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Discipline : informatique.
Résumé: Feder et Vardi ont prouvé que la classe capturée par un fragment mo-
nadique de la logique du second ordre existentiel, MMSNP, est calculatoirement
équivalente (via des réductions probabilistes) à la classedes problèmes de satis-
faction de contraintes (CSP), mais que la seconde est strictement incluse dans
la première. Je caractérise exactement cette inclusion. J’introduis les problèmes
de motifs interdits (FP) qui correspondent exactement à MMSNP et développe
des outils algébriques originaux comme le recoloriage qui permettent de définir
une forme normale et conduisent à une preuve de nature constructive : soit le pro-
blème donné est transformé en un problème de CSP, soit des contre-exemples sont
construits. Je contraste par ailleurs ce résultat avec un résultat récent, dû à Tardif
et Nešeťril qui utilise une correspondance entre dualité et densitéque je généralise
par ailleurs à FP. Finalement, je considère les problèmes decontraintes dans le cas
de fonctions unaires.
Mots-clés : logique, combinatoire, complexité algorithmique, complexité descriptive,
théorie des modèles finis, problèmes de satisfaction de contraintes (CSP), problèmes d’ho-
momorphisme, fragment syntaxique et monotone de la logiquedu second ordre existentiel
monadique sans6= (MMSNP), algèbre de Heyting, dichotomie.

Constraint satisfaction problems:
a study through logic and combinatorics

Abstract: Feder and Vardi have proved that the class captured by a monadic frag-
ment of existential second-order logic, MMSNP, is computationally equivalent
(via randomised reductions) to the class of constraint satisfaction problems (CSP)
while the latter is strictly included in the former. I introduce a new class of combi-
natorial problems, the so-called forbidden patterns problems (FP), that correspond
exactly to the logic MMSNP and introduce some novel algebraic tools like the re-
colouring that allow me to construct a normal form. This leads to a constructive
characterisation of the borderline of CSP within FP: a givenproblem in FP is ei-
ther given as a problem in CSP or we build counter-examples. Irelate this result
to a recent and independent work by Tardif and Nešetřil which relies heavily on
a correspondence between duality and density. I generalisethis approach to FP.
Finally, I investigate homomorphism problems for unary algebras.
Keywords: logic, combinatorics, computational complexity, descriptive complexity,
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Chapitre 1

Introduction

La complexité descriptive est une branche de la théorie de lacomplexité, dont

l’objet est de caractériser des problèmes,i.e.des ensembles finis de structures, par

rapport à leur définissabilité dans des logiques spécifiques. Le résultat fondateur

de cette théorie est le théorème de Fagin [13], qui relie la définissabilité en lo-

gique du second ordre avec la classe de complexitéNP (temps polynomial non

déterministe).

Theorem 1.1 (Fagin)

Un problème est définissable en logique du second ordre existentiel si, et seule-

ment, si il peut être résolu en temps polynomial non déterministe. En d’autres

mots,NP=ESO.

(Notez comment on met en équation une logique avec la classe des problèmes que

cette dernière capture).

Le présent travail tire ses origines d’une tentative de caractérisation logique

d’une famille de problèmes combinatoires connus sous le nomde problèmes de

satisfaction de contraintes. Ces problèmes sont d’un grand intérêt en informa-

tique et en intelligence artificielle ; il existe des liens forts entre ceux-ci et la

théorie des bases de données, la théorie des graphes ou encore l’algèbre uni-

verselle ; et ainsi les mots-clés suivants sont liés aux problèmes de satisfaction

de contraintes : conjunctive-query containment problem,H-colouring, problème

d’homomorphisme, Generalised Satisfiability. Dans ce travail, la classe des pro-

9



10 CHAPITRE 1. INTRODUCTION

blèmes de satisfaction de contraintes (CSP) est définie en terme d’existence d’ho-

momorphismes entre des structures finies. Le plus frappant quant à la complexité

de ces problèmes est qu’ils semblent vérifier une propriété de dichotomie: c’est-

à-dire qu’il s’agit soit de problèmes très difficiles (NP-complet) soit de problèmes

qu’on peut résoudre efficacement (appartenant à la classe decomplexitéP) ; et,

de plus, il semble exister des critères simples permettant de décider dans quel cas

de figure on se place pour un problème donné. Ces deux phénomènes sont d’au-

tant plus surprenants lorsque on les considère à la lueur desthéorèmes de Ladner

et de Fagin comme dans [7]. De nombreux résultats de grande qualité confortent

cette conjecture : entres autres, citons ceux obtenus par Schaefer [52] dans le cas

de valeurs booléennes, ainsi que ceux obtenus par Hell et Nešeťril [23] dans le

cas de contraintes exprimées par des graphes non orientés. Ces résultats ont étés

généralisés plus récemment par Jeavonset al.[28–34] en utilisant des outils issus

de l’algèbre universelle, mais aussi par Vardiet al. [16, 35, 36] en utilisant Data-

log, des résultats de la théorie des groupes ou encore à l’aide de la construction

de jeux adaptés. Ces derniers ont également tenté de caractériser logiquement la

classe CSP. Ils se sont intéressés à quelques fragments de lalogique existentielle

du second ordre (ESO), montrant qu’aucun de ceux-ci ne satisfaisait la propriété

de dichotomie, avant de s’arrêter sur la restrictionmonotone monadique et sans

symbole6= d’une restriction syntaxique de ESOconnue sous le nom de SNP :

la logique MMSNP. Bien qu’ils n’aient pas réussi à montrer que MMSNP véri-

fiait la propriété de dichotomie, ils ont pu relier étroitement MMSNP et CSP par

l’intermédiaire du résultat suivant.

