GEF sint com-
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plets pour les classes de complexité standards suivaNtes: et NP. Ainsi, a la
lumiére de quelques résultats connus de complexité «fufep28]) ces exemples
renforcent le théoreme de Feder et Vardi : au sens ou la di&ssemble se com-
porter de la méme facon que la classe CSP quant a la complegiféit pourrait
apparaitre comme trivial au lecteur, puisque MMSNP=FP il que la classe
FP est, calculatoirement parlant, équivalente a la clas$e @ar le théoréme de
Feder et Vardi. Cependant, dans la preuve de ce théorémeédestions consi-
dérées sont respectivement des réductions polynomialssattductions poly-
nomiales probabilistes : ces réductions sont trop fortagegbermettent pas de
résultat de complexité «fine». Pour accélérer les preuaeadapté des exemples
donnés par Gradel dans [21] et introduit d’autres exemplagi#isant sa carac-
térisation de sous-classes ME a I'aide de fragments de la logique existentielle
du second ordre. Je discute également brievement de<tiesisi standards ap-
plicables aux problémes de motifs interdits susceptibéefade baisser la com-
plexité.

Dans [42], nous nous sommes également intéresses a uniselgae peu dif-
férent : nous avons en effet noté que, bien qu’il existe delrenx résultats quant
a la complexité de probléemes dans CSP pour des structunessémblait pas en
exister pour le cas d’algebres. Nous nous sommes conceatrés cas restreint :
celui d’algebres unaires. Nous avons pu montrer que danasl@le seulement
deux symboles unaires, le probléme uniforme éi&tcomplet (ici, «uniforme»
signifie qu’une instance consiste en une paire d’algébrequet la question est
de décider si il existe un homomorphisme depuis la premigebee vers la se-
conde). De plus, dans le cas d’'un unique symbole unaire, avuss obtenu un
résultat intéressant de dichotomie : les problemes nooumés sont soit triviaux
soitL-complets (par opposition, «non-uniforme» signifie qu’urstance consiste
en une seule algebre ; et, que la question est de déciderxsstié &n homomor-
phisme depuis celle-ci dans une algebre fixépakeondu probléme). Notez que
ce résultat donne les premiers exemples connus de probkbessisfaction de
contraintes qui sort-complets. Nous avons par ailleurs prouveé plus recemment
dans [15] gu'’il est au moins aussi difficile d’obtenir un riéatide dichotomie dans
le cas de deux fonctions unaires que dans le cas classique.
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J'ai essayé de faire en sorte que ce volume soit le plus dblegessible :
cependant, quelques notions de bases en complexité et griexid descriptive
sont nécessaires. Le lecteur pourra considérer pour laleaitgples références
standards qui suivent : [46] par Papadimitriou ou [25] papétoft et Ullman,
tous deux en anglais, et [39] par Lassaigne et de Rougemdrdregais (ce livre
est également une bonne introduction a la complexité qes@). Pour les pro-
blemesNP-complets, le lecteur pourra se reporter a I'inévitablg,[BOguide to
NP-completenespar Garey and Johnson. Pour la complexité descriptive [A2] p
Ebbinghaus et Flum est une référence tres compléte en an@laelques défi-
nitions sont rappelées en Appendice A page 209. Notre r&térpour 'algebre
universelle est [44]; et, pour la théorie des catégorie} [Q8Belques définitions
sont rappelées en Appendice B page 213.

Le présent volume est organisé comme suit : au chapitre Jasse CSP
est définie comme la classe des problémes d’homomorphisomegniformes et
quelques résultats importants de dichotomie sont commegalement dans ce
chapitre, la logigue MMSNP est définie et le théoreme de Feidéardi expliqué
en détail. Dans le reste de ce chapitre, des exemples deepreblde graphes dé-
finissables par des formules de MMSNP et qui ne sont pas daAs@8 donnés :
cette derniere partie correspond a un travail commun [48¢ &&in Stewart. Le
Chapitre 3 est entierement consacré a la logiqgue MMSNP ebrselut par une
preuve du théoreme de Feder et Vardi. Au Chapitre 4, les ptsidiés aux pro-
blémes de motifs interdits sont introduits, puis je prowedsultat principal de
ce travail, & savoir la caractérisation des problemes désmaterdits qui ne sont
pas dans CSP. Ensuite, au Chapitre 5 le résultat de Tardié&ttN mentionné
ci-dessus est brievement expliqué. La correspondance éa#lité et densité est
prouvée dans ce chapitre dans le cas d’'une algebre de He@@nghapitre se
conclut par la motivation de quelques problemes ouverthapitre 6, je donne
des exemples de problémes de motifs interdits qui ne sordgasCSP et diffé-
rentes restrictions sont brievement envisagées pour oegpnes. Finalement, le
chapitre 7 est consacré aux résultats obtenus dans [48ssprdblémes d’homo-
morphisme pour le cas d’algebres unaires. Ces résultaé&@ntéunis recemment
avec des résultats contemporains de Fed®ef5]).
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Chapitre 7 Chapitre 2 %?atﬁl‘t:f 6
Problemes Problémes Od: s
d’homomaorphismes d’homomorphismes e .
. ; motifs interdits
(algebres unaires (CSP) (exemples, restrictions)
Définition 7
de FP /

: nécessaire
Chapitre 4 (Sec. 4.1.3)"

Chapitre 3 Prozfmes -
MMSNP_ | pour | otits interdits

\u\nlquemeht7

I
-

Chapitre 5
Algébre de Heyting

Fic. 1.1 — Ordre de lecture recommandé

Les contraintes relatives a I'ordre dans lequel cette tipese étre lue sont
représentées end. 1.1; Je recommande fortement la lecture du chapitre 2 avant
celle des autres chapitres. Il n’est pas forcéement nécessailire le chapitre 3
pour comprendre les chapitres suivants sauf pour la set¢tios qui relie les pro-
blemes de motifs interdits avec la logique MMSNP. Le chapitdoit forcément
étre lu avant le chapitre 5. Seule la définition des probléearotifs interdits qui
est donnée a la section 4.1.3 est nécessaire pour lire Igreh@pFinalement, le
chapitre 7 peut étre lu indépendamment. Finalement, uguexést a disposition
du lecteur page 204 et un index page 222.
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Chapitre 2

Problemes d’homomorphisme

Les problémes d’homomorphisme sont introduits puis quesgésultats
sont brievement présentés afin de motiver la définition degaue MMSNP
introduite par Feder et Vardi. Enfin, il est montré qu’il égisles exemples de
problémes capturés par cette logique qui ne sont pas dekepredd’homo-
morphisme.

17



18 CHAPITRE 2. PROBLEMES D’HOMOMORPHISME

Constraint satisfaction problems consist of finding assignts of values to
variables subject to constraints on the values which canirbaltsneously as-
signed to certain specified subsets of variables. They ageeait importance in
computer science and artificial intelligence, and havengtiomks with database
theory, combinatorics and universal algebra. For exanipéegeneral constraint
satisfaction problem is also known as the conjunctivegjuaentainment problem
from database theory and the homomorphism problem from owtdrics [4];
and, there is a strong link between the tractability of cist satisfaction prob-
lems and the study of the closure of relations under cerfaémagions in universal
algebra [32]. This diversity has meant that the study ofélmsstraint satisfac-
tion problems has progressed on a number of different frantsaccording to
different motivations.

Our formulation of constraint satisfaction involves thasgance of a homo-
morphism of one finite structure to another, and in some jp&itss work we are
concerned with the computational complexity of constraatisfaction problems
when the structures involved are restricted. Temeral constraint satisfaction
problemhas: as its instances pairs of finite structusB) over the same signa-
ture; and, as its yes-instances instan@es) for which there is a homomorphism
of Ato B. The general constraint satisfaction problem is trivialyNP and is
easily shown to bé&lP-complete; and it is usual to restrict the problem so that
all finite structures come from some specific class of finitecstires or, further,
so that the second component, teenplate of any instance is some fixed finite
structure. The former problems are call@diform constraint satisfaction prob-
lems, as the two structures in an instance can be arbitdnalyn from the given
class of structures, whilst the latter problems are catled-uniformconstraint
satisfaction problems, as the second structure in an icstanist be a given fixed
structure (rather than thinking of instances of non-umif@onstraint satisfaction
problems as pairs of finite structuré&, T), with T fixed, we simply think of
them as finite structures, with yes-instances those instan@efor which there
exists a homomorphism t6). The computational complexity of these restricted
problems is then studied with the ultimate goal being a diaaton as to the
conditions under which a (uniform or non-uniform) congitasatisfaction prob-
lem has a given computational complexity. In this chapter,shall concentrate
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on the non-uniform case.

This chapter is organised as follows. In the first section adlgive some
basic definitions and results. In Section 2.2 we shall rédaedly the main known
results concerning the complexity of non-uniform constiraatisfaction problem:
in particular, the so-calledichotomy resultsf Schaefer for boolean problems and
of Hell and Nesdfl for the case of undirected graphs. In the final sectionshal
outline a logic introduced by Feder and Vardi together witle @f their results
that states that the class of problems captured by this isgtomputationally
equivalento the class of non-uniform constraint satisfaction protdeHowever,
we shall prove that various problems over graphs that areesgjble in this logic
arenotrealisable as non-uniform constraint satisfaction pnoisle

2.1 Preliminaries

Let o be a signature with relation symbols only, that is, symblsRy, ..., Rs
with respective arities; > 1,r, > 1,...,rs> 1.

Recall that a finites-structureA consists of a finite sétcalled the domain of
A and denoted byA|, together with an interpretatid®* C |A|" for every symbol
R ino,1<i <s. Thesizeof A, that is the cardinal of the s&|, is also denoted
by |A| (this does not cause confusion).

Let A andB be two o-structures. We call @aomomorphisnof A to B any
mappingh : |A| — |B| satisfying:

e for anyr-ary symbol ino and for anyain |Al", if RA(a) holds therRB(h(b))
holds (wheréh(a) denotes the-tuple obtained frona via an application of
the mappindr component-wise).

If his a homomorphism oA to B then we writeA - B; we writeA-2 Biif h
is a surjective homomorphism éfto B; and, we writetA- Bif his an injective
homomorphism oA to B. If there exists some homomorphismAto B then we
write A—B; and, if none exist&\—4 B.

1Contrary to usage in finite model theory, we do consider thié stucture and the structure
with a single element domain.
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If A~V B then we say thaf is asubstructureof B. If, further, for anyr-ary
symbolR of o and anyain |A|", if RB(h(a)) holds therRA(a) holds, then we say
thatA is aninducedsubstructure oB.

An isomorphisms a bijective homomorphism whose inverse is a homomor-
phism. When an isomorphism exists betwe®eand B then we say thaf and
B areisomorphicand we writeA ~ B. Denote byST RUGO0) the class of finite
o-structures.

The homomorphic imagef A via h, denotedh(A), is the (not necessarily
induced) substructure & such that:

e |h(A)|:={be€ |B||Fac |A| suchthah(a) = b}; and

e for anyr-ary symbolRin g and anybin |h(A)|", R"A (b) holds, if, and only
if, there exists somain |Al" such thah(a) = b andR*(a) holds.

Moreover, it is immediate that the composition of two homopiisms is a
homomorphism and that for any structukethere exists an identity homomor-

phismAiiAA (defined by settingda(x) := x for anyx in |A|) such that for any

structuresB andC and homomorphism;A andAiC, we havedao f = f
andgoida = g. Furthermore, the composition of homomorphisms being@aso
tive, one can speak of theategory of finiteo-structures As we shall see later,
this category has some interesting properties: in factné@ considers structures
up to homomorphism equivalence then we gelegting Algebrgcf. Chater 5 on
page 145).

Let A be ao-structure. Recall that th@on-uniform) homomorphism problem
with template AdenotedCSRA), has yes-instances thosestructure® such that
B— A. Denote byCSR the class of homomorphism problems having as template
ao-structure and set:

CSP:= [J CSR.

o rel sign

Proposition 2.1 Let A and B be twa-structures. CSPA) C CSRB) if, and only
if, A—B.
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PrROOF If CSRA) C CSRB) then sinceAiLAA, it follows that A belongs to
CSRA). Hence that is in CSRB); that is,A—B. Conversely, ifA-"-B for
someh then for anyC in CSRA); that is, such that -2 A for someg; by compo-

sition, it follows thatC g B; hence tha€ belongs taCSRB). O

2.2 Known complexity results

As we mentioned previously, the general constraint satisia problem isNP-
complete. There are two main ways of restricting this pnobie order to obtain
tractability. The first way consists in imposing that thetfgsgucture of any in-
stance is somehow like a tree, to be precise that it has bdutnee-width, to
ensure that the standard resolution algorithms’ backtrediounded. This ap-
proach has been developed by Freudxr[(18, 19]) but is a direct consequence
of a more recent result due to Courcelt. (6]). The second approach consists
in restricting the second structure of any instance; whiténoleads to so-called
dichotomy resultsthat is, results in which restrictions of the general peoblare
eitherNP-complete or decidable in polynomial time. These dichotoasylts are
best appreciated to the light of Ladner’s theorerh [37]); one version of which
is as follows.

Theorem 2.2 (Ladner) If P = NP then there is a language MP which is neither
in P nor NP-complete.

Notice that we do not know of any natural problem with suchapprty (under the
assumption thaP # NP): some problems that resist any classification attempts,
such as ®APH-ISOMORPHISM are conjectured to be such natural problems.

In practice many problems can be easily specified as consgatisfaction
problems é.g. optimisation problems such as th&@ EFQUENCY ASSIGNMENT
problem, cf. [11]). For this reason, constraint staisfaction solvews @ir real
practical importance, which motivates further the studgaifstraint satisfaction
problems in theoretical computer science. Indeed, notetrestraint satisfaction
problems capture many benchmark problems: in [28], variaiaral problems



22 CHAPITRE 2. PROBLEMES D’HOMOMORPHISME

are encoded as uniform constraint satisfaction problemth(s work the general
constraint satisfaction problem is even referred not withmmour as thgreat
combinatorial problejy The encodings are in general much more natural and
straightforward than reductions to other well-knoWR-complete problems.

Next, we shall briefly relate two important dichotomy resuftamely the case
of undirected graphs (the problem is known also asHhkeolouring problem)
due to Hell and NeS&t and the case of structures with Boolean domains due to
Schaefer (the problem is known as tBeneralised Satisfiabilitgroblem).

2.2.1 H-colouring

The non-uniform constraint satisfaction problem whenrretstd to undirected
graphs is known as thid-colouring problem, wherél denotes the template of
the problem studied. For example, whens a triangle, théd-colouring problem

is nothing else than 3-@. (the problem that consists of all graphs whose vertices
can be coloured with three colours such that no two adjaastites are coloured
with the same colour). The latter is known tol¥B-complete €f. [20]). Hell and
NeSefil proved the following in [23].

Theorem 2.3 (Hell and NeSetil )
The H-colouring problem i8IP-complete whenever H is not bipartite and can be
decided in polynomial time otherwise.

Their proof makes use of three constructions over graphsallav one to re-
duce the question of whether thiecolouring isNP-complete to the question of
whether theH’-colouring problem ifNP-complete, wheréd andH’ are related
via one of these three constructions. They show furthertttatase when the
template is a bipartite graph is tractable; indeed, it caedmly shown thaas
a decision problemfor any bipartite grapii, the B-colouring problem coincides
with 2-CoL (the problem that consists of all graphs whose vertices earolmu-
red with two colours such that no two adjacent vertices al@ued with the same
colour) which is known to be decidable in polynomial timettaescore of a bipar-
tite graph is the graph consisting of a single edge; in otlwde/nothing else than
the template of 2-OL , cf. Subsection 4.2.1 on page 90. The main part of their
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proof is indirect and consists in assuming that for some nparbte graphH, the
H-colouring problem is ndiiP-complete (under the more general assumption that
P andNP do not coincide). By properties of the three constructiomntioned
above, and the facts thht is not bipartite and can not be a clique (otherwike
would be either bipartite or thid-colouring problenNP-complete), they reduce
the H-colouring problem to théd’-colouring problem, wherél” can not exist.
This part of their proof is fairly technical and involves aseastudy on the struc-
ture ofH and its properties to derive some contradicting propedigd’. Notice
that no constructive proof is presently known for this res&urthermore, some
unsuccessful attempts have been made to generalise thiistoesther structures;
even the case of directed graph remains open.

2.2.2 Generalised Satisfiability

There exists another type of dichotomy result which is ndieqzomparable to the
former result. Given some fixed domdnof values (that corresponds to the do-
main of the template) call a sEtof relationstractableif for any structurel with
domainD and relations i, the constraint satisfaction problem with template
T is decidable in polynomial time. Denote BSRT) the class of non-uniform
constraint satisfaction problems whose templatonsists of relations frorfi as
above. The uniform constraint satisfaction problem where drawn from the
classB of Boolean structures is known aE@ERALISED-SAT and was studied
by Schaefer in [52]. Schaefer proved the following dichogaesult.

Theorem 2.4 (Schaefe)). Letl g be a subset df z, the set of all Boolean finitary
relations. Ifl" g falls within one of the following 6 classes, that is if:

1. I'pis O-valid;

N

. [gis 1-valid;

w

. [gis affine;

N

. ['ois bijunctive;

(621

. [gis Horn; or
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6. [gis anti-Horn,
then CSRI o) is tractable, otherwise it i8IP-complete.

These 6 classes have simple characterisations in term sdirelgroperties. For
example, arelation is 0-valid if, and only if, it is closedd&n the Boolean constant
operation 0; and, it is Horn if, and only if, it is closed undlee binary Boolean
operationA.

Schaefer’s dichotomy result has been generalised to ggatian complexity
classes and to counting classes by Creigebal. (cf. [7]).

2.2.3 Further selected results

Schaefer was inspired by the work of Post on Boolean funstemmd relations,
work that has been extended in a branchmiiversal algebr&nown asclone the-
ory. Schaefer’s approach has been applied by Jeastoaisto larger domains and
partial dichotomy results have been obtainefl[28—-34]). For an introduction to
this approach see, for example, [41]. Notice that this nathads only to partial
results as it relies heavily on what is known aboutdlme lattice The Boolean
clone lattice was completely described by Post in [47]; adountable whereas
it is known that the clone lattice for larger domains is not ¢hore on clone the-
ory, see the excellent book in German by Pdschel and Kaly8ip a technical
report in English by Péschel [48] or the first chapter of Szerglexposition [55]).
As a matter of fact, there is presently no description of tbaelattice even for a
domain of size 3. However, some progress has been made adsegaonjecture
that dichotomy resulta la Schaefer exists for any finite domain. Recent work
by Bulatov, Krokhin and Jeavons involves the use of deepteefom universal
algebrain [3].

Note that the dichotomy results of the two previous theoraresnot compa-
rable. It was proved in [2] th&@ SRT 3) is not tractable, whergz denotes the set
of the edge relations of any finite bipartite graph.

Apart from Jeavonegt al, there is another group of researchers that have at-
tempted to develop general methods to classify non-unifoonstraint satisfac-
tion problems, namely Feder and Vardi in [16]. In their wdrlactable sets of re-
lations fall into two main classes, one being defined in tesfri3atalog, the other
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in terms of group theory. Some of these results have beemaedieor proved
in @ more concise way by Kolaitis and Vardi in [35] and [36]. elterminology
of uniform and non-uniform constraint satisfaction prablevas taken from [35],
where the authors proved that many known dichotomy resulfermise that is,
can be generalised to the uniform case. We shall explain e metail what we
understand by this in Chapter 7, where homomorphism prabferunary func-
tions are studied. However, for the moment we shall be coreckmainly with a
specific result of Feder and Vardi from [16], where they defitie logic MMSNP
in an attempt to characterise logically CSP. First, theyjextnred the dichotomy
of CSP as follows;

Conjecture 2.5 (dichotomy of CSP
Every problem in CSP is either i or NP-complete.

Recall that Syntactic NP (SNP for short) is the fragment @jiffa existential
second order logic (ESO for short)that consists of sengentéhe formHS_Vi(p,
whereq is quantifier-free; that is, second order sentences withietsal first-
order part. In order to find some logic for CSP, Feder and Vinoked for a
logic L that is a restriction oENP(CSP is easily seen to be captured by SNP)
and would have the dichotomy property (as SNP itself doep ridiey investi-
gated 3 types of restrictions NP namelymonotonicity, monadicitand no
inequalities That is, imposing that each input predicate occurs withstme
polarity within a sentence, respectively imposing the second orcetigates to
bemonadi¢ and respectively that no inequality symbol occurs withgeatence.
They showed that imposing two of these restrictions is niitcsent by proving
the following theorems4 denotes here the logic obtained from SNP by imposing
any two restrictions among the three listed above).

Theorem 2.6 (Feder and Vardi)
Every problem A ilNP has an equivalent (under polynomial-time reductions)
problem B in the class of problems expressed by sentendes of

(by ‘equivalent’ we mean that: the probleireduces to the proble®; and, con-
versely, the problenB reduces to the proble®.) Therefore as a corollary from
Ladner’s theorem, it follows that none of these three logmsld be adequate to



26 CHAPITRE 2. PROBLEMES D’HOMOMORPHISME

capture exactCSPaccording to the dichotomy conjecture. They were however
unable to extend Ladner’s diagonalisation arguments wherhree restrictions
mentioned above were imposed simultaneously on the logie $hey called this
fragment of SNPMonotone Monadic SNP without inequalitiaghich they de-
noted by MMSNP for short.

ExamMpPLE. Consider the signature, := (E), whereE is a binary symbol. We can see
problems overo, as the realisation of some abstract graph problems via tl@vfog
encoding there exists an edge between two vertices u and v if, and iy, v) holds
or E(v,u) holds. In this setting, the well known abstract graph problem 8tQthat
consists of those graphs whose vertices can be colouredhwité colours such that every
pair of adjacent vertices have been assigned differenucs)l@an be realised ovep as
the problem captured by the following sentence of MMSNP.

JRAGIABYXVY -
A =
A =
AN =(E

@
=
>
x
>
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>
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2.3 Feder and Vardi's MMSNP

In [16] Feder and Vardi attempted to give a logic for CSP: theyoduced the
logic MMSNP and showed that the set of problems captured by3¥M is com-
putationally equivalent to CSP. In this section, we introglbriefly this result.

2.3.1 Definition

Monotone Monadic SNP without inequalisya fragment of ESO and consists of
the set of formulae of the following form:

E”\ZV)?/.\ —|(ai(F\T,)Z) A Bi(M,)Z)),

where for everynegated conjunct(a; A f3;):
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e thea-parta; consists of a conjunction @iositiveatoms involving relational
symbols fromo and variables fronx; and

e the-part (or colouring)B; consists of a conjunction of atoms or negated
atoms involving the monadic existentially-quantified pcadesM and vari-
ables fromx.

Notice that the equality symbol does not occurdin Monotone Monadic SNP
without inequality is denoted by MMSNP, for short.

2.3.2 MMSNP is computationally equivalent to CSP

The result we are about to quote has initiated the preserk (gacept for Chap-
ter 7). In the remainder of this work, when we write ‘Feder &addi’s theorem’
we understand the following key result.

Theorem 2.7 (Feder and Vardi)

Every problem in CSP is expressible by a sentence of MMSN#?y fpvob-
lem Pg expressible by a sentende of MMSNP is equivalent to a problem
CSRTo) in CSP:Pg reduces to CSHo) in polynomial time; and, CSHo)
reduces tdPq in randomised polynomial time.

We shall give a proof of the previous theorem in Chapter 3.eFedd Vardi
showed that MMSNP captures more than just G®R that there are problems
captured by MMSNP that are not in CSP. They gave two examblsgabh prob-
lems over graphs; the problem consisting of those graphsatieatriangle-free;
and the problem consisting of those gra@h$or which one can colour the ele-
ments of|G| black or white such that the coloured graph contains no muec
matic triangle. They gave a sketch of this proof in which tiisgd a counting
argument. In the next section, we shall give further exampfesuch problems,
using a different type of proof, involving the constructiohfamilies of graphs
with special properties.
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2.4 MMSNP captures more than CSP

We exhibit some problems over that are captured by MMSNP and show that
they can not be in CSP (this section is an extended versiofB3y. [

2.4.1 Some problems expressible by a sentence of MMSNP

The problem RI-FREE is the problem over; defined by the following first-order
sentence:

VX(=E(X,X))A
VXYWZ(-(E(x,Y) VE(Y.X)) V ~(E(x,2) VE(z X)) V=(E(y,2) VE(zY))).

Note that the above sentence can be considered to be atiealisbthe abstract
decision problem consisting of those undirected graphsichthere is no trian-
gle. TRI-FREE is also expressible by a sentence of MMSNP since although the
above sentence is not directly a sentence of MMSNP accotdingr definition,

itis logically equivalent to one: it is logically equivaleto the following sentence
using the identity-(PVv Q) = -PA-Q

VX(=E (X, X)) A

VXVWZ((—E (X Y) A=E(Y,X)) V (mE(X,2) A—=E(z,X)) V (=E(Y,2) A =E(Z)Y))).
Then using the distributivity of by vV we obtain the following equivalent sen-
tence

VX —E(X,X) AVXVyWz

(-E(xY)V-E(x,2) V-E(y,2)) A (-E(xy) V-E(x,2) V~E(2)Y))
\V! =

A
ANE(XY) V-E(ZX)V-E(Y,2) A (FE(X,Y) V-E(zX) V -E(zY))
ANE(Y,X) V-E(x,2) V=E(Y,2)) A (ZE(Y,X) V-E(X,2) V-E(2)Y))
ANE(Y, %)V -E(zX) V=E(Y,2)) A (ZE(Y,X) V =E(z,X) V ~E(2Y)).
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Finally, using the fact thatP Vv -Q = —(P A Q) and rewriting the sentence in
prenex form, we obtain the following equivalent MMSNP s&icte

D1 =YYWz —E(X,X) A 41(X,Y,2) A —41(X,Z,¥) A —£2(X,Y,Z2) A—41(ZY,X)
A=L1(Y, X, 2) A =La(Y, X, 2) A =L1(Y,Z,X) A =£1(Z,Y, X),

where
£1(x.y,2) = (E(x,y) NE(x,2) AE(Y, 2)),

and
(%Y, 2) = (E(X,Y) ANE(z,X) AE(Y,2)).

The problem N-MoONO-TRI is the problem oveo, defined by the following
sentence:

AC(YX(—E(x,X)) AVXYWZ(((E(X,Y) VE(Y,X)) A (E(X,2) AE(Z,X))
NE®M:2) VE(zY))) = (=(C(X) AC(Y) AC(2)) A =(=C(X) A
—C(y) A=C(2)))))-

Note that the problem &-MONO-TRI can be considered as a realisation of the
abstract decision problem consisting of those undirectaghgs for which there
exists a 2-colouring of the vertices so that the verticesefyetriangle in the graph
are not monochromatically coloured. Note that the problemaNMIoNO-TRI can
also be captured by a sentence of MMSNP. The previous sentande rewritten
using the same technique as previously, since the poldriéach occurrence of
the symbolE is odd. We prefer to work with the previous sentence as it ishmu
more compact. The same shall hold for any further sentencgha# consider in
this section.

The problem RI-FREE-TRI is the problem oveo; defined by the following
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sentence:

ARIWIB(VX((R(X) A "W (x) A =B(X)) V (=R(X) AW (X) A —B(X))
V(=R(X) A=W (X) AB(X))) AYXY((E(x,y) VE(Y,X)) = (=(R(X)
AR(Y)) A =(W(x) AW(Y)) A =(B(X) AB(Y)))) AVX(—E(x,X))
AYXYWZ(—(E(X,Y) VE(Y,X)) V—=(E(X,2) VE(z,X)) V = (E(Y,2)
VE(ZY))))-

Note that the problem Ri-FREE-TRI can be considered as a realisation of the
abstract decision problem consisting of those undirectapits that are tripartite
and in which there is no triangle; that is, as a restrictiofi Rf-FREE to tripartite
graphs.

The problem N-WALK -5 is the problem oveo, defined by the following
first-order sentence:

VX(=E (X, X)) A VX1 VX VX3VXa VX5 (—((E (X1, %2) V E(X2,X1)) A (E (X2, X3)
VE(X3,%2)) A (E(X3,Xa) V E(Xa,%3)) A (E(X4,X5) V E(X5,%4))
AE(Xs,X1) VE(X1,X5))))-

Note that No-WALK -5 can be considered to be a realisation of the abstract de-
cision problem consisting of those undirected graphs irctvitihere is no closed
walk of length 5. The problem &-WALK -7 is defined similarly. Moreover, con-
sider the problems &FWALK -5-TRI and No-WALK -7-TRI respectively, as the
restrictions of No-WALK -5 and No-WALK -7 respectively, to tripartite graphs, as
above.

Our first observation is that, if the template defining a peablin CSP over
02 has a self-loop, then the problem must consist of the claa#i op-structures.
Hence, we may assume that any template has no self-loopsasohthe prob-
lems we consider in this section are trivial. Our second nMagi®n is that the
template defining a problem in CSP ow&r must be a yes-instance of the prob-
lem (as the identity map of the template to the template isradmorphism).

Lemma 2.8 Let G T € STRUGO,). Suppose that, € TRI-FREE. Furthermore,
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suppose that in the undirected graph encoded by G, there mtlaqf length3
joining two non-adjacent vertices u and v. Then for ansﬁGI', h(u) # h(v).

PROOF Letuandv be two non-adjacent vertices Gf Suppose further that there
is a homomorphisnh of G to T such thath(u) = h(v). By definition, there is a
pathu, w1, wo, vin the graph encoded l§y. Becausd has no self-loops, we must
have thath(u), h(w;) andh(w,) are pairwise distinct i and sinceh is a ho-
momorphism, we havée (h(u),h(wy)) or E(h(w1),h(u))) and(E(h(wy), h(ws))
or E(h(wz),h(wy))) and (E(h(wz),h(u)) or E(h(u),h(w>))) that hold inT; that
is, the graph encoded bl has a triangle. Thu$ ¢ TRI-FREE. This yields a
contradiction. O

Suppose that some probldProveros is such that:
e everyop-structure inP is in TRI-FREE; and

¢ for everyn, P contains a structurl,, that encodes a graph withmutually
non-adjacent vertices where there is a path of length 3rjgiavery pair of
such vertices.

Then, by Lemma 2.8 on the facing pagds not in CSP (any homomorphism
of Hy, to the template must have an image of size at Iepdgh the following, we
construct such a family of graphs for all the first-order peofis that have been
introduced in this section.

2.4.2 Construction ofH.

Define the structurél,, as follows. The domain dfl, consist of the union of the
sets:

[ Vn:{l,z,...,n};
e Ut={(i,j):1<i,j<nii< |} and
o UZ={(i,j):1<i,j<ni>j}

EHn consist of the union of the sets:



32 CHAPITRE 2. PROBLEMES D’HOMOMORPHISME

o {(i,(i,j)):1<i,j<ni<j}
e {(i,(i,j)):1<i,j<nji>j};and
o {((i,)),(J,0)):1<ij<ni#j}

The graph encoded b, can be depicted as in Fig. 2.1 Note that: the graph
encoded byH, is triangle-free; there is a path of length 3 joining any tws-d
tinct vertices ofvy,; V,, forms an independent set in this graph; and this graph is
tripartite.

Ui U2
(n_lan) (n,n—l)
(i,]) (,1)
(1,3) (3,1)
(1,2) / (2,1)

Vn\l 2— i < ] - n=1 n

Figure 2.1: The Graph encoded Hy.

Lemma 2.9 There does not exist a closed walk of len§tlor 7 in the graph
encoded by H

PROOF Suppose that there exists a closed wallof length 5 or 7 in the graph
encoded byH,. As this graph is tripartite)V must have at least one vertex
say, inVy. Hence, there isn € W, \ {w1} such that either:
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1. wy, (W1,Wa), (Wo,wy) is a sub-walk ofV; or

2. wy, (wWg,Wp), wy is a sub-walk of\V.

Suppose that the length @ is 5. In case (1), we obtain a contradiction as
every vertex olJ} andU? is joined to exactly one vertex &;. In case (2), we
also obtain a contradiction as this would imply that the grapcoded by, has
a triangle. Hence, this graph has no closed walk of length 5.

Suppose that the length @ is 7. In case (1), we must have a closed walk
of length 4 betweenv; andw,. As every vertex ofJ} andU? has exactly one
neighbour inVy, this yields a contradiction. Case (2) yields a contradicas it
implies that there must be a closed walk of length 5 in the lyepcoded byH,.

O

Our observation immediately after the proof of Lemma 2.8 agep30 yields
the following corollary.

Corollary 2.10 The problemsTRI-FREE, TRI-FREE-TRI, NO-WALK -5, NO--
WALK -7, NO-WALK -5-TRI and NO-WALK -7-TRI are in MMSNP but not in
CSP.

This only leaves the problemdNMoONO-TRI. Let G, be obtained fronid,, by
adding in two extra elementa; anda , such thatar anda, is joined to every
other vertex in the graph encoded®y (this means that we have an edge, a, )
too); i.e. set

EC:=E™MU{(a,,w), (ar,w)| such thaw € |Gp|} U {(aT,a,)}.

Lemma 2.11 Suppose that u and v are vertices gfivVthe graph encoded by, G
and let T be aop-structure INNo-MoONO-TRI such that there is a homomorphism
h of Gy to T. Then fu) # h(v).

PROOF Suppose thah(u) = h(v). By arguing as in Lemma 2.8 on page 30,
there are vertices; andw, of G, \ {ar,a, } such thath(wy),h(u) and h(w)
are pairwise distinct. Also, both(at) andh(a,) must be different from the
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image of any other vertex db,. Hence,E(x,y) or E(y,x) holds inT for every
distinct pair of elementg andy from the set{h(u),h(w1),h(w,),h(ar),h(a )}
of 5 elements. We obtain a contradiction as this impliesTh@tNo-MONO-TRI,
since a structure encoding a clique of size 5 is not®MONO-TRI. O

Lemma 2.12 For every n> 2, G, € NO-MONO-TRI.

ProoF Colour the elementar anda,; ‘black’ and the other elements ‘white’.
This is a valid colouring since the part &, coloured ‘white’ is a copy of the
structureH,,, and encodes a graph that is triangle-free. O

By arguing as above, we immediately obtain the following.
Corollary 2.13 NO-MONO-TRI is in MMSNP but not in CSP.

Notice that among the problems that are in MMSNP but not in, @&#e are
tractable problems (all the problems of Corollary 2.10 aapheceding page are
first-order expressible hence in the complexity classe. deterministic logarith-
mic space) as well as intractable problemofNoNO-TRI is NP-complete,cf.
Chapter 6). We shall provide in Chapter 6 further examplesioh problems that
are complete for the complexity classdis, P andNP.

In Chapter 4, we shall take the approach that has been dextilothis chapter
one step further: we shall completely characterise thosgl@ms in MMSNP that
are not in CSP where the underlying signature is arbitrary.



Chapitre 3

La logigue MMSNP

On introduit précisément la logiqgue MMSNP de Feder et Vdiidide pou-
voir prouver en détail le théoreme de Feder et Vardi coneceiiéquivalence
calculatoire entre MMSNP et CSP.

35
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Dans ce chapitre, je donne une preuve détaillée du théorémeder et Vardi
(cité au chapitre 2 comme théoréme 2.7). L'approche n’estopiginale et suit
la démonstration donnée dans [16]. En effet, la preuve derretdvardi est plu-
t6t courte et difficile. Ceci a motivé ce chapitre. L'idée depreuve est la sui-
vante : premiérement, de noter que certaines formules de IN®M§u’on ap-
pelleraformules conformesdéfinissent des problemes d’homomorphisme : un
exemple d’'une telle formule a été donné au chapitre pré¢guem le probleme
3-CoL. Deuxiemement, de transformer toute formule de MMSNP erfanmeule
équivalente qui soit «aussi conforme que possible» dedette qu’on puisse lui
associer un probleme d’homomorphisme canonique (notetzégiprobablement,
ce dernier aura une signature différente). Pour montrquik@lence calculatoire,
une réduction est assez directe, celle depuis le problemeédoar la formule de
MMSNP vers le probleme d’homomorphisme canonique. Parepoétte réduc-
tion n’est pas surjective : il existe des instances du probld’homomorphisme
canonique qui ne correspondent pas a des instances du mpebiénné par la
formule de MMSNP. Lidée clé pour contourner cette diffiéyitonsiste a trans-
former un peu plus les formules de MMSNP en daeme spécialeou chaque
conjonction interdite est biconnexe : ceci permettra dendéfine fonction du
probleme d’homomorphisme canonique vers le probleme dpanda formule
de MMSNP comme une sorte d’'inversion canonique de la réaluctientionnée
ci-dessus. On prouve alors qu’il s’agit d’une réductionfgzaur des instances
du probleme d’homomorphisme canonique qui ont des «patitsbes (ici «pe-
tit» est une variable de la formule de MMSNP). Or, Feder edVant adapté
une construction aléatoire de Erdgs relative au nombrawitique et a la cycli-
cité (minimum des tailles des cycles d’'un graphe) : cettestantion peut étre
utilisée comme «endoréduction» polynomiale probabilistgprobléme d’homo-
morphisme canonique pour transformer une instance domémssinstance équi-
valente avec des cycles suffisamment «grand». Cette cotistrucouplée avec la
réduction canonique inverse, donne finalement une rédauptitynomiale proba-
biliste depuis le probleme d’homomorphisme canonique Mepsobleme donné
par la formule de MMSNP. Notez qu’il reste ouvert si cetteucthn peut étre
déterminisée.

Ce chapitre s’articule comme suit. Dans la section 3.1, tatian est intro-
duite, les définitions de bases données ainsi que quelqeaypds. Ensuite dans
la section 3.2, le$ormules conformesont définies et I'existence d’une corres-
pondance naturelle entre ces formules et les probléemesndihmmrphismes est
démontrée. La section 3.3 se consacre au paradigme de peliEfini par une
formule de MMSNP qu’est le problemedNMoONO-TRI : on y effectue aussi la
preuve du théoréme de Feder et Vardi dans ce cas parti@fireiie faciliter la
compréhension de cette preuve dans le cas général. A lars&cd, la construc-
tion de laforme spécialal’une formule de MMSNP est donnée. La section 3.5
est consacrée a la partie principale de la preuve dans letogsa : le probléme
d’homomorphisme canonique associé a une formule spétaaléduction cano-
nigue et son inversion sont explicitées. Finalement, add®e 3.6, on donne la



preuve du théoreme de Feder et Vardi (théoreme 2.7).
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3.1 Preliminaries

3.1.1 Good sentences

In the following, we show how to rewrite any sentence of MMSaiPa “good

sentence”: informally, we remove redundant negated catguand we enforce
that for every first-order variable occurring in a negatedjgnoct, a full choice of

validity for the monadic predicates is inherent.

Notation Let® be a sentence of MMSNP over the signatoyéhat is a sentence
of the following form

MK ~(@i(R ) A B (M, ).

Letk(®) = (M1,My,...) be the signature consisting of the monadic symbols oc-
curring in® but not ino (when this does not cause confusion, we write sinkply
instead ok (®)). Seto’ = oUK. Lety(®) denote the set of negated conjuncts that
occur in®. Lety € y(®). Denote byX,, the set of first-order variables that occur
in the negated conjungt

Let ® be a sentence of MMSNP. For any negated conjynet—(a A ) in

y(P):

(i) if an atom occurs once positively and once negativel then discard;,
and

(i) if an atom occurs more than onceyrthen remove all occurrences of this
atom iny but one.

The sentence hence obtained is clearly equivalent to tyeati
From now on, we only ever consider sentences for which thaissformation has
been carried out.

A partial order over negated conjuncts Let X be a set of variables. We define
a binary relation<y over the set of conjunctions of atoms involving relational
symbols from some signatu®. Let &, andd, be two conjunctions of atoms
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involving relational symbols frone” and variables fronX. Leti be a bijective
mapping ofX to X. Denote byi(d;) the conjunction obtained by replacing every
variablex occurring ind; by its image vial. We setd; =< &2 whenever there
exists a bijective mappingof X to X such thati(d;) is a subconjunction od;.
Clearly, this binary relation is a partial order. df =y &, then we say thad,

is a subconjunction od; up to a renaming of variableslf both ; <5 &2 and

02 2 01 then we writed; ~y 2. Note that~ is an equivalence relation.

This partial order induces a partial order over the negavejuacts of a sen-
tence of MMSNP. Let® be a sentence of MMSNP. Lgi = —(a; A1) and
Y2 = —(a2AB2), in y(®P), be two negated conjuncts. df A B Zq a2 A B2 then
we write thaty; is asub-negated-conjunct (up to a renaming of variablafsy,.
If y1 is nota sub-negated-conjunct gf for any two distinct negated conjuncts
andy, in y(®) then we write thatp is simplified

Simplifying a sentence Let® be a sentence of MMSNP. Discard all the negated
conjunctsy in y(®) that are not minimal with respect to the partial order defined
previously, keeping only one occurrence of a negated cehjian each equiva-
lence class. Since up to a permutation of the variable nathess is a unique
sentence obtained in this way, by an abuse of notation weksgighe sentence
obtained from® by simplification, and we denote it [§imp(®).

Lemma 3.1 Let® be a sentence of MMSNP. Th&imp(®) is a sentence of MM-
SNP that is simplified and is equivalentdo

PROOF. Let @ be a sentence of MMSNP that is not simplified:, there are two
distinct negated conjuncig = —(a1 A B1) andy, = =(0a2 AB2) in y(®P), and there
exists a bijective mappinigof X, to X, such thai (a1 A1) is a subconjunction
of a2 A B2. The sentenc@ is of the form:

E”\ZV)?(([)/\ Vi A y2) .

It is equivalent to:
IMYXPA VXYL A VXY



40 CHAPITRE 3. LA LOGIQUE MMSNP
Sincei is a bijection, renaming the variables we obtain equivéent
AMYXPAVX—(i (0 AT (B1)) AVXya.
The previous sentence is clearly equivalent to the follgvgentence:
IMVKPA VX[ (i(a1) AT(B) A(azAB2).
We can rewrite it as follows:
IMYXPA VX ((i(a1) AT(B1)) V (a2 AB2)).
Since(i(a1) Ai(B1)) is a subconjunction ofaz A B2), we obtain equivalently:
IMYXPA VX(i () AP (Br)).
Renaming the variables via the inverse of the bijectjome get:
IMVXPA VXY
The previous sentence is finally equivalent to
IMYX(@A Y1)

This sentence is clearly a sentence of MMSNP and is equivedetihe original
sentenc&, and can be obtained frod by discarding the negated conjupgthat

is not minimal. Sinc&Simp(®) is simplified by construction and can be obtained
via an iteration of the above basic simplification, the refallows. O

In the following, we shall give some examples of this congian.

ExAMPLE. Recall the sentenc#®; of MMSNP that expresses the problenRITFREE
introduced in Section 2.4.1:

VX(=E (X, X))

AYXYW2Z(=(E (X y) VE(Y,X)) V ~(E(%,2) VE(z, X)) V ~(E(Y,2) VE(ZY))).
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It is not simplified and contains in fact only two types of nieghconjuncts apart from
—E(X,X):

o vi:=-/1(XY,2) = —(E(X,y) ANE(X,2) AE(Y,2)); and

e y3:=-/r(XY,2) = —(E(XY) AE(Z,X) AE(Y,2)).

For exampley := —/1(X,2y) = =(E(X,Y) AE(X,2) AE(z)y)) is equivalent toy;: indeed:
(E(xY) ANE(X,2) AE(Y,2) Zo, (E(XY) AE(X.2) AE(ZY))

via the permutationty, z); and
(E(xY) NE(X,2) ANE(ZY)) Zo, (E(XY) AE(X,2) AE(Y.2))

via the inverse of the permutatidiy,z) (that is (y,z) itself). Another example ig; :=
—41(z,y,x) = =(E(X,y) AE(z,X) AE(zy)) that is also equivalent tp: indeed,

(E(xY) ANE(%,2) AE(Y,2) Zo, (E(XY) AE(ZX) AE(ZY))
via the permutatiortx, z, y); and,
(E(xY) ANE(ZX) AE(ZY)) 2o, (E(XY) AE(X,2) AE(Y,2))

via the permutatioriz, x,y).
Hence, we finally have:

Simp(®1) = VXYWZ-E (X, X) A =41(X, Y, 2) A =02(X, Y, 2).

As a second example, consider the following sentebgef MMSNP that expresses
the problem Nd-MoNoO-TRI that we introduced in Section 2.4.1 (it is not exactly the
sentence given there, but an equivalent sentence rewiritgesimilar way as for the case
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of the problem RI-FREE).

ACVXYWZ  —E (X, X) A =(£1(X,Y,2) AW(X,Y,2)) A =(41(X, 2 Y) AW(X,Y,Z2))
A= (L2(%,Y,2) AW(X, Y, 2)) A =(€1(Z,Y,X) AW(X,Y,2))
A= (L1(Y, %, 2) AW(X,Y,2)) A =(L2(Y, X, 2) AW(X,Y, Z))
A= (La(Y,2X) AW(X, Y, 2)) A =(€1(Z,Y,X) AW(X,Y,2))
A= (l1(%,Y,2) Ab(X,Y,2)) A =(£1(X,2y) Ab(X,Y,2))
A=(£2(%Y,2) AD(X,Y,2)) A=(€1(z,Y,X) AD(X,Y,2))
A= (L1(Y, %, 2) Ab(X,Y,2)) A =(L2(Y,X,2) Ab(X,Y,Z))
A=(£1(Y,2X) Ab(X,Y,2)) A=(€1(2,Y,X) Ab(X,Y,2)),

where:
w(x,Y,2) :=C(x) AC(y) AC(2) andb(x,y,z) := -C(x) A —-C(y) A —=C(2).
We proceed as in the previous case and weSgap(®d;):

YXYWZ  —E(X,X) A =(£1(X,Y,2) AW(X,Y,2)) A =(L2(X,Y,2) AW(X,Y,Z))
/\_'(El(xv Y, Z) A b(X, Y, Z)) A _'(62 (Xv Y, Z) A b(X, Y, Z))

Let X be a set of variables. A conjunctighof positive or negative atoms
involving the monadic symbols from and the variables fronX is said to be
a complete colouring of X with respect koif for any variablex in X and any
predicateM in k, eitherM(x) occurs inf or -M(x), but not both. Let® be a
sentence of MMSNP. IB is a complete colouring ok, with respect ta(®) for
every forbidden conjunat:= —(a A B) in y(®) then we say tha® hascomplete
colourings

Let X be a set of variables. Lex be the set of complete colourings of one
variablex in X with respect tak. We call an equivalence class @f for ~¢ a
K-colour, or simplycolourwhen this does not cause confusion.
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Enforcing complete colouring on a sentence Let ® be a sentence of MMSNP.
For any negated conjungt= —(a A B) in y(®), if the B-part ofy is not a complete
colouring of X, relative tok then there exist a variabbein X, and a monadic
symbolM in K, such that neithdvl(x) nor—=M(x) occur inf. Replacey by the two
following negated conjuncts(a ABAM(x)) and—(a ABA-M(x)). Repeat this
process until a fixed point is reached and denote the newrssnbyComp(®).

Lemma 3.2 Comf®) is a well-defined sentence of MMSNP that has complete
colourings and that is equivalent tb.

PrRoOOFR Comp(®) is well defined since a fixed point must be reached after finitel
many stepsk(®) is finite). Comp(®) is a sentence of MMSNP equivalent to
@ because at each step the sentence obtained is a sentence SNMEhd is
equivalent to the sentence from the previous stage (notelsixy is logically
equivalent to the senten@vx—(a A BAM(X)) A= (o ABA-M(X))). O

We say that a sentence of MMSNP that is both simplified and bayplete
colourings is agoodsentence of MMSNP.

Proposition 3.3 Let @ be a sentence of MMSNP. Th&mp(Comp(®)) is a
good sentence of MMSNP that is equivalenbtdvioreover

Simp(Comp(Simp(®))) = Simp(Comp(P)).

PROOF By Lemma 3.2 is equivalent taComp(®), which has complete colour-
ings. By Lemma 3.Lomp(®) is equivalent t&Simp(Comp(®)), which is sim-
plified. The latter also has complete colourings, sincedbigined by discarding
some negated conjuncts from the former. This proves theafiissrtion.

The second assertion follows from the fact that if a simgiien is carried
out before completing the colourings, it can still be cafroait afterwards. Let
y1 = (a1 AB1) andy, = —(a2 A B2) be two distinct negated conjuncts froifw)
such that{a1 A B1) Z¢ (a2 AB2) via some bijectioni of X, to X,: i.e. y» does
not appear irSimp(®). Moreover, assume th@t is not a full colouring, that is
that there exists some variabtén X, and some monadic predicaté in k(P)
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such that neitheM (x) nor =M(x) occur in;. Then eitheM(i(x)) or =M (i(x))
or neither of them occur if>. Hence in the two first cases, either

(a1 ABLAM(X)) Zor (02AB2) Or (A1 ABLA—M(X)) Zor (A2AB2),

that is, a completion of the colouring gf is a sub-negated-conjunct @f via i.
In the third case

(a1 ABLAM(X)) Zor (A2 AB2AM(X))
and
(a1 ABLA=M(X)) Zor (a2 AB2A=M(X)),

that is, the completions of the colouring yf in the variablex and the monadic
predicateM are respective sub-negated-conjuncts of the completibpsio the
variablei(x) and the monadic predical¢ viai. Thus in any case, the completions
of the colouring ofy, in Comp(®) do not appear iBimp(Comp(®)). O

Notice however that
Comp(Simp(®)) = Simp(Comp(P))

does not hold in general, since completing a simplified se@tenight yield new
simplifications. We shall provide an example for this in tbkdwing.

EXAMPLE. The sentenc&imp(®;) is a trivial example of a good sentence as it is a
first-order formula.

Consider as another example of a good sentence the sef@enyaSimp(®P-)):

AC XYWz (41(X,Y,2) AW(X,Y,2)) A =(L2(X,Y,2) AW(X,Y,2Z))
/\—|(€1(X, Y, Z) A b(Xv Y, Z)) A _'(62 (Xv Y, Z) A b(Xv Y, Z))
A=(E(%,X) AC(X)) A =(E(X,X) A =C(X)).

Indeed, in this particular case, there is no need for fursiraplification. However, this
shall not be the case for our next example.
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Consider the sentence that expresses the probRRrFREE-TRI introduced in Sec-
tion 2.4.1: it can be rewritten as the following equivalestenced; of MMSNP:

JRAWIBVYXVYWZ  =(R(X) AW(X)) A =(R(X) AB(X)) A =(W(x) A B(X))
A=E (X, X)
A=(E(xy) AR(X) ARY)) A= (E(y,%) ARX) AR(Y)
A=(E(%y) AW(x) AW(Y)) A —(E(¥,3) AW () AW(y))
A=(E(xy) AB(X) AB(Y)) A —(E(y,%) AB(X) AB(Y))
A=L1(X,Y,2) A =l1(X,2,Y) A —=l2(X,Y,2) A =£1(Z Y, X)

ZY,X)

~—~~ o~

/\_‘El(ya X, Z) A _'62 (y7 X, Z) A _'El (y7 Z, X) A _'El

We want to find a good sentence of MMSNP expressirg-FREE-TRI. First simplify
the sentenceSimp(®s) is

IRAWIBYXVWZ  —(R(X) AW(X)) A —(R(X) AB(X)) A =(W(X) AB(X))
A—-E(X,X)
A=(E(%,Y) ARX) AR(Y)) A=(E(x,y) AW(X) AW(Y))
A=(E(X,Y) AB(X) AB(Y)) A =€a(XY;2) A=E2(X,Y,2)
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Then, complete its colourings and simplify the sentencebimio the good sentence
Simp(Comp(Simp(®3))) of MMSNP as follows:

JRIWIBVXVWzZ  —(R(X) AW(X) A =B(X)) A =(R(X) AW(X) A B(X))

A=(R(X) A=W (X) AB(X)) A =(=R(Xx) AW(X) AB(X))
A=(E(X) AT(X) A=(E (% X) AW(X)) A=(E (%, X) Ab(X))
A=(EGY) AT(X) AT(Y) A=(E(%Y) AW(X) AW(y))
A=(E(xY) Ab(x) Ab(y))
A= (£1(%,¥,2) AT(X) Aw(y) Ab(2))
A=(£1(%,¥,2) AT(x) Ab(y) Aw(2))
A=(£1(%,¥,2) AW(X) AT(y) Ab(2))
A=(£1(%,¥,2) AW(X) Ab(y) AT(2))
A=(£1(%,¥,2) Ab(X) AT (y) AW(2))
A=(£1(%,¥,2) Ab(X) AW(y) AT(2))
A=(£2(%,¥,2) AT (X) Aw(y) Ab(2))
where:
r(x) := R(x) A =W(x) A =B(x)
b(x) := =R(x) AW(x) A =B(X)

We prove thatComp(Simp(®)) is not necessarily simplified. Consider the case of
@3; and, note thate.g,
~(R(X) AW(x) A—B(x))

is a negated conjunct @omp(Simp(®3)) while,
~(£1(x,¥,2) AR(X) AW(X) A =B(X))

is a sub-negated-conjunct of some negated conjundEoofp(Simp(P3)). A

From now on, we shall only consider good sentences of MMSNP.
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3.1.2 Structure induced by a negated conjunct

Let @ be a sentence of MMSNP. Letla AB) =y € y(®) be a negated conjunct
of this sentence.
Denote byG, theo-structure induced as follows:

e its universgGy| consists of the variables that occunirand

e for everyr-ary relation symboR in o, defineRC as follows: for every
r-tuple x of elements 0fGy|, R(X) holds inGq if, and only if, it occurs in
a.

We call theo-structureGq the structure induced by.

Recall thato’ = g UK. In the following we usually denot& -structures with a
" (as inG) to distinguish them frono-structures. LeG’ be ao’-structure. Recall
that thereductof G’ overao is theao-structureG that; has the same domain@s
and, as relatioiR® for every relation symbdRin 0. Conversely, we say th&’
is anextensiorof G overa’.

GQ is the extension o6, overo’ defined as follows.

o for any monadic symbd\l in k, defineM® as follows: for anyx in G/,
M(x) holds inG; if, and only if, M(x) occurs as an atom iB.

We call theg'-structureG| the structure induced by.

3.1.3 Connected and biconnected structures

We shall be concerned with a generalisation of the grapbrétie notions of con-
nectivity and biconnectivity for arbitrary relational gttures.
Lett be some finite tuple: we denote Bt} the set of elements occurringtin

Let A be ao-structure andi andv be two elements gfi|. If there existn > 0
andn tuplesto,ty,...,tn—1 of respective arities;,, ri,,...,ri, , such that:

e R(to),...,R, ,(th—2) andR; , (ti,—1) hold inA;

e uc {to},ve {th-1};and
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e for any 0< j < n-—2, there existsj in |A such thatu; € {tj} andu; €

{tj+a},

then we say thab,t,...,t,_1 form apathof lengthn from uto v.

The structuréA is said to beconnectedf, and only if, for any distincu andv in
|Al, there exists a path fromnto v.

Let A be a connected-structure A is said to bel-connectedf, and only if, there
exists some in |A| and a pair(Py, P1) of induced substructures éfsatisfying

o [Po|N|P1|={u};

o [Po|U[PL|=|A;

e sizgP):= 3 |RA|>1,fori=0,1;and
Reo

e for everyr-ary symbolR in g, if RA(t) holds then eitheRP(t) holds or
RPL(t) holds, but not both.

We say that(Py,P;) forms adecompositiorof A in the articulation point u If
such a decomposition does not exist and & connected theA is said to be
biconnected

A o-structureA is said to beantireflexivef, and only if, for everyr-ary symbolR

in g, for anyt € |A|" such thaR(t) holds, all components dfare distinct.

A structureA is said to banonotuplaf REG|RA| =1 (note that a monotuple con-
nected structure is biconnected).

Let C be a monotuple structure such tfR&(t) holds for some-ary symbol ino
and someé € |C|". If every element of the domain @fis mentioned in the tuple
and that some elemeuntoccurs at least twice in the tupgiehen we say that is a
1-cycle In other words, the structuf@ consists of a single tuple, which contains
an elementi occurring at least twice: we callanarticulation pointof the 1-cycle
C.

Letn> 1. LetC be a structure such that,

e there exista substructure$y,...,P,_1 of C with |C| = U228’1|I3.| such
that:

— forany 0<i < n-2, there exist someg € |C| with |R|N|P1|={X};
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— there exist somg,_1 such thatPy| N |Py—1| = {Xn-1}; and

— forany 0<i < j<nsuchthai+1%# j modn, |R|N|P;| = 0; and

e forany 0<i < n, B is monotuple and there exists somary symbolR; in
o and some/ € |R|" such thaR™ (y) and|y] = r; and|R| = {y},

We say thaC is ann-cycle furthermore, theg’s are calledarticulation pointsof

C; and, theRi(y)’s thetuples of the cycle C

Let A be someo-structure that contains a cycle as a substructure. Defme th
girth of A as the least integer > 1 such that there exist amcycleC that is a
substructure oA. We write girth (A) :=n. We extend this definition tacyclic
o-structures (structures that do not contain any cycle adstsicture) by setting
girth (A) := o for any acyclic structuré.

We shall need the following technical result later in thisyster. The proof
of this result can be found in [16]: it is an adaptation frond@&s’ construction of
graphs of arbitrary girth and chromatic number. This resulised to reduce an
instance of a problem in CSP to an instance without any “Smgdles: indeed,
the converse transformation we mentioned earlier (froncdrenical constraint
satisfaction problem back to the MMSNP problem) can be gqueeal to be a
reduction for such instances.

Lemma 3.4 Let gd > 0. For everyo-structure A, there exists a-structure B
with:

|B| = |A|%d (wheredgy 4 is a function dependent only on g and d);

girth (B) > g;

e B—A;and

for everyo-structure T with|T| < d,

A—T if, and only if, B—T.

Furthermore, B can be constructed from A in randomised putyal time.

The definition of a ‘randomised polynomial time reductioancbe found in
Appendix A.
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3.2 Conform sentence and CSP

Let ® be a sentence of MMSNP. We say tl@ais conformif, and only if, every
negated conjunct € y(®) is either of the form

1. y=—(a AB); and, the structure induced lyis connected, monotuple and
antireflexive; or of the form

2. y=—(B), where|X,| = 1 andp is a complete colouring oX, with respect
toK.

ExampLE. The following conform sentence can be considered as ttisatan of the
abstract problem 3-QL.

AM1IMYXYY - =(E(X,Y) A M1(X) A M2(x) A M1(y) A Ma(y))
A=(E(XY) A =Mz (X) A M2(x) A =M1(y) A M2(y))
A=(E(%,Y) AM1(X) A =M2(X) AM1(y) A =M2(y))
A=(=M1(X) A =Mz2(x))

The two monadic predicatéd; andM, encode 4 colours, the fourth of which is forbidden
by the last negated conjunct. A

Lemma 3.5 Every problem in CSP is expressible by a good sentence of NMSN
Moreover, every problem expressed by a conform sentenc®&NWP is in CSP.

PROOF We start with the first assertion. L&tbe ao-structure. Lek be the
signature that consists of monadic symbmlsthat do not occur iro, wherei

ranges from 1 tdT|. The following sentenc®r defines the proble@SRT) and
belongs to MMSNP:

IMYX (A M) A A~ (Mi(x0) AM;j(x0))

MK Mi, M ek (i)

AN R(X)= V k(X))
Rceo teRl

where: X is a variable ok, R¢ has arityry, t = (t,to,...,t, ) and
Pt (X) := My (Xa) A AMy (X, )-
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The existential monadic predicatibrepresent the elements [| and the first
part of the sentence states that they associate one elem@rtwith every ele-
ment of an input structur®. The last part of the sentence says that this assignment
is a homomorphism. This sentence is not necessarily goodPr8yosition 3.3 it
can be transformed into a good sentence that is logicallivalgunt.

We now prove the second assertion. tebe a conform sentence of MMSNP.
Construct thes-structureTg defined as follows:

1. |Te| consists of those-colours that are not forbidden by the sentence (that
is, that do not correspond to a negated conjunct of type (B)ardefinition
of a conform sentence).e. set

|To| := {k k-coloun Yy € y(®P)y ~£¢ —Kk(x)}; and

2. for anyr-ary symbolRin o and anyr-tuplet = (ki,, ki, ..., ki,) of elements
of |T|, setR(t) to hold, if, and only if, there is no negated conjuydh
y(®) such thay ~4 v, where

Yt = ﬁ(I:Q(Xilvxiz""vxir) /\kil(xil) /\kiz(xiz) /\'--/\kir(xir))'

We now prove thaly is a template for the problem expressed by the senténce

Let A be ao-structure and\' an extension ofA that mentions only colours
from |To| (that is, the colours allowed by the senterige We can clearly re-
strict ourselves to such extensions: inde&ds @ if, and only if, there exists an
extensionA’ of Ato @', such that

A =YXy

This is equivalent to: there exists an extenstdthat mentions only colours from
|To| such that
Aevw A v
y hot of type (2)
Note that such an extensi@% induces a mapping of |A| to |Te|: map any
vin |A| to itsk-colour inA’. Conversely, such a mappifgnduces an extension
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A’ of A overd’ as follows: for any in |A|, setk(v) to hold inA’, wherek is the
K-colour given byh(v) = k.

We show thah is a homomorphism if, and only if,

AEw A\ v

y not of type (2)

Suppose that is a homomorphism. Letbe one of the negated conjuncts of
type (1) iny(®P). It follows that

Y~ Mt = _'(R(Xi17xi27"'7xir) /\kil(xil) /\kiz(xiz) /\"'/\kir(xir))

via some bijection (renaming of the variables). Lat: X, — |A’| be some assign-
ment. We must havA’ = y(x/T(X)): otherwise, we would have

A ER(Toi(X,),-..,Toi(%,)) Ak, (Tloi (X)) A ... Ak, (Tloi(X;,)).

Hence, there would be a tuplle= (Ttoi(x;, ), ..., Toi(x;,)) such thatR?(t) holds
andR(h(t)) does not hold iffe, whereh(t) = (ki,...,ki,). A contradiction.

Conversely, assume that

AeEw Ay
y not of type (2)
Lett be ar-tuple of elements ofA|, let X = {xi;,%,....,X, } be a set of variables
and letrt: X — |A| be a mapping given by, —t[j], (1< j <r). If A= R(X/T(X))
then there can not be a negated conjunct of typg {1 )y(®) such that/ ~g' Vi)
otherwise, we would have

A Vi (X/hoTroi (X)),

wherei : Xy — th(t) is a bijective mapping witnessing that-s' Yut). Therefore,
by construction offp, we must havde = R(X/ho 1(X)). O
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3.3 A problemin CSP computationaly equivalent to
NO-MONO-TRI

The remaining sections of this chapter will lead to a prooFetler and Vardi's
theorem. This proof might seem rather involved to some msade, in the present
section we construct a problem in CSP that is computatioeqlyvalent to M-
MoNO-TRI (in the line of the forthcoming proof). We have seen in thenepke in
the last paragraph of Section 3.1.1 that the problemmNlONO-TRI is expressed
by the following good sentence of MMSNP:

ACYXVWZ = (L1(X,Y,2) AW(X,Y,2)) A =(L2(X,Y,2) AW(X,Y,Z))
/\“(E]_(X, Y Z) N b(X, Y Z)) A _'(EZ(Xv Y Z) N b(X, Y Z))
A=(E(%,X) AC(X)) A = (E(x,X) A =C(X)).

Notice that in this sentence, replacivigryvz by VXVWz(X £ y) A (X # 2) A (Y # 2),
leads to a sentence that is logically equivalent.ile¢ the signature consisting of
three symbols: two ternary symbd® andR; and a unary symbdRs. Consider
the following sentenc® overt:

ACYXVWZ  ~(Ru(X, Y, 2) AW(X,Y, 2)) A ~(Re(X, Y, 2) AW(X, Y, 2))
/\_'(Rl(x7 Ys Z) A b(X, Ys Z)) N _'(RZ(X7 Ys Z) A b(X, Ys Z))
A= (Ra(X) AC(X)) A =(Ra(x) A —C(X)).
Let Py be the problem expressed $y We refer the reader to Appendix A for the

definition of an interpretation. 8-MONO-TRI can be reduced to the probldty
via the following interpretatioml of T in o of width one:

M= (1, 92, Pa)

where
QL= XA YAXFEZAY # 2N 11(X,Y, 2),

@ =XAYAXFEZAY # 2N (XY, Z) and@z := E(X,X).
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Note that the sentenc# is conform, thus by Lemma 3By belongs to CSP and
according to the proof of this lemma, thestructureT defined as follows can be
considered as a template f@g:

o [T[:={bw};

o R :=[TF\{(b,b.b), (www)};

e R} :=[T[°\{(b,b,b). (ww,w)}; and
e Rl :=0.

LetNM~1:= () be the first-order interpretation ofin T of width one, where

llJ = ElZ(Rl(Xa Y, Z) \ Rl(xv Z, y) \ Rl(Z, X, y) \v RZ(X7 Y, Z) \ RZ(yv Z, X) \% R2(27 X, y))
V(x=yA (Rs(x))-

We work over different signatures in the following: so, wivea give a struc-
ture, we write its signature as a superscript (a&'in

Fact 3.6 Let A be an antireflexiva-structure and let B:= M(N—1(AY)). If
girth (A") > 3then B =W if, and only if, A = W.

PROOF A' is a substructure d8': hence, the direct implication holds (problems
in MMSNP are closed under inverse homomorphism).

We now prove the converse implication. L&t be a valid extension oAl
with respect to¥: that is,A” is a model of the first-order part &. Consider the
extensionB' of B! induced by the extensiof® of AT (recall that the structures
share the same domain as we consider width one interpresatiGall informally
‘new tuples’ the tuples oB' that were not present iA'. We only need to check
the validity of the extension over those new tuples: theesdifferent cases to
consider.

1. A new tuple belongs t®&;: that is, there exist som& b andc such that
RE'(a,b,c) holds andR{" (a,b,c) does not hold. Sinc& (a,b,c) holds
thena # bAa# cAb#cAli(ab,c) holds inM~1(AY). In particular,
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E(a,b) holds inM~1(A") anda # b: thus, according to the definition of
M~1, there exist some; in |A'| such that some tuplg holds in AT and
involves the elementd;,a andb. Similarly for E(b,c) andE(a,c), there
exist two further elements, salp andds and two tupled, andts; where
the tuplet; involvesd,, b andc; and, the tuples involvesds,a andc. We
now prove that the tuplesg, to andtz coincide. We must have; # a and
d; # b (otherwiset; is a 1-cycle contradicting the fact thgirth (A") > 3).
Similarly, we must havel, ## b,d; # ¢,d3 # aandds # c. If t; is different
from t, thend; # do (otherwiset; andt, would form a 2-cycle). Similarly
for the tuplest, andts and the tuples; andts, this impliesd; # d3 and
d1 # ds3. Thus, if the tuple$;, to andts were pairwise distinct then we would
have a 3-cycle (which can not happen sigagh (A") > 3). So, we proved
thatt,t, andts are the same tuple. This enforas= c,d> = aandds =b.
Hence, we now know that there exists only one tuplAfithat involvesa, b
andc. Sincea# bAa+#cAb#cAfi(ab,c) holds inM~1(AY) this tuple
can only correspond to a tuple in some relatiRh whose interpretation
in o includes the interpretation ¢, in o up to a renaming of variables.
The relationR; is the only one that satisfies this criteria: it follows that
RY"(a,b,c) holds. This yields a contradiction.

2. A new tuple belongs tB,. This case is similar to the previous one.

3. A new tuple belongs tBs: that is, there exists sonaesuch that thaRS' (a)
holds andR4' (a) does not hold. Sinc&'(a) holds thenE™ (A (a,a)
holds. There can not be any elemensuch that the first part af is sat-
isfied: this would mean that a tuple that involvee®nda repeated twice
would occur inRY" or R (recall thatAT is antireflexive as by assumption
girth (A") > 3). Hence, according to the definition Gf 1, we must have
RS (a). This yields a contradiction.

There are no new tuples, thus the converse implication holds O

Remark. Note that we really proved the following. dfirth (A") > 3 thenB" and
AT coincide. However, this shall not be true in the general.case
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It follows from this fact and from Lemma 3.4 thRty = CSRT) can be re-
duced to M-MONO-TRI via a randomised polynomial time reduction: first, use
the randomised reduction from the lemma to get an equivatentture of girth
greater than 3; then, us@ 1. Hence, we can state the following corollary of
Feder and Vardi’'s theorem for the problenoM1ONO-TRI.

Corollary 3.7 There exists a structure T such that:
e No-MoONO-TRI reduces to CSH) via gfps; and

e CSRT) reduces tdNo-MONO-TRI in randomised polynomial-time.

notation. LetX:=Xg,X1,...,X,—1. We writeV_x@, as an abbreviation for:

VX A\ X #X9).

0<i<j<n

Remark. Before we move onto the proof of Feder-Vardi's theorem, wallsh
make some remarks on the sentedc@used previously as the defining sentence
of the problem Ndb-MoNO-TRI). Recall thatd is the following sentence.

ECVXVWZ _'(gl(xa Y, Z) N W(X7 Y, Z)) A _'(EZ(Xa Y, Z) N W(X7 Y, Z))
/\_'(gl(xa Y, Z) N b(X7 Y, Z)) N _'(EZ(Xa Y, Z) N b(X7 Y, Z))
A=(E(x,X) AC(X)) A =(E(X,X) A =C(X)).
Note that the sentenek has the following key properties:

1. ®is agood sentence;

2. The sentence obtained by replacingyyvz in ® by V_.x,y,z is equivalent
to ®; and

3. for any negated conjungt= —(a A B) in y(®), the structure induced hy
is biconnected and the structure inducedyliy connected.

(1) is necessary to ensure that Lemma 3.5 can be used to pravihé new sen-
tenceW expresses a problem that is a CSP. Each symbokmrresponds to the
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a-part of a negated conjunct df. (2) is necessary to ensure that (3) makes sense
together with Lemma 3.4 in the proof of Fact 3.6: that is, fiouctures of girth
greater than 3171 is a reduction fronPy to No-MoNO-TRI. Indeed, the exis-
tence of cycles is derived from the fact that we have bicotatkestructures (which
make sense only if the variables can not be identified). Iti@e8.4.1, we shall
introduce the notion of a ‘collapsed’ sentence of MMSNP} tt@responds to
(2); and, in Section 3.4.2, the notion of a ‘biconnected’tsroe of MMSNP, that
corresponds to (3).

3.4 Transforming a sentence into a special form

In this Section we transform a sentence of MMSNP into a spémi@: this spe-
cial form is used in the proof of Theorem 2.7. There are twomsaeps: first,
we collapsethe sentence of MMSNP; that is, we transform the originatessse
into an equivalent sentence where the sequence of univessarder quantifiers
Vxvy... are replaced by the variaxi.x,y whose semantic is “for every choice of
distinct elements of the structurey,...” (cf. previous Section). Secondly, we
split each negated conjunct of this collapsed sentence intoatsmbected com-
ponents. This transformation is quite trivial in the casa okgated conjunct that
has disjoint components; it involves introducing new myllaredicates (basically
it corresponds to a transformation of a MMSNP problem int® uhion of con-
nected MMSNP problems). However, it is slightly more sulntie¢he case of a
1-connected negated conjunct that is not biconnected adstbplit along some
articulation point it involves the introduction of a new monadic predicate.

3.4.1 Collapsed sentences

Later on we shall need the notion of a biconnected negatgdrmon this makes
sense only if we deal with sentences where the first-ordaablas within a
negated conjunct can not be identified. In other words, wet warestrict our-
selves to injective assignment when checking the satififiabf a sentence.

Let d be a sentence of MMSNP. If the sentence obtained by replasing®
by V_:xis equivalent tab then we say tha® is collapsed
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collapsing a sentence Let ® be a sentence of MMSNP. Lgtbe some negated
conjunct occurring inP and letm be some mapping of, to X,. Denote bym(y)

the negated conjunct obtained frgrby replacing iny every first order variablg

in Xy by its imagem(x) and removing redundancies. For every negated conjunct
in ® and for every mappinm: X, — Xy, add to the sentence all negated conjuncts
m(y) that are not trivially trué. Simplify this sentence and denote it 8pll (®).

Lemma 3.8 If ® is a good sentence of MMSNP th@nll(®) is a good sentence
of MMSNP that is collapsed and equivalenido

PROOF Notice that ify had a complete colouring relatively kathen so has(y).
ThusColl(®) is a good sentence of MMSNP.

By construction, for ang-structureA, if A = Coll(®) thenA |= ® (asColl (D)
is obtained front® by adding negated conjuncts).

Conversely, suppose thatl= ®. Then, there exists an extensidA of A
to o’ such that for any assignment X — |A|, A% = @(X/T(X)), where@ s the
guantifier-free first-order part of the formuta We shall show now for any as-
signmentrt: X — |A], A% = g(X/T(X)), wherey is the quantifier-free first-order
part of Coll(®). Lety be some negated conjunctdmandm: X, — X, be some
mapping such that(y) occurs iny. Lettt: X — |A|. SinceA = @, it follows that
A% |= y(x/Tlom(X)). Hence A° = m(y) (X/T(X)). Thus,A = Coll(®).

It remains to show that the construction yields a collapsedece: that is,
we show that after this construction, we can restrict oueseto assignments to
the first-order variables that do not identify any two valégboccurring in the
same negated conjunct. More precisély= Coll(®) if, and only if, there ex-
ists an extensio® such that for any negated conjuncin y(Coll(®)) and
for any one-to-onet: X, — |A|, we haveA® E y(x/T(X)). The direct implica-
tion is clear. For the converse, we have to show, that thidshfar assignments
that are non-injective. Lelr: X, — X, be a non-injective mapping. Denote by
R(m) :={(xy) € X$|T[(x) =T11(y)} the equivalence relation associated witfTake
some representatives for each equivalence class. Denot¢heyrepresentative

1By this we mean a negated conjunct satisfying the conditionin the first paragraph of
Section 3.1.1.
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of x. Then, letm: X, — X, be the mapping defined as followsi(x) = x. By
assumptionA® = m(y)(X/mom(X)). Hence A° E y(x/T(X)). Thus, the result
follows. OJ

To illustrate the above construction, consider the folluywexample.

ExamMPLE. LetW be the following sentence of MMSNP:

ACVXYWZ = (l1(X,Y,2) AW(X,Y,2)) A =(L2(X, Y, 2) AW(X, Y, 2))
A=(l1(%,Y,2) AB(X,Y,2)) A =(L2(%,Y,2) Ab(X,Y,2)).

ThenColl (W) is the following sentence:

ACVXYWZ = (l1(X,Y,2) AW(X,Y,2)) A =(L2(X,Y,2) AW(X,Y,Z))
/\_'(El(xv Y, Z) A b(X, Y, Z)) A _'(62 (Xv Y, Z) A b(X, Y, Z))
A=(E(X,X) AC(X)) A =(E(X,X) A =C(X)).

Notice that this is a sentence of MMSNP that expresses tHagmoNo-MONO-TRI;
and, moreover that this is the sentence we used previousilyd@n equivalent problem
in CSP. A

3.4.2 Biconnected sentences

Let ® be a sentence of MMSNP. & is connected (respectively biconnected)
for every negated conjungt= —(a A B) in y(®) then we say thad is connected
(respectivelybiconnecteyl

We extend the logic MMSNP by allowing existential quantifica over nul-
lary predicates and call MMSNP with nullary predicates tiésv logic; all the
notions introduced in this chapter; that is, the notion ahapéified sentence, of a
sentence with full colourings etc, are naturally extended.

Lemma 3.9 Let ® be a good sentence of MMSNP. Then, there exists a good bi-
connected sentencdd in MMSNP with nullary predicates that is equivalent to
®.
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The remainder of this section is devoted to the proof of thsilt.

Let @ be a good sentence of MMSNP. We shall construct an equivaéent
tenceW that is good and biconnected. There are different casesd&r. From
now on, we denote b the sentence equivalent to the original MMSNP sentence
and that has been obtained up to this point of the construciiod we denote by
Y the (to be shown) logically equivalent new sentence. As lsthere exists a
negated conjungt that is not biconnected, we proceed as follows, depending on
y's form:

1. disjoint case y= (8 (X) A &1(y)) with {x} and{y} disjoints.
We introduce a new existential nullary predicaté.e. a Boolean variable)
and replace by (8o(X) = p) A (31(Y) = —p).