Theorem 1.2 (Feder et Vardi)

Tout problème de CSP est définissable par une formule de MMSNP. Réciproque-

ment, tout problème définissable par une formule de MMSNP estcalculatoirement

équivalent à un problème de CSP.

(Par «calculatoirement équivalent» on entend l’équivalence induite par l’existence

deréductionsentre des problèmes.)

De plus ces auteurs ont exhibé des exemples de problèmes définissables par des

formules de MMSNP qui ne sont pas dans CSP : leur preuve reposeessentielle-

ment sur des arguments de dénombrement. Nous avons donné d’autres exemples
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de tels problèmes dans [43]. Notre preuve est d’une nature différente et repose

sur laconstructionde familles particulières de graphes. Avec en tête le but ultime

de donner une caractérisation logique de CSP, j’ai essayé degénéraliser cette ap-

proche àn’importe quelproblème définissable par une formule de MMSNP. Plu-

tôt que de travailler dans un cadre purement logique, j’ai préféré introduire une

nouvelle classe de problèmes combinatoires qui correspondent exactement aux

problèmes définissables par des formules de MMSNP : la classedesproblèmes de

motifs interdits(FP). Dans ce cadre la question précédente est reformulée comme

suit. Quels problèmes appartiennent à FP mais pas à CSP ? De plus, étant donné

un problème dans FP, peut-on décider si oui ou non il appartient à CSP ; et, si

c’est le cas, peut-on le présenter en tant que problème de CSP; c’est-à-dire, peut-

on construire son patron1 ? Un problème de motifs interdits est donné par une

représentation, qui consiste en la donnée d’un ensemble fini destructures colo-

riées. Cette reformulation du problème me permet d’introduire lanotion clé de

recoloriaged’une représentation vers une autre ; Notez que les notions d’un re-

coloriage et d’une représentation généralisent respectivement celles d’un homo-

morphisme et d’une structure. Ce concept de recoloriage, associé à deux autres

notions implicites dans la preuve du théorème de Feder et Vardi (la notion de

patron d’une représentationet une transformation permettant de décomposer des

motifs interdits en leurs composantes biconnexes, transformation qu’on appellera

transformation de Feder-Vardi) permet de transformern’importe quelproblème

de motifs interdits donné en un problème équivalent défini par unereprésentation

normale. Étant donnée une telle représentation, on peut alors décider (par rapport

à un critère simple) si le problème considéré est dans CSP ou non ; et, si c’est le

cas, je montre comment construire son patron. En d’autres mots, les questions pré-

sentées ci-dessus ont été résolues. La preuve de ce résultatrepose principalement

sur la construction de familles de structures particulières : lesfamilles de témoins.

On peut voir une telle famille de structures comme la donnée d’une stratégie ga-

gnante pour lecenseurdans le jeu à deux joueurs suivant. Le censeur est opposé

au tartouilleur ; étant donné une représentation, le tartouilleur exhibe une struc-

ture et annonce qu’il s’agit d’un patron pour le problème (entant que problème

1son templateen anglais ; un lexique français-anglais est disponible page 204 pour les mots
dont la traduction n’est pasa priori évidente.
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dans CSP) ; ensuite, le censeur tente de trouver l’erreur : ilexhibe une instance

qui est acceptée par le problème de motifs interdits original mais qui n’est pas

acceptée par le problème de CSP donné par le tartouilleur, ouvice versa.

En fait, il se trouve que les notions de représentation et de recoloriage, dé-

passent le cadre de la question précédente et présentent un intérêt en tant que

tel. En effet, le résultat décrit ci-dessus est lié à un résultat très élégant obtenu

récemment par Tardif et Nešetřil dans [45]. Ces derniers ont élégamment établi

l’existence d’un lien entredualitéet densitéen construisant une correspondance

entre lespaires dualeset certainespaires couvrantes. Les paires duales corres-

pondent à des problèmes de FP qui sont dans CSP d’un type très particulier : ces

problèmes n’ont qu’une couleur et un seul motif interdit (qu’on appellerapro-

blèmes monochromes de motif interdit– notez l’absence de pluriel). Les paires

couvrantes, quant à elles, correspondent aux intervalles de l’ordre partiel sur les

structures (induit par l’existence d’homomorphisme) qui ne sont pas denses. Nos

travaux gagnent à être comparés et s’enrichissent l’un l’autre : leur approche per-