Fact 3.10 The new sentence is equivalent.

PROOF. Let A° be ao-structure. Suppose thAf = ®. Leto” := o’'U{p}.
Then there exists an extensi®f of A® such thatA® = VXvyg, where@
denotes the quantifier-free first-order pardafin particular, A% = VXvyy.
Thus it can not be the case that there exist someX, — |A| such that
both A® = 8g(X/Ti(X)) and A% = &;(X/T(X)). ExtendA° as follows: if
there exist somet: X, — |A| such thatA® |= 8y(x/T(x)) holds then set
pAo" .= true, otherwise sepAGN := false ClearlyA®" witnesses thah® =
W. Conversely, assume thaf = W. Then there exist some extensiafi
such thatA®" = VXvyy, wherey denotes the quantifier-free first-order part
of W. Let A% denotes the reduct @ to o’. We finally show thaA® |=
VXvy@: w.l.0.g. pAON = true thus for any assignmemt: X, — |A|, we have
A% = -8, (y) henceAd = —y. O

2. 1-connected casey = —(dp(X,2) A d1(Y, 2)), with X andy disjoints.
We replacey by do(X,z) = My(2)) A (81(Y,2) = ~My(z)) and introduce a
new existential monadic predicatd,.

Fact 3.11 The new sentence is equivalent.
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PROOF A = @ if, and only if, there exists an extensi#f of A on o’
such that for each negated conjuncin y(®) and for every assignment
T Xy — A, A% = y(x/T(X)). Leta” bed’ U {M,}. ExtendA® ono” as
follows. set

MA" = {z€ |A] such thath? = To(X2)}.
Now, letTo : X5, — |A|. By definition ofA%", we have
A% | =(80(X/ (%), 2/To(2)) A =My(2/To(2)))-

Lety : X5, — |Al. We must have

A% = —(81(%/Tu(X).2/Ta(2)) AMy(z/Tu(2))),
otherwise,
A% = 81 (X/Tu(X),2/Ta(2)) AMy(z/Tu(2)).

Hence, by definition oMZ", we would haveA® = 3xdo(X,z/Tu(2)), that
is there exists somep : X5, — |A| with Tp(2) := T (2) such thatA® |=
do(X/11(X), z/11(2)). Hence, we would have sormme X, — |A| induced by
andrmy such that

A% = 8o(X/T(X), 2/T(2)) A Bu(Y/TUY), 2/ TH(2)),

a contradiction. It follows that = W.

ConverselyA |= W if, and only if, there exists some extensiaf of A over
0" such that for all negated conjungin y(W), and for alltt: X, — |A],
A" = y(x/T(X)). In particular, for anyt: X, — |A|.

A" | ~(8o(X/ (%), 2/T(2)) A ~My(2/T(2)))

and

A% = (81(X/T(X),2/TU(2)) AMy(2/T(2))).
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It follows that

A% = =(B0(X/ (%), 2/T(2)) A= My(2/T(2))) A= (B1(X/T(X), 2/ T(2)) AMy(2/T1(2)))-

Let A% be the reduct oR° overa’. Then,
A% = =8(X/TI(X),2/T(2)) if A7 |= My(z/T(2)

andA? |= -8, (X/n(X),z/n(2)) if A°" = =My(z/T(2).

It follows that there exists an extension &F of A over o’ such that for
anyTt: Xy — |A|, A% = —(3g(X/T(X),z/Ti(2)) A B1(Y/TU(Y), Z/TI(Z))). Hence,
Al ®. O

Once every negated conjunct is biconnected, we transfoensehtence into
a good sentence.e. we complete the colouring and simplify the sentence. This
concludes the proof of Lemma 3.9.

Together with Lemma 3.8 this yields the following corollgsynce if one as-
sumegd to be collapsed in Lemma 3.9 then the senté#ds also collapsed).

Corollary 3.12 Let ® be a good sentence of MMSNP. Then there exists a
sentence of MMSNP with nullary predicates equivalen®{ahat is good,
collapsed and biconnected (we call this sentencespiezial formof @).

Remark on MMSNP with nullary predicates Notice that a problem defined by
a sentence with nullary predicates simply corresponds tuote finion of problems
expressed by sentences without nullary predicates. LenbnzaB be generalised
to conform sentences of MMSNP with nullary predicates; edjeve can do a
case analysis on the values of these nullary predicatesoamééh of these cases
apply the lemma and construct a templ@iteand maker the disjoint union of
these templates. However, we must ensure that the caseisjaiatdor the non-
uniform CSP problem as well, and that disconnected instacein the problem
if, and only if, there is an homomorphism into a singleHence, we add a binary
symbolR to o and seR" := |J;|Ti|?> and for every instancA we setR* := |A[2.



3.5. MAIN PART OF THE REDUCTION 63

Note that this can be achieved via gfps from the constratmtfaation problem
to the MMSNP problem and via a polynomial-time reductiomirthe MMSNP
problem to the constraint satisfaction problem.

3.5 Main part of the reduction

The idea of the reduction is as follows: given a problem esged by a sentence
@ over o (of the special form given by the previous corollary) we ddasthe
problem over the signature wheret is induced by thex-parts of the negated
conjuncts occurring inP; one new relational symb® is introduced for every
equivalence class of(®) for ~g; and, its arity is the number of different variables
occurring ina. Now, choose one in each equivalence class and let

wi= /\ X#XAq.
Xi;éXjEX(x

This provides an interpretation ofin o of width one:lNM = (@|Ry € T).

Replace evergi-parta(X) of the negated conjuncts fh by the corresponding

symbolRy (x) Denote this sentence Y.

Note thatW¥ is conform and thaf° |= @ if, and only if [1(A°%) = W. However,
we are also interested in the reduction from the problemesgad by to the
problem expressed by. Let B' be at-structure. IfRy(t) holds inB' for some
tuple of elements suitable in length then we waa(t) to hold in the structuré®
obtained fromB'. In other words, we just reverse the interpretafibas follows:
for everyRin o, let

,R(X) = V Fya(x.y)

R(x) occurs ina(x,y)

This provides an interpretation ofin t of width one: M~ = (gr|R € 0) (note
that for simplicity in the above, we did not take into accotln fact that we might
have to rename variables). We want:

B' = Wif, and only if M~1(B") |= &.
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This would clearly hold if:
(- 1(B")) =B"

would hold, but this is not the case in general. This is whieertotion of high
girth is needed. Indeed, each tuple in a relation ints¢ructured1(M—1(B"))
corresponds either:

1. to a monotuple connected substructur€lof (BY); or
2. to a non-monotuple biconnected substructurd of(BY).

So, according to case (2): different tuplesBhcould give rise to some tuples in
M~1(BY); these latter tuples might satisfy somen a(®); and, it may yield a
tuple inM(M~1(BY)) that is not present iBY.

Let go be the maximal number of atoms occurring in@part of d. If B' has
girth greater thame andR(t) holds inM~(BY) (for some relation symbdR of
arity r in 0 and some-tuplet) thent must be induced according to case (1§

t must be contained in some tuplein some relatiorR, in B'.

Hence, we have to enforce the following: if a colourifig is forbidden by a
negated conjungk, whosea-partas is a subconjunction of a strictly largarpart
of some other negated conjurytthen the constraint given 4 is propagated to
0>. In the following, we amend our construction'fto make sure that this is the
case.

Construction of W. First, for every negated conjungt = —(a1 A B1), Y2 =
=(a2 AB2) in y(®) and permutatiom : X,, — Xy, such thaim(a) is a subcon-
junction ofay; we add the following negated conjunctdo

Yi2 = (a2 Am(B1)).

Secondly, we complete the colouring of this new sentencedandte it byd.

Note that® is equivalent tap and also tha® is not necessarily simplified. How-
ever,® has all the other properties that a sentence obtained viall&gr 3.12
would have; it is biconnected and collapsed and has compddédeirings. Denote
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by W the formula obtained fron® by replacing eveno by the corresponding
symbolRy in T.
Note thatW¥ is conform.

Lemma 3.13 Let ® be a sentence of MMSNP with nullary predicates that is
of the special form (given by Corollary 3.12). There exisignaturet, an
interpretationl of width one front in o, an interpretation1—* of width one
from o in T and a conform sentendg overt such that the following holds:

(i) for anyo-structure &R, A° = @ if, and only if[1(A%) = W¥; and

(i) for anyt-structure B of girth greater than g, M(N~%(BY)) = W if,
andonly if B = W.

PROOF LetT be the signature induced Igy, let [ be the interpretation of width
one oft in o let M~ be the corresponding interpretation®in t and letW be
defined as previously.

(i) is clear. We now provéii). By monotonicity of ¥ and becaus8' can be
embedded if1(M—%(BY)), clearlyM(M~—%(BY)) = W impliesB' = W. Now, sup-
pose thaB' = W. Then there exists some extens®nof B to T’ := ¢ Uk such
that for each negated conjuncin y(W¥), and for every assignment: X, — |B|

BY = y(X/Ti(X)) holds. LetA” be the extension dfl (M~ %(BY)) to T’ constructed
as follows: the reduct oA" overk is the same as the reduct BY overk. We
show that this extension witnesses tAgf1~1(BY)) = W.

Note that, we have to check only those tuples that were nseptenB'. We
call informally “new tuples” such tuples. Sind has girth greater thage, a
new tuple must be the projection over some indices of a lohgs#e present in
B'. Indeed, any tuplest; in RiBT of arity r; give rise to an acyclic substructure
of B' becausd' has girthge > k. Therefore, a new tuplg in some nl(nfl(BT))
must be induced by some tugiein REZ wherea; anda; belong toa(®) and
a1 3¢ 02 (recall thatd is biconnected). Hence, if there exjgt= —(Ry, A1) in
y(W) andry : X, — |BY| such that

M(M*(B") = Ra, (X/TI(X)).
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Then, there exist a negated conjungbiz A B2) in y(®), a one-to-one mapping
m: Xq, — Xa, such thatm(aq) is a subconjunction ofiz; and, moreover, there
existstn : Xq, — |B| such that o m= 1 overXy, andB' = Ry, (Y/TR(Y)). By
construction, some negated conjunct obtained fypmis present it¥; that is, a
negated conjunct of the following form:

Vi 2= (R, Am(B1) AB).

SinceB' = W, it follows that for all such3:

B b= (R, (¥/T2(Y) A M(B1) (Y/T(Y) A B(Y/ TR (Y))-

Hence,

BY = -m(B) (Y/T2(%).
and it follows that:
B |= B (X/u ().
Therefore,
A" = B (X/ (X))

Finally, we get:
NM—(BY) = w.

3.6 A Proof of Feder and Vardi’'s theorem

Combining together the results of this chapter, we can new giproof of Feder
and Vardi’'s theorem.
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Theorem 3.14 (Feder and Vardi)

Every problem in CSP is expressible by a sentence of MMSNPy Fpvob-
lem Pg expressible by a sentende of MMSNP is equivalent to a problem
CSRTo) in CSP:Pg reduces to CSHg) in polynomial time; and, CSHo)
reduces tdP¢ in randomised polynomial time.

PROOFCSP is contained in MMSNP by lemma 3.5.

By Corollary 3.12, we can assume thiais a sentence of MMSNP with nul-
lary predicates that is good, collapsed and biconnectedn,Ti follows from
Lemma 3.13 that there exists a conform sentéddgvith possibly some nullary
predicates) over a signaturesuch that: the problem expressed®yeduces to
that of W via a gfp of width one; and, the problem expresset#hwhen restricted
to T-structures of girth greater thag, reduces to the problem expressedibyia
a positive first-order interpretation of width one.

It follows from the remark on nullary predicates on the endabsection 3.4.2
that the problenPy (the problem expressed i) is computationaly equivalent
to a problemCSR Ty) in CSP:Py reduces t& SR Ty) via a polynomial-time re-

duction; andCSRTy) reduces tdPy via a qfp.

It follows from Lemma 3.4 that the proble@SRTy) reduces to its restriction
over T-structures of girth greater thagy in randomised polynomial-time. This
restricted constraint satisfaction problem reducegiwvia a trivial gfp that shall

not decrease the girth; it consists only in dropping ondiggiassymbol (the sym-

bol introduced to enforce that a disconnected instance dvowdp into a single

template). Thus, altogether we provided a randomised potyal-time reduction

from CSR Ty) to Po. O

In [16], the authors mention the possibilities of usguasi-random graphio
derandomizéhe reduction from the constraint satisfaction problenmegroblem
expressed by a sentence of MMSNP problem. In other words,

Question 3.15is it possible to have polynomial-time reductions in Theota7
in both directions?

An unsuccessful attempt along this line lead me to the fahgwuestion:

Question 3.16 which problems in MMSNP are not in CSP?
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We know that such problems exisif( Section 2.4). Moreover, if hopefully |
could provide some exact characterisation for the lattestjon, | could possibly
answer negatively to a restriction of the former questionekd, proving a nega-
tive result for any polynomial-time reduction seems to kbeatricky in front of
the immmense diversity that such reductions have to offewéver, if we restrict
ourselves to some particular meaningful reductions, ssiydirder projections, we
could hopefully prove that some property that ensures tpavklem is not a CSP
could be conserved by such transformations. As a matterctf ifdnave not yet
answered even a restriction of the former question. | aresvieowever the latter.
This rather innocent looking question has lead me to a pra@iving objects and
notions which | consider personally as interesting by thedues. | hope to con-
vince the reader in the next chapter, which is fully devotetthis characterisation.
If the reader was not yet convinced of the interest of Quas3id6, we hope to
eventually convince him in Chapter 5. There, we shall ralasome detail some
recent and independent results by Tardiff and N@3gtf. [45]), which can be
obtained as a corollary of our forthcoming characterigatio



Chapitre 4

Problemes de motifs interdits

Une nouvelle classe de problemes combinatoires est inteodla classe
des problemes de motifs interdits. Ces derniers corregpimkactement a la
logiqgue MMSNP de Feder et Vardi. Le concept centraletmloriageentre
lesreprésentationsle tels problemes est défini : ce concept généralise la no-
tion d’homomorphisme. Par la suite, on met en évidencefomse normale
pour de tels problemes. Celle-ci permet finalementalactériser exactet
ment les problémes de motifs interdits qui ne sont pas dédgmes d’homo:
morphismeLa preuve est de nature constructive, au sens ou, étanéddan
représentation d’'un probleme de motifs interdits, sa fonmemale estal-
culée puis un critere simple permet de décider si le probléme rdippa a
CSP. De plus, si c’est le cas, son patron peut étre calculgn sine procedurs
permettant de construire une famille de contre-exempi@siicappellera une
famille de témoinsest donnée.

D
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Dans ce chapitre, jintroduis une nouvelle classe de prob&combinatoires
gui correspondent exactement a la logiqgue MMSNP pleblémes de motifs in-
terdits (FP). Le théoréme de Feder et Vardi implique donc que leseta€SP et
FP sont calculatoirement équivalentes. Cependant, osrpaoblemes de motifs
interdits ne sont pas dans CSP (corollaire des résultaghobtsection 2.4). On
voudrait répondre a la question 3.16 dans ce nouveau cade/pa, caractériser
exactement les problemes de motifs interdits qui ne sontdpas CSP. Un pro-
bléme de motifs interdits est donné par uaprésentationqui dans un certain
sens généralise la notion de structure. Adopter une fotionlalus algébrique
des problemes définissables par des formules de MMSNP, mreepalors de dé-
gager une notion dmorphisme de représentatiore recoloriage Par suite, on
peut s’intéresser aux notions engendréesetlaction, puis decoeur. Par ailleurs,
on a vu au chapitre précédent que le probléeme associé a umaléoconforme de
MMSNP est dans CSP : on adapte directement la preuve pouriplateotion clé
depatron d’'une représentatiofil s’agit d’une structure induite par des motifs in-
terdits particuliers, les motifs dits conformes). Finaggt) je construis minutieu-
sement undorme normalesn recoupant attentivement la notion de coeur d’'une
représentation avec une adaptation des techniques de¢itans®d.2 (qu’'on appel-
leratransformation de Feder-VariliJe généralise alors I'idée des preuves données
section 2.4. Ainsi, pour montrer qu’un probleme de motitendits donné n’est
pas dans CSP, je m’attache a construire des familles dewgtesgarticulieres, les
familles de témoinsle suis alors en mesure de décrire cm@struction générique
de telles familles, a condition que le probléme soit donméupareprésentation
connexe et normale qui n’est pas conforrRar suite, je réponds complétement
a la question posée en introduisant la notioendemble de représentations nor-
males connexes

Ce chapitre s’organise de la maniere suivante. Dans leosetii, je tente de
donner lintuition derriére les notions de représentatbrle recoloriage avant
de les définir ainsi que la classe FP des problémes de mdgfslits. Je montre
ensuite rapidement que FP correspond exactement a la ®IMESNP. La sec-
tion 4.2 est entierement consacrée a la notion de rétracjeorappelle cette no-
tion pour les structures avant de I'étendre aux structusksiées puis aux repre-
sentations. Dans la section 4.3, je définis la notiompaon d’'une représenta-
tion et a la section 4.4, celle de transformation de Feder-Vaadsection 4.5 se
consacre a la construction d’'une forme normale pour uné@septation : de nom-
breux exemples sont également donnés. A la section 4.6 figsdkes familles
de témoinset je montre que si un probleme de motifs interdits posseddelle
famille, alors il ne peut pas appartenir a CSP. Ensuite, jjmdane construction
générique de famille de témoins dans le cas d’'une représsmtermale connexe
non conforme. Finalement, a la section 4.7, je prouve leltasprincipal de ce
travail ; i.e., une caractérisation exacte des problemes de motifs itgepdi ne
sont pas dans CSP (a condition qu'’il soit donné par une rept&son connexe).
J'illustre alors mon résultat par de nombreux exemplesalEment, dans le reste
du chapitre, jétends mon résultat & n’importe quelle repnéation.
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4.1 Preliminaries

In this section, we start by introducing the notion of a codalistructure and of

a homomorphism for coloured structures, the so-catt@dur preserving homo-
morphisms Next in Subsection 4.1.2 we provide various examples tstithte
these notions; these examples are rather numerous as Waeddkthem later to
provide examples of representations. In Subsection 4.&.Bitsoduce the notion

of arepresentatioriogether with a new combinatorial problem, the so caltad
bidden patterns problerassociated to a given representation. We introduce the
key notion of arecolouring between representations and show that it is a mor-
phism for representations and that, moreover, the existeha recolouring be-
tween two given representations implies the inclusion eftfoblems they define;
thus we obtain a result similar to Proposition 2.1. Next Westrate these newly
introduced notions by various examples. Finally, in Sec#id..4 we provide two
technical lemmas showing that the logic MMSNP captures tgx&®, the class

of forbidden patterns problem.

4.1.1 Finite coloured structures and colour preserving horo-
morphisms

Let p be a finite set. We call the elementspotolours A finite p-colouredo-
structureconsists of a finiter-structureA, together with a mappingﬁ LA = )
We write (A, cﬁ). We say that(A, cﬁ) is connectedrespectivelybiconnectell
wheneverA is connected (respectively biconnected). (A;cf}) and (B, CE’) be
two p-colouredo-structures. Acolour preserving homomorphisof (A, cﬁ) to

(B, CE) isa homomorphism\gB that preserves the colourings AfandB, i.e.
such thaich o h = ¢f}, and we write,(A, c) (B, cp). If there exists some map-
ping h such that(A, cfy) (B, cq) then we write(A, ¢it) — (B, cp). If it is not the
case thatA, c}) — (B,cf}) then we write(A, ci}) - (B, c3). We shall make use of

diagrams to illustrate definitions and proofs in the followi If (A, cﬁ) N (B, CE’),
we draw the following'.
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Whenh is a surjective colour preserving homomorphism, we write
h
(Ach)—=(B,cp).
Whenh s an injective colour preserving homomorphism, we write
h B
(Ach)—=(B,c]).

If (A,ch) (B, c) then we say thatA, c) is a subcoloured structure (B, cj)
(Note that it may be the case th@, cﬁ) is not an induced subcoloured structure
of (B,c})).

A colour preserving isomorphisia a bijective colour preserving homomorphism
whose inverse is a colour preserving homomorphisnﬁAJtﬁ)g (B,cq) andh

is a colour preserving isomorphism then we wiifec)}) ~ (B,c3). We denote
by STRUG,(0) the class of all finitgi-colouredo-structures. To avoid having to
use too heavy a notation, when the set of colours is clear fr@rcontext, we
shall not specify it, as ifA,c?). Moreover, we shall speak of a homomorphism
of (A,c) to (B, cB) as meaning a colour preserving homomorphism.

Notice moreover that the composition of two colour presggvihomomor-
phisms is itself a colour preserving homomorphism. As f@& tlase of struc-
tures, we have an identity homomorphism associated wittcaloured structure
(A,c?), induced by the identity map ovéA|, which we shall denoti# 5 ca). One
can therefore speak of tleategory of finite p-coloured-structures

In the next subsection, we introduce variamsstructures and coloureak-
structures and discuss the existence of homomorphisms @odr@reserving
homomorphisms between them: we shall need this later td builher examples
of problems captured by sentences of MMSNP.

A u—colouringcﬁ of a structureA can be seen as a homomorphismAdb K, the complete
structure with domaim,cf. remark on the end of Subsection 4.3.2.
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4.1.2 Examples

Someoy-structures. Recall thato, := {E}, whereE is a binary relation sym-
bol. o,-structures can be considered as an encoding of finite dadegaphs (pos-
sibly with self-loops). Denote bypC,, n > 1, the followingo»-structure DC
standing for directed cycle).

e |DC,|:={0,1,...,n—1}; and

e for any elements,yin |DC,

, E(x,y) holds if, and only ifx+1=y modn.
Denote byC,, n > 1, the followingo,-structure.
e |Cy:={0,1,...,n—1};and

e for any elements,y in |Cy|, E(x,y) holds if, and only ifx+1 =y modn
ory+1=x modn.

Moreover, setC; andDC; to be the structure with a single elemensuch that
E(x,x) holds. Some of these structures are depicted in Figure Helngides not
being labelled for the sake of simplicity). In the case ofgtracture<,, we write
a double arrow to denote that the relatiEfr is symmetric.

Dge, DCy DCC):5 DCg
o~ o NG o~
/N T O <

Cs Ca Cs Cs
ST R
AR RORY.

Figure 4.1: Directed Cycles and Cycles

1. Clearly, any graph maps homomorphically idG;.
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2. Foranyn > 0, there is a natural bijective homomorphispy of DC, to C,,

wherehy  is the identity mapping over the s¢®,1,...,n—1}. However
notice thahp  is not an isomorphism except fo< 2 since its inverse is not
a homomorphism. Thus to sum up, we have the following; formny2,

hn)n . DCn = Cn hni% . Cn — DCn
X = X X = X

. Letn,m> 0 be such thamdividesn. Consider the mapping

ham: {0,1,...,n—-1} — {0,1,....m—1}
X — X modm

hnm hnm
It is easy to check thddC,, — DC,, and thatC,, — Cy,.

. If m< nthen there is no homomorphismbECy, to DC,,.

. Moreover, notice that ih,m > 1 are such that # mandn andm are rela-

tively prime thenDC,,—ADC.

. The case of cycles is different; even cycles are homonicajiyequivalent.

Let
f,: {0,1} — {0,1,...,2p—1}

X = X

We haveCy, hiz C andczgczp. Notice thathyp, o f, = idy. However,
the two structures are not isomorphic.

Since any even length cyc&p, p > 0, is homomorphically equivalent to
Co, we haveCyp —C, for anyn > 1.

However it is easy to check that odd cycles do not map into eyeles:
as for anyq > 0, Cyq1 Gy, it follows from the fact that even cycles are
homomorphically equivalent that; for amyq > 0, Coq11 > Cop.

. Letp> 0. The odd cyclé€;p,.3 maps homomorphically into the odd cycle

Copt1: simply map vertex @+ 1 of Cyp, 3 to vertex 0 ofCyp1; map vertex
2p+ 2 of Cypy 3 to vertex 1 ofCop, 1; and, map any other vertéxf Cyp, 3
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to vertexi of Cop1. Since the composition of two homomorphism is again

a homomorphism, we have proved the following.det m> 1. If nandm
are both odd the@y,,—C,.

8. However, it can be easily checked thatp it m > 1 are such that andm
are both odd the@,,—~C,.

ADCy W DG

o<——

ADGCy
/@ © e
(1 17 </
AGs BCs

BC4

/° . [
DR

Figure 4.2: some coloured structures

Some 2-coloureds,-structures. Let2:={0,1}. In our picture, we shall colour

an element in white for the colour O and in black for the colbuiConsider the
following colourings,

wa: |DCh| — 2 b2: |DCy — 2
X — 0 X — 1

aZ: |DCy| — 2

0 if xiseven
X —

1 otherwise.
Let WDG, := (DCp,w3) and BDG, := (DCp,b2) for n > 1, and forn > 1 set
ADGC, := (DC,,a2) (WDC stands for White Directed Cycle, BDC for Black Di-
rected Cycle and ADC for Alternated Directed Cycle). Examsphmong such
structures are depicted in Figure 4.2.

Define similarlyW G, := (Cq,W2), BCy := (Cp, b2) andAG, := (Cy,a2).
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1. Letn,m> 1 be such thamn dividesn andp,q > 1 such thag dividesp. It
is easy to check the following,

hnm Pn,m
WDG, —WDGy WG, —=WGy

hnm Pn,m

BDG, —= BDCp, BCh —= BCn
h h
ADGpp ' ADCy  AGop == ACy

2. However, for anyp,q > 1, ADGyp, 1 —~ADCyq since there is the edde —
1,0) where bothn— 1 and 0 are coloured white, whereas no such coloured
edge occurs IRDCyq. Since no edge oADCyq can be mapped over the
white-white edge 0ADCyp 1, if ADCyq— ADCyp 1 then this would imply
thatADCGyq can be mapped homomorphically into a directed path, which is
not the case: hend®DCyq—~ADCyp 1.

3. Similarly for anyp,q > 1, we haveACyp 1 —ACyq.
4. HoweverAGp— ACyqg1. Indeed ACp —AGC,.

5. Moreover, clearly there is no homomorphism between anycetof colou-
red structures of different type among the three types adwatg intro-
duced, white, black or alternated, since the colouringslvays incompat-
ible (except foW DG ~ WG — ACyp,1 for p > 1).

6. The following gives the relation between the colouredieyand the di-
rected coloured cycles.

hnm
WDG, — WGy

hnm
BDG, — BGy

hnm
ADG, — ACy

4.1.3 Representations, recolourings and FP

Next, we shall introduce the notion of a representation féoraidden patterns
problem (that shall be defined shortly afterwards). Firsshall discuss in some
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detail the intuition behind these forthcoming definitiohnsthe case of homomor-
phism problems, a problem is represented by its templatefautwo template#\
andB, we haveCSRA) C CSRB) if A—B (notice that the converse also holds,
cf. Proposition 2.1). The notion of a recolouring of one repnéston to another
shall have a similar behaviour:

1. arecolouring shall define a notion of morphism from oneesgentation to
another; and

2. if there exists a recolouring of one representation tdterdhen the forbid-
den patterns problem defined by the first representatiomigceed in that
defined by the second.

A finite o-representationvith coloursyis a pair(p, M), wherep s a finite set and
M is afinite set ofi-colouredo-structures. We call the elements®f theforbid-
den pattern®f (1, M). Let REF0) denote the class of finite-representations.

EXAMPLE. Letn> 1 andp > 1. Consider the following,-representations:
MDE = {2, {WDGC,,BDC, }}

MEE = {2,{WGC,,BC\}}
ADCZ, — ME := {2,{ADC,,,WDE,BDE}}

whereW DE, respectivey BDE, denotes a single directed edge whose vertices are colou-
red in white, respectively black (the names of these reptagens standing for Mono-
chromatic Directed Cycles, Monochromatic Cycles, anderlated Directed and Mono-
chromatic Edges, respectively). See Figure 4.3 for sommpbes. In this picture, each
cell in an array stands for a single forbidden pattern (agtasidden pattern is not neces-
sarily connected), except for the top cell which represtrgsset of colours.

A

A coloured structurdA, cﬁ) in STRUG,(0) is said to bevalid with respect
to (u, M), if, and only if, none of the forbidden patterns maps imocﬁ) via a
colour preserving homomorphism. In other words, for émllych") in M and for

any mappingh of |M| to |A), eitherM —~A or Y oh # ¢ff. When(A,c?) is not
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D¢l MDCZ ADCZ — M

[ ]

o¢l-» Mme2 MDCZ = M3

. NG|
\ S

Figure 4.3: some representations for directed graphs
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valid with respect to somé\/l,ch") in M via some colour preserving homomor-
phismh, we shall use the following diagram.y _" . A

ExampLE. Consider the representati@mz)c% (see Figure 4.3) and tha-structure
DCs. Consider now this structure together with a colouring thnaips every vertex to
the colour “white”; that is, the coloured structw¢DGs. W DG is valid with respect to
MDCS as the forbidden patterns do not map iDG; via a colour preserving homo-
morphism. A

Let (1, M) be ac-representation. Define tHerbidden patterns problerwith
representatioriy, M), denoted=P(p, M), to be the problem with yes-instances
thoseo-structuresB such that:

o there exists a mapping} such tha(B, c?) is valid for (, ).

Denote byF P; the class of forbidden patterns problems given lyr@pre-
sentation and set:
FP:=| JFPs.
o

We now define a notion that mbsolutely essentiah the remainder of this
work, namely the notion of eecolouring between representatiorss we shall see
later, the notion of a representation generalises the mati@ template, and the
notion of a recolouring generalises the notion of a homotmisrp. To grasp the
idea behind the following definition, consider the contrsipee of the definition
of a homomorphism as given in Section 2.1:

e for anyr-ary symbol ing and for anyb in |B|", for anyain |A|" such that
h(a) = b, if RB(b) does not hold theR*(a) does not hold.

That is, informally, the inverse image of a tuple not preserihe target structure
is not present in the source structure. As we shall see katerple not present
in the template of a homomorphism problem corresponds toladden pattern
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of a special kind. Hence, the intuition behind our definitafra recolouring is

that it induces inverse images of forbidden patterns antthigainverse image of
something forbidden is forbidden.

o for all forbidden patterngN, cl') in A’ and all functions)) of |NJ to u

with ¢ =roc}), the coloured structur@N, c}) is not valid with respect
to the representatiofu, M ).

If r is a recolouring of y, M) to (v, \) then we write(, M) —> (v, ().

So for any(N,r oc[]‘) in A, there exists som@M,ch") in M with the property
thatM -2 N such that the following diagram commutes.

m

M N
¢

M
Cu

e N

|
C\'>l J/
r Vv

p——r .

ExAMPLE. Consider now the following mappings:
id2 . S

c0, : cl,:

L O N P OB
R
oo NN P ON
P ON P ON
114114
P RPN O RN

In the following, letn > m > 1 such thatn dividesn.

1. We claim thaid, is a recolouring oD ¢?2 to MD 2,
Indeed, the only pre-image 8¥ DG, via id, is WDG,; and, we have seen previ-
ously thatW DG,—W DGy, if n > m> 1 andmdividesn; thus,W DG, is a valid
colouring with respect t@ﬁ@@ﬁ The case of the other forbidden patt&DGC, is
similar. Hence, we have shown that:

if n>m> 1 andm dividesn then!®e2 2 moe2,
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2. By symmetry of the considered representation with redpdts colours, we have:

if n>m> 1 andmdividesn thend®e2 -2 MmDe?,

3. However, notice thatl, is not a recolouring of®¢2, to MD 2, since

W DG,,—W DG, andBDCy,—~W DG,.

4. Similarly,s; is not a recolouring oD ¢Z to MDE2,

5. For the two other mappings0, andcl,, one can easily check that they are not
recolourings, for exampl&DGC,, is a pre-image oV DG, via c0,, respectively of
BDGC,, via clp, and we have seen that there is no homomorphisms between the
alternated coloured cycles and the uniformly colouredeyah the directed case.
These maps are not recolouringIBMO €2, to MDE2 either.

6. It follows therefore that there is no recolouring BFD 2, to MDE2, which we
denote by:

if m,n > 1 andm dividesn thendND¢2 —>MDe2,

A

The notion of recolouring we just defined satisfies the prigewe required.
Indeed, notice that the composition of two recolourings lis@louring and that
we have an identity recolouring associated with any reptasien(p, 4/ ) induced
by the identity map ovep, which we shall denotéd, 4r). One can therefore
speak of thecategory ofo-representationsThis proves (1). As in the case of
structures, this category has further interesting praogeetihat shall be investigated
in Chapter 5. For (2) consider the following proposition.

Proposition 4.1 Let (u, M) and (v, \') be twoo-representations. If there exists
a recolouring(y, M) —> (v, A() then FR, M) C FP(v, ).

PROOF. Let A be ao-structure. Assume thatis a no-instance dfP(v, (). Let
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cﬁ be a colouring ofA. (A,rocﬁ) can not be valid
for (v,Al). Hence, there exists some forbidden |\
pattern(N,c)) in A’ and some colour preserving ﬂ‘{
homomorphismm such that(N,c)) "> (A,r o cfy). a

Sincer is a recolouring ando ciyon= c}), it follows

that there exists some forbidden pattékh, ch") in
M and some colour preserving homomorphism
such that(M,cl') ™ (N,cy o n). Finally, it follows that,(M,c}) ™= (A,cf}) (to
see this, note thato mis a homomorphism and that it respects colourings). Hence,
(A, cﬁ) is not valid for(p, M). Thus,Ais a no-instance df P(y, M ). O

The converse does not hold in general; we shall provide ariaat counter-
example at the end of Section 4.4 and some trivial countam@kes in the fol-
lowing.

Trivial representations. Notice that there are only two representations with
colour sety = 0. Indeed, there is only one structure (up to isomorphismi) tha
can be0-coloured: it is the void structure that has no elementschvive shall
denote @. It can be coloured by the mappin&’ (considering a mappir‘@0 of 0

to some seBas a special binary relatiofl,= cg“ C |0g| x S= 0). Hence the only
two representations with an empty set of colours &ye= (0,{(00,c8°)}) and

0o := (0,0). The former represents the trivial problem without any yestances
and the latter represents the problem with a single yessiest namely the void
structure @. However, there are some other representations that degngaime
problems to those defined by these two trivial represemtstio

¢ the representations with a non-void set of colquasd with a set of forbid-
den patternsV/ consisting only of the coloured structui@y, cﬂ"); and

e the representatlons with a non-void set of colgusnd Wlth a set of for-
bidden patternsM consisting of the coloured structurﬁs with a single
element coloured, for any colourk in L.

Clearly we have
FP(WM) =0=FP(og)
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and

FP(, M) = {05} = FP(3o).

However, there can not be any mappinguofo 0 asp is non-void. Hence,
there is neither a recolouring ¢fi, M) to og nor of (, ﬁf/[) to 05. This provides
some trivial counter-examples for the converse of the lagpgsition. The first
problem is not in CSP as it has no yes-instances, and any @BRepr has at least
one yes-instance, its template. Note that the second pnoisl@othing else than
the problemCSRO0y). Having dealt with these problems, we shall assume in the
following that none of the representations we consider dgfimblems equal to
FP(og) or FP(0¢).

As we have seen earlier, with the notion of a recolouring westgamorphism
of representations, thus we can consider the induced notimonomorphism (re-
spectively epimorphism): it corresponds to the recolasimduced by mappings
that are injective (respectively surjective). We use alsinmotation for recolour-
ings as we did for homomorphisms and colour preserving hoonphisms. Ifr
is an injective recolouring then we say thias amonorecolouringand we write
(1, M) > (v, ). In this case, by analogy with the caseoebtructures, we say
that(p, M) is asubrepresentatioof (v, A(). Let

M' ={(M,q) € STRUG,(0)|(M,roc) € A}

We call the representatidip, M’) the subrepresentation @i, ) induced by the
recolouring i(orinduced subrepresentatiarfi (v, ) for short). Ifr is a surjective
recolouring then we say thais anepirecolouring and we write{, M) —> (v, ().

A recolouring that is bijective and whose inverse is a regohg is called an
isorecolouring If (u, M) > (v, A() andr is an isorecolouring then we write

(W, M) (v, N).

Let (1, M) be a representation. We say tlat) is simpleif, either| M| <1
or for any pair of distinct forbidden patterﬁM,ch") and(M’, ch’") in M, we have

!

(M,ch")+(M’,ch").
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EXAMPLE. Thei))t@@ﬁ{s from the previous example are easily seen to be simplefepr
sentations. A

As the following result shows, for every representatioeréhexists a simple
representation that is equivalent up to isorecolouring.

Lemma 4.2 Let (u, M) be a representation. There exists a simple representation
(v, A\) such that:
(b M) = (v, 7).

PROOF Suppose thafy, M) is not simple. Sev := p and construct\’ from
M as follows. Start witht\l = M and as long as there exists a pair of distinct
forbidden patterngMo, cMo) and(My,cM1) in A such that

(Mg, M) — (Mo, cMo)

remove(Mo, cMo) from 2. This construction terminates eventually%(sis finite
and clearly(v, ) is simple. The mapping: p— v induced byid,, (recall that
v = ) is a recolouring: for every forbidden patteid, cN) in A(, its inverse image
viar is (N,cV) itself and is present il by construction of\l. The inverse of
r is clearly a recolouring as for any forbidden pattékty, cM) in 2/ that is no
longer present i\, there exists som@My, cM1) in M such that

(Mg, M) — (Mo, cMo).

If (M1,cM1) is not present i\ either then, by construction ¢9, 4\(), there exists
somen > 1 and forbidden pattern®;,cM) in 4 (1 < i < n) such that

(Mp, M) — (Mp_1,cMn-1) — ... — (M1, cM1) — (Mg, cMo),

and such thatMp,cMn) is in 4. Since the composition of colour preserving
homomorphisms is a colour preserving homomorphism, iowadl that for any
(M,cM) in 24, its inverse image induced by the mappidg that is(M,cM) itself,
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is such that there exists sorfi¢,cN) in A’ such that
(N, c")—(M,c").