met d’obtenir une meilleure caractérisation des problèmesmonochromes de motif

interdit. Ces problèmes sont dans CSP si, et seulement si, le(coeur du) motif

interdit est un arbre. Par contre, la construction du patronque ces auteurs four-

nissent est quelque peu alambiquée, puisqu’ils ont recoursà la correspondance

mentionnée ci-dessus ; ainsi, cette construction résulte de deux constructions im-

briquées qui ne sont pas elles-mêmes des plus simples :l’exponentielde structure

et la construction šíp (du tchèque šíp qui signifie flèche). J’explique briévement

leurs résultats et les comparent aux miens, puis je donne unepreuve simplifiée

de la correspondance entre dualité et densité dans le cas plus général d’une al-

gèbre de Heyting (l’approche n’est pas originale et suit exactement celle de Tardif

et Nešeťril). Le fait que les notions de représentation et recoloriage généralisent

celles de structure et d’homomorphisme se trouve renforcé un peu plus, puisque

je montre que représentation et recoloriage sont eux aussi liés à une algèbre de

Heyting. De ce fait découle donc une correspondance entre dualité et densité dans

un cadre plus général. Cependant, ce résultat n’est pas complètement satisfaisant

et engendre quelques questions ouvertes intéressantes queje motive.

Je me suis aussi intéressé à la complexité des problèmes de motifs interdits et

j’exhibe des exemples de problèmes qui ne sont pas dans CSP etqui sont com-
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plets pour les classes de complexité standards suivantes :NL, P etNP. Ainsi, à la

lumière de quelques résultats connus de complexité «fine» (cf. [28]) ces exemples

renforcent le théorème de Feder et Vardi : au sens où la classeFP semble se com-

porter de la même façon que la classe CSP quant à la complexité. Ce fait pourrait

apparaître comme trivial au lecteur, puisque MMSNP=FP implique que la classe

FP est, calculatoirement parlant, équivalente à la classe CSP, par le théorème de

Feder et Vardi. Cependant, dans la preuve de ce théorème les réductions consi-

dérées sont respectivement des réductions polynomiales etdes réductions poly-

nomiales probabilistes : ces réductions sont trop fortes etne permettent pas de

résultat de complexité «fine». Pour accélérer les preuves, j’ai adapté des exemples

donnés par Grädel dans [21] et introduit d’autres exemples en utilisant sa carac-

térisation de sous-classes deNP à l’aide de fragments de la logique existentielle

du second ordre. Je discute également brièvement des restrictions standards ap-

plicables aux problèmes de motifs interdits susceptibles de faire baisser la com-

plexité.

Dans [42], nous nous sommes également intéressés à un sujet quelque peu dif-

férent : nous avons en effet noté que, bien qu’il existe de nombreux résultats quant

à la complexité de problèmes dans CSP pour des structures, ilne semblait pas en

exister pour le cas d’algèbres. Nous nous sommes concentréssur un cas restreint :

celui d’algèbres unaires. Nous avons pu montrer que dans le cas de seulement

deux symboles unaires, le problème uniforme étaitNP-complet (ici, «uniforme»

signifie qu’une instance consiste en une paire d’algèbre ; et, que la question est

de décider si il existe un homomorphisme depuis la première algèbre vers la se-

conde). De plus, dans le cas d’un unique symbole unaire, nousavons obtenu un

résultat intéressant de dichotomie : les problèmes non uniformes sont soit triviaux

soitL-complets (par opposition, «non-uniforme» signifie qu’uneinstance consiste

en une seule algèbre ; et, que la question est de décider si il existe un homomor-

phisme depuis celle-ci dans une algèbre fixée, lepatrondu problème). Notez que

ce résultat donne les premiers exemples connus de problèmesde satisfaction de

contraintes qui sontL-complets. Nous avons par ailleurs prouvé plus récemment

dans [15] qu’il est au moins aussi difficile d’obtenir un résultat de dichotomie dans

le cas de deux fonctions unaires que dans le cas classique.
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J’ai essayé de faire en sorte que ce volume soit le plus accessible possible :

cependant, quelques notions de bases en complexité et en complexité descriptive

sont nécessaires. Le lecteur pourra considérer pour la complexité les références

standards qui suivent : [46] par Papadimitriou ou [25] par Hopcroft et Ullman,

tous deux en anglais, et [39] par Lassaigne et de Rougemont enfrançais (ce livre

est également une bonne introduction à la complexité descriptive). Pour les pro-

blèmesNP-complets, le lecteur pourra se reporter à l’inévitable [20], le guide toNP-completenesspar Garey and Johnson. Pour la complexité descriptive [12] par

Ebbinghaus et Flum est une référence très complète en anglais. Quelques défi-

nitions sont rappelées en Appendice A page 209. Notre référence pour l’algèbre

universelle est [44] ; et, pour la théorie des catégories [38]. Quelques définitions

sont rappelées en Appendice B page 213.