In other wordsy ! is a recolouring ofv, () to (i, #). Thus we have proved
thatr is an isorecolouring, hence we have

(W, M) = (v, \)).
UJ

In fact, by analogy ta-structures, a representation that is not simple would
correspond to a structure in which we would list more thareamtuple in some
relation.

The previous result together with Proposition 4.1 lead&édollowing.

Corollary 4.3 Every forbidden patterns problem can be given by a repregemt
that is simple.

ExamMPLE. With reference to earlier examples, via similar reasotmthat developed
in the case of representations involving directed cyclesobtain the following for the

case of cycles:
if m,n> 1 andmdividesn then

me2 2 gne2  ome2 % me?,

hop, f .
Moreover, forp > 1, we haveW Gy i%WCZ andWG éWCZp and similarly for the
BC. Hence, the following holds:

. -1
Me3, " Me3 andIe3, > Me3
So,id; is an isorecolouring betweentes, andte3, and we write:
M3, ~ M3,

These previous results might seem a bit odd to the readersased to the corresponding
notion of isomorphism foo-structures; in fact, note that a forbidden patterns proldan
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be given by numerous simple representations, that areaguoiwia isorecolourings by
replacing any forbidden pattern by another that is homoimoglly equivalent to it as in
the previous example.

We leave the following as an exercise for the reader:

if p,q> 1 andqdividesp then

ADCZ, — ME 2 ADEE, — ME andADE3, — ME -2 ADER, — Me

Consider as further examples,
W3 — B = {2,{WDG,B}}

D¢t = {1,{WDG}}

whereBiis the structure consisting of a single element colouredkdadl = {0} (and we
shall consider 0 to be white as before). These represemsatice depicted in Figure 4.3.
It is easy to check that,

woe2 — B %2 moel

cOo
woe— 8 2 pel andoel O wpeZ - B
where,

C02,112—>1 C0172:l—>2
0O — O 0O — O

However,D¢3 % 0D ¢ — 5. A

Furthermore, we shall make use of the notion ofieiage of a represen-
tation via a recolouring Let (i, M) and (v, () be two o-representations and

(1 M) > (v, ). Definer (M) := (r(W), {(N,c))|c}'(IN]) C r(W)}), where
r(p) denotes the image of the set of coloungia the mapping.

4.1.4 MMSNP captures exactly FP

We have already seen in Section 3.1.2 how to associate dws&uo a negated
conjunct of a sentence of MMSNP. Tkecolours of a given sentence of MMSNP
correspond to the set of colours of a representation whabelften patterns are
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simply the structures induced by the negated conjunctsytirout we use the
notation established in the previous chapéeg. k, ¢’...). The following lemma
shows that the obtained representation characterisestieden patterns prob-
lem captured by the given sentence of MMSNP.

Lemma 4.4 Let ® be a sentence of the logic MMSNP. There exists a representa-
tion (U, M) such that FRUe, Mo ) is expressed bep.

PROOF Let ® be a sentence of MMSNP. By Lemma 3.2 we can assume w.l.0.g.
that it has full colourings. For uniformity, let us fix things that there is at least
one monadic predicate. One way to achieve this is as folldwb.is a first-order
sentence then simply add an existential monadic predMateplace any negated
conjuncty = —(a) by —=(a AB), whereP := A,cx M(x), and add the negated
conjunct—(=M(x)), for some particular bound variable the new sentence is
clearly equivalent t@b and has full colourings. Hence assume w.l.o.g. th&ias
full colourings and is not a first-order sentence.

Consider(ue, Mo) to be the representation defined as follows: | g¢eto be
the set ofk-colours, where is the signature containing the existential monadic
predicates ofp (it can not be void as we ensured beforehand that the sentence
is not first order); and seéMy to be the set ofip-colouredo-structureg G, c®)y,
induced by each negated conjuget —(a A B) in y(®) as follows:

e Gistheo-structure induced by (denoted byG, in Subsection 3.1.2, recall
that it has domaitx,); and

o for anyxin |G|, setc®(x) to be thex-colour given by to x.

We claim thatF P(ue, M) is expressed bep.
Let A be ao-structure A = @ if, and only if, there exists an extensighof A
to o’ such that for eacki € y(®) and for anyrt: X, — |A|,

A= y(X/ (X))

The latter holds if, and only if,

A= a(X/T(X)) or A" f= B(X/TI(X)).
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That is, in the first case that there exists saragy symbolR in o such thaR(x)
occurs ina andR(x/1(x)) does not hold imd; in other words, according to the
definition of (G, c®),, thatrtis not a homomorphism @ to A. In the second case,
there exists some monadic symbbin k and some variabbein Xg such that(x)
occurs inB andM(x) does not hold i\, or -M(x) occurs in3 andM(x) holds in

A Letcﬁq) be the mapping induced Y: it maps each element éfto itsk-colour

in the extensio®\. Then the second case is equivalentﬁgon# c®. The two
cases together are equivalenttnot being a colour preserving homomorphism of
(G,c®)y to (A, cﬁq)). Hence we have proved that there exists some valid colouring
for A; in other words, thaf is a yes-instance d¥ P(lo, Moe). For any colouring
cﬁq), one can derive an extension Afby setting the monadic predicates fram
according to thex-colours of the elements & given byc’} ; thus, clearly the
converse also holds. O

The following lemma deals with the converse translatioaj ik, converting
a representation into a sentence of MMSNP. One can label eaatent ofu
with an integer written in binary, each such integer indgak-colour, where
contains one monadic predicate for each place (simply dengie binary expan-
sions to be padded with zeros to the left and for each pladhsebrresponding
monadic predicate iR negatively for a zero and positively for a one). Hence,
each forbidden pattern induces a negated conjunct.

Lemma 4.5 Let (p, M) be a non-trivial representation. There exists a sentence
P ar) Of MMSNP such that FRL, /) is expressed b, ).

PROOF We can assume w.l.o.g. that there exists some0 such thatp| = 2".
Indeed, if it were not the case, add new colourgitio reach the nearest power
of 2 then add taM the forbidden patterns consisting of a single vertex cadur
by one of the new colours. Clearly this new representatidimel® an equivalent
problem. Letk := (M1,Mp,...,Mp) be a signature consisting of monadic sym-
bols that do not occur iw. There are 2 k-colours, thus we can identify each
element ofp with a k-colour. Conside,, 4/ to be the sentence of MMSNP
with: existential monadic predicates, the elements;afith universal first-order
variables, the union of the universes of thatructures of the forbidden patterns
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in 4; and to have a negated conju%vc&), for each forbidden patter@G,cS)
in M, constructed as follows:

e its a-part contains the atom(t) wheneveR(t) holds inG; and

e its-part is the conjunction, for each elemertdf |G|, of thek-colour given
by c§(x).
If one applies the constructions used in the previous lenttketive a represen-

tation from this sentence, one obtains a representatidistbbearly equivalent to
(K, ). Thus it follows thatFP(l, ) is expressed b, 4. O

Notice that in Lemma 4.5, we have not considered the casavédltrepre-
sentations. The case of the trivial representations elguitéo o4 is clear, as we
can proceed as in the above proof. The case of the reprasestatjuivalent to
og is different. It does not really correspond to any senteiddMSNP, as the
standard semantics for logics ensures thaisGlways a yes-instance, unless we
extend MMSNP by adding the “sentenc&alse. With this convention, from the
two previous lemmas one can derive the following.

Corollary 4.6 MMSNP captures exactly FP.

ExaMPLE. The problerrFP(mti)Cg) is expressed by the following sentence of MM-
SNP:
HCVXVWZ_' (62(X7 Y, Z) A W(X7 Y, Z)) A _'(EZ(Xa Y, Z) A b(X7 Y, Z))

Recall the abbreviation introduced in Section 2.4.1:
EZ(Xaya Z) = _'(E(Xay) A E(Za X) A E(ya Z))

w(x,Y,2z) = C(x) AC(y) AC(2) andb(x,y,z) := —-C(x) A =C(y) A =C(2).

4.2 Retracts

The notion ofretract allows us to define the notion ofcore, that is of a minimal
retract. We recall this notion for the case of structuretemxXit to coloured struc-
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tures and develop a notion of core with respect to recolguonrepresentations.
Together with the notion demplate of a representatidhat shall be introduced
in the next section, the notion otare of a representatioshall allow us to exhibit
a structure that is a no-instance of a given forbidden pateroblem but that can
be coloured nonetheless in a way that respects particulaidften patterns: these
structures shall be used later in Section 4.6 to bwitdess families

4.2.1 Retracts, cores of finite structures and automorphictsuc-
tures

A retractionof a structuréAis a triplet(B,i,s), whereB is a substructure o4 via
B—'>~A such thatA->B andsoi = idg; that is, such that the following diagram

commutes:
B L A

AN

B

In this case we say th&tis aretractof A. A structureA is said to beautomor-
phic if it has no proper retracts, that is, every retracAd$ isomorphic to A. An
automorphic retract oA is called acoreof A.

Proposition 4.7 Every structure has a unique core (up to isomorphism).

PROOF We prove the existence first. LAtbe a structure. We prove thathas
a core by induction onA|. The base case is clear: | = 0 thenA is clearly
automorphic, hence it has a core, itself. Assume that aogtsireA with |A| <n
has a core. Lef be a structure such thgd| = n+ 1. If Aiis automorphic then
we are done. Assume that this is not the case. So there exigtper retracB of
A. Hence|B| < nand it follows from the induction hypothesis tHahas a core.
Since clearly a retract @ is a retract ofA, it follows that a core oB is a core of
A. Finally A has a core.

We now prove the uniqueness of the core of a structure upmeagehism. Let

A be a structure anB; andB, be cores ofA. That is, there ar8; \£>A, AL B,

2We use the terminology proposed in [22].
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such thaty oi; = idg, andB; \£>A, A2 Bo such thatyoi, =idg,. Consider the
homomorphicimage d8; viasioipoSy0iy: itis clearly a retract oB;. SinceB;
is automorphic, it follows thas; o> is surjective andy oi1 is injective. One can
consider as well the homomorphic imageBfvia syoi1 05 oio and derive that
S oij IS surjective and; oz is injective. Hence we have proved tht andB;
are isomorphic, sincg oip andsy oiq are isomorphisms. O

Let A be ac-structure. Denote bgore(A) some representative among the set
of cores ofA.

EXAMPLE. Any DC, is automorphic. However, for cycles: far> 2, Cyp is not auto-
morphic and its core i€; and forp > 1, Cyp, 1 is automorphic. A

It follows from Proposition 2.1 thaCSRcore(A)) = CSRA). Hence in our
study of homomorphism problems, we can restrict ourselvgsdblems whose
templates are cores without loss of generality. Notice ivawéhat if one is in-
terested in counting the number of homomorphisms, that ispmplexity classes
like §P as in [7] then this is not necessarily the caise;the problenfCSRA) (the
number of homomorphism of a giv@io A) is not the same g& SR core(A)) in
general. Furthermore, Hell and Nedidtave shown in [24], that deciding whether
a graph is a core or not is déP-complete.

4.2.2 Retracts, cores of coloured structures and automorpt
coloured structures

A retractionof a coloured structurgA,c?) is a tripIet((B cB),i,s), where(B, cB)
is a subcoloured structure A, c?) via (B,cB) —> (A, c?), (A,c?) = (B, cB) sat-
isfying soi = idg ). In this case,(B,cB) is called aretract of (A,c%). This
property can be summarised by the following diagram.

B<>-A"—

NP
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A coloured structuréA, c*) is said to beautomorphidf it has no proper retracts.
An automorphic retract ofA, c*) is called acoreof (A, c?).

Proposition 4.8 Every coloured structure has a unique core (up to isomorphis

PROOF. Similar to the proof of Proposition 4.7. O

Let (A, cf}) € STRUG,(0). Denote bycore(A, cﬁ) some representative among
the set of cores ofA, cf}).

ExAMPLE.  Notice that ifA is automorphic thefA,c?) is automorphic for any?,
however the converse is not true: consider for a countampleathe2-coloured structure
consisting of two elements, one coloured black, the othetewbonnected via an edge to
some white element, depicted as follows,

e —— O <—-0

As a coloured structure it is automorphic, however, if onesider this structure without
its colouring, that is as follows,

O—>0=<—0

then it is not a core.

Letn > 0: WDG,, BDG, andADGC, are automorphic.

Let p> 0: WGp,1, BCypy1 andAC,p 1 are automorphic.

Let p > 1: WG, BGp andAG;,, are not automorphic and have for respective coiés;,
BC, andAG,. A

Lemma 4.9 Let (u, M) be a representation. There exists a representatiot)
such that every forbidden patte(N,cN) in A is a coloured core and

(W, M) = (v, \).

PROOF. Setv := pand( := {core(M,cM) such that{M,cM) € ar}. It follows
directly from the definition of a coloured core that the magpi defined as in the
proof of Lemma 4.2 is an isorecolouring. OJ
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The following follows from Lemma 4.2 and from the previousima.

Corollary 4.10 Every forbidden patterns problem can be given by a simple rep
resentation(y, M) such that every forbidden pattetM,cM) in 2/ is a coloured
core.

In the light of this corollary, from now on, unless otherwistated we shall
only ever consider simple representations such that eatidtten pattern is a
coloured core. We now show by way of a back and forth argunmexifttwo such
representations are equivalent up to isorecolouring theytare just the same up
to a renaming of the colourgdence one obtains a notion of isorecolouring nearer
to the intuitive one derived from the notion of isomorphigmthe case of such
representations.

M/
W 4{/
N M ~
" "
AN oM M Cu
o o

Let (u, M) and (v, \)) be two simple representations whose forbidden patterns
are coloured cores. Lat be some isorecolouring dfv, \') to (u,M). Let
(M,ch") € M. Sincer is a recolouring, the inverse image (ﬁ/l,ch") viar,

that is (M, cl'), wherec)! = r~tocY, is not valid for (v, (). Hence there ex-
ists some forbidden patte(iN,cl)) in A and some colour preserving homomor-
phism (N,c) - (M,cM). Now r=1 is a recolouring, thus there exists some

forbidden patterr(M’,ch"') in ¢ and some colour preserving homomorphism

!

(M, )L’(N,ch‘), wherec) = (r™1)~toq) =roc). Hence by composition

with r it follows that(N,c[}') - (M,ch"). The composition of andh’ leads there-

fore to (M, cM) X (M, cM). Now, since(p, 1) is simple(M’,cM) and (M, c)

must be the same forbidden pattern. FinalM, ch") and(N,cL'}') are homomor-
phically equivalent vigh andh’. Since they are cores by assumption, they must
be the same forbidden pattern. This proves our claim thatlsinepresentations
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whose forbidden patterns are coloured cores that are dgnivug to isorecolour-
ing are simply obtained from each other via a permutatiomefcolours.

4.2.3 Retracts, cores of representations and automorphicep-
resentations

From now on and unless otherwise stated we only ever considgyle repre-
sentations whose forbidden patterns are coloured coreeetréction of a rep-
resentation(y, M) is a triplet((v,\),i,s), where(v, ) is a subrepresentation
of (4, M) via the monorecolouringv, \() \—i>(u, M) ands is an epirecolouring
(L, M) > (v, N) such thatsoi = idy a)- In this case we say thav, \() is a
retract of (1, M). A representatiorfy, M) is said to beautomorphicif it has
no proper retracts, that is, every retr@getA\() of (i, M) is such that{y, M) ~
(v, A). An automorphic retract ofy, M) is called acoreof (y, M).

EXAMPLE. Recall thap®¢3 — B e D¢l, and thatd el oz WDEZ — B but that
@@% % m@@% —B. Notice further thatcO, 1 is an epirecolouring; and thad; is a
monorecolouring such tha@D, 1 0 €01, = idm.%. In other words(@@%,col,z,coz,l) is a
retraction of the representatia®®¢3 — 9. Furthermore the latter is not automorphic
since it has a proper retract, nam@ﬁ%. However@@% is automorphic since there can
not be any recolouring of it to a trivial representation;eed, there is no mapping tfto

0. A

Proposition 4.11 Every representation has a unique core (up to isorecola@s)n

PROOF The proof is similar to the proof of Proposition 4.7. We pedkat(p, M)
has a core by induction dp| = n.

The base case is clear: (i, M) is a representation such that = 0 then it
can not have a proper retract.

Assume that any representation witlcolours has a core. L&, M) be a
representation such that = n+ 1. If (p, M) is automorphic then it has a core:
itself. Assume thafp, /) is not automorphic. So it has a proper retract\(). It
follows that|v| < n+ 1, otherwisd being a bijection we would have= i~ and
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i would be an isorecolouring contradicting the fact that\() is a proper retract.
Sincev < n, by the induction hypothesis, it follows that, ') has a core. Hence
by composition(p, M) has a core.

We now prove the uniqueness of the core of a representaticio igore-
colouring. Let(p, M) be a representation ar(gy, M1) and (p2, Mz) be cores
of (W M). That is, there aré¢uy, M) \i(u, M), (W, M)i(ul,fMl) such that
spoi1 = id(y ag) @nd(He, Mz) > (1, M), (1 M) -2 (2, M) such thakpoip =
id(,, a,)- Consider the image dfu, M1) via the recolourings oizo sz 0y call
this image(y, ). We now show thafpy, M) is a retract of(y, M7). Indeed,
s) i=S10ip0%0iy Is an epirecolouring ofpy, M) to (W, M) by definition of
(L3, M). Moreover set] to be simplyid,,, 4, restricted tow. It is clearly a
monorecolouring of W, M) to (g, M1). Thus((Wy, M),s,,i}) is a retract of
(M1, Mr). Since(p, M) is automorphic, it follows thad; oiz0Sp0iq is an isore-
colouring. Hences; oi5 is surjective andy o i1 is injective. One can consider as
well the image of Yz, M>) via the recolouringzoijo s oiz and derive thagyoiy is
surjective and; oi is injective. Hence we have proved thgi, M) =~ (L2, M2),
sinces; oiz andsp oiq are isorecolourings. O

Let (u, M) be ac-representation. Denote I§ore(y, M) some representative
among the set of cores gfi, M) that have the properties of being:

e simple; and
e whose forbidden patterns are all coloured cores.

Note that the above is well-defined according to Lemma 4.2.@mtima 4.9.
The following corollary follows from Proposition 4.1.

Corollary 4.12 Let (W, M) be ac-representation. Then,

FP(1, M) = FP(Core(y, M)).

EXAMPLE. We show thaft®¢?2 is an automorphic representation for any 2 . Notice
first that it is simple and each forbidden pattern is a coratecbre. In order to check
whether it is automorphic, it is enough to check for propéras induced by retractions
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that are simple and whose forbidden patterns are colounes ¢by Corollary 4.10). Let
((v,A)),i,s) be such a retract. The mapmust identify at least two colours, that is,
w.l.0.g. v = 1 andi is the recolouring such that0) = 0. We claim that this implies that
WDG, € A. Indeed, sinceis a recolouring and we assumed tH{&) = 0, we would have
a forbidden pattern i\ that would map int&V DG, (the inverse image of the forbidden
patternW DG, viai). Moreover sincesoi = id(, 4y andsis a recolouringW DG, would
map to this forbidden pattern (the particular inverse imafjthis forbidden pattern via
s coloured in white only). Hence, it follows from our assuroption the retractv, A\()
(simple and coloured cores only) that this forbidden pattemothing else thaiv DG,.
But then one inverse image @f DG, via s would be ADG,. But the latter is valid with
respect taNDe2. So there is only one case left to check which trivially cabhaid; the
case of the representation with a void colour set. Theranplgino mapping to the void
set from any set except the void set himself, so there canenahi epirecolouring of the
considered representation to this trivial representadiah we are done.

It can be easily checked that the representaﬁm@p 1 ande3 are automorphic.
The proof is similar to the previous one. The representamgp, foranyp > 1, are
examples of representations that are automorphic too. dieegll equivalent t@ﬁ@%, up
to isorecolouring, as we said earlier.

The representatiorfﬁ@(’lgp — e, for any p > 1, are automorphic. Indeed, if there
were some proper retractv, \),i,s) then the only case to check is the case when
contains exactly one colour. So assume w.l.0.g. thatl andi(0) = 0. Then there must
be some forbidden pattefi,cV) in A’ such that there exists sortid,cN) >~WE. One
possible inverse image ¢N,cV) via s being monochromatic and, say, white (since the
only monochromatic white forbidden patternisE itself and since we assuméd A() to
be simple and to have only coloured cores as forbidden pajtérfollows that(N,cV) is
the coloured structurd/ E. One possible inverse image\WE is the structure consisting
of a single edge whose origin is coloured white and targeblisuced black. However,
this coloured structure is clearly valid f@(ri)cgp —9eE. Thus our claim follows. A

4.3 Templates

In this section, we shall introduce the notion dkeanplate for a representatiort
is a structure associated with some particular forbiddetepes of a given repre-
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sentation, the so-callezbnform forbidden patterndt is constructed in the same
way as the template of a problem that is captured by a sentdridd& SNP that
is conform ¢f. the proof of Lemma 3.5 in the previous chapter). Hence it is no
surprising that a problem given by a conform representasionCSP (in the light
of Lemma 4.4). Furthermore, we shall see th#te template of a given represen-
tation has a valid colouring then this representation hasoaform retract This
leads to an important result: the template of an automongpiesentation that is
not conform has no valid colouring. However, it can be cadouin such a way
that the only forbidden patterns that witness that the aatgus not valid are not
conform; in other words, one can colour the template suchith&valid if one
considers each of its tuples separately.

This section is organised as follows. First, we shall defieeigely the notion
of aconform forbidden patterand derive from results of the previous chapter that
CSP is a strict subset of FP. Secondly, in Section 4.3.2, @&tk défine the notion
of atemplate of a representatiand we shall investigate the relation between the
existence of recolourings between two given represemsiémd the existence of
homomorphisms between their templates (we hope to maketol¢iae reader in
which sense we consider a recolouring to be a generalisataohomomorphism).
Finally, in Section 4.3.4, we prove the result mentionedvabo

4.3.1 CSPisincluded in FP

A coloured structur¢A, ¢*) is said to beantireflexivewhenever is antireflexive.
A coloured structuréA, c?) is said to benonotuplevheneveA is monotuple, and
non-sbavaté whenever for each € |A|, there exists someary relation symbol
Rin o and some-tuple a such thatR*(a) holds anda € {a}. A representation
(K, M) is said to beconformif every forbidden patter(M,c{Y') € M is monotuple,
non-sbavate and antireflexive.

Let (4, M) be a conforno-representation. Then the sentence of MMSNP that
expresseB P(y, M) given by Lemma 4.5 is clearly conform. Thus by Lemma 3.5,
it follows thatFP(p, M) is in CSP. However we can state more.

3from the italian, literally that does not dribble; when a ksdcolouring in outside the lines,
italians say that the colours have dribbled.
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Proposition 4.13 Let (i, M) be a conformo-representation. There existsa
structure T such that C§FP) = FP(u, M). Conversely, let T be a-structure.
There exists a conform-representation(p, M) such that CSPT) = FP(u, M).
Moreover this is a one-to-one correspondence.

PROOF For the first part, one could use the argument given aboveyéwshall
implement the construction directly, as this construcsball be used later. Let
(4, M) be a conforno-representation. Construttas follows.

e |T|:= and

e for anyr-ary relation symboR in ¢ and anyt = (t3,tp,....t;) € |T|", set
RT(t) to hold if, and only if, there is no forbidden pattern # that is
equivalent toM,cM) up to colour preserving isomorphism, whévids the
antireflexive, non-sbavate and monotuple structure defsddllows:

— [M] == {x1,%,...,% }; and

— RM(xq,%2,...,%) is the only tuple to hold,
and is coloured as,

cM: M| =
Xi — t(1<i<r).

Conversely, lefl be ao-structure. We derive a representatign/) from T as
follows:

e u:=|T|;and

e for any symbolR in ¢ and anyr-tuplet € |T|" such thatR" (t) does not
hold, add the following antireflexive, non-sbavate and ntople coloured
structure(M,cl'Y') as a forbidden pattern:

- |M| = {XlaX27'-'7XI’}; and

— RM(xq,%2,...,%) is the only tuple to hold,
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and is coloured as,

M M =
Xi = H(1<i<r).

This clearly establishes a one-to-one correspondenceebatwtstructures and
conformo-representations. We now prove tiheR(, M) = CSRT). LetAbe a
o-structure.

Ae FP(p, M)
> 3¢ 1 |Al = W (A c)) is valid for (, M)

— Al A (Mg (Ac)
(M,cem

= et |Al=w A Vm: M| = JA|(M—~Avciom#cl)
(M,chem
— 3y Al =

A VM M) — Al (SRAMO). mO), .., m(x)) v o m £ cf)
(M,c[\{')EM

— 3 A =L

A Vag,ap,...a € |A[(-RMNag,ap,...,a,)VvI1<i < r,cﬁ(ai) £ ch"(xi))
(M,cNem

— i |Al-n A Vae A gi(@) =t=-Rd)
R ({),te[T|r

< 3c): |Al = p=|[T|,vr-aryRe o,vae |A",-R"(c(a)) = —-R*(d)
ch

— ) |A| > AT

<= A€ CSRT).

We then derive the following:

Corollary 4.14 CSPC FP.

PROOF The inclusion comes from the previous lemma. It is striacsj for
example, the problem ®d-MoNO-TRI was shown in Section 2.4.1 to be expressed
by a sentence of MMSNP and not in CSP. Thus, by Lemma 4.4 thiages an
example of a forbidden patterns problem that is not in CSP. O
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4.3.2 Template of a representation

In fact, one can put aside in a given representation thobélien patterns that are
monotuple, non-sbavate and antireflexive, and for thiseguiesentation construct
a template. Thus, one can associate to any representatempate that shall
somehow measure its conform part. I(gtM) be ac-representation. Consider
its subrepresentatiou, ©) that corresponds to its conform part, that is, wh®ére
is the following subset of\f:

{(M,ch") s.t. (M,ch") € M and is antireflexive, non-sbavate and monotiple

The subrepresentatidp, D) of (W, M) is conform, hence it follows from Propo-
sition 4.13 that there exists some templatsuch that

CSRT) = FP(W, D) D FP(W, ).

We call T thetemplateof the representatiofy, ).
We claimed that our notion of recolouring generalises th@naf homomor-
phism; and the following proposition makes this more precis

Proposition 4.15 Let (W, M) and (v, \() be twoo-representations and let, ],
and Ty o be their respective templates.(}f, /) N (v, A\) and every forbidden
pattern in2M is non-sbavate then, I gT(v,N)'

When we consider a monotuple antireflexive structye

e with domain{xy,xp,...,% }; and

e with the tupleR(xq, X2, ..., %), whereR is somer-ary symbol fromo.

We shall simply speak of the structuRexy, Xz, ..., Xr).

PROOF Let R be ar-ary symbol ino andt € ' = |T(M7M)|r. By construction
of Ty a)s R'v20 (h(t)) does not hold if, and only if, there exists some forbidden
pattern that is isomorphic tdR(x1, X2, ..., %), hoc{]‘) in A, where,

N .

i INl — p

X = (1<i<r).
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Ashisa recolouring(R(xl,xz,...,xr),c[}‘) is not valid for (p, ™). Hence, there

exists somQM,ch") € M and somef such that,

f

(M, c) — (R(X1,X2, -, %), C)).-
Since(M,ch") is non-sbavate and sinc(R(xl,xz,...,xr),cH) is antireflexive, it
follows that(R(x1, Xz, ..., %), c)}) is a subcoloured-structure @¥,c)'). In other
words, (M, clf') is homomorphically equivalent teR(x1, Xz, ..., %),cl}). More-
over, since we consider only representations whose foebigiétterns are colou-
red cores ¢f. Section 4.2.3) then we must haiid, clf') zER(xl,xz,...,xr),c[]‘).
Finally, by definition of the template it follows th&t (20 (t) does not hold. [

The notions of a homomorphism and of a recolouring clearlpade in the
case of conform representations and, furthermore, onetasmaweaker form of
the converse of the previous proposition; the conversk isag obviously false.
Indeed, conside?D 3 andMD¢3. These representations share the same tem-
plate, the structure with domathand all possible edges between the elements, as
they do not have any antireflexive, non-sbavate and morefagdidden patterns.
However, there is no recolouring m‘tzmg to 9)?@@?% (since 2 does not divide 3).

Proposition 4.16 Let (pn, M) and (v, \) be twoo-representations and Iet(JM)
and Ty o) be their respective templates. |f, T N Tv,.a) @nd(v, () is conform
then (i, ) - (v, ).

PROOF. LetRbe ar-ary relation symbol iro andt € W' = [T, a7)|"-
Let (R(x1,Xz,...,X),hocl)) € A, where,

N .

it IN[ = n

Xi o~ (A<i<r).

By definition, R'v20 (h(t)) does not hold, hencR'®)(t) does not hold since
T(u,fM)LT(v,N)' Thus by construction of,, 4/, it follows that the forbidden

pattern(R(xl,xz,...,xr),c[}') belongs to. Hence, we havéy, M)Q(v,ﬂ\[).
[l
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Remark. Notice that we can relax a bit the hypothesfs,"\) is conform” to
replace it by “any forbidden pattern of the fori, ho ch") in A is conform”.

In the following we prove that any non-conform forbiddentpat of a simple
representation with template is in fact aT-coloured structure. Hence, we can
give equivalently a simple representation by giving its péate together with its
set of non-conform forbidden patterns.

Proposition 4.17 Let (i, M) be a representation with template T. (|i, M) is

simple then for any non-confor(ivi,cM) in 4/, we have MEST.

PROOF Let (kM) be a simple representation. L€&tbe its template. Sup-

pose thatM,cM) in 9/ is a non-conform forbidden pattern such tMtE/“iT.

Let R be somea-ary relation symbol iro andy be some-tuple inM such that
RM(y) holds butR" (cM(y)) does not. By definition of the template of a represen-
tation, there is some conform forbidden patténc®) in M that is isomorphic to
(R(X1,...,%),Xx— cM(y)) viasome. Hence we would havgD, cP) mei (M,cM),
wheremis defined by settingn: X+ y (this is well defined a$D, cP) is conform
and so it must be antireflexive). We obtain a contradictionvasassumed the
representatiofip, M) to be simple. O

In the light of the previous proposition, we can give a simgjpresentation
equivalently as @-structureT together with a sed/ of T-coloured non-conform
structures, that is, a set of non-conform coloured strest(i¥,c™) such that

M
M ~T. We denote by(T, M) a representation in this new setting. The defini-

tion of validity of a coloured structurgA, c*) becomes the following in this new

setting. (A,c?) is valid w.r.t. (T, M) if, and only if, AT and for anyM L

in M and anyM A, cAom+#£ cM. That is,A is not valid if A—~T or for any
c®: A—T, there exists somgM,c™) in ¢ and somen: M—A such that the



4.3. TEMPLATES 103

following diagram commutes.

M——A
X

M A
-

Notice that our new notation is compatible with the notapoeviously used,
as one can consider that someoloured structurel\/l,c{‘{') is in fact aK-coloured
structure where, denotes thelique with |p|-elements; that is the-structure
with domainp and such that for any-ary relation symboR in o, R = I,
Hence instead ofy, M), read(K, M). We chose not to incorporate the template
within the definition of a representation for various reasolirst, it would have
made the translation between MMSNP and FP harder; secahapuld have
complicated a great deal the definition of recolouring aretefore of the key
notions of retracts and so forth, unless we had assumediglreany properties
of a representation, as being non-sbavate, simple, etdwwoald have made the
above mentioned translation “less” one-to-one.

4.3.3 Canonical representation

Recall that in the previous chapter, we introduced the natid‘collapsed” sen-
tences of MMSNP. We shall do something similar with simpleresentations.
We define a representati¢m, M) to berigid whenever the validity of a coloured
structure is equivalent to a weaker property, namely if, anlgt if, the following
holds.

e Any |T|-coloured structuréA, c*) is valid for (T, M) if, and only if,AiT
and for anyM T in ¢ and anyM A cAom=#cM.
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Thatis,Ais not valid if A—~T or for anyc” : A—T, there exists som@M,cV) in
M and some embedding: M — A such that the following diagram commutes.

M(LA
”

M A
T

For any simple representatidiii, 4/), there exists a rigid representation that
is equivalent up to isorecolouring, namély, H M), whereH M denotes the set
of homomorphic images of structures frami that preserve the colouring. That
is, for any(M,cM) in 4, and any homomorphic imadg€M) of M such that the
following diagram commutes,

consider the coloured structufe(M),c"™)) as a new forbidden pattern. Notice
that the representation hence obtained is not necessaniyesanymore; however
we show easily that it is rigid. Assume that some coloureacstire(A, c?) is not
valid with respect to this new representation: some forbidgattern(M,cM)
maps into(A,c?) via some colour preserving homomorphism By construc-
tion, the homomorphic image ¢M,cM) via mis also a forbidden pattern, and it
embeds inA,c?).

We can ensure furthermore that there is no redundancy byvieamdrom
H M those structures, a proper substructure of which also sdolt/; i.e., we
simplify with respect to embedding instead of homomorphiseeping only one
isomorphic copy. Denote bSHM the set hence obtained. Notice that it follows
that SHM contains coloured cores only. Call a representation thagid and
simple (with respect to embedding) and whose forbidderepadtare coloured
cores, a&anonicalrepresentation. We have proved the following.
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Proposition 4.18 Any simple representation is equivalent to a canonical eepr
sentation, up to isorecolouring.

4.3.4 Valid colourings of the template and retracts

We show that if the template of the representation of a fal®npatterns problem
is a yes-instance of this problem then this representatisnahparticular retract
that is conform. Hence, the problem is in fact in CSP.

Proposition 4.19 Let (T, M) be a simple representation. (T,c') is valid w.r.t.
(T, M) then(T, M) has a conform retract, namelg' (T),0).

PROOF. Let (T, ) be a simple representation. Assume tfiatc’) is valid. It

follows thatTiT and that there can not be any non-conform forbidden pat-
tern (M,c™) in ¢ such thatM,cM) - (T,cT). Hence, there is simply no non-
conform forbidden pattern of the forav,cT om) in 4. It follows by (the remark
following) Proposition 4.16 that" defines an endorecolouring 6F, M) (a re-
colouring of (T, M) to (T,M)). Consider its image; that is, the representation
(cT(T),0). Leti be the identity o™ (T). Then((c'(T),0),c',i) is a retract of
(T, M). O

Notice that this result also holds for canonical repregenta (we do not really
use the fact that the representation is simple but a weak@eply possessed by
canonical representations, namely that the non-conformdden patterns are-
coloured structures).

Theorem 4.20 Let (T, M) be some non-conform simple automorphic represen-
tation. There is no valid colouring for T with respect(fb, ).

PROOF If T were to have a valid colouring then it would follow from theepr

vious result tha(T, #) would have a conform retraci.e. that it is equivalent

to a conform representation, up to isorecolouring, sinb@# no proper retracts.

Therefore, it would follow that it is conform itself. Whichefds a contradiction.
O
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4.4 Feder-Vardi transformation of a representation

The idea of this transformation is directly inspired fronattiperformed on sen-
tences of MMSNP in the previous chapter: it consists in pigkany forbidden
pattern(S, cﬁ) that can be decomposed into two componéRgsc™) and(Py,c™)
with only one common articulation poimtof colourx € |; replacingx by two
copiesyp andx1; and making copies of the forbidden patterns accordinghy (a
vertex that has colouy takes now either the coloyyp or the colourys) except
for (S, cﬁ) which is replaced by two families of forbidden patterns: daaily
is induced by(Py,c™) and the other byPy,c™); xo andx; replace the coloug
as above, with the exception of the articulation poinit has colouryg (respec-
tively x1) in the forbidden patterns induced bR, c™) (respectively(Py,c™)).
This transformation leads to a representation that defllesame problem. As
in the case of sentence of MMSNP, we would like to apply a secgi®f these
elementary transformations until there are only bicoree&drbidden patterns re-
maining; but, it is not clear whether this procedure terrt@aalndeed, at each step
we add a colour and get about twice as many forbidden patssrtefore. No-
tice however that this transformation concerns more thecgire of a forbidden
pattern than its set of colour: we can simultaneously cautytte transformation
over a set of forbidden patterns that share the same steuctirs leads us to the
notion of acompactcoloured structure that shall allow us to split simultarsdpu
all forbidden patterns that share the sasagtructure.

We say that a representatigm M) is connectedrespectivelyiconnectedlif
every forbidden pattertivl,cM) € 2/ is connected (respectively biconnected).

4.4.1 Compact forbidden patterns and compact representadin

We call a pair(M, ¢, ) whereM is ao-structure and,, a function of|M| to

O () (the powerset off) acompact coloured structur&ote that in the following
we see a compact coloured structure as a set of colouredwsgsc we see the
colour set asociated with a vertex as a choice. A compacuoedbstructure is
only a useful shorthand to prove termination. Bearing thisiind, we can extend
the definition of a representation to allow compact colowtedctures as forbid-
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den patterns, and call such a representatioomapact representatiorill related

notions €.g, recolouring, validity of a colouring for a given structwete) extend
naturally to compact representations.

Let (W, M) be a representation. We can easily transfopyiv/) into a compact
representatiore.g.consider the compact representation with:

e colour sety; and

o replace every forbidden pattefhl, clf') in M by (M,cg"(u)) where for every
xin [M[: ¢, (¥) := {qf (%)}

4.4.2 Elementary Feder-Vardi transformations

We defined the notion of a decomposition in Subsection 3dr.®fstructures.
This notion extends to compact coloured structuresplze® and let(S, CS(H)) be
some compact coloured structure. Suppose that there exédemenix of Sand
two substructures @, Py andP; satisfying the following:

|Po| U PL| =[S

[Pl [Py| = {x};

for everyr-ary relation symboR in ¢ and for anyxin |, if R3(X) holds
then eitheiR™(X) holds orR™ (X) holds but not both; and

Po andP; have at least one tuple each.

Let c™ (respectivelyc™) be the restriction o€ to Py (respectivelyP;). We say
that the pair( (Po, c™), (Pr,c™)) forms adecompositiomf (S, cﬁ) in thearticula-
tion point x We denote this byPy, c™) > (Pg,cM).