Le présent volume est organisé comme suit : au chapitre 2, la classe CSP

est définie comme la classe des problèmes d’homomorphismes non uniformes et

quelques résultats importants de dichotomie sont commentés. Également dans ce

chapitre, la logique MMSNP est définie et le théorème de Federet Vardi expliqué

en détail. Dans le reste de ce chapitre, des exemples de problèmes de graphes dé-

finissables par des formules de MMSNP et qui ne sont pas dans CSP sont donnés :

cette dernière partie correspond à un travail commun [43] avec Iain Stewart. Le

Chapitre 3 est entièrement consacré à la logique MMSNP et se conclut par une

preuve du théorème de Feder et Vardi. Au Chapitre 4, les concepts liés aux pro-

blèmes de motifs interdits sont introduits, puis je prouve le résultat principal de

ce travail, à savoir la caractérisation des problèmes de motifs interdits qui ne sont

pas dans CSP. Ensuite, au Chapitre 5 le résultat de Tardif et Nešeťril mentionné

ci-dessus est brièvement expliqué. La correspondance entre dualité et densité est

prouvée dans ce chapitre dans le cas d’une algèbre de Heyting. Ce chapitre se

conclut par la motivation de quelques problèmes ouverts. Auchapitre 6, je donne

des exemples de problèmes de motifs interdits qui ne sont pasdans CSP et diffé-

rentes restrictions sont brièvement envisagées pour ces problèmes. Finalement, le

chapitre 7 est consacré aux résultats obtenus dans [42] sur les problèmes d’homo-

morphisme pour le cas d’algèbres unaires. Ces résultats ontétés réunis récemment

avec des résultats contemporains de Feder (cf. [15]).
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Chapitre 7
Problèmes

d’homomorphismes
(algèbres unaires)

Chapitre 2
Problèmes

d’homomorphismes
(CSP)

Chapitre 6
Problèmes

de
motifs interdits

(exemples, restrictions)

Chapitre 3
MMSNP pour

Sec. 4.1.4
uniquement

Chapitre 4
Problèmes

de
motifs interdits

(FP)

Définition
de FP

nécessaire
(Sec. 4.1.3)

Chapitre 5
Algèbre de Heyting

FIG. 1.1 – Ordre de lecture recommandé

Les contraintes relatives à l’ordre dans lequel cette thèsepeut être lue sont

représentées en FIG. 1.1 ; Je recommande fortement la lecture du chapitre 2 avant

celle des autres chapitres. Il n’est pas forcément nécessaire de lire le chapitre 3

pour comprendre les chapitres suivants sauf pour la section4.1.4 qui relie les pro-

blèmes de motifs interdits avec la logique MMSNP. Le chapitre 4 doit forcément

être lu avant le chapitre 5. Seule la définition des problèmesde motifs interdits qui

est donnée à la section 4.1.3 est nécessaire pour lire le chapitre 6. Finalement, le

chapitre 7 peut être lu indépendamment. Finalement, un lexique est à disposition

du lecteur page 204 et un index page 222.
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Chapitre 2

Problèmes d’homomorphisme

Les problèmes d’homomorphisme sont introduits puis quelques résultats

sont brièvement présentés afin de motiver la définition de la logique MMSNP

introduite par Feder et Vardi. Enfin, il est montré qu’il existe des exemples de

problèmes capturés par cette logique qui ne sont pas des problèmes d’homo-

morphisme.

17
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Constraint satisfaction problems consist of finding assignments of values to

variables subject to constraints on the values which can be simultaneously as-

signed to certain specified subsets of variables. They are ofgreat importance in

computer science and artificial intelligence, and have strong links with database

theory, combinatorics and universal algebra. For example,the general constraint

satisfaction problem is also known as the conjunctive-query containment problem

from database theory and the homomorphism problem from combinatorics [4];

and, there is a strong link between the tractability of constraint satisfaction prob-

lems and the study of the closure of relations under certain operations in universal

algebra [32]. This diversity has meant that the study of these constraint satisfac-

tion problems has progressed on a number of different frontsand according to

different motivations.

Our formulation of constraint satisfaction involves the existence of a homo-

morphism of one finite structure to another, and in some partsof this work we are

concerned with the computational complexity of constraintsatisfaction problems

when the structures involved are restricted. Thegeneral constraint satisfaction

problemhas: as its instances pairs of finite structures(A;B) over the same signa-

ture; and, as its yes-instances instances(A;B) for which there is a homomorphism

of A to B. The general constraint satisfaction problem is triviallyin NP and is

easily shown to beNP-complete; and it is usual to restrict the problem so that

all finite structures come from some specific class of finite structures or, further,

so that the second component, thetemplate, of any instance is some fixed finite

structure. The former problems are calleduniform constraint satisfaction prob-

lems, as the two structures in an instance can be arbitrarilydrawn from the given

class of structures, whilst the latter problems are callednon-uniformconstraint

satisfaction problems, as the second structure in an instance must be a given fixed

structure (rather than thinking of instances of non-uniform constraint satisfaction

problems as pairs of finite structures(A;T), with T fixed, we simply think of

them as finite structuresA, with yes-instances those instancesA for which there

exists a homomorphism toT). The computational complexity of these restricted

problems is then studied with the ultimate goal being a classification as to the

conditions under which a (uniform or non-uniform) constraint satisfaction prob-

lem has a given computational complexity. In this chapter, we shall concentrate
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on the non-uniform case.