Let (i, M) be a compact representation such that M’ U (S, c®) and(Py, ™) >
(P1,c™) forms a decomposition ofS,cS). Let C = c™®(x) = c™(x). The colour
setsCp andC; are defined agy;|x € C}, fori =0,1. We assume furthermore that
C, Cp andC; are mutually disjoint. Consider the representation with:
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e colour set(p\ C)UCoUCy; and with
e compact forbidden patterns induced frovh:

1. (S,c5) is replaced by the two compact forbidden patterns indyced
from the decompositiotPy, c™) > (P1,c™) of (S,c5) so that:

— in the compact forbidden patte(Ro, c™), c™(x) = Co; and
— in the compact forbidden patte(Ry,c™), c™(x) = C;.

2. every remaining occurrence of a colgue C in a compact for-
bidden pattern (including the two previous ones that hapkaoced
(S,c°)) is replaced byp andy;.

We call this representation tledementary Feder-Vardi transformatiarfi (p, M)

with respect tq Py, c™) > (P, c™L).

The following result shows that applying some elementaefrd/ardi trans-
formation to some representation does not change the pnagjgresented.

Proposition 4.21 Let (i, M) be some compact representation such that
M = MU (Py,c™) = (P, c™)

and let(v,\) be its elementary Feder-Vardi transformation with respecthe
compact forbidden patterfPy, c™) > (P1,c™). The following holds:

FP(u M) =FP(v,N\).

PROOF. Letr be the mapping of to pthat
e sends every; € C; ontox € C, fori=0,1; and
e leaves the other colours fixed.

We show that is a recolouring. By construction, the inverse images of fany
bidden pattern i/’ belong toA. So, it remains to check the inverse images of
(S,c5). We may assume without loss of generality that we are chgakirinverse
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image of(S, c5) whose vertex takes a colour fron. Now consider the induced
sub-coloured-structure ov&y: by construction, it is forbidden by the compact
forbidden pattern witho-structurePy (remember how we see a compact forbid-
den pattern as a shorthand for a set of forbidden patteris3.pfoves that is a
recolouring. So, it follows by Proposition 4.1 tHaP(p, M) O FP(v, N\).

We now prove the converse inclusion. L&tbe some yes-instance of the

problemFP(u, M). There exists sompﬁ\|iu such that(A, cﬁ) is valid with
respect tdy, M). Now, we construct a valid colouring' from cﬁ as follows. For
anyy € |A| such thatc))(y) ¢ C, setcy(y) := ci(y). Suppose now that}(y) =

X € C. (Po,c™) > (P1,c™) belongs tos and (A,c)) is valid with respect to
(1, M) it follows that Py, c™) > (P1,c™)—(A,c). Thus, we can not have both

(Po, &) "% (A, ) and Py, ¢) "% (A, ), whereho(x) = hy(x) = .

e If yis such that(Po,cPO)g(A, ci)) with ho(x) =y, we can not also have
(P, cP) L (A, ci) for someh; such thahg(x) = hi(x) =y. Hence, we can
safely setd\(y) := X1.

e Similarly, if y is such that(Pl,cpl)g(A, cﬁ) with h1(x) =y, we can set

ch(y) == Xo-
e Otherwise, we set arbitrarilgf)(y) := Xo or &)(y) := X1.

By definition of the elementary Feder-Vardi transformati@nc’) is valid with
respect tqv, A) and we have proved the converse inclusion, tha& R, M) C

FP(v, A). 0

4.4.3 Rewriting representations

We prove first that every sequence of elementary Feder-Vasformations is
finite; and, secondly, that the representations resultiog fsuch sequences are
the same (up to isorecolouring).
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Termination. Let (S,c5) be a connected compact coloured structure. Assume
that (S, c®) requires splittings in order to yield biconnected structures onhgtt
is, (S,¢®) is a structure of the form:

(Po, ™) > ((P,c™) b (... (R-1,c1) - (R,c™)..),

where(Pj, c”i) is biconnected, foj = 0,1,...,i. We calli therankof the structure
(S.c9).
Let (i, M) be a connected compact representation. a-&e the number of dis-
tinct compact forbidden patterns # that have rank. We associate to the repre-
sentation(y, M) the polynomiaP(X) = Zja X'
Recall that we want to transform a given connected repraentvia a sequence
of elementary Feder-Vardi transformations until therelacennected or conform
forbidden patterns only.
We show that there can not be an infinite sequence of elenyeR&ater-Vardi
transformations. After each elementary transformatiomget a polynomial that
is strictly smaller; if we split according to some compaatbidden pattern of
rank j > 1 with respect to some decomposition that leaves one foebighéttern
of rankk < j and one of rank — k then we get the polynomid (X) = Zib X!
where,
aj—1 ,ifi=]
a+l ,ifi=Kk
aj_x+1 ,ifi=j—k
3 , otherwise.

So, we have®?’ < P, where< denotes the standard linear order over polynomials
(which is well-ordered) and the result follows.

Uniqueness. We prove that the order in which the elementary transforonati
are carried out over a given representation is not reléjahe representations are
equivalent up to isorecolouring.

Let M be a set of compact forbidden patterns. We denote@bi ~y,vx, the set

“4In the terminology of rewriting systems, that is, if we seetealementary transformation as
a rewriting rule, then our system would be said tddmlly confluent
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of compact forbidden patterns obtained fréhby replacing every occurrence of
the coloury by xo andx;:. We sometimes need to have an exception to such a
replacement rule and so we denote[BY U { (Po, c™)* X0}, ~y,vyx, the fact the
replacement of by xo andx; does not apply to vertexof (Py,c™) which must
take colouryp only. According to this notation, the elementary FedereV&ians-
formation of(u, M’ U {(Py,c™) >a (P, c™)}) with respect tq Py, c) > (Py,cM),

if we assume further that vertexhas colour sefx} in(Po,c™) > (Py,c™), has

the following set of compact forbidden patterns:

[ U {(Po, 0%, (Py, €)X}y oy

Let (u, M) be a connected compact representation.

Consider first the case of different compact forbidden pastéhat could be used
for an elementary Feder-Vardi transformation; that isuassthatM = M’ U
{(S,c5),(U,cY)}, where:(S,c5) = (Py,c™) > (Py, c™) and(U,cV) = (Qp,c™) o
(Q1,c2). We assume for simplicity thaf(x) = {xx} andc" (y) = {xy}. There
are different cases to consider.

(a1) [Xx # Xy
It can be easily checked that applying a transformation wet$pect to
(Po, c) > (P1,c™), followed by a transformation with respect to the com-

pact forbidden pattern induced §§o, c?°) qu (Q1,c9) leads to the same
transformation as the other way around (note also that #sis ts very sim-
ilar to the casef§1) which is treated thoroughly underneath).

@)

Splitting according tqPy, ™) > (P, c™), we get:
[MI U {(P07 CPO)Xona (P17 Cpl)XHx% (Q07 CQO) qu (Q17 CQl)}]XﬂXO\/Xl
Splitting according tdQo, c) > (Qq,c9), we finally get:

M' U {(Po,c0)*7XooVXor (Py, cPL)XX10VX11,

cQo)Y—Xo0VX10 cQ1)Y—Xo1VX11
(Qo.c™) (Qu.c%) } X XooVX01VX10VX11
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Splitting first according tgQo, c0) qu (Q1,c®) and then according to

(Po, c™) > (P1,c™), we get:

MU {(F)O,CPO)XHXOO\/Xlo,(|:)1,C|°1)XH>X01VX117
cQo)Y—Xo0VXo1 cQ1)Y—X10VX11
(QO’ ) ’(Ql’ ) } X XooVXo1VX10VX11
Consider the mappingthat send;j to xji, fori = 0,1 andj = 0,1, and
leaves the other colours invariamtis clearly an isorecolouring.

Consider now the case of a compact forbidden pattern thatstmo different
decompositions; that is\ = [M' U {(S,c)}], where:

(S.¢%) = ((Po,C™) > (P,c™)) i (P2,¢™) = (P, c™®) > ((Pr,c™) % (P, c™2)).

We assume for simplicity thaf(x) = {xx} andc>(y) = {Xy}. There are different
cases to consider.

(B1) |Xx # Xy

Splitting according td (P, c™) > (Pg,c)) > (P, c™2), we get:

[ U {((Po,€7) b (P, ") Y750, (P2, €"2)Y %0}y o

Splitting according td (Po, ™) >a (P, c™))Y=X0, we finally get the follow-
ing set\’ of compact forbidden patterns;

[ MU {(Po,cPo) %0,

(Pr, CPLY X0 Y0, (Py, P2V} Lﬂx VXX XoVX
X X0V AXL/A Ry yOV Ayl

Similarly, if we proceed by first splitting according 8, c™) > ((Py, c™) >
(P,,c™)) and then according t(Py, c™) o (P, c™2))*=X« we get the fol-

lowing set\’ of compact forbidden patterns;

MU {(Po,c) e,
(P, CP1) ¥ Xa/\y=Xy0, (P, cP2)Y*Xy1}

] X Xx0VXx1 AXy O XyoV Xyl
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Hence that\' = A\’ so as the representations obtained are identical, they
area fortiori equivalent up to isorecolouring.

®

We leave the last case since it is very similar to cagg. (

4.4.4 Definition

We definethe Feder-Vardi transformatioaf a given connected representation to
be the representation obtained from the iteration of el¢ang-eder-Vardi trans-
formations until there are only biconnected forbiddengrals remaining (we then
expand every compact forbidden pattern into its correspanset of forbidden
patterns).

This definition together with the previous proposition lead the following
corollary.

Corollary 4.22 Let (u, M) be a representation an@, () its Feder-Vardi trans-
formation. Then FRu, M) = FP(v, \[).

4.45 Example

Consider the followingo,-representatio3s := (1, {WOR}), whereWOR is
a white directed path of length 2,e. it consists of a structur®P, with three
elements{x,y, z} such thaE®™ = {(x,y), (y,2)}, that is coloured white (the only
colour). The Feder-Vardi transformation of this repreagan is the following
after simplification;Q = (2, {WDE,BDE,BDEW}), whereW DE, respectively
BDE, consists of a single directed edge coloured in white, &gy in black
andBDEW consists of a single directed edge with its origin colouredlack and
its target coloured in white. Indeed, a new colour has beteadnced ‘black’ and
WOR has been split ity yielding two types of forbidden patterns; the first type
consists of a single directed edge whose target must berealothite, and whose
origin can be either white (the original colour) or blackgttopy of the original
colour); and the second type consists of a single directgd athose origin must
be coloured black (the new colour) and whose target can beraithite or black.
This transformation is depicted on Figure 4.4.
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B3
| o
©
| (@Ve) —©
After  elementary
©—=©@—>0© | Feder-Vardi trans-
formation o (®Ve)
©@——0
After simplification
e —— (0

FV(1)) = 2

Figure 4.4: example of a Feder-Vardi transformation
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By the previous corollary the two representations defines#mee problem and
since the later is conform it follows from Proposition 4.hat the problem they
define is in CSP. Notice that these representations provariater-example to
the converse of Proposition 4.1 as there does not exist ajoaing ofm% to
9. For this, consider the mapping sending white to white, tiverise image of
W DE is W DE and there does not exist any colour preserving homomorpbism
WOR (the unique forbidden pattern Cﬁ%) toWDE; hence itis not a recolouring.
Similarly the mapping sending white to black is not a recalogt The templates
of these representations are depicted on Figure 4.5 (wetddpihe templates’
element with their corresponding colour, however bewaag tie template of a
representation is a structure amok a coloured structure).

T Ta
)
@ @ <~— 0

Figure 4.5: Templates @83 andQQ

4.4.6 Feder Vardi transformation and rigidity

We have seen previously that any simple representatioruisagnt up to isore-
colouring to a canonical representation. L&t) be some connected canonical
representation that is not conform, thatig # 0. We claim that the Feder-Vardi
transformation of such a representation is rigid.

Suppose there is some (non-conform) forbidden pati&rmer) in M that ad-
mits a decompositio(Py, c™) > (P1,c™). Let (v, %) be the representation ob-
tained from(T, M) via the elementary Feder-Vardi transformation with respec
(Po, ™) > (P1,c™). We have seen in the proof of Proposition 4.21 that there ex-
ists a recolouring of (v, A() to (T, M). Furthermore, sinc€T, M) is canonical
it is non-sbavate and by construction squs). Hence ifT’ is the template of
(v, ), it follows by Proposition 4.15 that’ '~ T. Let Abe some non-valid struc-

ture of the problem represented by, A) (and (T, M) by Proposition 4.21). If

AT thenA™S T, AZFP(T, M) and(T, M) rigid implies that there is some
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(M,rocM) in 9 (recall thatr is surjective) such thatM,r ocM) = (A;r o c?).
Thus, we havéM, cM) ™ (A, c?). Now by construction, eitheiM,cM) is a for-
bidden pattern of the new representation ofNF,r o cM) is (S, c®) then without
loss of generality we may assume that some forbidden pattéuaced by(Py, c™)

is a substructure ofM,cM). Hence, in any case some forbidden pattern of the
(v, \) embeds in(A,c?) by composition. We have therefore proved that\()

is rigid.

Notice that itis however not necessarily canonical, buaiit be altered slightly
to obtain a canonical representation; each forbiddennpattan be replaced by its
coloured core without affecting the property of being rigklrthermore, the set
of forbidden patterns can be simplified with respect to erdbegwithout affect-
ing this key property either. Finally, if some forbidden tean is not properly
T’-coloured, simply discard it. We denote BY (T, M) the canonical represen-
tation hence obtained. Notice that by constructiofilifM ) was connected then
FV(T,M) is biconnected.
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4.5 Normal representation

In this section we define theormal form of a connected representatiqn M );
essentially, it is an automorphic, biconnected and cambmepresentation that
is equivalent to(p, M) (i.e. it represents the same problem). Constructing the
normal form involves the notions of a core (of a represenitdtirom Section 4.2
and of a Feder-Vardi transformation from Section 4.4.

This section is organised as follows. In Subsection 4.5¢eld@fine the normal
form of a connected representation. In Subsection 4.5.2llustrate this notion
by computing the normal form of numerous examples.

4.5.1 Definition

Informally the normal form of a canonical connected repnésigon (T, M) is
built as follows. First, consider its canonical Feder-Varahsformatior=V (T, M);
recall that it has the following properties:

e each forbidden pattern is biconnected; and

e itis canonical (rigid and simple with respect to embeddjngs

Secondly, we want to construct an automorphic representétom FV (T, M)
but keeping the two above properties. SofFWf(T, ) is automorphic, we are
done. Otherwise, we are going to take its core. Recall tleattine of a represen-
tation is defined up to isorecolouring. So, we consider aqadar core to make
sure that the key properties listed above are preserved.
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Let R be a connected representation. (€t9/) be the canonical repre
sentation equivalent t% (via some isorecolouring).

1. If FV(T, M) is automorphic then seormal (R) := FV (T, M).

2. Otherwise, consider its cocere(FV (T, M)); that is,core(FV (T, M))
is automorphic and there exist some epirecolousiagd some monore
colouringi with soi = id such thatcore(FV (T, M)),s,i) is a retract of
FV(T,M). Setnormal(fR) to be the subrepresentation ®Y (T, M)
inducedby the monorecolouring

We callnormal (9R) the normal representationf 4.

The following result shows that the above construction hasproperties we
required.

Theorem 4.23 Let R be a connected representatiamormal (9R) is an automor-
phic biconnected and canonical representation such that:

FP(R) = FP(normal (R)).

PROOF. We use the same notation as in the above definition. casg ¢lBar.

We now deal with case (2). Letbe the colour set oFV (T, M) andv that of
core(FV(T,M)). We show thatore(FV (T, )) andnormal (R) are equivalent
up to isorecolouring: More precisely, we show tidhtis an isorecolouring.

Let (N,c)) be a forbidden pattern aformal(9R). Recall thatnormal (R)
is an induced subrepresentationfd (T, M): that is, by definition,(N,c))) is
a forbidden pattern afiormal (91) whenever(N,ioc)) is a forbidden pattern of
FV(T,M). i is a recolouring otore(FV (T, M)) to FV(T, M) implies that the
coloured structuréN, c)) (the inverse image of the forbidden pattéhn c)') via
idy) is not valid forcore(FV (T, M)). This proves that:

core(FV (T, M)) % normal (R).

Let (N,c)) be a forbidden pattern aore(FV (T, M)). Recall thasoi = id,.
Sinces is a recolouring ofFV (T, M) to core(FV(T,M)), it follows that there
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exists some forbidden patte(n/l,ch/') of FV(T, M) and some homomorphism
(M,cf) " (N,ioc})). This means that}l =ioc)omand it follows by defi-
nition of an induced subrepresentation thisit, ¢! o m) is a forbidden pattern of
normal (%) such thatM, c) o m)-= (N, cN). Thus,(N,c)) (the inverse image of
(N,cl) viaidy) is not valid fornormal (9%). We have proved that:

normal (R) oy core(FV(T,M)).

It follows directly from the definition thatnormal (2R) is biconnected; every
of its forbidden patterns are coloured cores; and, it is &napth respect to em-
beddings (any non-conform forbidden pattern is not a subitre of another non-
conform forbidden pattern). We show that it is also rigidt Tébe the template
of normal(2R). normal(fR) is connected. So if it has some non-sbavate forbidden
pattern then it must be a forbidden pattern that consistsioitge vertex and no tu-
ple (a forbidden pattern that forbids a colour). Botmal (9R) can not have such a
forbidden pattern since it is also automorphic. Heneamal (%) is non-sbavate.
Thus, by Proposition 4.15, it follows thal -~ T. Let A be some no-instance of

FP(FV(T,M)). Recall thatFV (T, M) is rigid (it is canonical). AT then

by compositiorA @ T. Thus, there exists some non-conform forbidden pattern
(M,cM) of FV(T, M) such thafM, c)) - (A,iocf}). Thuscl =ioc)omholds

and it follows that(M, ) o m) is a forbidden pattern aformal(9?). Hence, we
have proved thatM, c5 o m) > (A, c4). This proves thanormal (R) is rigid. [

Remark. The construction of the normal form of a given connectedasg@ntation
R can be summarised as follows.
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R
7 isorecolouring (Subsection 4.3,3
(T, M) canonical representation
epirecolourinc< same problem (Subsection 4.4)6
FV(T, M) canonical Feder-Vardi transformation
[ )s (Subsection 4.2)3
i\ core(FV(T,M)) core (of the representation)
‘z isorecolouring (this section

normal (R) induced subrepresentation
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4.5.2 Examples

Consider the following rep
resentation.

©@—0

Notice that it correspond
to the problem TRI-FREE
that was introduced in Se

tion 2.4. We can mak

it canonical as in Subsec¢

tion 4.3.3;

|/

©

©@—0©@ |[©<—0

° D1/

©

Note that the above repre

sentation is also automo
phic and biconnected. So,
is the normal form.

Consider as another e
ample, the representation

- the problem RI-FREE-TRI
defined in Section 2.4,

[ )

AN

C—=9

I/

G

QP |>— P

I/

<

11%

L

|/

— QG |[P—G

/!

O—%
o —&
oC—=<
0—0

We show that this is alread
the normal form. Note firs
Bthat it is rigid and that every
Iforbidden pattern is a bicon
ifhected coloured core. It re
mains to show that it is autd
morphic. Assume that thi

“Wwas not the case and th
of
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(R,s,i) is a proper retract
We
may assume w.l.0.g. thd&&
is a colour offR, i(&) = &
ands(&) = s(Q). It follows
that:

of this representation.

o —&

is a forbidden pattern dR.
However, one of its inverse
image viasis the following:

& —0

It is valid, sosis not a re-
This yields a
contradiction.

colouring.

Consider now, the rep-
resentation of l&-WALK -5
from the same Section. It
has a single colour and as
forbidden patterns all possi-
ble orientations of the undi-
yrected 5-cycle. In particular
t the following:

y

N\

©

T

~—0©

Z
|

at
which has the following as
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homomorphic image:
©
~—0©

via the homomorphism tha

©

picted as follows by doublg
arrows:

v

f

el O)

@—0@=<—0

Similarly, we get:
©
©

for:

So, making this represent
tion rigid by taking all pos-
sible homomorphic image
and simplifying with respec
to embedding, we get th

it
identifies element as de

1%

following representation:

©

N

@—0=<—0
!
©@—0©

/

©@—0

l

|/

©

©@—0© |[©9=—0 |[@=—0<—0

©

°D |1/

Now, every forbidden pat
tern being biconnected ar
the bein
clearly automorphic, thg
habove depicts in fact th

representation

ssentation of the problen
t NO-WALK -5.
e

The restriction M-
WALK -5-TRI of the pre-

vious problem as defined i

Section 2.4 can be depicte

normal form of the repref

as follows:
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0,9

?

L]
&
N\
o o
b
&—0

-~

all orientations
and all proper
3-colouring

0—0

cbrevious one.
g

)

C

e

=

=]

2d

" This case is similar to the

Its normal
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form is as follows: We shall now compute can be depicted as follows:
some of the normal form of

®0,¢ the representations we intro-

& duced in this Chapter. We ®—0®
i\\ leave the cases oi®¢3 T i
MY and MDE3 as an exercise ©=<—0
T T for the reader (it is enough

&—0

|

oe<— 0

to make them canonical as

: in the previous examples).
all orientations The normal form oPND¢3

o—>0

and all proper can be depicted as follows —
3-colouring ©__©
A
[ ] [ J
V

/!

|
D [eD

|o<—1 T%O%G

The case ofnMDe2 is
more interesting; it is the

1%
>

) first example of a case
v © where we need to apply
T \ the Feder-Vardi transforma-
O—& Q tion. The two colours play
. } ° a symmetric role, so we
o— may consider only the case
00 The normal form 0P e2 of the white forbidden pat-

terns. There are two types

In the above, by ‘proper 3 of homomorphic image of

the directed 5-cycle; the ho-

colouring’, we mean that the
extremities of any edge haye momorphic images which
different colours. contain WG (a self-loop),

and that which contain both
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WG andWG; but noWG,.

AsWGC is also a homomor
phic image oW Gs, we may
ignore the structures of th
first type, as they shall b
Therg
are only two structures @
the second type (up to is(
morphism):

simplified out later.

and

@=<—0
The first structure is ng
biconnected; hence, durin
the Feder-Vardi transforma
tion, the colour ® shall
be replaced by two ney
colours, say{> and©; and,
this structure is replaced b
the following two (compact
forbidden patterns (we leay
® as an abbreviation fg

{0, 0

and

As for the second structurg

+it can be ignored; it sha
be simplified later by one o
ethe two previous forbidde
epatterns (depending on th
> choice of the colour). Fo
fexample,

D

—=\

Q

~—

&

embeds in:

&

{IN

0<—0

Note that this is a gener:
property of the homomor
L phic image (S PS) of any
9(PO,CPO) > (P1,c™) that sat-
isfies that both(Py,c™) and
(P1,c™) are substructures g
v(S PS). From now on, we
shall ignore such homomo
yphic images. The case

the black forbidden pattern
dsS symmetric: we denote b
ré and & the two copies of
the coloure and as above
e stands for{&,&}. The
Feder-Vardi transformatio
of the canonical represer
tation equivalent taN®¢2
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can be depicted as follows:

N

Vo

N
\

©

I
f

=]

e

—

&

()

=

The above depicts the nor-
hmal form of9NDeZ; indeed,
hdt is easy to check that it is

automorphic.

Computing the normal
form of IMDE2 becomes

more tedious anm increases;
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indeed, there are more po
sible homomorphic image
and in particular more nori
biconnected homomorphi
images that need to be spl
However, notice that an
of the biconnected compd
nents of the homomorphi
image of a directed cycle i

non-conform, hence the no

mal form of any of these

representations is not co
form.

Consider now the cas
of representation¥(D ¢, —
IME. The case oRDEZ —

Me is easy (no Feder-Vardi

transformation

and its normal form can be

is needed)

selepicted as follows:

:

C
o<——
t.
y
C
S —
r- o
N-
©@—0
e —> 0

For p=3 and p = 4, the
normal form is not difficult
either and there is no neg
to split. It becomes more in
teresting forp=5. As in
the case ofMDe?, it suf-
fices to consider the follow
ing homomorphic images @
ADCyo:
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its symmetric:

and:

—A

©

~—

Using the same notation
as above, after Feder-Vardi
transformation, we finally
get (note that some of the
compact forbidden patterns

.jepresent the same forbid-

den pattern, so to be com-
pletely coherent with the
definition of the normal

form, we should have listed

faII possibilities; we beg the

reader for some comprehen-
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sion): conform. of the representatioﬁmcé.

Y
O-e@\.
g
N, \
© ©
./ \.
A4
o

/

>

® ®
(i; (f) It leaves the case of the (%)
_ representatione2.  We
hd have seen previously that O<—)
° for evenn, these representa-
AN tions are all equivalent up tp
© ©
N isorecolouring; and, the nof- o : ®
mal form ofe3 can be def
[ ) picted as follows:
/N
P o /\
° ° ® — ® %—&
N ~
©
=\
0 o '
V

o — 6o
©
Using a similar argument gs Q Q
in the case ofMDe2, we .

We consider the case of odd
.d he same argument as the

n. We leave as an exercis
fo the reader that the follow-one used before can be ap-
ing depicts the normal formPlied to show that the nor-

can prove that: for anyp >
1, the representatictiD ¢5,
has a normal form that is no
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mal form of any representa
tion Me2 is not conform.

\
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4.6 Witness families

In the first part of the present section, we introduce our n@mh to prove that

a forbidden patterns problem is not a homomorphism probfeamely awitness
family. Informally, it can be seen as a particular winning stratégySpoiler

in the following two player game. A representatitis given. The first player,
Duplicator, wants to show that the forbidden patterns problem reptedday®: is

in fact a homomorphism problem. The second plageiler, wants to prove him
wrong. At each round, Duplicator provides some strucBirelaiming that the
homomorphism problem with templaReis the same problem as the forbidden
patterns problem represented $y Spoiler proves him wrong by giving him
either a yes-instancé& of FP(2R) such thatA—-B or a no-instancé\ such that

ALB. If Spoiler is unable to do this at some round then he has hlesgame,
otherwise if Spoiler can keep Duplicator going for ever tisgroiler wins. More
formally, a witness family fofR consists of a family of structureg that are all
yes-instances df P(9R) such that for any fixed-structureB (which is a possible
candidate for a template if the problem were to be a homomsmplproblem)
there exists a structurk in # that witnesses thd can not be such a template.
That is, such that eithek—~ B or for someA—- B, h(A) is not inFP(R).

In the second part of the present section, we only ever censahnected nor-
mal representations. If a problem is given by a connectethabrepresentation
that is not conform, we shall build a witness family.

The idea behind the construction is as follows. Suppose we &aormal rep-
resentatior{T, M) that is not conform and a structukethat is not valid. Assume
further that there exists a colouriy for N that is not valid and thaiN,cV) has
the following property:

o N iT (the colouringeN is “OK on the edges”); and,

e there exists exactly one forbidden pattékt, cM) in 47 (M,cV) must be
a biconnected non-conform forbidden pattern(&s#) is normal) such
that (M,cM) —% (N, cN) and exactly one such embeddiegthe colouring
is “wrong” but only because of a single occurrence of a biemted non-
conform forbidden pattern).
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We can “open-up” this colouring fi: pick some vertexi from this single occur-
rence of(M,cV); add a copy of u; and, from this single occurrence @¥,cM),
pick a tuplet that involvesu and replace one occurrencewin t by v. We call
this new structure informally the gadget amdndv its plug-points.

When given some undirected gra@) we can build a large structui® as
follows: replace every edge between two vertigesdy of G by a copy of the
gadget (identifyu with x andv with y).

The structureSis a yes-instance whenever the gr&has a girth higher than
the following parameter of the representat{dn/): the size of the largest cycle
that is a substructure of any forbidden pattern.

Now, for any candidat® to the role of template for our problem (assume our
problem to be in CSP), providgglhas a chromatic number higher than the size of
this candidatd, any homomorphism of the structug¢o B must identify the two
plug-points of some copy of the gadget. Hence some homorimirphge ofN is
a substructure dB andB is a no-instance: thereforB,can not be the template of
our problem.

Given Erdos’ result on graphs of high girth and high chromatimber, we are
therefore able to rule out ar/by constructing some withe§&from an adequate
graphG.

In the examples of this construction described in the foihgwve use the
language of graph theory to describe the various structovetved and consider
the structures to be graphs even though they should realiiyréeted graphs (all
the graphs in the following can be easily transformed inteated graphs in a
suitable way). It should be noted that this constructionksdor problems that
correspond to a first-order MMSNP sentence. Consider, famgie, the problem
TRI-FREE: the structuré\ in this case is simply a triangle, and openingNifgads
to a path of length 3. Call andv the extremities of this path. Now, @ is a graph
of girth g, the structures obtained by replacing every edge between two vertices
x andy by a copy of the path of length 3, identifyingwith x andv with y has
girth 3g. So if we considefs to be self-loop-free, that ig > 1, Sis triangle-free.
This construction also works for more complex problems N@MONO-TRI:
one can consider for the structuxe the 5-clique coloured as follows; 3 vertices
coloured in black and the two remaining coloured in white.e@an open it to
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obtain the following gadget: take a 4-clique, add two vedig andv; connect

u to two elements of the 4-clique awdo the two other elements. Consider the
following colouring of this gadget: setandv to be black; and, for botb andy,
one neighbour is black and one neighbour is white. The distéetweeru and

v being 3, any structur8induced by a grapls of girth g > 1 is a yes-instance;
it can be coloured according to the colouring of the gadgstideed above; and,
any cycle ofSthat is not a substructure of a copy of the gadget has sizlgtri
greater than 3 (hence, it can not correspond to a forbiddearpa

For this construction to work we need a structdehat is not valid and for
which there is a colouring with singleoccurrence of a forbidden pattern, or more
precisely that can be opened up to yield a structure (theegatizat has a valid
colouring that sendsandv (the plug-points) to theame colourAt first | thought
that such a property can be achieved by enforcing some comait minimality
on the considered representation. As to whether this isg¢be iemains open, but
| was led to the notions of a recolouring and an automorpltpcesentation and
consequently to the notion of a normal representation. KHewthe key idea of
this construction can be reused. We proved that for any noepeesentation that
is not conform there are non-valid structuMethat can be nonetheless coloured in
a correct way on the edges; in other words, whose colouriaghesmomorphism
of N to the template of the considered representation. Accgrithis colouring,
the structureN can be opened up, leading to a gadget that is not necessarily a
“bipede creature” as above but a many-legged one, a “ceatdipe So we can no
longer use Erdos’ result.

In order to build a large structure, we shall have some sepe€ial vertices
corresponding to each type of “leg’(the type of a “leg” bemigen by the cor-
responding vertex itN). We can plug copies of the “centipede” in all possible
ways between those sets. If the large structures we obtaialarys valid then
we have a family of witnesses (just like in our examples apawel we are done.

If one of the large structure is not valid then we can stilbeolit via the colouring
induced by the colouring dfl in such a way that we have a homomorphism into
the template of the representation of the considered pmabM/e can open up
this structure and obtain hence some larger structure teafcéentipede” we had
before, obtaining a new many-legged gadget, let’s call ihdlipede” (as a matter
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of fact it does not have necessarily more legs it is just lardgy carefully choos-
ing the way we open up, we make sure that the large structbtesed from the
“millipede” are “sparser”. If these large structures ob& from the “millipede”
are still not valid then we carry own opening-up: we obtaiardually a family of
witnesses.

4.6.1 Definition

We formally define a witness family as follows.

Definition 4.24 A family of o-structures¥ is said to be awitness familyfor a
representationR if:

e ¥ CFP(R); and
e for anyo-structure B, there exists some A‘fnsuch that,
— either A¢ CSRB); or
— for some A™-B, h(A) & FP(2R).
The following result is the corner-stone of the proof of owaimresult.

Lemma 4.25 If a representatiomi has a witness family then the problem ®9
is not a homomorphism problem.

PROOF Let 7 be a witness family foer. If FP(2R) were a homomorphism
problem with templatd then we would have somk& € FP(R) such that either
A ¢ CSRB), or for someA->-B, h(A) ¢ FP(R), that is eithelFP(R) > A ¢
CSRB) or FP(R) # h(A) € CSRB), in any case a contradiction. O

We would like to construct a witness family in a generic way fiooblems
given by representations for which we are not able to coosauemplate; that
is, that are not conform. We shall make use of two importaaiuiees of normal
representations that are not conform: first, they are autphig, therefore by
Theorem 4.20 their templates must be no-instances; sec@vely non-conform
forbidden pattern is biconnected, by Theorem 4.23.
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4.6.2 Opening-up an invalid structure

Let M be a structure an@ a cycle such that —= M. Letxg be some articulation
point of C. If C is the 1-cycleR(x) (with xg occurring at least twice ir) then let
G be the structure defined from andC as follows:

e |G| :=|M|U{y1}; and

e G agrees withM everywhere except that the tugRée(x)) is replaced by
R(y), wherey is obtained frome(X) by replacing theirst occurrence of

Yo := €(Xo) by y1.

If Cis an-cycle (h > 1) andR(x) a tuple fromC such that (the articulation point)
Xo occurs inx then letG be the structure defined from andC as follows:

e |G| :=|M|U{y1}; and

e G agrees withM everywhere except that the tugRée(x)) is replaced by
R(y), wherey is obtained frorme(x) by replacingevery occurrence ofp :=
e(Xo) by y1.

We callG theopeningof M with respect t&C, e, R(X) andxg. We callyp andy; the
plug-pointsof G. Notice that the mapping that sengsto yp and fixes the other
elements is a homomorphism Gfto M.

We extend this definition to coloured structures, settirgdblour of the new
vertexy; to be the same colour gg. Figure 4.6 illustrates this construction
(notice that in this case there was only one occurrengg of the tupleR(e(X))).

EXAMPLE. Letos be the signature consisting of a single ternary synfbol

1. LetM be theos-structure with domaida, b, c,d} and IetRM := {(a,b,c), (a,d,a)}.
Consider the 1-cycl&(x,y,x) and lete be the embedding froR(x,y,x) to M de-
fined bye(x) = a ande(y) = d. The opening up oM with respect toR(x,y, x)
and e in the articulation pointx is isomorphic to the structur& with domain
{a,d,b,c,d} with R® = {(a,b,c), (a’,d,a)}.

2. LetN be theos-structure withRY := {(a,a,b), (a,b,c),(b,c,d),(a,d,c)} over the
domain{a,b,c,d}. Consider the 3-cycl€ with domain{x,y,zt} andR® = {(x,x,y),
(%,Y,2),(y,zt)} and letf be the embedding defined liyx) = a,f(y) =b, f(z) =c
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RN
\g—
c M /
R(e(®))
\X()% yo
Yo=Y1
G
R(Y)
Yo Y1

Figure 4.6: Opening a coloured structure
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and f(t) = d. The opening up oM with respect tcC, e and the tupleR(x,x,y) in
the articulation poink is isomorphic to the structund with domain{a,a,b,c,d}
with R® = {(a,,b), (a,b,c), (b,c,d), (a,d,c)}.

A

In the remainder of this section, IET, M) be some non-conform normal rep-
N
resentation and IéN, cN) be non-valid with respect t6T, ) such thatN <~ T.

Since(T, M) is rigid andN iT, there exists soméM,cM) € M such that
(M,cM) % (N,cN). Since(T, M) is normal, it follows that(M,cM) is bicon-
nected and therefore that it contains a cyCleLet R(x) be a tuple inC andxg
an articulation point o with xo € {X}. Let (G,c®) be the opening ofN,cV)
with respect taC, e |c, R(X) andxo. If (G,c®) is not valid with respect t6T, M),
start this construction over again. Denote(B/c®) the valid structure eventually
obtained and let

{y1717y1727 ce 7Y1,p17)/2,17y2,27 ce 7y27p27 ce >Yq717)’q,27 s :Yq,pq}

be its set of plug-points (the first index giving the type oflagppoint, that is, the

yi,—'s correspond to the same elementN)f in other WOI’dS(G,CG)\—f»(N,CN),
wheref identifies the plug-points of the same type,

f: G — N

y ifyeN],
y =
Vii ,ifthereis some K j < pj such thaty =y, j.
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EXAMPLE.

Refer to Section 4.5.2 for the normal for|
of the representatioﬁ[i)cfo. Its template
is as follows.

O 4

~—"

S,

We are going to gradually open it up, co
sidering it as a coloured structure as (
picted on the previous figure. Notice th
there are many ways of opening up. \
highlight the considered forbidden patte
at each stage by using dotted arrows (wh
shall be seen as a cycle in our case),

cept for the tuple considered which sh
be depicted by a dashed arrow. Moreo
we mark the chosen articulation point

enclosing it within a circle. For exampl

opening up the template according to the

following,

135

NnThe latter is not valid and we open it up fur-

ther.
¢1 AQ
AN
& 0

&2
n- \
de- ¢1 Qo< W
4
at )
Ve \é/ - V)
rn o

ich
ex-
all
ver
Py

)

Finally, we obtain the following valid struc-
ture.

&2

\

Co=—M®0

AN

&~—0

/

&1

O1 L3

The latter has three types of plug points,
that we denoted on the figure By, 1,

$2, o, do1, Mo andey;.




136 CHAPITRE 4. PROBLEMES DE MOTIFS INTERDITS

4.6.3 Constructing a large coloured structure

Let (G,c®) be a valid coloured structure (informally called the gajigétained
from some non-valigN,cN) as in the previous section. For amy= (ny, Ny, . .., Ng)

with ny > p1,nz > p2,...,Ng > pq, We build a large coloured structu(és, o)
from the gadget as follows. It has a setspfecial elements$S| C [I7] that is
partitioned intoq pairwise disjoint set := {x; j|1 < j <nj} (1 <i <q). For
any 1<i < g and for any choice of; elementsxhkl,xi,kz,...,xhkpi in |X| such
thatk; < kz < ... < Kp, plug in a copy of the gadgé®, c®), identifying the
plug-points of(G, c®) with the corresponding chosen special vertices; that ts, se
Xiki == Yi,j forany 1<i <gand forany I< j < p;.