This chapter is organised as follows. In the first section we shall give some

basic definitions and results. In Section 2.2 we shall relatebriefly the main known

results concerning the complexity of non-uniform constraint satisfaction problem:

in particular, the so-calleddichotomy resultsof Schaefer for boolean problems and

of Hell and Nešeťril for the case of undirected graphs. In the final section, weshall

outline a logic introduced by Feder and Vardi together with one of their results

that states that the class of problems captured by this logicis computationally

equivalentto the class of non-uniform constraint satisfaction problems. However,

we shall prove that various problems over graphs that are expressible in this logic

arenot realisable as non-uniform constraint satisfaction problems.

2.1 Preliminaries

Let σ be a signature with relation symbols only, that is, symbolsR1;R2; : : : ;Rs

with respective aritiesr1 � 1; r2� 1; : : : ; rs� 1.

Recall that a finiteσ-structureA consists of a finite set1, called the domain of

A and denoted byjAj, together with an interpretationRA
i � jAjr i for every symbol

Ri in σ, 1� i � s. Thesizeof A, that is the cardinal of the setjAj, is also denoted

by jAj (this does not cause confusion).

Let A andB be two σ-structures. We call ahomomorphismof A to B any

mappingh : jAj ! jBj satisfying:� for anyr-ary symbol inσ and for any ¯a in jAjr , if RA(ā) holds thenRB(h(b̄))
holds (whereh(ā) denotes ther-tuple obtained from ¯a via an application of

the mappingh component-wise).

If h is a homomorphism ofA to B then we writeA h B; we writeA h B if h

is a surjective homomorphism ofA to B; and, we writeA h B if h is an injective

homomorphism ofA to B. If there exists some homomorphism ofA to B then we

write A B; and, if none existsA = B.

1Contrary to usage in finite model theory, we do consider the void structure and the structure
with a single element domain.
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If A h B then we say thatA is asubstructureof B. If, further, for anyr-ary

symbolR of σ and any ¯a in jAjr , if RB(h(ā)) holds thenRA(ā) holds, then we say

thatA is aninducedsubstructure ofB.

An isomorphismis a bijective homomorphism whose inverse is a homomor-

phism. When an isomorphism exists betweenA andB then we say thatA and

B are isomorphicand we writeAt B. Denote bySTRUC(σ) the class of finite

σ-structures.

The homomorphic imageof A via h, denotedh(A), is the (not necessarily

induced) substructure ofB such that:� jh(A)j := fb2 jBjj9a2 jAj such thath(a) = bg; and� for anyr-ary symbolR in σ and anȳb in jh(A)jr, Rh(A)(b̄) holds, if, and only

if, there exists some ¯a in jAjr such thath(ā) = b̄ andRA(ā) holds.

Moreover, it is immediate that the composition of two homomorphisms is a

homomorphism and that for any structureA, there exists an identity homomor-

phismA
idA A (defined by settingidA(x) := x for any x in jAj) such that for any

structuresB andC and homomorphismsB
f

A andA
g

C, we haveidAÆ f = f

andgÆ idA = g. Furthermore, the composition of homomorphisms being associa-

tive, one can speak of thecategory of finiteσ-structures. As we shall see later,

this category has some interesting properties: in fact, if one considers structures

up to homomorphism equivalence then we get aHeyting Algebra(cf. Chater 5 on

page 145).

Let A be aσ-structure. Recall that the(non-uniform) homomorphism problem

with template A, denotedCSP(A), has yes-instances thoseσ-structuresB such that

B A. Denote byCSPσ the class of homomorphism problems having as template

a σ-structure and set:

CSP:= [
σ rel sign

CSPσ:
Proposition 2.1 Let A and B be twoσ-structures. CSP(A)�CSP(B) if, and only

if, A B.
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PROOF. If CSP(A) � CSP(B) then sinceA
idA A, it follows that A belongs to

CSP(A). Hence thatA is in CSP(B); that is,A B. Conversely, ifA h B for

someh then for anyC in CSP(A); that is, such thatC
g

A for someg; by compo-

sition, it follows thatC
hÆg

B; hence thatC belongs toCSP(B). �
2.2 Known complexity results

As we mentioned previously, the general constraint satisfaction problem isNP-

complete. There are two main ways of restricting this problem in order to obtain

tractability. The first way consists in imposing that the first structure of any in-

stance is somehow like a tree, to be precise that it has bounded tree-width, to

ensure that the standard resolution algorithms’ backtrackis bounded. This ap-

proach has been developed by Freuder (cf. [18, 19]) but is a direct consequence

of a more recent result due to Courcelle (cf. [6]). The second approach consists

in restricting the second structure of any instance; which often leads to so-called

dichotomy results; that is, results in which restrictions of the general problem are

eitherNP-complete or decidable in polynomial time. These dichotomyresults are

best appreciated to the light of Ladner’s theorem (cf. [37]); one version of which

is as follows.

Theorem 2.2 (Ladner) If P 6=NP then there is a language inNPwhich is neither

in P norNP-complete.

Notice that we do not know of any natural problem with such a property (under the

assumption thatP 6= NP): some problems that resist any classification attempts,

such as GRAPH-ISOMORPHISM, are conjectured to be such natural problems.

In practice many problems can be easily specified as constraint satisfaction

problems (e.g. optimisation problems such as the FREQUENCY ASSIGNMENT

problem, cf. [11]). For this reason, constraint staisfaction solvers are of real

practical importance, which motivates further the study ofconstraint satisfaction

problems in theoretical computer science. Indeed, note that constraint satisfaction

problems capture many benchmark problems: in [28], variousnatural problems
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are encoded as uniform constraint satisfaction problems (in this work the general

constraint satisfaction problem is even referred not without humour as thegreat

combinatorial problem). The encodings are in general much more natural and

straightforward than reductions to other well-knownNP-complete problems.

Next, we shall briefly relate two important dichotomy results; namely the case

of undirected graphs (the problem is known also as theH-colouring problem)

due to Hell and Nešetřil and the case of structures with Boolean domains due to

Schaefer (the problem is known as theGeneralised Satisfiabilityproblem).

2.2.1 H-colouring

The non-uniform constraint satisfaction problem when restricted to undirected

graphs is known as theH-colouring problem, whereH denotes the template of

the problem studied. For example, whenH is a triangle, theH-colouring problem

is nothing else than 3-COL (the problem that consists of all graphs whose vertices

can be coloured with three colours such that no two adjacent vertices are coloured

with the same colour). The latter is known to beNP-complete (cf. [20]). Hell and

Nešeťril proved the following in [23].

Theorem 2.3 (Hell and Nešeťril )

The H-colouring problem isNP-complete whenever H is not bipartite and can be

decided in polynomial time otherwise.

Their proof makes use of three constructions over graphs that allow one to re-

duce the question of whether theH-colouring isNP-complete to the question of

whether theH 0-colouring problem isNP-complete, whereH andH 0 are related

via one of these three constructions. They show further thatthe case when the

template is a bipartite graph is tractable; indeed, it can beeasily shown thatas

a decision problem, for any bipartite graphB, theB-colouring problem coincides

with 2-COL (the problem that consists of all graphs whose vertices can be colou-

red with two colours such that no two adjacent vertices are coloured with the same

colour) which is known to be decidable in polynomial time: asthecoreof a bipar-

tite graph is the graph consisting of a single edge; in other words nothing else than

the template of 2-COL , cf. Subsection 4.2.1 on page 90. The main part of their
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proof is indirect and consists in assuming that for some non bipartite graphH, the

H-colouring problem is notNP-complete (under the more general assumption thatP andNP do not coincide). By properties of the three constructions mentioned

above, and the facts thatH is not bipartite and can not be a clique (otherwiseH

would be either bipartite or theH-colouring problemNP-complete), they reduce

the H-colouring problem to theH 0-colouring problem, whereH 0 can not exist.

This part of their proof is fairly technical and involves a case study on the struc-

ture ofH and its properties to derive some contradicting propertieson H 0. Notice

that no constructive proof is presently known for this result. Furthermore, some

unsuccessful attempts have been made to generalise this result to other structures;

even the case of directed graph remains open.

2.2.2 Generalised Satisfiability

There exists another type of dichotomy result which is not quite comparable to the

former result. Given some fixed domainD of values (that corresponds to the do-

main of the template) call a setΓ of relationstractableif for any structureT with

domainD and relations inΓ, the constraint satisfaction problem with template

T is decidable in polynomial time. Denote byCSP(Γ) the class of non-uniform

constraint satisfaction problems whose templateT consists of relations fromΓ as

above. The uniform constraint satisfaction problem whereT is drawn from the

classB of Boolean structures is known as GENERALISED-SAT and was studied

by Schaefer in [52]. Schaefer proved the following dichotomy result.

Theorem 2.4 (Schaefer). LetΓ0 be a subset ofΓB , the set of all Boolean finitary

relations. IfΓ0 falls within one of the following 6 classes, that is if:

1. Γ0 is 0-valid;

2. Γ0 is 1-valid;

3. Γ0 is affine;

4. Γ0 is bijunctive;

5. Γ0 is Horn; or
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6. Γ0 is anti-Horn,

then CSP(Γ0) is tractable, otherwise it isNP-complete.

These 6 classes have simple characterisations in term of closure properties. For

example, a relation is 0-valid if, and only if, it is closed under the Boolean constant

operation 0; and, it is Horn if, and only if, it is closed underthe binary Boolean

operation̂ .