ExamMpPLE. Depicting a large structure with the gadget used in theipusvexample
would not be really helpful as the gadget obtained there ite quomplicated. We build
therefore an alternative gadget first. Consider for thisstinectureDC,. It is clearly a
no-instance of the problefP(AD¢2;). However, it can be coloured to obtain a valid
colouring with respect to the template of the normal repregeon of2AD¢3, as follows.

O 4

~

According to this colouring, we can open up to obtain theokwlhg gadget.
Co——=®—>1

It has only two plug-points, denoted Ky, and<>;, respectively. The following depicts
the “large” coloured structure obtained using this gadgenf= 3.

A
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4.6.4 General construction of witness families

By Theorem 4.20, sincgl, M) is automorphic and not conform, it follows that its
templateT is not valid. Consider any homomorphisth: T—T, e.g.c” =idy

and set(N,cN) := (T,c’). Then we haveN L and (N, cV) not valid with re-
spect to(T, M). Let (G,c®) be its opening as defined above in Subsection 4.6.2.
Let 7 be the set of structurdg in STRUGO) for n= ng,ny,...,Ng, with ny >
p1,N2 > P2,...,Nq > pq Obtained from the gadgéG,cG) as in Section 4.6.3.

case 1| F CFP(T, M)
We prove thatf is a witness family with respect (@, M).

Let B be someo-structure. We may assume w.l.0.g. that for @&ip 7, A—B.
Letn=(ny,ny,...,Nq), wheren; > p;.|B| — |B| for any 1< i < g. By assumption,
we havelﬁgB for someb. By construction ofl; there must be a copy of the

gadgetG in Iz whose plug-points are all identified oy HenceNLB for some
binduced byb and alsch(N) ¢ FP(T, #). This proves the claim.

case 2| F > lg ¢ FP(T, M), for somen. |
Consider the coloured structufig, c'). Notice that the following holds:

e |5is a no-instance; and
—_ - - I_
e (I5,¢'M) is not valid butl7=>T.

We shall repeat the construction, deriving this time a gafttgen (I, c¢'"). How-
ever, we choose with great care the elements at which we operthey shall
always be special elementslgf(as defined in Subsection 4.6.3).

Recall that the only forbidden patterns occurringlig ¢'") are biconnected.
Moreover, by construction such an occurrence of a bicomaddorbidden pattern
must involve at least two copigS; and G, of the gadget. Lek be a special
vertex common td@3;, G, and to that occurrence. Now, add a new vereand
replace every occurrence of the vertein every tuple ofG, by this new vertex
X. Proceed similarly for every occurrence of a forbiddengratt We call the
structure obtaine@'. By constructiorG' is a yes-instance &fP(T, M ); consider
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cC to be the valid colouring o6’ induced byc'™ and defined as follows. Every
vertex occurring iflq is coloured according td™ and any new vertex takes the
same colour as its corresponding ventaka c'™. Let 7' be the family of structures
obtained from the new gadg€&! (the plug-points being the special verticeat
which we opened-up and their copi€sin G'). If ¥/ C FP(T, M) then we are
back to the first case and we have constructed a witness fa@itlyerwise, we
simply loop back to case 2.

Denote byGK the gadget used at stageand byl the structures build from
G,

We claim that we eventually reach case 1. Consider for cdittian the se-
quence(uk)k>o defined as followswyg is the minimal distance between any two
plug-points of the gadges (here by distance between two vertices we mean the
length of the shortest path between those two vertiogs)s defined to be the
minimal distance between two plug-points of the gadgettooted at stagk.

By construction, this sequence is non decreasing; thabisrfyk > 0, we have
Ukt1 > Ux. Assume further that this sequence is not stationary (Wi sileae this
shortly). Letd be the size of the largest cycle that embeds into a non-confor
forbidden pattern ofM/. Letk > 0 such thauy > %. By assumption for some
the structurdX is a no-instance of P(T, ). Consider its canonical colouring
(1%, c'r%). This colouring is valid for each copy of the gad@&#t by construction.
It follows that some non-conform forbidden pattern must echim more than one
copy of GX. However, this is not possible: it would imply that this fatten pat-
tern would contain a cycle of size greater or equal thag, 2hat is strictly greater
thand. This yields a contradiction. Therefore we proved the folfg: if the
sequenceuy)i>o is not stationary then we eventually go out of the loop in @&se
that is, our construction terminates and we eventuallyinlatavitness family. We
now prove that the sequenfe)i>o is not stationary.

The sequenceguk)k>o is not stationary. Assume for contradiction that this is
not the case; that is, that for sorke> 0 and for anyk’ > k we haveu, = ux. By
construction, irGt1 the distance between two plug-points of the same type (that
is, two vertices that correspond to the same special vefté?) s greater or equal
than 2ux. However, sincaly, = uyx. 1, there must be two plug-pointsandy at
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distanceuy in G¥t1. These two plug-points andy must necessarily be incident
to the same copy dB* within GK*1. This leads us to the following definitions.

For any copyGK of GXin G defineP(k, K') to be the set of pairs of plug-points
of GX incident toG that are at distance exactly in GK. For any copyGK of GK
in G¥, definefree(k, k') to be the set of plug-points mentioned by the pairs of
P(k,K'). Furthermore, fix somgy  in free(k k).

We add another constraint to the construction in case 2:ewaméning forbid-
den patterns, for each copy @f in G, never open-up aky .

Note that the process of opening does not increase the nurhibex plug-
points incident with any copy dB¥, and it does not reduce the distance between
any pair of new plug-points incident with any copy @f. Hence, for any copy
GKof GKin GKt1, free(k,k+ 1) < free(k,k). It follows that after finitely many
steps, say, at step) > k, we must havels > ug. This yields a contradiction. So,
we have proved that the sequeriog)y>o iS not stationary.

To summer-up, we have provided a generic construction walichvs us to
build a witness family for any given non-conform normal eggntation.

4.7 Characterisation

In this Section, we state our main result, that is the exaatagtterisation of these
forbidden patterns that are not in CSP. We first state thidtresthe case of con-
nected representation, before illustrating it by some ¢tam Finally, we extend
the result to any representation by generalising the naifarormal representa-
tion to disconnected representation; there we introdueadhion ofset of normal
representations

4.7.1 Main result

The previous results leads to a full characterisation ohegated representations
with respect to the property of representing a CSP problem.

Theorem 4.26 (théoréme de LouisoR)
Let (4, M) be a connected-representation. The following are equivalent.
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(i) normal(y, M) is not conform
(i) FP(u,2) is notin CSP

(iii ) There exists a witness family fqu, M)

ProOOF It follows from the construction of the previous sectioattfi) = (iii ).
(iii ) = (ii) by Lemma 4.25. Hence, it follows thét) = (ii). The converse holds
since—(i) = —(ii) by Proposition 4.13. Thus we have provell <= (ii) and
the other equivalences follow. O

4.7.2 Examples

We have seen earlier that numerous representations werahand not conform,
so as a corollary from our main result, we know that they atemGSP.

Corollary 4.27 Letn> 1. The forbidden patterns problem represente@;my)@:ﬁ
is not a CSP. The forbidden patterns problem representemn?ﬁ is not a CSP.
Let p> 0. The forbidden patterns problem representedzmetgp —IMEisnota
CSP.

Notice as well that all the problems introduced in Sectioh &e proved to
be not in CSP by hand of the main result, as we computed theimaldorm in
Section 4.5.2 and none of them were conform.

Furthermore, notice that we have given only examples witkoted graphs as
they are easier examples but the main theorem holds for gngtsire.

4.7.3 The case of disconnected representation

We can extend the notion of Feder-Vardi transformation oé@esentation to
the disconnected case; that is when a forbidden patterntisarmected. Let
(u, M) be a representation such that there exists a disconnectedden pattern

SIn the eventuality that the reader might want to refer to teisult, please quote it dg
théoréme de Louisgms today | am the proud “republican godfather” of Louison.
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(F, cﬁ) € M, that isF consists of the disjoint union of two structurgsandF;.
It is not difficult to see thaFP(W, M) = FP(Y, Mo) UFP(, M1) where M =
(MN\A{(F,c)}) U{(Fr,cf)} with ¢ff :=cf] -
So we extend the notion of normal representation to the disected case and
consider the following recursive definition; tet of normal representatiord a

representatiofp, M) is

e the set containingormal (p, M) if (U, M) is a connected representation;
and

e the simplified union of the set of normal representationgpofiy) and
(W, My) if (U, M) is as above,

where by simplified union, we mean that we remove a representahenever
there exists a recolouring into another (analogous omeras when we dealt
with forbidden patterns). We denote the set of normal regmedions of a repre-
sentation(p, M) by Normal (pu, M).

We can extend our main result to disconnected instances.

Theorem 4.28 Let (u, M) be ac-representation. The following are equivalent.
(i) The seNormal(p, M) contains a single conform connected representation.

(i) FP(u, M) isaCSP

PROOF The case wheNormal(p, M) is a singleton was done previously; so, let
(Mo, Mo), (M1, M1) € Normal(p, M). Let To andT; be their respective templates.
We claim thatfTy is a no-instance ofyy, A;). Indeed, ifTo were accepted then it
would induce the existence of a recolouring(p§, Mp) to (W, M1) which would
contradict the definition of set of normal representatiaghs proof is very sim-
ilar to the proof of Proposition 4.3.4). In the case wh&gas a yes-instance of
(Mo, Mp) then the latter is a conform representation &®{p, Mp) a CSP. So
assume further that not all the representations among tte# sermal represen-
tations of (u, M) are conform (we shall deal later with this case) and theeefor
without loss of generality thalp is not a yes-instance dfip, Mp). Hence, we
have a structure that is a no-instance but can be colouredatiyron the edges
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with respect to the non-conform representatips Mo). So we can use it to build
the gadget for the generic construction that lead to the mesinlt and eventually
obtain a witness family. Now if all the representations amtme set of normal
representations afy, M) are conform then we can sép, M) as the conjunc-
tion of CSP of respective templatég, T1,..., Ty. Those templates can not map
into each other (otherwise this would lead to the existeri@e recolouring). If
FP(u, M) were a CSP then &t be its template. Sincg € FP(u, M), we would
haveT,—T thus the structur& consisting of disjoint copies of thg’s would
satisfyS—T and thusSe FP(u, #). Hence there would be sonfg such that
S—T;j and finally we would hav&@ —T; for somei # |, a contradiction. [

We conclude this chapter with a few remarks. First, noticd the normal
form of a representation is quite complicated to computdaseader may have
noticed with the few simple examples provided. In order tplement efficiently
an algorithm that would decide whether a forbidden pattprovlem is a CSP,
some simplifications are needed; representations shoutfivea in a compact
form as in Section 4.4. Moreover, notice that we decided tokwath colou-
red structures to simplify the proofs but the same work cdagdchchieved with
partially coloured structures. Furthermore on this mattex enforced the fol-
lowing order when computing the normal representationt &rgorcing the rep-
resentation to be canonical (which involves taking homgrharimages of for-
bidden patterns, which increases the size of the reprdsamtéhen applying a
canonical Feder-Vardi transformation (which involvesiaddnore colours, thus
also increasing the size) and finally taking a particulaed@rhich decreases the
size). Notice moreover that the last transformation is tlstrsomplicated, as it
is clearlyNP-hard. Hence, it would be probably more efficient to take theec
of the representation as often as possible. Notice howthadrsince we want an
automorphic representation on the end, we must take thebedoee finishing, as
it might be the case that the Feder-Vardi transformatiomad@omorphic repre-
sentation is not automorphic. It would be interesting talgtin more details the
rewriting system associated with the three transformatioentioned above. It is
not clear whether it is confluent. In other words, the norrepresentation might
not be definable as the unique rewrite of this system.
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Our second remark concerns the gadget used for the constrwftwitness
families. A part of the proof is quite complicated becaustheffact that we might
deal with a gadget that has many legs of possibly differep¢sy However, for
every examples that we investigated on graphs, we were alijaiid a simple
bipede gadget as in the example above in Subsection 4.6\8e tfould prove
that such a simple bipede gadget exists for any representate could simplify
further our proof by using Erdos’ theorem.

Finally, notice that recolourings alone do not provide @&s$attory morphism
for representation as the converse of Proposition 4.1 doesaid. We shall
discuss this issue in more details in the next chapter in&iios 5.3.2.

In the next chapter, we relate also our main result with s@salts by Tardif
and NeSeil and we shall investigate the structure of the categoryepfesenta-
tions.

In Chapter 6, we shall give some examples of complete fodmdaatterns
problems that are not in CSP for the complexity cladésP andNP. We shall
also investigate some restrictions that lead to tractgibdli forbidden patterns
problems.
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Chapitre 5

Algebres de Heyting, densité et
dualité

Onrésume les résultats de Tardif et N&§str la dualité et la densité ; puis

évidence. En particulier, on montre que les coeurs de stiesforment une
algebre de Heyting. La correspondance entre dualité eitderst démontreée
dans le cas général d’'une algebre de Heyting. Enfin, le faitlegsi coeurs de
représentations forment aussi une algebre de Heyting estmrévidence.

1%

1%

145

des liens entre ceux-ci et le résultat principal du chapitéeédent sont mis en
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Dans ce chapitre, je rappelle tout d’abord certaines pétgsialgébriques de
la catégorie des-structures. On verra que les coeurs de structures fornment u
algebre de Heyting c’est-a-dire un treillis distributif aveexponentielCette ma-
chinerie algébrique a permis a Tardif et Né§ete mettre en évidence dans un
travail récent (voir [45]) I'existence d’'uneorrespondancentre lespaires cou-
vrantes(lieux du treillis qui ne sont pas denses) dans ce treilles(doeurs de
structures) avec lgsaires dualesCes dernieres correspondent en fait a des pro-
blémes de motifs interdits qui sont dans CSP et qui sont ing3les : ils peuvent
étre donnés par une représentation qui a une seule coulearseul motif inter-
dit. D’ou leur nom degorobléemes monochrome de motif interdiardif et NeSdil
ont caractérisé les paires duales (plus précisément, ilsavactérisé les paires
couvrantes, et obtiennent une caractérisation des pai@sgpar le biais de la
correspondance mentionnée ci-dessus). Notons que leatégtihcipal du cha-
pitre précédent donne umaractérisation alternative des paires dual&emar-
guons également que la caractérisation (des paires duierege dans [45] est
bien plus simple que la mienne. Ceci peut cependant étreasd@tavec le fait que
ma construction pour le patron (lorsqu’elle est possidépeaucoup plus simple
gue la leur. Je donne également une preuve de la correspmndatre dualité
et densité dans le cas général d’'une algebre de Heyting. Bej@lprouve que
les coeurs de représentations forment eux aussi une aldelvteyting. Ainsi, je
montre qu’il existe aussi une correspondence entre degtsitéalité dans ce cas;
ce résultat est cependant moins satisfaisant que celunwipteur les structures
et me conduit & poser quelques questions ouvertes que jeenpati des résultats
partiels.

Toutes les notions catégorielles nécessaires sont dommeéppendice B.
Nous conseillons vivement [38] au lecteur intéressé pouihéarie des catégo-
ries et recommendons [44] pour I'algébre universelle ereg@dret la théorie des
treillis en particulier.
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5.1 Heyting algebras

In this section, we shall recall the definition and some b&sits abouHeyting
algebras In a second part we show that the cores form a Heyting algebra

5.1.1 Definition

A Heyting Algebrais a structure over the signatukg consisting of three binary
function symbols\,v and=-, and of two constant symbaodsandzi; this structure
is alattice with respect ton andV with least elemend and greatest elememt
i.e. it satisfies the following identities

XAY=YAX XVy=yVX
XA (YAZ) = (XAY)AZ  xV(yVz)=(XVy)VzZ
XAX=X XVX=X
XA (XVY)=X XV (XAY) =X

XANO0O=0 XV1i=1

We define the partial ordet that corresponds to this lattice as usual; that is, we
setx < yif, and only if, XAy = x. A further property of these algebras is that, for
anyx,y andz,

z<x=y,if,and only if,zAx <.

5.1.2 The Heyting algebra of cores

The fact that the cores form a Heyting algebra and the existefithe exponential
plays an important role in graph theory. It is not quite cleho exactly made this
discovery first. It seemed to have been a well known fact inesgaearch groups
for afew decades. There is a note about this in case the nsdadesrested in [50],
a survey on Hedetniemi’s conjecture, by Norbert Sauer, lvvie suggest also as
it contains further examples of the use of exponentials apltheory.

Let’s consider the quasi-order given by homomorphisms eehe-structures
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up to homomorphism equivalence: two structudesndB are homomorphically
equivalent (denoted b% ~ B) whenevelA— B andB— A. Hence when we fac-
tor out STRUGO) by ~ we obtain a partial order. As representatives for each
equivalence class, one can consider cores as we have séien ieaProposi-

tion4.7,i.e.
(STRUGQO), —)

~J

~ (CORE0), )

whereCORE0) denotes the class of cores@fstructures considered up to iso-
morphism, that is according to the notation of the previdwapter,

COREo):= |J core(A).
AcSTRUGO)

In fact, there is a much richer structure than just a parttdeo Indeed, one
can define theroductand thecoproductof structures with respect to homomor-
phisms, which lead themselves to the notiorspremunandinfimumfor cores.
Hence the partial orddCORE0), — ) is in fact alattice.

Lemma 5.1 The category ob-structures has products and coproducts.
PROOF. For any given pair ob-structuregA, B), define the' product Ax B of A
andB as follows.

e |Ax B|:=|A| x |B| (Cartesian product of the two sets); and

e for anyr-ary symbolR in o, and anyr-tuple ((as,b1), (az,b2), ..., (a,br))
of elements of A x B|, R((az,b1), (az,b2),...,(ar,by)) holds inA x B if,
and only if,R(ag, az, . ..,ar) holds inA andR(bs, by, ...,br) holds inB.

We can also define thecoproductof A andB denoted byA+ B to be simply the
structure consisting of the disjoint union of the two strues, that is,

e |A+B|=AUB; and

e for anyr-ary symboRand any-tuple(xy, X, . .., %) of elements ofA+B|,
R(x1,X2,...,% ) holds inA+ B if, and only if, R(x1, X2, ...,% ) holds either
in AorinB.
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It is a straightforward exercise to check that these defingisatisfy indeed the
defining properties of the product and coproduct; in otherdspthat for any
triple of o-structuregA, B,C),

e C—AxBif, and only if, C—A andC—B; and

e A+B—Cif, and only if, A—~C andB—C.

For any two coreé\ andB, we set

e AAB:=core(AxB);and

e AVB:=core(A+B).
The following result follows directly from the previous grasition.
Corollary 5.2 (COREO),A,V) is a lattice.

Furthermore, this category hagponentialgin a lattice, an exponential cor-
responds to a pseudo-complement; and, in the categoryxfaseexponential is
simply the set of functions of one set to another).

Lemma 5.3 The category of-structures has exponentials.

PROOF. For any pair ofo-structureg A, B) we defineAB, as follows.
o |AB|:= |A|lBl (the set of functions ofB| to |A|); and

e foranyr-ary symboRand any functionsfy, fo,..., f, of |B| to|A|, R(f1, fo,..., f)
holds inAB if, and only if, for anyr-tuple (by, by, ...,by) of elements 0B,
if R(b1,bz,...,br) holds inB thenR(f1(b1), f2(b2),..., f(br)) holds inA.

It can be easily checked thAB satisfies the defining property of the exponential,
that is,

for anyC in STRUGQO), B x C—Aif, and only if, C— AB.

INote that these notions are defined up to isomorphisms as inscategory theory, in the
following we shall feel free to define every categorical ootas such without further warnings.
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O

It follows from the existence of exponentials that the prcdand the coprod-
uct are distributive with respect to each other: that is,fdtlewing distributive
lawshold.

Ax (B+C)~ (AxB)+(AxC) and A+ (BxC)= (A+B)x (A+C).

Moreover, the category af-structures has an initial object (a structure that maps
into every structure via a single homomorphism) as well asraihal object (the
dual notion; that is, a structure into which every structuaps via a single ho-
momorphism): namely, the structures&nd 1, defined as follows,

|0g| := 0, and for each symbd®in g, R% := 0;
15| := {0}, and for each symbdin g, R := {(0,0,...,0)}.

Hence, together with Corollary 5.2 and Lemma 5.3, this |dad$e following
result (the notion of @&oposis defined in Appendix B).

Theorem 5.4 The category of-structures is &0pos
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PROOF
(i) We prove thaBT RUGO) has equalizers. L& andA be two structures and

(i)

B;A andB-% A be two homomorphisms. L& be the substructure &
induced by the set:

{x € |B| such thatf (x) = g(x) }

ande be the induced embeddifiy—5- B. By construction, we havéoe=
goe. It remains to show the universality. LEtbe a structure anG-"-B

a homomorphism such théto h = go h. It follows directly that the image
of |C| via his included in|D|. So defineC D by i := e loh. Clearly
eoh’ = handh is unique.

We have also proved that the categoryedtructures has a terminal object,
and that it has products: it follows by Corollary B.1 tt&T RUGo) has
finite limits.

Let 25 be the disjoint union of two copies of1For the subobject classifier,
consider the structure;2

(iii) We have products and exponentials so the categooystfuctures is carte-

sian closed. O

Notice that @ and 1; are cores. Moreover for two corésandB we set,

B = A:= core(AB).

The previous theorem yields the following result.

Corollary 5.5 (CORKEO0),A,V,=,0q4,15) is a Heyting algebra.

Let L be a lattice. Recall that a lattice element said to bgjoin) primeif,
and only if, for any lattice elementsandc, if a=bVvcthena=bora=c. In
the following, we shall simply write prime for join prime. ¢&an be checked that
the prime elements in the lattice of cores are exactlyctrnected cores
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5.2 Duality and density

In this section, we shall investigate tberrespondence between duality and den-
sity. First, we shall defineluality pairsand relate them to some particular prob-
lems; themonochrome forbidden pattern problethat are conform. We then de-
rive from the main result of the previous chapter an alteveatharacterisation of
duality pairs, which together with Tardif and NeSkt own characterisation, pro-
vides a better characterisation of monochrome forbiddéteaproblems (as to
whether such a problem is in CSP or not). Next, we shall braiiguss the proof
of their result and contrast their better characterisatiothe restricted case of
monochrome forbidden pattern problems with the supeyiofibur construction
for templates (whenever the problem considered is in CSEY) theirs. Finally,
we generalise their proof of the correspondence betweditydpairs and gaps in
the lattice of cores; we prove such a correspondence for atird) algebra.

5.2.1 Duality pairs and monochrome forbidden pattern prob-
lems

Let A andB be cores. Notice that the homomorphism problem with terefBat
corresponds to principal idealin the lattice of cores: namely, the set,

{C € CORHo)|C—~B.

Consider now the dual notion féy; that is, the complement of th@incipal filter
generated byA: namely, the set,

{C € CORE0)|A—~C.

This remark leads to the following question: for which staresA and B do
these two notions coincide? This yields the following déifom. Let A andB be
o-structures. We callA, B) aduality pairif, and only if, the principal ideal gener-
ated bycore(B) coincides with the complement of the principal filter gentedsy
core(A). Notice that the complement of the principal filter genedtdig core(A)
corresponds to monochrome forbidden pattern problgthat is, a problem with
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a single colour and a single forbidden pattern (the stredusoloured uniformly
with this unique colour). For simplicity, we denote this plem by FP(A) (to
be coherent with our notation, we should writie { (A, c})}) instead ofA). Such
problems correspond to first-order MMSNP sentences with @mé negated con-
junct and are therefore computationally trivial to solvatlin the complexity
classL).

Notice that in our setting§A,B) is a duality pair if, and only ifFP(A) =
CSRB). Therefore, the following follows from Theorem 4.28.

Corollary 5.6 Let A be a structure. There exists a structure B such thAaB) is
a duality pair if, and only if Normal (1, {(A,c})}) consists of a single conform
representation whose template is homomorphically eqentab B.

Another characterisation has been however obtained byf tandl NeSdiil in [45];
we shall discuss their proof in the next section. In ordertadesit, we need
the following definition. We say that a structukeis atreeif, and only if, it is
connected and cycle-freéd. it has no substructure that is a cycle).

Theorem 5.7 (Tardif, NeSetfil) Let A be a structure. There exists a structure B
such that(A, B) is a duality pair if, and only ifcore(A) is a tree.

One can therefore combine these two results together asvill

Lemma 5.8 Let A be a structureNormal (1, {(A,c})}) consists of a single con-
form representation if, and only i€ore(A) is a tree.

This provides therefore a better characterisation for mbraime forbidden pat-
tern problems.

Corollary 5.9 The problem FPA) is in CSP if, and only ifcore(A) is a tree.

Notice that in case we would want to prove the above lemmaowttbsing Tardif
and Nesdtl's characterisation, the indirect implication is cledrA is a tree then
the representatiofil, { (A,c})}) can be broken down by a sequence of elemen-
tary Feder-Vardi transformations until there are only conf forbidden patterns
remaining €f. remark in the next subsection). However, the converse aagdin
does not seem to be quite as trivial.
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In order to discuss the proof of Tardif and Neé#sttheorem, we need the fol-
lowing definition. LetA andB be twoo-structures(A, B) is said to be gap pair
if, and only if, A— B, B—>A and for everyo-structureC, if A—C—B then ei-
therA~ C orC ~ B. Notice that a gap paiA, B) simply corresponds to an interval
[core(A),core(B)] in the lattice of cores that is ndensethat s, there is no co@
apart fromcore(A) andcore(B) such thatore(A) < C < core(B). In other words,
core(B) is theupper coverof core(A), which we denote bgore(A) < core(B).

5.2.2 Discussion of Tardif and NeSéi’s proof

Tardif and NeSétl used the correspondence between gap pairs and duaii; pa
as a matter of fact, this correspondence exists becaus@tég form a Heyting
algebra. We shall prove this in the next subsection.

The notion of a duality pair was introduced by Tardif and NeéEm an at-
tempt to investigatgood characterisationsf homomorphism problems; that is,
to find obstructing setse.g.the set of odd cycles is such an obstructing set in the
case of the problem 2-@.. Therefore they looked at the most simple such good
characterisation: the case of an obstructing set reducadittgleton. Hence, the
notion of duality pair. It is important to note that since yhaid not really per-
ceive the problem as a forbidden pattern problem, they diduse colours and
did not use a tool like the Feder-Vardi transformation. Tlpeoof relies on the
correspondence mentioned earlier: first, gaps are chassteand therefore so
are duality pairs. To characterise gaps, there are two:pghes‘positive part” in
which they construct what they cdlie gap below a treand the “negative part”
in which they prove that there is no gap below a non-tree.

The first part corresponds, modulo the correspondancegtoahstruction of
a template from the normal form of a conform representatou, is rather differ-
ent in its philosophy: Tardif and Ne$gtse a construction calleithe arrow con-
struction This construction involves the partial order over the sedd of a given
core treeA and the induced notion @fideal for some elememtof A. For a given
core treeA, the arrow construction yields a structuke (which is not necessarily
a core) such thatore(A') < A. Then, by way of the correspondence between
density and dualitydf. Lemma 5.11 in the next subsection), Tardif and NeSet
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prove that(A, (AY)A) is a duality pair. Hence, for a given core tr&gto construct
the templateB of the problenFP(A) with their method seems rather difficult (as
they point out themselves). Indeed, the arrow construdci@iready quite intri-
cate andA' has a size that is exponential in the sizédoHence, to compose the
arrow construction by taking it&th exponent is doubly exponential! However,
our method can be adapted in the case of a tree. Indeed, wet dee to take
any homomorphic images @ a sequence of elementary Feder-Vardi transfor-
mations decompose&sinto its biconnected componentisg, conform forbidden
patterns sincéis a tree), and such homomorphic images would be discartied af
the canonical Feder-Vardi transformation as they wouldoegproperly coloured
according to the new template. Therefore, we obtain a canfepresentation by
applying the canonical Feder-Vardi transformation. Femtiore, we could leave
the representation in its compact form. Hence we obtain erg#i®n of a struc-
ture that is homomorphically equivalent(')”, that would be more manageable
(we get rid of one exponential that way).

The second part of their proof is quite similar to ours andtesebn the same
ideas: opening up a non-conform biconnected structure andtict a large
structure with this gadget (they take a suitable graph geairth and high chro-
matic number, that exists according to a theorem of Erddsd replace its edges
by the gadget). Since they deal with problems of the f61R{A) (whereA is a
core that is not a tree) they derive a gadget by opening (they do not have to
deal with the problem of having different colours). Hendeeg someB such that
A—/~B, they produce a structuf@such thalA—C andC—B butC— A. Thus,
the structureC + B is strictly in betweerA andB, wheneveB—A. So, for any
structureB, (A, B) is not a gap pair.

To conclude on this matter, it seems that combining the tvpo@grhes might
be quite enriching: the correspondence between dualitgansity that we extend
in the next subsection is a beautiful and useful result @vjgles counter exam-
ples). However, the approach via representations and ciatigrus of a normal
form seems to be better when it comes to prove positive esinitieed, it seems
rather hard to picture the exponential of two structures, this even in simple
cases: there are very few general internal descriptiongmdreential of graphs
known presently ( [51]), not to mention the combination a$ ttonstruction with
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the intricate arrow construction.

5.2.3 Correspondance between duality and density

In this section we present the correspondence betweenydaiatl density that was
investigated by Tardif and Ne§@in [45]. Since we need the same result later for
representations, we prove this result in the general getitdeyting algebra. In
the followingH denotes such an algebra. Note that the original proof was don
in the category ob-structures rather than in the Heyting algebra of coresclwhi
tends to simplify things a great deal in the proof).

Lemma 5.10 If (a,b) is a duality pair in H then a is a prime anth A b,a) is a
gap pair.

PROOF Assume for contradiction thatis not a prime: that is, there exists some
elementsa; anday such thata= a; V a) anda # a; anda # ap. It follows that

a £ a; anda £ ay. Since(a,b) is a duality pair, the above yields to the following:
a1 < banday < b. It follows therefore thalh=a; Vay < bh. Froma< b, since
(a,b) is a duality pair, we get the following contradictiant a.

We haveaAb < a. Letc be an element ofl such thaAb <c < a. Since
(a,b) is a duality pair ana # a, it follows thatc < b. Hence, we have=aAb.
Thus, we have proved that\ b < a.

0

Lemma 5.11 If (a,b) is a gap pairin H and b a prime thefb,b=- a) is a duality
pair.

PROOF For any element of H, we havea < aVv (bAc) <b. Sincea < b, we
have two cases to consider.

1. a=aV (bAc): It follows thatb A c < a. Thus, by definition of the expo-
nential itimpliesthat < b= a.

2. b=avVv (bAc): sinceb is prime and by assumptica# b, it follows that
b=DbAcand finally that < c.
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Thus, we have proved that for amyof H, eitherc < b=-a or b < c: that is,
(b,b=-a) is a duality pair. O

We now prove that there is a one-to-one correspondence betgep pairs
(c,d) whered is a prime and duality pairs.

If we start with a duality pair(a,b) then it follows from Lemma 5.10 that
(aAb,a) is a gap pair an@ a prime. Hence, it follows from Lemma 5.11 that
(a,a=- (aAb)) is a duality pair. Sincéa,b) and(a,a=- (aAb)) are duality
pairs, it follows thab = a=- (aADb).

Conversely, lefc,d) be a gap pair witld a prime. Then, by Lemma 5.11,
it follows that (d,d = c) is a duality pair. Finally, by Lemma 5.10, it follows
that (d A (d = c),d) is a gap pair. We haveAd = c. So, in particular, we
havec < d = c and sincec < d it follows thatc < d A (d = c). We also have
cAd <chenced A (cAd) <c. The defining property of the exponential implies
thatd < (cAd) = c. But since(cAd) = c= (c=-d) = c, via the defining
property of the exponential we get\ (c=-d) < c. Hence, we get back to the gap
pair (c,d) we started with.

5.3 More on representations

We shall first prove that the category of representationsapas. This yields that
normal representations (considered up to iso-recolosyifaym a Heyting Alge-
bra. Finally, we discuss the containment problem for fadkilpatterns problems.

5.3.1 The topos of representations

In the following, we denote bYRER0) the category ob-representations: that
is, the category whose objects areepresentations; and, whose morphisms are
recolourings. We prove that the category of representaisa topos: indeed, we
proved in the previous chapter that a recolouring is a gdisatimn of a homomor-
phism; in the same sense, the product, coproduct and expalredrstructures can

be generalised to representations.
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Product of representations. Let (1, M) and (v, A() be o-representations. De-
fine (W, M) x (v, \) to be the representation with:

e colourspy x v (the Cartesian product of the colour set); and

o forbidden patterns

{(F.cfiv) € STRUG(0)|(F, Tuo ) € Mor(F,mh oy,y) € (S,

wherertt, andT, are the left and right projections, respectively.

Notice that the “and” of the definition of a product for strues becomes an “or”
for representations: intuitively, this is due to the fadtth forbidden pattern is a
generalisation of a “no-tuple” in a structure.

Lemma 5.12 The notion defined above truly is the productin the categ&R(®).
PROOF Let (A, L) be a representation. Assume that
(A, L) (1 ) x (v, 7).

It follows directly from the above definition and the defiaiti of a recolouring
that:

(1 M) x (v, 20— (1, M) and (1, M) x (v, N) % (v, ).

Hence, by composition, it follows that:
Tor Tyor
(A, £) == (. 2) and(A, £) ™= (v, ).
Conversely, assume that
(L)~ (1) and (A, £) % (v, ).

Setr := (ry,Iy). Let(F,rock) be a forbidden pattern ¢ft, M) x (v, A\(). We may
assume w.L.o.g. thdF, morocl) € M. Thus, sincayor =, is a recolouring,
it follows that (F,cf) is not valid for (A, £). So, we have proved thatis a re-
colouring. O
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The following can be easily checked.

representation| template
(b M) M

(v, \) N
(b M) x (v, \) | MxN

We discussed in Subsection 4.3.3 an alternative definitioemesentation, the
so-called canonical representation: that is, a representgiven as(M, M);

whereM is a o-structureM (corresponding to the template of a standard rep-
F

resentation); and, where any forbidden patt@fre;;) € M satisfies: M (ch
is acolouringin the same sense as in tHecoloring problem). The following is
straightforward: for a pair of canonical representatigvs M) and (N, (), the
product(M, M) x (N, A() is the canonical representation with:

e templateM x N; and

ock
e forbidden pattern§iM x N, whenever eitheF ™= M belongs toM

ocF
orF ™%X N belongs ta\/.

Notice that, we can identify a-structureM with the canonical representation
(M,0). In that sense, the product of representations generdlisegroduct of
structures.

Coproduct of representations Define(u, M) + (v, \)) to be the representation
with:

e colourspJv (the disjoint union of the colour sets); and
o forbidden patterns

1. forevery(Xm, Xn) In L% Vv, the forbidden patter(F, CEUV) € STRUGy(0)
that consists of two distinct element&andy and void relations such

thatc (x) = xm andc’ (y) = Xn;
2. {(F,cy,) € STRUG, (o) such tha(F,cf;,,) € M}; and

3. {(F.c},) € STRUGy (o) such thalF,c,) € A}
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Notice that this time the “or” of the definition of a coproddot structures be-
comes an “and” for representations.

Lemma 5.13 The notion defined above is really the coproduct in the catego
RERO).

PROOF. Let (A, L) be a representation. Assume moreover that

() + (v, N) == (A, L).

Since by constructior(y, M) and (v, \) are subrepresentations of the represen-
tation (1, M) + (v, A) via the injections, andt,, that is

(1, 9) = (4, 30) + (v, ) and (v, ) ~* (4, M) + (v, ),

by composition it follows that

roly

(.0) = (A, £) and(v, ) “* (A, £).
Conversely, assume that

(1, M) —% (N, £) and (v, ) = (A, ).

Setr:pJv — A

ru(x), if x e and
X —
rv(x), otherwise.

We now prove that is a recolouring. LetF,r OCEUV) € L. There are different

cases to consider.
1. CEUV ranges over botlu andv: that is, there exists some vertex |F|
(respectivelyy € |F|) and some colougm in p (respectivelyxn in v) such

thatcEUV (X) = Xm (respectivelycﬁuv (y) = Xn ). Hence(F, CEUV) is not valid

for the coproduct (because of the special forbidden patteomsisting of
two vertices; one coloured ixyn; and, the other irxp).
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2. ¢y, ranges ovepi only: we haver o, = ryocy,, andry being a re-
colouring it follows that(F, CEUV) is not valid for(y, M'). Hence there exists

some(G,cS) € M and some coloured homomorphigm
g
(G e) = (F,Ciin)-

By definition of the coproduct, it follows thdG, c&) is a forbidden pattern

of the coproduct, hence thék, CEUV) is not valid for the coproduct.

3. C;v Fanges ovev only: case similar to the previous one.

OJ

This construction does not exactly generalise the copiooiic-structure.
However, if we restrict ourselves to connected and nonatiearepresentations
then we could amend our construction as follows. Replacérteype of forbid-

den pattern (those that forbid the simultaneous use of aicoliou and a colour
of v) by

1. for anyr-ary relation symboRin g, for any choice of colourgs, X2, ..., Xr
such that there exist £ mn <r wherem=#n, xm € L andxn € v, the
forbidden patterdR(x1, Xz, ..., %), Cy ), where

Cuw:{X} — plv

Xi = Xi

Then, the following can be checked.

representation| template
(h M) M
(v, \) N
(M) +(V,N) | M+N

Exponential of representations Define the representatigp, M) to be the
representation with
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e coloursp’ (the set of functions of to p); and

e forbidden patterns all th@, cﬁv) € STRUGy (0) such that there exists some
(F,cf) € M and some mapping; such thatf; = cf, ® ¢ and (F,cy) is

valid for (v, A(), where

cr®C [F| — n
X = (cp(x)(cy(¥)

The colour set ofpu, M)V is W’; hence, the colou(cflv (x)) of a vertexx of a
forbidden patterrF, cﬁv) is some mapping of v to . Now, if ¢} is some colour-
ing of F thencf (x) is some coloug, of v. Thus, it makes sense to consider the
image of this coloul, via the mapping and(cflv (x))(cF (X)) = r(xn) is indeed
some colourxm of . It makes therefore sense to writef, (x))(c{ (x)) in the
above definition.

Lemma 5.14 The notion defined above really is the exponential in thegoate
RERO).