Schaefer’s dichotomy result has been generalised to optimisation complexity

classes and to counting classes by Creignouet al. (cf. [7]).

2.2.3 Further selected results

Schaefer was inspired by the work of Post on Boolean functions and relations,

work that has been extended in a branch ofuniversal algebraknown asclone the-

ory. Schaefer’s approach has been applied by Jeavonset al. to larger domains and

partial dichotomy results have been obtained (cf. [28–34]). For an introduction to

this approach see, for example, [41]. Notice that this method leads only to partial

results as it relies heavily on what is known about theclone lattice. The Boolean

clone lattice was completely described by Post in [47]; and,is countable whereas

it is known that the clone lattice for larger domains is not (for more on clone the-

ory, see the excellent book in German by Pöschel and Kalužnin[49], a technical

report in English by Pöschel [48] or the first chapter of Szendrei’s exposition [55]).

As a matter of fact, there is presently no description of the clone lattice even for a

domain of size 3. However, some progress has been made as regards a conjecture

that dichotomy resultsà la Schaefer exists for any finite domain. Recent work

by Bulatov, Krokhin and Jeavons involves the use of deep results from universal

algebra in [3].

Note that the dichotomy results of the two previous theoremsare not compa-

rable. It was proved in [2] thatCSP(ΓB) is not tractable, whereΓB denotes the set

of the edge relations of any finite bipartite graph.

Apart from Jeavonset al., there is another group of researchers that have at-

tempted to develop general methods to classify non-uniformconstraint satisfac-

tion problems, namely Feder and Vardi in [16]. In their work,tractable sets of re-

lations fall into two main classes, one being defined in termsof Datalog, the other
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in terms of group theory. Some of these results have been extended or proved

in a more concise way by Kolaitis and Vardi in [35] and [36]. The terminology

of uniform and non-uniform constraint satisfaction problem was taken from [35],

where the authors proved that many known dichotomy resultsuniformise; that is,

can be generalised to the uniform case. We shall explain in more detail what we

understand by this in Chapter 7, where homomorphism problems for unary func-

tions are studied. However, for the moment we shall be concerned mainly with a

specific result of Feder and Vardi from [16], where they defined the logic MMSNP

in an attempt to characterise logically CSP. First, they conjectured the dichotomy

of CSP as follows;

Conjecture 2.5 (dichotomy of CSP)

Every problem in CSP is either inP or NP-complete.

Recall that Syntactic NP (SNP for short) is the fragment of Fagin’s existential

second order logic (ESO for short)that consists of sentences of the form9S̄8x̄φ,

whereφ is quantifier-free; that is, second order sentences with a universal first-

order part. In order to find some logic for CSP, Feder and Vardilooked for a

logic L that is a restriction ofSNP(CSP is easily seen to be captured by SNP)

and would have the dichotomy property (as SNP itself does not). They investi-

gated 3 types of restrictions onSNP: namelymonotonicity, monadicityandno

inequalities. That is, imposing that each input predicate occurs with thesame

polarity within a sentence, respectively imposing the second order predicates to

bemonadic, and respectively that no inequality symbol occurs within asentence.

They showed that imposing two of these restrictions is not sufficient by proving

the following theorems (L denotes here the logic obtained from SNP by imposing

any two restrictions among the three listed above).

Theorem 2.6 (Feder and Vardi)

Every problem A inNP has an equivalent (under polynomial-time reductions)

problem B in the class of problems expressed by sentences ofL .

(by ‘equivalent’ we mean that: the problemA reduces to the problemB; and, con-

versely, the problemB reduces to the problemA.) Therefore as a corollary from

Ladner’s theorem, it follows that none of these three logicscould be adequate to
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capture exactlyCSPaccording to the dichotomy conjecture. They were however

unable to extend Ladner’s diagonalisation arguments when the three restrictions

mentioned above were imposed simultaneously on the logic SNP. They called this

fragment of SNP,Monotone Monadic SNP without inequalities, which they de-

noted by MMSNP for short.

EXAMPLE. Consider the signatureσ2 := (E), whereE is a binary symbol. We can see

problems overσ2 as the realisation of some abstract graph problems via the following

encoding “there exists an edge between two vertices u and v if, and only if, E(u;v) holds

or E(v;u) holds”. In this setting, the well known abstract graph problem 3-COL (that

consists of those graphs whose vertices can be coloured withthree colours such that every

pair of adjacent vertices have been assigned different colours) can be realised overσ2 as

the problem captured by the following sentence of MMSNP.9R9G9B8x8y :(B(x)^R(x))^:(B(x)^G(x))^:(R(x)^G(x))^ :(:R(x)^:G(x)^:B(x))^ :(E(x;y)^R(x)^R(y))^:(E(x;y)^G(x)^G(y))^ :(E(x;y)^B(x)^B(y)): N
2.3 Feder and Vardi’s MMSNP

In [16] Feder and Vardi attempted to give a logic for CSP: theyintroduced the

logic MMSNP and showed that the set of problems captured by MMSNP is com-

putationally equivalent to CSP. In this section, we introduce briefly this result.