PROOF Let (A, L) be a representation. Moreover assume that

(A, L) % (v, A0) - (1, ).
Consider the following mapping

re,—):A — W

oo (e
Xn — r(Xi,Xn)

We shall see that it is a recolouring @¥, £) to (u, M), Let (F,r(.,—)oc)
be a forbidden pattern dfu, )"0, By definition of the exponential, there
exists someF,cjy) valid with respect to(v, () such that(F,c;) € M, where
¢ = (r(,—)och)®c) =r(ch,cf). Since(F,c) is valid for (v, () andr is a
recolouring, it follows from the definition of the productath(F, c)f) is not valid
for (A, L).
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Conversely, assume théx, £) "~ (i, %)) . Consider the following map-
ping

(rrom)®Mm :AxVv — U
(Xi:Xn) = (r"(x1)) (Xn)

We want to show that = (' o) ® Ty, is a recolouring. LetF,rocf )€ M.
We need to show thdF, c{_, ) is not valid for the product representation £) x
(v, N)). There are two cases to consider

1. (F,myock ) is not valid for(v, A(): by definition of the product,F,c} )
is not valid for(A, £) x (v, \) and we are done.

2. (F,yoct ) is valid for (v, \0): by definition of the exponentialF,r’ o
moc ) is aforbidden pattern aji, 4)). Thus, since’ is a recolour-
ing, it follows that(F, i ocf ) is not valid for(A, £). Finally, by definition
of the product, it follows thatF,c} ) is not valid for(A, £) x (v, A() and
we are done.

OJ

Notice that this construction generalises the exponeatialo-structure. In-
deed, provided that the representatiory\() is simple (or at least canonical), the
following can be proved.

representation template
(W M) M

(v.20 N
™0 | N

We have already seen at the end of Section 4.1.3 that thesmyiedionos =
(0, {(00,08")}) is an initial object oREF0). Define further the following repre-
sentationig := (1,0). It is a straightforward exercise to check that it is a tewhin
object ofRER0).

The following result follows.
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Theorem 5.15 The category ob-representation is a topos.

PROOF The proof is essentially the same as that of Theorem 5.4hé&equalizer
f
of (M) (v, \) , consider the subrepresentationpf ') induced by the
9
set{x € |B| such thatf (x) = g(x)}; and, for the object classifier, consider the

representatiofi2, 0). O

Define the relation~ over RER0) as follows: k1 ~ %R, holds for a pair of
representation®i; and R if, and only if, R — R and Ro—R;. Clearly,
~ defines an equivalence relation o\RER0). In order to obtain a Heyting
algebra, we factor out the quasi-order given by the exigt@ha recolouring with
respect to this equivalence relation. Note that as in the oéstructures, cores
of representations can be chosen as representatives foegawalence class: in
other words, the following holds.

(REM0), —)

~J

~ (CORERG), —)

whereCORERO) denotes the class of cores @frepresentations. Defing,V
and= for representations as above for structures. It follows tha

Corollary 5.16 (CORERO0),A,V,=,0q,1¢) IS a Heyting algebra.

Hence, the results from Section 5.2.3 apply to the case oEseptations;
namely, there is also a correspondence between duality emgity for represen-
tations. However, this result is not fully satisfactorystjrwe do not have yet a
characterisation of gap pairsRER0); and, secondly, note that the Heyting alge-
bra of cores of representations is not as meaningful in ontest as the Heyting
algebra of cores of structures. Indeed, recall that the exsevof Proposition 4.1
does not hold. That is, contrarily to the case of cores otsines where there is
an exact correspondence between CSP and cores of stryatutescase of cores
of representations, various cores of representationsaigferssame forbidden pat-
terns problem. Hence the real question should concern noepr@sentations and
not cores of representations according to the conjectureaiévate in the next
subsection.
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5.3.2 The containment problem for forbidden patterns prob-
lems

A homomorphism problem is given by its template; hence givemhomomor-
phism problem€SRA) and CSRB) over the same signature, it is decidable
whetherCSRA) C CSRB). As a matter of fact, the containment problem for
homomorphism problems is nothing else than the uniform hoorphism prob-
lem, known to beNP-complete. We would like to extend this result to the more
general containment problem for forbidden patterns prablgiven by their rep-
resentations. Feder and Vardi proved in [16] that the cantant problem for
MMSNP is decidable. Hence by our results from Subsectio4itifollows that
the containment problem for forbidden patterns problente@dable. However,
there is no known result about the complexity of the conta&intrproblem for
MMSNP. Furthermore, even if it were the case, the conswustwe use to trans-
late a sentence of MMSNP into a forbidden patterns probleamat meaningful
in the context of complexity theory, as the transformat®wlearly not polyno-
mial (notice for example, the need for forbidden patternsstcoloured structures,
whereas negated conjuncts correspond in genepartially coloured structures).
The major inconvenience of forbidden patterns problemsypgposition with ho-
momorphism problems, is that the inclusion of two problerossinot reduce
to the question of the existence of a recolouring: we intoeduin Chapter 4
the notion of Feder-Vardi transformation of a represeatativhich allows one
to transform a representation into another represent#tatrrepresents the same
forbidden patterns problem, but that is not necessarilyvatgnt with respect to
recolouring €f. example following Corollary 4.22). In the light of this faste
could extend our morphisms in the categ® R o). That is, define a morphism
between two representations as a finite sequence of recaswand Feder-Vardi
transformations. This yields the following question: dd@s new category rep-
resent faithfully the inclusion relation between forbiddeatterns problems? As
this question seems still quite hard and because we havendtehaormal form
for representations with “good” properties, we can firstaantrate on the case of
connected normal representations. We shall prove in thaireter of this section
some results that support the following conjecture.
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Conjecture 5.17 LetR; andfR2 be two non-trivial connected representations.
FP(MR1) C FP(R2) if, and only if,normal (:1) — normal (Ryz).

The converse implication holds: we haké€(i1) = FP(normal(9i1)) and
FP(%2) = FP(normal (Ry)), by Theorem 4.23, and by assumption

normal (?R1) — normal (Ry);

hence, by Proposition 4.1, it follows théP(normal (931)) C FP(normal(fR>)).
We now prove some supportive results with respect to ther atinglication.
Assume thaFP(R1) C FP(MR2) and thathormal(R1) is conform, and le; be
its template. We havEP(R1) = CSRT;) > T;. Hence,T; is a yes-instance of
FP(R,): that is, there exists somesuch thafl, —> T, (whereT, denotes the tem-

plate ofnormal (2R2)) such that for any non-conform forbidden pattﬁﬁiTz

_ f .
of normal(fR), we can not have some homomorphiBm=T; and the following

commutative diagram

f
F—T1

N

T

Hence, the remark following Proposition 4.16 implies that:
normal (931) —>normal (9).
We have just proved that the above conjecture holds whenrtedpresentation

has a conform normal form.

Proposition 5.18 LetfR1 andi, be two connected representation. Furthermore,
assume thatormal (931) is conform.

FP(R1) C FP(MRy) if, and only if,normal (1) —normal (Ry).
We shall need the following lemma.

Lemma 5.19 LetR; and®i;, be two connected representationsiif — R then
normal (9R1) —normal (k).
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PROOF Note thatnormal(9R1) — 1 (cf. the remark on the end of Subsec-
tion 4.5.1). Hence, ifR;— R, thennormal (R1) —NR2. So we may assume
w.l.0.g. thatR; is normal and tha®i; —>MR,. Let Ry = (T, M) with |T| = pand
R = (V,N).

It suffices to check that we can construct a recolouring fraafter each elemen-
tary Feder-Vardi transformation (the other transformaimvolved in the compu-
tation of the normal form yield representations that areedent with respect to
recolouring equivalence). For simplicity, we do not coesidompact forbidden
patterns. This does not change our result, as a compaatftebpatteriS, CS(V))
stands for a set of forbidden patterns

£ = {(S c)) such that for any € [S], cj(x) € ¢, (X)}

and were introduced solely to prove termination: in factrygag out an elemen-
tary Feder-Vardi transformation with respect(ﬁ)cg(v)) corresponds to carrying
out the elementary Feder-Vardi transformations with respe each forbidden
pattern inZ in parallel.

Let (S,c) € A be a non-biconnected forbidden patterrfRyf that admits a de-
composition(Po, ci?) > (P1,cit). LetR, be the elementary Feder-Vardi transfor-

mation ofR, with respect to the decompositi¢Ry, i) > (PL,cht) of (S,c5) and
letx := c3(x).
1. (S.) is not of the form(Sr o c3).

Considerr“to be the mapping that agrees witHor any x’ € v such that
r(x') # X; and, such that(X') = xo, otherwise. Clearly, we hag; —>Ro.

2. (Sc)) is of the form(Srocy).
The fact thatr is a recolouring an@i1 is normal implies that any inverse
image(Po,cEO) > (Pl,cﬁl) of (Po, ciY) > (P, cht) viar is such that either:
e forie {0,1}, the Colouringpﬁ is not a homomorphism @ to T; or
e forie {0,1}, there exists some biconnected conform forbidden pattern

(M,cM) € M such that(M, c)) - (R, cf}).

Let X' € u. Let Sy be the set of inverse imagé@o,cﬁo) > (Pl,cﬁl) of
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(P, cho) > (Py, ci*) viar such that[P(x) = cf*(x) = x.
The key property that shall allow us to build a recolouringasne kind of
uniformity principle:

Fact 5.20 There exists someci{0, 1} such that for anyPy, cﬁo) > (P, cﬁl) €
Sy, either:

e the colouring ﬁ' Is not a homomorphism of B T; or

e there exists some biconnected conform forbidden pa(Mmh") eM
such that(M, ci) > (P, cf}).

We call i aninvalid componenbf Sy..

To see this fact, note that once the inverse image of the colioxiin the
inverse image has been chosen, xaythe choice of the inverse images
for each component is independant. So, if the above did natthen we
could choose a valid colouring for each component amebuld not be a
recolouring.

Let x be the colour ok in (Po,c\F,)O) > (PL,cht). We now construct some ~
fromr:

e for any coloury’ € psuch thar(x’) # x, f agrees withr; and

o otherwisey(x’) := x;j wherei is the invalid component of,..

By construction, we havmlL 5%2.

This concludes the proof. O

Consider now the case of monochrome forbidden pattern @nadl LetA and
B be twoo-structures. Suppose thiaP(A) C FP(B). SinceB is a no-instance of
FP(B), it follows thatB is a no-instance df P(A); in other words that there exists
some homomorphismg B. Hence, thaid is a recolouring of the monochrome
representationl, (A,cq)) of the first problem to the monochrome representation
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of the second problend, (B,c?)) as quite clearly the following diagram com-
mutes.

In the light of Lemma 5.19, it follows that:

normal(1, (A,c})) —normal (1, (B,c§)).

Notice that the above proof extends to the case of monochforba&den pat-
terns problems (note the plural). Hence the conjecture holdsialtbe case of
monochrome forbidden patterns problems and we can stafellwing.

Proposition 5.21 Let %31 and R, be two monochrome forbidden pattsnorob-
lems.
FP(R1) C FP(MRy) if, and only if,normal (1) —normal (Ry).

| think that one possible approach to the conjecture in timeige case would
be to use the exponential of a representation. My intuitemes from the fact
that the exponential of a representation contains somebme snformation about
“cleverer” recolourings; these recolourings being adegsind taking into account
the fact that somewhere “local”, a structure that definestadden pattern occurs
or not.

To conclude this chapter, let us mention the possibility &firdng ahierar-
chyof problems. Leff be somes-representation. Th@on-uniform) recolouring
problemwith templatet is the problem that takes as instanceepresentations;
and, has yes-instances thaseepresentation3t such thath — <. In the same
way that forbidden patterns problems generalise homonsrpproblems, one
can define problems that generalise the recolouring prablémese problems are
given by asecond generation representatitimat consists of a representati@n

(the templatg, together with a finite sef of forbidden E-recoloured) repre-
cS . . .
sentations¥ — <. This problem takes representations as instances and kas ye

: : . L C2
instances those representati@nhsuch that there exists a recolouri?ig= <, such
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5 S
that for every forbidden representati@ncii in F,if SLQ‘Q[ then the following

does not commute
2

We could then define a notion of recolouring of second geiwgraind so on.



Chapitre 6

De la complexité des problemes de
motifs interdits

Je montre qu’il existe des problemes de motifs interditsrguisont pas
dans CSP et qui sont complets pour les classes de compigxiéetNP. Je
fais brievement le tour des restrictions standards apgbsaaux probleme
de motifs interdits pour obtenir des problemes qu’on puigseudre effica:
cement.

192}
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On a vu aux chapitres précédents que les problemes de nmieifdits généra-
lisent les probléemes d’homomorphisme; les premiers cpamdent exactement a
la logiqgue MMSNP, logique qui a été introduite par Feder etivdans [16] dans
une tentative de caractérisation des seconds. Depui®anvie dizaine d’années,
on a tenté de caractériser la complexité des problémes dhmphismes, le but
ultime étant de prouver un résultat de dichotomie pour casels. Il existe ainsi
de nombreux résultats qui permettent de savoir si certaotdgmes d’homomor-
phisme sont danB ou bienNP-complets. Il y a par contre a ma connaissance
moins de résultats «fins» de complexité pour les problememait Etre dans
P; on sait que certains problemes d’homomorphisme sont Nangf. [28]) et
on donnera au chapitre suivant les premiers exemples calenpioblémes d’ho-
momorphisme qui sont complets pdurDans ce chapitre, je montre qu'il y a des
exemples de problemes de motifs interdits qui ne sont pagrdb&mes d’homo-
morphisme et qui sont complets pour les classes de compMRjtP et NL. Puis
dans une seconde partie, je m'intéresse a des restrictiuvapt étre appliquées
aux problémes de motifs interdits pour faire descendredemplexité jusqu’®.
Certaines définitions sont rappelées brievement en Apperidi
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6.1 Examples of complete problems for each class

In order to give complete problems féi, P andNP, we use first the fact that
forbidden-patterns problems correspond to the logic MMSblFPead directly
from their defining MMSNP sentence the complexity class tactithey belong
by hand of Gradel's elegant logical characterisations [8&p. Then, to prove
completeness we simply encode known complete problemg fisihidden pat-
terns problems. The present section is by no means an attdraparacterising
the complexity of forbidden patterns problems but ratheillastration of what
kind of problems can be encoded using forbidden patterrnsgmcs.

6.1.1 AnNL-complete problem

Let 02 := (E1,Ez), whereE; andE; are two binary relation symbols. Consider
G to be the representation with,

e colour set{0,1}; and

o forbidden pattern®v DC}, WDC; and BDC? (as depicted in Figure 6.1):
here the top index denotes the type of edges involved in adden pattern
(on the figure, edges of tyde, are drawn as solid lines and edges of type
E, as dotted lines).

| e

WDG o @

~—"

WDG o e

<

BDCZ o e

~

Figure 6.1: The representatiah
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Fact 6.1 FP(S) is in NL.

PROOF. LetW be a monadic predicate (standing for white) angd z be some
variablesW DC} corresponds to the following negated conjunct

~(E1(%,y) AE1(¥, ) AW(X) AW(y))
WDC§ corresponds to the following negated conjunct
~(E2(%,y) AEa(¥, ) AW(X) AW(y))
andBDC3 corresponds to
~(E2(%,Y) AEa(¥,X) A =W(X) A =W (y)).
Hence the following sentence of MMSNP expresses exactlptbielemFP(S).

IVXYWZ  —(E1(X,Y) AE1(y,X) AW(X) AW(Y))
A= (E2(%,y) AE2(Y,X) AW(X) AW(Y))
A=(E2(%Y) AE2(Y, X) A =W (X) A=W(y))

Notice that this sentence has at most two occurences of thadiopredicat&V
in each negated conjunct, that is, it is in the fragment obsd®rder logic known
as ESO-Krom. By a result of Gradel, this logic is known to capthe complexity
classNL. Hence the result follows. O

Fact 6.2 FP(S) is hard forNL.

PROOF The restriction of &t to formulas with at most two literals per conjunct,
namely 2-3T, is known to be complete fadL. We reduce 2-8r to FP(S).

For each variablg that occurs in some instangeof 2-SAT, we put two elements
vy andvg, one for each literal. Moreover we sgi(vy, V) andEx(vy,vy) to hold.
For each claus€ of ¢ involving two literals/; and/,, we setEq(vy,,Ve,) and
E1(vs,,Vy,) to hold. Denote byGy this a2 »-structure. We claim thap € 2-SAT

if, and only if, Gy € FP(&). See white as false and black as true. A colouring
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of Gy valid w.r.t. WDC3 andBDC? corresponds exactly to an assignment of the
variables of the formula), since these two forbidden patterns enforce that the
vertices corresponding to opposite literals have oppasiteurs. If a colouring is
also valid w.r.t. the forbidden patteill DC‘Q1 then the corresponding assignment
for ¢ is valid; indeed, the forbidden pattevid DC‘Q2 enforces that at least one of
two verticesv,, andvy,, that corresponds to the literals of a claes coloured
black. Clearly, the converse also holds. It can be checkatdhis transformation
can be achieved via a quantifier-free first-order reduction. O

Hence we obtain the following corollary using the theorerSulbsection 4.7.1.

Corollary 6.3 FP(S) is NL-complete and is a forbidden patterns problem that is
not a homomorphism problem.

Notice that it is probably not true that all forbidden patteiproblems that
are inNL have a defining MMSNP sentence that is also in ESO-Krom. khdee
the important mechanism of being able to use the full poweseaiond order
logic is missing if we restrict ourselves to MMSNP where we osly monadic
predicates. Here we used Gradel’s result only to provideiekquroof of the
complexity of our example.

6.1.2 AP-complete problem

The following example is an adaptation of an example Bf@omplete problem
from [21]. Consider the following signatuie. = (E1,E»,S",S™,A) where the
symbols are of respective arities221,1 and 1. Define @p to be the problem
captured by the following sentence of MMSNP.

ITIFVXYWZ —(ST(X) A=T (X)) A=(S (X) A =F(X)

A=(E1(X,2) AE2(Z,X) AF(X) AT (2)
A=(NAND(X,Y,2) AT (X) AT(y) A=F (2))
AT AF () A=(AX) AT (X))

where:

NAND (X7 Y, Z) - El (Xv Z) A EZ(Zv X) A El(yv Z) A EZ(Zv y) A EZ(Xv y) A EZ(y, X)'
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Note that this sentence is in ESO-Horn. It follows that thebpem G/pP is in

the clas¥. Moreover it is complete for this class, as it encodescirmuit value
problem The predicateS"™ corresponds to the positive inputs of the circuit; the
predicateS™ to the negative inputs; and, the predicAt® the output of the circuit.
Using the relation&; andE,, we can encode Nand gates (Sheffer’s stroke); put
an edge of the first type between the inpuif a gate and the output of a gate
z and an edge of the second type frarto x; and, put edges of the second type
between the input andy of a gate. The monadic predicafestands for true and
the monadic predicate for false. The first negated conjunct ensures that positive
inputs are set to true. The second one that negative inpaitsedrto false. The
third negated conjunct enforces that if one of the inputs RR&AID gate is false
then its output is true. The fourth negated conjunct endinagsf both inputs of

a gate are true then the output is false. The fifth negatedinongnforces that
we can not have a vertex set simultaneously to true and fdlse.last negated
conjunct states that the output is set to true. Note that weotloeed the negated
conjunct—(—T (x) A=F (X)), as this can not occur in@-structure that encodes a
circuit because of the first four negated conjuncts (thikesttick that allows us

to have a sentence in ESO-Horn).

We complete the colouring and simplify the above sentendegahthe following
good sentence that is logically equivaleot (Proposition 3.3):

ITIFYXVWZ = (ST (X) A =T (X) AF (X)) A=(SH(X)
A=(S (X)AT(X) A=F (X)) A -

—(E1(X,2) AE2(z,X) A =T (X)

-(E1 ,Z)/\Eg(Z,X)/\—!T(X)

(
(
(
—(NAND(X, Y, 2)
(
(
(

>

(X
(X

> >

X)

m T

AT(X) A=
AT(X) A=

>

—(NAND(X, Y, 2) X)

>

(T (X) AF(X))
A= (AX) A =T (X) AF(X) A=(AX) A =T (X) A=F (X))

We shall now build the representation that correspondsiscstntence; however,
since the coloufT (x) A F(x)) is not allowed, we directly remove it from the set
of colours. We get a representation with three colours:
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1. @ for (=F(X) AT(X));

2. e for (F(x) A—=T(x)); and
3. O for (=F(x) A=T(X)).
We write S*(®) to depict—(S"(x) A—T(X) AF(x)) and proceed similarly for the

other monadic predicates frooy. Let ¢ be the representation hence obtained
¢ is depicted in Figure 6.2. Showing that the correspondimgidiaen patterns

Figure 6.2: The representatid@n
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problem is not in CSP requires to compute the normal form efatove. This is
rather tedious as the fifth forbidden pattern has a homoniplage that is not
biconnected:

4

©

)

The seventh has two such homomorphic imageysand 3

@)

r

The eighth has one such homomorphic ima;gé:

Q©

However, after a Feder-Vardi transformation they do noldyany conform for-
bidden patterns. Hence, the normal form of the representdtis not conform
and we have the following.

Corollary 6.4 Cvp is P-complete and is a forbidden patterns problem that is not
a homomorphism problem.

6.1.3 AnNP-complete problem

The problem NM-MoONO-TRI was already considered in [16] as an example of
an NP-complete problem in MMSNP but not in CSP, but they referred20]

for completeness; as a matter of fact the problem consider¢a0] involves
colouring of the edges.

Proposition 6.5 The problemNo-MoONO-TRI is computationally equivalent to
the problemNAE-SAT:

e NO-MONO-TRI <q f.Fo NAE-SAT; and
e NO-MONO-TRI >gg NAE-SAT.

PrROOE First, we reduce an instanGof NOo-MONO-TRI to NAE-SAT, thatis a
setU of variables and a collectidd of clauses oved such that each clauses C
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has length 3. (Recall that NAEAS asks the following question: is there a truth
assignment fo such that each clause@has at least one true literal and at least

one false literal?). The traditional encoding for NAETSinvolves a signature
on = (Co,C1,C2,C3), where theC; are ternary predicates. Hencegstructurel
can be seen as an encoding of an instance of NAE-8s universe is a set of
variables, and i€;(x,y, z) holds, it means that there is a clause involwingandz,
where the first variable(s) appear as negative literal(s) and ther(ghpositively.
Let

M= (¢07 ¢17 ¢27 ¢3)7

where:

do(x,¥,2) = (E(xY) VE(y,X) A (E(y,2) VE(zY)) A (E(zX) VE(X,2))

¢1 = false
¢, = false
¢3 =false

[1is an interpretation of, in o, of width one; and, clearly) € NO-MONO-TRI
if, and only if, M(U) € NAE-SAT. Thus, No-MONO-TRI <q.f Fo NAE-SAT.

Figure 6.3: example of the reduction of one cla{iggy, x} .

Now, we shall reduce NAE-& to NO-MONO-TRI via aF O-interpretation.
We, first introduce the idea of the reduction in more tradiioterms, and in a
second time show that this reduction can be implemente& @anterpretation.
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First, we need to define a graph, used as a gadget in the redudtet Gs be
the graph with vertice$xr,Xo, X1, X2, X3, X4, X, }, and whose edges consist of the
union of the following sets:

i {(Xo, Xl): (le X2)7 (X27 X3)7 (X37 X4)7 (X47 XO)}’
o {(XT,%)[i=0,4};
® {(Xvai)“2074}U{(XT,XL)}'

Note that there are only two possible 2-colouringsGaf such thatGs has no
monochromatic triangle and, further, that these colow®sepx andx; with the
same colour, whereas thgs are set the other colour.

For every instancéJ,C) of NAE-SAT, we construct the grapB as follows.

e G has a vertex and a vertex for each variablein G; and,

e we add a copy of the gadg€s between any two such verticesand X,
identifying x with x+ andx with Xp; and,

e for every clause < C involving three literald1, /2, /3, we add three special
vertices(y, 25,45 and three copies @s that enforce that th&’s and the/;'s
have opposite colours.

e Finally, the constraint given by the claus®etween the literalé;, /5, /3 is
enforced by adding a triangle between the three speciatestt/s, /5, /5.

Suppose that the original instance is satisfiable: therucahowvhite one node
corresponding to a literal assigned to false and in blackdemorresponding to
a literal assigned to true. Now, colour the gadget as follagsign tox, the
same colour as the one assigned,tand assign the opposite colourkg. .., X4.
Clearly, this colouring does not introduce any monochraen@iangle and the
graph belongs to N-MoNo-TRI. On the other hand, if the graph belongs to-N
MoNoO-TRI, the nodes added enforce that nodesdx have an opposite colour
and because every triangle corresponding to a clause isnomechromatic, at

IWe can not add directly a triangle betwe&t¥,, /3, otherwise the interaction of such triangles
may well lead to a triangle that does not correspond to a elafithe instancéJ,C) of NAE-SAT.
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least one literal per clause must have been assigned a vifieieiot from the
other literals.

This reduction can be implemented vid& ®-interpretation. We leave this as
an exercise for the reader. O

We have proved in Section 2.4 thabNMONO-TRI was not in CSP. We get
the following.

Corollary 6.6 No-MoNo-TRI is NP-complete and is a forbidden patterns prob-
lem that is not a homomorphism problem.

6.2 Some restrictions ensuring tractability

There are well-known restrictions over instances of diffigtaph problems which

tend to give rise to tractable problems; restrict the giftthe instances, restrict the
problem over trees, over planar graphs or over graphs of someble bounded

degree. We briefly discuss these approaches in this section.

6.2.1 High girth

The first kind of obvious restriction for forbidden pattepreblems whose normal
form has no conform forbidden patterns likeoNM ONO-TRI consists in restrict-

ing the instance to have sufficiently high girth such thatenoh the forbidden

patterns can occur in any colouring. Hence clearly we hagdatowing.

Fact 6.7 Everyo, structure that encodes a graph with girth greater or equad to
belongs taNO-MONO-TRI.

This can be generalised as follows.

Corollary 6.8 Let(T, M) be some normal connected representation. Let g be the
largest cycle that embeds in a forbidden pattern frdm If CSRT) is tractable
then the problem FPT, M) restricted to instances of girth strictly greater than g

is tractable.
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PROOF Let A be some instance of girth greater thgn If A—T thenA ¢

FP(T,M); otherwise, an;AgT is a valid colouring w.r.t. (T, ™). In other
words, the problem reduces@SRT). O

6.2.2 Bounded tree width

The approach restricting the instances of some difficulplgnaroblems to trees
(thus avoiding back-track) can be generalised to instaotbeunded tree-width
(thus avoiding back-track once it has been checked that starioe is locally
satisfiable). For the constraints satisfaction problens, ltlas been investigated
among others by Freuder [18,19] and Decleteal.[8,10]. Recently, the latter has
proposed a unifying framework based on the algorithmic etspkthis method:
bucket eliminatiori9]. A more formal generalisation is also known for problems
in monadic second order logic. This general result was priyeCourcelle [5].
This leads to the following.

Corollary 6.9 Let k be some fixed positive integer. When restricted to mests
of tree-width at most k, a forbidden pattern problem is tedote?.

6.2.3 Bounded degree

A further way of restricting graph problems is well-knowhgonsists in consid-
ering only graphs of a certain bounded degree. We investigate the case of
NO-MONO-TRI.

Lemma 6.10 Everyos-structure that encodes a graph of degree at most two is a
yes-instance oNO-MONO-TRI.

PROOF There is an obvious algorithm to build valid colourings oé€ls instances.
Every connected component can be dealt with independeilassume w.l.0.g.
that the instance is connected. Pick up some vertex and rcoliouwhite. Pick

2More precisely, in linear time: the problem is decidablérinet linear in the structure size but
also the solutions are computable in time linear in the stinecsize plus the size of the output by
a recent generalisation of Courcelle’s result [17].
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up the vertices it is adjacent to (there are at most two) af@lcthem black and
so on. We have levels that correspond to each stage of thetalgo There can
not be any edges between two vertices that are at least twis lapart. Moreover
there are at most two vertices per level. Hence the reswtlgléllows. O

6.2.4 Planar instances

Another way of restricting a forbidden patterns problem biamn tractability
would probably involve some concept near the concept ofgsifor graphs. We
shall use here the four colour theorem to prove that our mamele No-MoNo-
TRI becomes tractable (as a matter of fact it becomes trivianaestricted to
planar graphs.

Lemma 6.11 Everyo,-structure that encodes a planar graph is a yes-instance of
NO-MONO-TRI.

PROOF This short and elegant argument has been proposed by Radpari®hon.
Let Abe ao,-structure that encodes a planar gr&piBy the four-colour theorem,
G is 4-colourable (in the restricted sense: adjacent edges diferent colour).
Consider some valid 4-colourirgf of the vertices ofs with {0,1,2,3}. Colour
in 0 those vertices that have been coloured in 0 and 2 and ihdneise. This
colouring ofG has no monochromatic triangle, otherwiSewould not be a valid
colouring. O

Hence we obtain the following.

Corollary 6.12 No-MONO-TRI is tractable (trivial) when restricted to instances
encoding planar graphs.

Recall that planar graphs can be defined in terms of forbiddi@ors. So, it
would be interesting to investigate how sets of graphs defiméerms of forbid-
den minors compare with forbidden patterns problems.
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Chapitre 7

Le probleme d’homomorphisme
pour des algebres unaires

Nous montrons que le probleme d’homomorphisme uniformestea-dire
qgue la donnée consiste en une paire de structures) resdteirpgaires d’al-
gébres unaires avec un seul symbole peut étre résolu(espace logaritht
mique). Nous prouvons également une dichotomie pour lseldss pro-
blemes analogues non uniformes : ces derniers sont triviale patron (lal
structure cible fixée) a un point fixe etcomplets, sinon. Il y a un saut i
gnificatif de complexité lorsque deux symboles unaires sonsidéres : le
probléme uniforme est alors trivialement d&3; et, nous montrons par I'in
termédiaire d’'un codage assez naturel des problémes dimonpihisme pour
des graphes non orientés qu’il existe des problémes aredotan uniformes
qui sontNP-complets. Pour information, ce chapitre est le résultan d'avail
commun avec lain Stewartf, [42]). Ces résultats ont étés unifiés avec des
résultats réecents de Feder dans [15].

185
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Deux résultats exceptionnels illustrent bien la tentatieeclassification de la
complexité des problemes d’homomorphisme non uniformespiemier a été
établi par Schaefer [52] qui a complétement caractéris@maptexité des pro-
blémes dont le patron est une structure booléenne. || montesi le patron ap-
partient a une classe parmi six classes spécifiques, ajrsbd&me correspondant
appartient a la classe de complextésinon il estNP-complet. Notez ladicho-
tomie(rappellons qu’en général ce n’est pas le cas puisque,&bdprthéoreme
de Ladner, sP # NP, alors il existe une collection infinie de classes distiacte
problémes qui sont calculatoirement équivalents eneeNP). Le second résul-
tat est d0 a Hell et Ne&#t[23], qui ont montré que lorsque I'on se place dans
le cas des graphes non orientés sans boucles, les problémesochorphisme
non uniformes sont darky si le patron est un graphe bipartif®-complet sinon.
Notez également la dichotomie dans ce cas. Pour plus ddésd&iaices résultats,
reportez vous a la section 2.2. Dans le présent chapitre, muouws intéressons a la
complexité du probléeme d’homomorphisme dans le cas d'aggebnaires. Tout
d’abord, nous étudions le cas d’algébres ayant seulemesyrahole unaire, puis
celui d’algebres ayant deux symboles unaires. Dans le pretas, nous mon-
trons que le probléme uniforme appartient &t que des problemes analogues
non uniformes qui sorit-complets existent. En effet, nous obtenons en fait une
dichotomieplutét drastique : un tel probleme est toujoursomplet, a moins que
son patron n’ait un point fixe, auquel cas toute fonction inast acceptée (et
donc le probléme est trivial). Dans le second cas, le probléom uniforme étant
facilement vu comme membre de la classe de compl&btérous montrons qu'il
existe des problemes analogues non uniformes quildBrdomplets. Nos résul-
tats apportent ainsi quelques éléments a la classificati@oers des problemes
d’homomorphisme, et a notre connaissance, nous donnongieigy exemple
connu de probléme d’homomorphisme qui deitomplet (la plus petite classe
non triviale pour laquelle on avait un exemple de problenepmet, a savoir 2-
SAT étaitNL).
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7.1 Basic definitions

A signatureconsists of a finite collection of constant symbols, functsgymbols
and relation symbols, and each function and relation syrhbslan associated
arity. A finite structure Aover the signature, or o-structure consists of a finite
set|A|, thedomainor universe together with a consta@” (resp. functionF4,
relationR?) for every constant symb@ (resp. function symbd¥, relation sym-
bol R) of g, with functions and relations being of the appropriateydiite usually
only include superscripts in the names of our constantsstioms and relations
when it may be unclear as to which structure we are dealinig)withesizeof a
structureA is the size of the domain and is denotéd also. Ahomomorphism
¢ : A — B of ao-structureA to ao-structureB is a mapj : |A| — |B| such that:

e any constant oA is mapped to the corresponding constanBpf

e if F is afunction symbol of arity then

FA(Ul,UZ,...,Ua) =V= FB(¢(U1),¢(U2)7-._,¢(Ua)) = ¢(V)7
for all ug,up,...,ug,ve |A

e if Ris arelation symbol of arit then

R*(ug, Uz, ..., Up) holds = RE(d(u1),d(u2),...,¢(up)) holds,

forall ug,uy,...,up € |A].

If there exists a homomorphism Afto B then we writeA — B.

Let C be a class of finite structures. Thaiform constraint satisfaction prob-
lem CSPF- has: as its instances paif8, B) of structures fromC over the same
signature; and as its yes-instances those instaffedy for which there exists
a homomorphism oA to B. If all structures inC are over the same signature
andT € C then thenon-uniform constraint satisfaction proble@SR-(T) has:
as its instances structurésc C; and as its yes-instances those instarkedsr
which there exists a homomorphismAto T. We should add that the individual
tractability, for example, of an infinite collection of namiform constraint satis-
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faction problemqg CSP-(T) : T € C} does not automatically yield the tractability
of the uniform constraint satisfaction problem GSFRor it may be the case that
the size of the template, whilst a constant in a non-uniforabjem, might play
an exponential role in some time bound (see [35] for an exatian of this issue).

We shall be involved with problems solvablelirand complete for this com-
plexity class. As regards completeness, the notion of temueve work with
comes from finite model theory and is the quantifier-freequtipn. Before giving
a definition of a quantifier-free projection, we present aanegle of a quantifier-
free projection from one problem to another. As it turns o, will need this
actual reduction later on. The reader is referred to, fongxe, [26, 27, 54] for
more on quantifier-free projections and other logical réidns, and their rele-
vance as low-resource reductions: we only sketch the issres

Let the signatures,, . consist of the binary relation symb&l and the two
constant symbol€ andD. We can think of ao,  -structure as a digraph, pos-
sibly with self-loops, with two designated vertices (whiolay be identical). The
problem DTG has: as its instances the classogf . -structures which, when
considered as digraphs with self-loops, have the propleatyevery vertex has de-
greeat mostl; and as its yes-instances those instances with the pydpattthere
is a path in the digraph from the vert€xo the vertexD. The problem DTg has:
as its instances the class@f, | -structures which, when considered as digraphs
with self-loops, have the property that every vertex haselgxactlyl; and as its
yes-instances those instances with the property that ther@ath in the digraph
from the vertexC to the verte)D.

We shall derive four quantifier-free formulae over the stgrao,, . and we
shall use our formulae to describe, given an instaha# DTCgp 1, an instance
p(A) of DTC;y: the first formula will define the vertex set p{A); the second
formula will describe the edge relation of our instance; #ralthird and fourth
formulae will describe the source and target vertices.

The domain op(A) is |A]2. We assume that, regardless of the signature, we
always have a binary relatiuccat our disposal that is always interpreted as a
successor relatioon the domain of any structuriee., as a relation of the form

{(j,ij+1) 1 1=0,1,...,n—1},
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when the domain of a structure of siaés {ig,i1,...,in—1}, and also two constant
symbols, 0 andnax that are always interpreted as the least and greatestigme
respectively, of the successor relatgucc(more of this successor relation later).
Let us suppose for simplicity that the elements|Af are {0,1,...,n— 1} and
abbreviatesucdu,v)’' by ‘v=u+1". The vertices of (u,v) : v=10,1,...,n—1}
will form a path(u,0), (u,1),..., (u,n—1) in p(A), with a self-loop afu,n—1),
except that:

e if (u,v) is an edge oE”, whereu # v, then there is no edggu,v), (u,
v+1)) in p(A) nor self-loop((u,n—1), (u,n—1)), if v=n—1, but there is
an edg€g(u,v), (v,0)) in p(A); and

e if (u,u) is an edge oEA then there is no edgéu, u), (u,u-+1)) in p(A) but
there is a self-loop(u,u), (u,u)).

The source vertex gb(A) is the vertex(C*,0) and the target vertex i€D*,0).
It is easy to see that an instangef DTCy; is a yes-instance if, and only if, the
instancep(A) is a yes-instance of DT{Jas wheneveu # v, there is an edggu, v)
in EA if, and only if, there is a path from vertgx, 0) to vertex(v,0) in p(A)).

The formulayg, We, Yc and Yp describing the above construction are as
follows.

Wo(X1,X2) = X=X
We(X1, X2, ¥1,Y2) = (Xa=Y1AY2=%2+1A=E(X1, X))
V(X1 = Y1 A X2 = Y2 = maxA —E(x1, max)
V(X1 # X2 AYy1 = X2 AY2 = 0ANE(X1,X2))
V(X1 =X AX1 = Y1 A X2 = Y2 AE(X1,X2))

We(x1,%2) = X =CAx=0

Wp (X1, %2) x1=DAx2=0

The formulayp(xy, o) tells us that the vertex set p{A) is the whole of|A? (it
might have restricted the vertex set to be some appropyidééined subset 9|2

but in this case didn't); andig, Yc andyp describe the edge relation, the source
vertex and the target vertex pfA), respectively.
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So, we can say that DTGs aquantifier-free first-order reductionf DTCq 1
(as the defining formulae are quantifier-free first-ordeu); Wee can actually say
more. Note that the above formulg is of the following form.

\/{(Gi ABi):1=1,2,...,k},
for somek > 1, where:

e eacha; is a conjunction of atoms and negated atoms not involving elay
tion or function symbols of the underlying signatuse (; in the illustration
above);

e theaj’s aremutually exclusivg.e., for any valuation on the variables (and
constants) of anytj andaj, wherei # |, it is not the case that botly and
aj hold;

e eachf3 is an atom or a negated atom (over the underlying signature).

Indeed, the formulagdc andp are trivially of this form too; and, furthermore,
Yo is a quantifier-free first-order formula not involving anyatéon or function
symbols of the underlying signature. Hence, there ggiantifier-free projection
from the problem DTg to the problem DTE (see A). It was proven in [54] that
DTCo,1 is complete foil via quantifier-free projections; and consequently RTC
is also complete fot via quantifier-free projections.

Quantifier-free projections are so called because the dgfifirmulae are
quantifier-free first-order and any ‘bit’ of a target instane.g, edge ofp(A),
above, depends only upon at most one ‘bit’ of the source tstreie.g, edge of
A, above. They are extremely restricted reductions betweeblggms and can
easily be translated into other restricted circuit-baseshadel-based reductions,
e.g, logtime-uniform NC-reductions, used in complexity theory (see [27]). The
(built-in) successor relation and the two associated emtsigive us an ordering
of our data which often enables us to model machine-basegutations where
all data (such as input strings and instantaneous desorg)tis ordered.

We have one final remark: in our example above, we used quarftidie first-
order formulae to describe an edge relation and two corsstaffe can equally
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well use such formulae to describe functions by treatingwaary functionF as an
(m-+1)-ary relationRg where for any elements, uy, ..., uny, there exists exactly
onev such thatRe (ug, Uy, ...,um,V) holds (constants,e., O-ary functions, are
described above in this way).

7.2 One unary function

Let A1 be the signature consisting of one unary function synfbdlhe decision
problemHom-Alg has as its instances paif8,B) of Aj-structures; and as its
yes-instances instancés, B) for which A — B (and so Hom-Alg is the problem
CSR-, where( is the class of alhj-structures). The size of an instance is the
maximum of the sizes oA andB. We assume that a unary functiéns encoded
for input to some Turing machine as a list of pairs of the fgumf (u)).

Let Abe a\-structure. Thgraphof Ais thea,-structureA = (|A|,E), where
E(u,v) holds if, and only if, f (u) = v (note that it may be the case tHatu, u)
holds inA). The proof of the following lemma is trivial.

Lemma 7.1 Let AandB beA;-structures. TheA — B if, and only if,A—> B.

Proposition 7.2 The problem Hom-Algis in L.

PROOFBY Lemma 7.1, we can assume that we are given pairs of grdphsoy
functions as instances rather than pairs of unary functions

Let A be the graph of some unary functidn Then in generah consists of a
collection of connected components where each componant asrected cycle,
which may have any length greater than 0 (and so may be aocsglj;Isome of
whose vertices are roots of in-trees. These componentsearsbalised as in
Figure 7.2. We call these components cycles with pendaineas. We define the
length of a cycle with pendant in-trees as the length of thectied cycle.

Let (A,B) be a pair of graphs of unary functions where fia, |B|} is n.
Suppose that there is a homomorphism taking some conneateponentC of
A to a connected componeBt of B. If C is a cycle with pendant in-trees of
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Figure 7.1: The components of the graph of a unary function.

lengthc thenD must be a cycle with pendant in-trees of lendtWwhered divides
c. Furthermore, ilC andD are cycles with pendant in-trees of lengthandd,
respectively, and dividesc then there is a homomorphism®©fto D. Hence, the
following is a necessary and sufficient condition for a horogphism ofA to B
to exist.

e For every cycle with pendant in-trees of lengtln A, there must exist a
cycle with pendant in-trees of lengthin B whered dividesc.

This condition can easily be verified usi@glogn) space (im). For example,
we can ascertain whether a vertekes on the cycle of a cycle with pendant in-
trees inA by walking along the path emanating franand stopping aftem moves
(whenu doesn't lie on a cycle) or after we have returned {evhenu does lie on
a cycle). By counting as we walk, we obtain the length of theeyif u lies on a
cycle). We can then work through the verticesBathecking to see whether they
lie on the cycle of a cycle with pendant in-treesBipand if a vertex does lie on
the cycle of a cycle with pendant in-trees then we can cheakiven the length of
this cycle dividex. Hence, the problem Hom-Afg= L. O

Proposition 7.3 The problem Hom-Alg is L-hard (via quantifier-free projec-
tions).

PROOF LetA be an instance of DTL Define the unary functiotiy as follows.
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The domain offa is |A]? x {0,1} and:
e if C=D then:
— f((u,v,b)) = (C,C,0), for all (u,v,b) € |A]?> x {0,1};
e if C# D then:

— if (u,v) € E whereu# D, v# C andu # v thenfa((u,u,0)) = (u,v,0)
andfa((u,v,0)) = (v,v,0)

— if (u,u) € Ewhereu# D thenfa((u,u,0)) = (u,u,1)andfa((u,u,1)) =
(u,u,0)

- fa((D,D,0)) = (C,C,0)

— forany elementu, v, b) € |A]?x {0,1}\ {(D,C,0)} for which fa((u, Vv, b))
is still undefined, definéa((u,v,b)) = (D,C,0), and definda((D,C,0)) =
(D,C,1).

Essentially, apart from the trivial case wh&e= D, the graph offa is obtained
from the digraph whose edge relatiordsas follows:

e take a copy of the digraph (with self-loops) whose edgeimias E, and
replace any edge emanating from verewith the edgeD,C); and

e replace every edgéu,v), apart from the edgéD,C), by a pair of edges
(u,eyy) and(eyy, V), wheree,y is a new vertex.

Other vertices are actually introduced in the formal cartive process (defined
above), with two of these vertices beifB,C,0) and (D,C,1). The construc-
tion is completed by introducing edges from all verticesarafrom (D, C, 0), to
(D,C,0); and also an edge froifd,C, 0) to (D,C, 1). Now definega to have do-
main{0, 1} and to be such thaf(0) = 1 andga(1) = 0. We claim thatA € DTC;
if, and only if, (fa,ga) Z Hom-Alg;.

The trivial case is straightforward (note that if the graphfohas a self-loop
then there is not a homomorphismfafto ga): so suppose henceforth ti@&t~ D.
Suppose that there is a path in the digraph whose edge relatibfrom vertex
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C to vertexD. Then in the graph ofa, there is a odd length cycle with pendant
in-trees of length greater than 1. Hence, there is no hompinigm of f5 to ga.

Suppose that there is not a path in the digraph whose edgmnelsE from
vertexC to vertexD. Then all components of the graph &f are even length
cycles with pendant in-trees. Hence, there is a homomarpbisa to ga.

The construction of the unary functiorig andga from A can easily be de-
scribed by quantifier-free projections (seeg, [54] for concrete illustrations of
logical formulae describing reductions between probleams) so the result fol-
lows as DTG is complete fol via quantifier-free projections (note that there are
guantifier-free projections describing both thestructuresfa andga). O

The following is now immediate from Propositions 7.2 and 7.3

Theorem 7.4 The problem Hom-Alg is L-complete(via quantifier-free projec-
tions).

The problem Hom-Alg is uniform in the sense that any unary function can
appear as either the first or second component of an instaiWeeobtain non-
uniform versions of Hom-Alg by fixing the second component. The problem
Hom-Alg (T), for someA;-structureT, consists of all thosé;-structuresA for
which A — T (and so Hom-Alg(T) is the problem CSP(T), where( is the
class of all\1-structures).

The following is immediate from Propositions 7.2 and 7.3.

Theorem 7.5 Let T be theAi-structure corresponding to the unary functign
whose domain i§0,1} andg(0) = 1 andg(1) = 0. The problem Hom-Alg(T)
is L-completg(via quantifier-free projections

Hence, not only is the uniform problem Hom-Alg-complete, there are also
non-uniform problems Hom-AldT) that arelL.-complete (moreover, even when
T has only two elements).

Actually, we can say more about non-uniform problems of thenf Hom-
Alg1(T). Whilst the proof of Proposition 7.3 is such that the termgptzs a graph
that is a cycle of length 2, we can actually replace this tetepWith anyA:-
structureT so long as the graph &f has a cycle of pendant in-trees of length
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at least 2 as follows. Suppose thathas cycles of pendant in-trees of lengths
d1,d,...,dk, for somek > 0. Adopting the terminology of the proof of Propo-
sition 7.3 and with reference to this proof, in our constitiprocess when we
replace an edge of the graph pf with a path of 2 edges, instead we replace the
edge with a path ofl1d,...dx edges. So, if there is a path in the digraph whose
edge relation i€ from vertexC to vertexD then the graph ofa has a cycle with
pendant in-trees of lengthdid,...dk + 1, for somec > 1, and all other cycles
with pendant in-trees have length divisible 8yd,...dk (if there are any); and

if there is no such path then the graphfafis such that every cycle with pen-
dant in-trees has length divisible lolyd,...dy. Hence, we obtain the following
corollary.

Corollary 7.6 LetT be any\1-structure without a fixed point. Then Hom-Alg)
is L-completg(via quantifier-free projections

Trivially, if the A1-structureT has a fixed point then Hom-AJ¢T ) consists of
everyAs-structure and is identical to the problem Hom-£lgy), whereFy is the
function whose domain has one element. Note that wheredsithal' cases of
Hom-Alg;(T) are identical to Hom-Alg(Fp), so there is an analogous remark to
be made about Hell and Ne&é&s dichotomy: the ‘trivial’ cases, here the cases
where the problem is solvable in polynomial-time, are id=ito the case where
the template graph consists of a solitary edge.

7.3 Two unary functions

Let A, be the signature consisting of the two unary function symbaindg. The
decision problenHom-Alg has as its instances pai, B) of A,-structures; and
as its yes-instances instandésB) for which A — B. As before, the size of an
instance is the maximum of the sizesfo&ndB.

Let 02 = (E), whereE is a binary relation symbol. We shall begin by ex-
plaining how we can transform argp-structureG, which we regard as a simple
undirected graph via ‘there is an edgev), for u#£ v, if, and only if, eitherE (u, v)
or E(v,u) holds’, into aA,-structure. The\p-structureh,(G) is defined as follows.
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e The domain ofA\»(G) consists of

{urue|G}u{u:ue |G|} u{ey,eu: E(uV) or E(v,u)
holds andu # v}.

Furthermore, we call the elements fai : u € |G|} straight elementsthe
elements of{u’ : u € |G|} prime elementand the elements dfeyv, e,y :
E(u,v) or E(v,u) holds ancu # v} edge elements

e For any straight element, f(u) = uandg(u) = u’; for any prime element
U, f(u) =uandg(u’) = U'; and for any edge elemeet,y, f(e,yv) =V and
g(euy) = u.

The above construction can be visualized in Figure 7.2.

ﬁ €. 9
u < v

the function f <
—

the function g

> <

Figure 7.2: The construction ak(G) from G.

Lemma 7.7 Let G andH be undirected graphs. Thé&x— H if, and only if,
A2(G) — Ao(H).

PROOF Suppose thatp : G — H is a homomorphism. Define the mdp:
|A2(G)| — |A2(H)| as follows:

e if uis a straight vertex oh,(G) then¢(u) is the straight vertexp(u) of
)\z(H);

e if U is aprime vertex ok,(G) thend (U') is the prime vertex)(u)’ of Ax(H);
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o if &,y is an edge vertex ofz(G) thend(eyy) is the edge vertegyy, yv) of
A2(H).

That¢ is a homomorphism is straightforward: for exampiég,y) = vV in A2(G)
and f(§(euy)) = f &y yw) = WV =0V’ in H.

Suppose thap : A2(G) — A2(H) is a homomorphism. It is immediate that for
any straight or prime verte, ¢(u) cannot be an edge vertex (dsnaps every
straight or prime vertex to itself but not so an edge vertebence, define the map
Y : |G| — |H| as follows:

W(u)=v if, and only if, § maps the straight vertaxof A»(G) to
either the straight vertexor the prime verteR,(v)’
of )\z(H).

Suppose thatu,v) is an edge ofs. Theng,y ande, are vertices oh,(G)
and(eyy) = eap, for some vertexe, , of Ao(H) where(a, b) is an edge oG. In
A2(G), u=g(eyy) and so:

o (u) = d(g(euv)) = g(9(euv)) = g(eap) = b.
Also,V = f(eyy) in A2(G), and so:
O (V) = 0(f(euy)) = f(¢(euy)) = f(eap) =1,

with f($(V)) = f(b'), i.e, f(d(v)) = f(b), i.e, W(v) =b. Hencew is a homo-
morphism. O

Theorem 7.8 The problem Hom-Alg is NP-complete.

PROOF. Let 3COL be the problem, over, whose instances are undirected graphs
and whose yes-instances are instances that can be propsslg8ed (this prob-
lem has long been known to P-complete [20]). The problem 3COL can be
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reformulated as those undirected graphs for which therehignraomorphism to
the complete graph on 3 vertices. The result follows by Leriria O

As before, we obtain non-uniform versions of Hom-Algy fixing the second
component. The probletdom-Alg(T), for someAz-structureT, consists of all
thoseAs-structuresA for whichA — T.

Theorem 7.9 Let T be theA,-structure of the form,(G), whereG is the com-
plete undirected graph on 3 vertices. The problem Homx@Algis NP-complete.

Hence, not only is the uniform problem Hom-Al§P-complete, there are
also non-uniform problems Hom-AJgT ) that areNP-complete. However, we
have as yet been unable to obtain a classification of the ndarm constraint
satisfaction problems of the form Hom-Al@ ). Our only comment is that we
could have taken aniP-complete graph-problem that can be formulated as a
non-uniform constraint satisfaction problem, and not B&OL, to obtain an
NP-complete problem of the form Hom-AdgT ). Unfortunately, there are many
Ao-structures which are not the images of undirected graphdefuthe map\»,
above).

We have recently extended these results in a joint work witimds Feder and
lain Stewart: the former had contemporary and independsated results for
tractability of some related digraphs homomorphisms gaisl ¢f. [14]).



Chapitre 8
Conclusion

Le résultat principal de cette thése est un théoréme deaépaentre deux
classes de problémes combinatoires : les problemes diasttis de contraintes
(CSP) et les problemes de motifs interdits (FP). Les secétaig exactement les
problémes définissables par les formules de la logigue MM8&fie par Fe-
der et Vardi, qui ont prouvé dans [16] I'équivalence caltaile entre MMSNP et
CSP. Cependant, il est important de noter que cette équo@lealculatoire uti-
lise des réductions probabilistes polynomiales et qusteeuvert si ces dernieres
peuvent étre déterminisées. Ces auteurs avaient parraifteantré que CSP était
strictement incluse dans MMSNP ; leur preuve reposant ssiaggiments de dé-
nombrement, nous avions reprouvé dans [43] ce résultat de&neaconstructive
et prouvé guelques exemples supplémentaires. J'ai reppiaaturésultats dans la
fin du chapitre 2. Désirant initialement prouver qu’il nié{aas possible de déter-
miniser les réductions probabilistes mentionnées citgeésu plus exactement,
gu'’il n’existait pas de telles réductions déterministesedi, issues de la com-
plexité descriptive, comme Ids0-reductionsdont on a rappelé la définition en
Appendice A) je me suis fixé comme but intermédiaire de caraelr exactement
les problémes définissables par des formules de MMSNP quinigpas des pro-
blemes de satisfaction de contraintes. Le coeur de cette &t en fait consacré
a la preuve de ce résultat et la question initiale reste ¢tewv@ose espérer avoir
convaincu le lecteur que mon résultat est en fait un peu plusxgsimple résultat
intermédiaire.
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D’une part, la preuve de ce résultat présente un intérét ffety eette der-
niere met en évidence une généralisation des structures détanomorphismes,
les représentations et les recoloriages qui me sembla@etéi; mais aussi une
adaptation des techniques utilisées par Feder et Vardiiagoqduit a une forme
normale que I'on peut calculer. Ainsi, a partir de la formemale d’un probleme
donné, on peut décider facilement si ce probléme est danssCfkalement si ce
n’est pas le cas, la preuve permet de donner une constrgg@rarique de famille
de témoins, démontrant que le probleme n’est pas un proldersatisfaction de
contraintes puisque aucune structure ne peut en étre mnpatr

D’autre part, le résultat lui méme généralise un résultatatdif et NeSdil
(cf. [45]). Leur résultat utilise une élégante correspondamteselualité et den-
sité pour caractériser les paires duales, qui corresporders notre cas a des
probléemes de motifs interdits trés particuliers : les peai®s monochromes a un
seul motif interdit. La généralisation des structures &t lf@momorphismes par
les représentations et les recoloriages, me semble alausaght plus pertinente
gue, j'ai pu prouver que la méme structure algébrique quargasait la corres-
pondance entre dualité et densité dans le cas des strycusasgoir celle d’'une
algébre de Heyting, était présente dans ce cas plus général.

Dans [42], nous nous sommes également intéressés a uniselgiig peu dif-
férent : nous avons en effet noté que, bien qu’il existe delmenx résultats quant
a la complexité de problemes dans CSP pour des structuressédmblait pas en
exister pour le cas d’algébres. Nous nous sommes concauirés cas extréme-
ment restreint : celui d’algébres unaires. Nous avons putmaogue dans le cas
de seulement deux symboles unaires, le probleme uniforaité\ét-complet (ici,
«uniforme» signifie qu’'une instance consiste en une paegébre ; et, que la
guestion est de décider si il existe un homomorphisme dégppiemiére algébre
vers la seconde). De plus, dans le cas d’'un unique symbolesunaus avons
obtenu un résultat intéressant de dichotomie : les protdaroa uniformes sont
soit triviaux soitL-complets (par opposition, «non-uniforme» signifie qu’'ns-i
tance consiste en une seule algébre ; et, que la questior dstdler si il existe
un homomorphisme depuis celle-ci dans une algébre fix@gtlendu probleme).
Notez que ce résultat donne les premiers exemples connuolieémpes de sa-
tisfaction de contraintes qui soirtcomplets. Nous avons par ailleurs prouvé plus
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récemment dans [15] gu'il est au moins aussi difficile d’'obtein résultat de
dichotomie dans ce cas que dans le cas classique.

Le travail effectué dans cette these m’a inspiré quelquéssicet quelques
problémes sur lesquels j'espére pouvoir me pencher dangumgroche.

Premierement, je n’ai pas complétement renonce a prouven g pouvait
pas, dans une certaine mesure, déterminiser les rédugtiobabilistes du théo-
reme de Feder et Vardi. Pour ce faire, il faut a mon avis seingire a des réduc-
tions susceptibles de conserver les propriétés permegamanstruire des familles
de témoins tout en se plagant dans le microcosme des prab&oaeactére mono-
tone; je pense en particulier considérer tout d’abord disatéons correspondant
a des interprétations via des fragments monotones de FO.

Deuxiemement, un exercice théorique intéressant coraisaaenter d’extra-
poler les propriétés de CSP pour construire une hiéraréhli @SP>» au dessus de
la classeNP. Le mécanisme auquel je pense a été brievement esquissaé@n-co
sion du chapitre 5 : il s’agit de considérer au premier nivdaua hiérarchie,
les problemes de satisfaction de contraintes, puis ledgr@s de motifs inter-
dits, puis au second niveau de la hiérarchie (a conditioocéjater les représen-
tations comme des structures de données «raisonnablegeubconsidérer les
problémes de recoloriage non uniformes et leurs versioriifaiinterdits». Les
premiers correspondent a la version non uniforme du probl@en’inclusion de
deux problemes de motifs interdits, sous couvert de cesaistrictions quant au
type de représentations considérées et sous couvert dgézttoe 5.17 page 165.
Les seconds sont a ces problémes ce que les problemes deintetiflits sont aux
problemes de satisfaction de contraintes, et sont peaipkis difficiles a motiver.
Par ailleurs, j'ai I'intuition que la notion d’exponentide représentation intro-
duite au chapitre 5 peut servir a prouver la conjecture pigt®. En effet, on
peut imaginer desecoloriages contextuelgui transformeraient la couleur d’un
élément selon une certaine information locale. Notez zﬂjoesl’exponentiei)ﬁ{g{l
a pour couleurs I'ensemble des fonctions des couleurBddans celles d&i,
et des motifs interdits qui ont pour support des structutesqgnt des supports
de motifs interdits déR,. En observant attentivement la définition de I'exponen-
tiel, on peut alors voir les motifs interdits, comme la doméun motif dans le
contexte duquel le recoloriage donné par les fonctionstosalde chaque élément
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ne fonctionne pas.

Troisiemement, je pense que certaines techniques quegptées de la preuve
de Feder et Vardi et que jai utilisées pour construire lanfernormale pour-
raient étre utiles pour caractériser des CSP qui appadigraP. En effet, on
peut considérer des familles de motifs interdits dont oh gaé d’'une part ils
correspondent a des problemes de satisfaction de coeaht’autre part qu’ils
sont dansP. Par exemple, considérons pour le cas des graphes orisigés-
ture oy), la famille de probléemes de motifs interdits «pas de chemheitongueur
n». Dans le cas = 1, le probleme est un CSP et il a clairement pour patron le
graphe orienté a un élément et pas d’ arc. Rourl, on peut utiliser une trans-
formation de Feder-Vardi, «coupant» au niveau du secondr&tmdu chemin.
On obtient alors une représentation a deux coul€uet & et deux motifs in-
terdits compacts, I'un consiste en un seul arc, l'autre esche@min de longueur
n—1, c'est-a-dire O, 8 —=© et g~ {O. 8} —= - — {0, 4} - Le
premier correspond donc aux deux motifg): . et ¢ . ¢ . Ce dernier
motif permet alors de simplifier I'expression du second fratimpact pour igno-
rer la couleu. On obtient ainsi la représentation avec les trois motifsrdits
suivants :

OV 0l A —O@— ——n

Ce petit «calcul chromatique» permet donc de voir que leopatiu probléme
d’indice n consiste en celui du probléme d’indine- 1 (ce qui correspond au che-
min bleu) auquel on aurait ajouté un sommet supplémeniguiecOrrespond a la
couleur jaune) avec un arc depuis ce dernier vers chaque sarttmet (puisque
il 'y a pas de boucle autour de ce nouveau sommet en vertueduai@r motif
interdit et pas d’arc depuis le patron vers ce sommet en dertsecond). Ceci
permet donc de construire par induction les patrons cooregmts puisque I'on
a vu plus haut que pour= 1 le patron était tout simplement le graphe :

Ainsi, par le petit raisonnement effectué ci-dessus, om goe pourn = 2, le
patron est le graphe :
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Puis poum = 3 on a le graphe :

o——>0—>0

\/
Et pourn=4:
[ ] [ J [ ] [ J

On obtient les graphes orientés correspondant a des ordéssrés. Ceci nous
permet de caractériser de maniére «fine» (quant a leur cait@)lkes problemes

de satisfaction de contraintes correspondantes. En giffat,exprime les requétes
correspondants aux problemes de motifs interdits dont opees dans MMSNP,

il est clair qu’on obtient des formules du premier ordre.Aices problémes sont
dans la classe de complexltéLa littérature concernant ce sujet étant abondante
et éclatée entre plusieurs communauteés, il n’est pas tobsple que cette classe
soit vraiment nouvelle. Cependant, il se peut que par désigges similaires, on
puisse caractériser des classes polynomiales de CSPrd@mppar les couleurs
permettant de donner des «bonnes caractérisation» (ades@ts]).
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Lexique

construction Sip arrow construction.

calculatoirement équivalent computationally equivalent.

coeur core.

paires duales duality pairs.

tartouilleur duplicator.

probléme de motifs interdits forbidden patterns problem.

paires couvrantes gap pairs.

cyclicité girth (minimum des tailles des cycles d’un graphe).

conjonction interdite negated conjunct.

réduction polynomiale (probabiliste) (randomized) polynomial-time reduction.

censeur spoiler.
patron template.
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Abréviations

CSP........... class of the constraint satisfaction gnoisl (aka non-uniform
homomorphism problems).

ESO........... Existential Second-Order logic.

FO............ First-Order logic.

FP... ... . ..., class of the Forbidden Patterns problems.

Lot Logarithmic SPACE.

MMSNP....... Monotone Monadic Syntactic NP without inelifies.

NL............. Non-deterministic Logarithmic space.

NP ............ Non-deterministic Polynomial-time.

P Polynomial-time.

QFP..civinn Quantifier-Free Projection.
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Annexe A

Complexité (descriptive)

Further definition and examples can be found in the follovaomplexity theory
textbooks [25], [39] or [46]. We refer further to [20] f0¢P-completeness and
to [12] or [39] for descriptive complexity theory.

Complexity classes

The model of a computation used to define complexity classiesant to this
work is that of a (non-)deterministic Turing machine anatlghout this work:

L denotes the class of problem decidable in logarithmic space deter-
ministic Turing machine;

e NL denotes the class of problem decidable in logarithmic spaca non-
deterministic Turing machine;

¢ P denotes the class of problem decidable in polynomial tima determin-
istic Turing machine; and

e NP the class of problem decidable in polynomial time on a noteeinistic
Turing machine.

Problem

A problemis a class of structures that is closed under isomorphism.
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Logics

e FO denotes first order logic.

e ESO denotes existential second order logic.

The definition of the above logics can be found in [12].
e ESO-Krom denotes a fragment of ESO.
e ESO-Horn denotes another fragment of ESO.

The above are defined in [21].

Reductions

Let P andQ be two problems and letbe a function of the set of instanceshto
the set of instances .
We say that is apolynomial-time reductiofrom P to Q whenever:

e  can be computed in polynomial time; and
e for every instancd of P,

AcP < r(A) €Q.

We say that is arandomized polynomial-time reductiémom P to Q whenever:
e r can be computed in polynomial time; and
e for every instancd of P, the probability that
AeP <= r(AeQ

is high (say strictly greater tha}).
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Interpretations and logical reductions

In the following L denotes some logic (typically some fragment of first-order
logic). Leto andt be two relational signatures wheteconsists ofn relation
symbolsR; of respective arityrj (1 <i < n). Letk be a positive integer. Let
d1,...,6n be formulae froms (o), where the free variables ¢f are a subset of
{X1, . o Xr b

M= (¢1,92,...,0n) induces a mapping @TRUCo) to STRUCT) as follows.
Let A€ STRUGO). Then, the structurBl(A) = B is thet-structure with:

e universeB| := |AK; and

e forevery 1<i<nand any(ty,ty,...,t,) € |[B|"i, where:

1= (Ul, Up,..., Uk),tz = (Uk+1, Uk+2,- - -, U2k), ooty = (Ukri—k+1; ey Ukri)

RB(ty,to, ..., 1) holds if, and only if A = ¢;i(X/0).

I is called aL-interpretation ofo in t of width k
Let P C STRUCOo) andQ C STRUQT) be two problems. We say that the prob-
lemP is L-reducibleto Q (P <, Q, for short) whenever:

¢ there exists a-interpretatiori of o in T1; and

e for anyo-structuresh,

AceP < T(A) Q.

If £ =FO then we speak of BO-reduction Note that these reductions can be
achieved in logspace. When the FO-interpretafibsatisfies the followingro-
jection conditionwe speak ofO-projectionor fop for short. Every formula is of
the form:

a1V (02 AL2) V...V (OeAle)

where:

e everyq; is free of any occurrence of relational symbols from the aigre
o,
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e theaq;’s are mutually exclusive; and
e every/; consists of a single literal.

If, moreover, the formulas are quantifier-free, that is gwaris quantifier-free,
then we say thalffl is a quantifier-free projectioror gfp for short. Moreover, as
usual with gfps, except if otherwise stated, we allow a Haikuccessor function
Succ and two constantsandmax.



Annexe B

Théorie des catégories

For more detail and examples, we refer to [38].

Categories

A diagram schemeonsists of a seD of objectsand a sefA of arrowstogether

with two functions:

dom
—_—

A O

E—
cod

Fora,be Oandf € Asuch that donf = aand codf = b, we write:

f
a—-=Dp

In this graph, the set of composable pairs of arrows is the set
AxoA={<g,f>|g, feAanddomg=codf}

A categoryis a diagram scheme with two additional functions

d:0 — A o:AXpA — A
c — idc <g,f> +— gof

calledidentityandcompositionsuch that:
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e for all objectsa € O and all composable pairs of arrowsg, f >c AxpA,
dom(id (a)) = cod(id (a)),dom(go f) =dom f,cod(go f) = codg
and,

¢ the composition is associative and the identity law holtist is, for all

objectsa, b, c,d and arrowsf, g, h, if aé b-2-cd then:
fo(goh)=(fog)oh
idp of = f andgoid, =g

From now on, we write simplg € C for “a an object inC” and f € C for “ f an
arrow inC”. We may also saynorphisminstead of “arrows”.

EXAMPLE.
1. Setis the category whose objects are sets, and whose arrowsreteohs.

2. STRUCO) is the category whose objects arestructures, and whose arrows are
homomorphisms.

3. A partial order is a category (with the property that thisreexactly one arrow
between any two objects; and, that there is no cycle apam felf-loops when
viewed as a directed graph).

Let C be a category.

Duality

A very important feature of category theory is thatlofality. given some notion,
the dual notion is obtained by reversing all arrows. Indeestatement holds if,
and only if, its dual holds.
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Isomorphisms

An arrowa-% b is invertiblein C if there is an arrovib-%~a in C with eo e = ida
and€ oe=idp . If such ané€ exists, it is unique, and is writteef = e"1. Two
objectsa andb in the categor{ areisomorphidf there is an invertible arrow (an
isomorphisma->b; we writea~ b. The relation of isomorphism of objects is
an equivalence relation.

Monomorphism

P . : f
An arrowa—> b is monic(or left cancelable) if for any two parallel arrowls—a
f " . o .
andd —*a, the equalityi o f; =i o f, implies f; = f,. We also saynonomorphism

for “monic arrow” and writea—-b.

Epimorphism

An arrowa—>b is epi (or right cancelable) if for any two parallel arrows’> c
andb-2 ¢, the equalityg; os= gposimpliesg; = g2. We also sagpimorphism
for “epi arrow” and writea—>b. Note that this is the dual notion of the above.
EXAMPLE.

1. In Set, the above three notions correspond respectively to themof a bijective,

an injective and a surjective function.

2. InSTRUCQO), these notions correspond respectively to a (structuog)asphism,
an embedding and a surjective homomorphism.

3. In a partial order, the only isomorphisms are the ideritpws (equality) and the
fact that there exists a unique arrow between any two objeutties that every
arrow is mono and every arrow is epi.

Retraction

For an arrowa—> b, aleft inverseis an arrowa—>b with | o h = idy . A left
inverse (which is usually not unique) is also callegttractionof h. Note that it
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follows thath is monic. Moreover any left inverse bfis epi.

ExaMPLE. Consider the categor$TRUGO). Let a—=b be a retraction oh—>b.
Sinceh is an embedding, we can saeas a (not necessarily induced) substructur® of
such thab can be mapped homomorphically orteial, leaving the vertices d fixed.

A

Terminal object

An object 1 isterminalin C if from each objecta € C there is exactly one arrow
a—1. If 1 is terminal, the only arrow 4=1 is the identity id , and any two
terminal objects o€ are isomorphic irC.

Initial object

It is the dual of a terminal object. An object Oiistial in C if to each object
a € Cthere is exactly one arrow-8-a. If O is initial, the only arrow 0—0 is the
identity idy , and any two initial objects df are isomorphic irC.

Equalizer

f
d-%bforms anequalizerof b~ c if foe=goeand foranwgbsuch that
9

f oh= gohthere exists a unique such thateoh' = h.

EXAMPLE. In Set taked := {x € c such thatf(x) = g(x)} and take fore the function
that sendsxe dtox € b. A

Product

Leta,b e C. An objecta x b together with arrowa x b % aandax b2 bforms

. . f .
a productif for any objectc, and any arrows—a and c % b, there exists a
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unique arrowh such that the following diagram commutes:

C
\

I'h
Y

a<—naa>< b?b

g

ax bis called theproduct (objectand the arrowst, andTg, the projections Note
that the product of two objects is unique up to isomorphism.

EXAMPLE.
1. InSet it corresponds to the Cartesian product.

2. In a partial order, it corresponds to the least upper bound

Coproduct

It is the dual of the above notion. An objexct- b together with arrows—>a+b

. . f
andb—2a+ b forms acoproductif for any objectc, and any arrows—-c and
b ¢, there exists a unique arrdnsuch that the following diagram commutes:

A
I'h g
I

aﬁa'aﬁ'b?b

a+ b is called thecoproduct (objectland the arrows, and 1 the injections
(though they are not required to be injective functions).téNagain that the co-
product of two objects is unique up to isomorphism.
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EXAMPLE.
1. InSet it corresponds to the disjoint union of two sets.

2. In a partial order, it corresponds to the greatest lowento

Adjoint functors

A functoris a morphism of categories: that is, a function that presseobjects,
arrows, identity and composition. In detail, for categef@eandB a functorT :
C—B with domainC and codomairB consists of two suitably related functions:
theobject function Twhich assigns to each objext C an objecfl cof B and the

. . . . f
arrow function(also written T) which assigns to each arrow-c’ of C an arrow

TclLT¢ of Bin such a way that:

T(ide ) = idy(c) , T(go f) =idr(gT(f)

the latter whenever the composge f is defined inC. When the codomain and
domain are the same, we speak ofaaofunctor

Given two objects andb in C, we write honja, b) for the set of arrows from
atoh

LetC be a category. Ldt andG be two endofunctors @. Let¢ be a function
which assigns to each pair of objeetandc of C a bijection

$ac:homF(a),c) — hom(a, G(c))
which is natural ira andc: that is, for allc—%- ¢’ and alla—- & both the diagrams:

hom(Fa, c) LA hom(a,Gc)  hom(Fa,c) Sae, hom(a, Gc)

k*l l(Gk» (Fh)*l lh*
hom(Fa,c’) ac, hom(a,Gc) hom(Fd/,c) e hom(d, Gc)

will commute. Herek, is short for hontF (a),k) the operation of composition
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with k, andh* = hom(h,Gc). Then, we say thaf and G are adjoint functor
We call G the right adjointof F (as a right adjoint ofs is unique up to natural
isomorphism).

ExaMpPLE. If C andB are lattices then the pair of adjoint functdfsand G are the
operators of a Galois connection between those lattices. A

Cartesian closed categories
Let C be a category with products. Consider the following endotfoinof C:

_xb:C — C
a — axb

If _x bhas aright adjoint®:

then we call the objeat” theexponentiabf ¢ by b and we say that the categd®y
is cartesian closed

EXAMPLE. Setis a cartesian closed category; the exponewfias the set of functions
ofbtoc. A

Pullback

: : o f . :
Given inC a pairb—-a, d-2 a of arrows with a comon codomam a pullback
squareof < f,g > is a commutative square,

I

5 a

k
e

=y
O<—T
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such that for every other commutative square builtf og

I

—a
f

q
—_—

o
O<—0

thereis a unique# p such that:

Subobiject classifier

A subobiject classifiefor a categoryC with a terminal object 1 is defined to be
a monomorphism 4% Q such that for every monomorphisg+= X in C, there

exists a unique(iQ such that the following is a pullback square:

S——1

m

—

X v, Q
In this pullback square, the top horizontal arrow is the uriqap to the terminal
object 1, the lower horizontal arroyr acts as the “characteristic function” of the
given subobjecs, while the “universal” monomorphismvlLQ may be called
“truth”.

ExAMPLE. In Set the terminal object is a singleton=1 {0}, Q = {0,1} andt is the
injection such that(0) = 0. A
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Limit

We refer the reader to [38] for the definition of a limit as welsinever directly
check for limits, but use the following corollargf{ [38, corollary 1, page 113]).

Corollary B.1 (Saunders Mac Lang
If a category C has a terminal object, equalizers of all pdiaorows, and prod-
ucts of all pair of objects, then C has all finite limits.

Topos

An (elementaryjoposis defined to be a categoBEywith the following properties:
(i) E has all finite limits;
(i) E has a subobject classifier; and

(iii) Eis cartesian closed.
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collapsed, 57
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negated conjunct, 26

induced structure, 47
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simplified sentence, 39
special form, 62

problem

H-colouring, 22
2-CoL, 22
2-SaT, 174
3-CoL, 22
Cvp, 175
GENERALISED-SAT, 23
NAE-SAT, 179
No-MoNO-TRI, 29
No-WALK -5, 30
TRI-FREE-TRI, 29
TRI-FREE, 28
containment, 165
CSPseenomomorphism problem
forbidden patterns problem, 79
monochrome, 152
Hom-Alg;, 191
Hom-Algp, 195
homomorphism problem
non-uniform, 20
uniform, 187

guantifier-free first-order reduction, 189

recolouring, 79
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mono-,epi-,iso-, 83 (bi)connected, 71
representation, 77 antireflexive, 97
MDE;, MEF, ADES, — M, 77 monotuple, 97
(bi)connected, 106 non-sbavate, 97
(induced) sub-, 83 retract(ion), core, automorphic,
canonical, 104 92
conform, 97 valid, 77
coproduct, 159 cycle, 49
exponential, 161 exponential, 149
Feder-Vardi transformation girth, 49
canonical, 116 monotuple, 48
elementary, 108 path, 47
forbidden patterns, 77 retract(ion), core, automorphic, 90
image via a recolouring, 86 tree, 153
normal, 118 substructure, 20

product, 157 template
retract(ion), core, automorphic, 94 of a CSP, 20
second generation, 169

set of normal representations, 141

of a representation, 100

theorem
simple, 83 Feder and Vardi, 27, 67
trivial, 82 Hell and Nesdil, 22
witness family, 131 Ladner, 21
_ Louison, 140
signature, 19 Shaeffer, 23

structure, 19

Ch, 73

DC,, 73

(bi)connected, 48

(co)product, 148

antireflexive, 48

coloured, 71
BG,,\WG,,AC,, 75
BDG,,WDG,,ADC,, 75

Tardif and NesSeil, 153
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