2.3.1 Definition

Monotone Monadic SNP without inequalityis a fragment of ESO and consists of

the set of formulae of the following form:9M̄8x̄
î

:(αi(R̄; x̄)^βi(M̄; x̄));
where for everynegated conjunct:(αi ^βi):
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symbols fromσ and variables from ¯x; and� theβ-part (or colouring)βi consists of a conjunction of atoms or negated

atoms involving the monadic existentially-quantified predicatesM̄ and vari-

ables from ¯x.

Notice that the equality symbol does not occur inΦ. Monotone Monadic SNP

without inequality is denoted by MMSNP, for short.

2.3.2 MMSNP is computationally equivalent to CSP

The result we are about to quote has initiated the present work (except for Chap-

ter 7). In the remainder of this work, when we write ‘Feder andVardi’s theorem’

we understand the following key result.

Theorem 2.7 (Feder and Vardi)

Every problem in CSP is expressible by a sentence of MMSNP. Every prob-

lem PΦ expressible by a sentenceΦ of MMSNP is equivalent to a problem

CSP(TΦ) in CSP:PΦ reduces to CSP(TΦ) in polynomial time; and, CSP(TΦ)
reduces toPΦ in randomised polynomial time.

We shall give a proof of the previous theorem in Chapter 3. Feder and Vardi

showed that MMSNP captures more than just CSPi.e., that there are problems

captured by MMSNP that are not in CSP. They gave two examples of such prob-

lems over graphs; the problem consisting of those graphs that are triangle-free;

and the problem consisting of those graphsG for which one can colour the ele-

ments ofjGj black or white such that the coloured graph contains no monochro-

matic triangle. They gave a sketch of this proof in which theyused a counting

argument. In the next section, we shall give further examples of such problems,

using a different type of proof, involving the constructionof families of graphs

with special properties.
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2.4 MMSNP captures more than CSP

We exhibit some problems overσ2 that are captured by MMSNP and show that

they can not be in CSP (this section is an extended version of [43]).

2.4.1 Some problems expressible by a sentence of MMSNP

The problem TRI-FREE is the problem overσ2 defined by the following first-order

sentence:8x(:E(x;x))^8x8y8z(:(E(x;y)_E(y;x))_:(E(x;z)_E(z;x))_:(E(y;z)_E(z;y))):
Note that the above sentence can be considered to be a realisation of the abstract

decision problem consisting of those undirected graphs in which there is no trian-

gle. TRI-FREE is also expressible by a sentence of MMSNP since although the

above sentence is not directly a sentence of MMSNP accordingto our definition,

it is logically equivalent to one: it is logically equivalent to the following sentence

using the identity:(P_Q)� :P^:Q8x(:E(x;x))^8x8y8z((:E(x;y)^:E(y;x))_ (:E(x;z)^:E(z;x))_ (:E(y;z)^:E(z;y))):
Then using the distributivity of̂ by _ we obtain the following equivalent sen-

tence8x :E(x;x)^8x8y8z(:E(x;y)_:E(x;z)_:E(y;z))^ (:E(x;y)_:E(x;z)_:E(z;y))^(:E(x;y)_:E(z;x)_:E(y;z))^ (:E(x;y)_:E(z;x)_:E(z;y))^(:E(y;x)_:E(x;z)_:E(y;z))^ (:E(y;x)_:E(x;z)_:E(z;y))^(:E(y;x)_:E(z;x)_:E(y;z))^ (:E(y;x)_:E(z;x)_:E(z;y)):
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Finally, using the fact that:P_:Q � :(P^Q) and rewriting the sentence in

prenex form, we obtain the following equivalent MMSNP sentence

Φ1 := 8x8y8z :E(x;x)^:`1(x;y;z)^:`1(x;z;y)^:`2(x;y;z)^:`1(z;y;x)^:`1(y;x;z)^:`2(y;x;z)^:`1(y;z;x)^:`1(z;y;x);
where `1(x;y;z) = (E(x;y)^E(x;z)^E(y;z));
and `2(x;y;z) = (E(x;y)^E(z;x)^E(y;z)):

The problem NO-MONO-TRI is the problem overσ2 defined by the following

sentence:9C(8x(:E(x;x))^8x8y8z(((E(x;y)_E(y;x))^ (E(x;z)^E(z;x))^(E(y;z)_E(z;y)))) (:(C(x)^C(y)^C(z))^:(:C(x)^:C(y)^:C(z))))):
Note that the problem NO-MONO-TRI can be considered as a realisation of the

abstract decision problem consisting of those undirected graphs for which there

exists a 2-colouring of the vertices so that the vertices of every triangle in the graph

are not monochromatically coloured. Note that the problem NO-MONO-TRI can

also be captured by a sentence of MMSNP. The previous sentence can be rewritten

using the same technique as previously, since the polarity of each occurrence of

the symbolE is odd. We prefer to work with the previous sentence as it is much

more compact. The same shall hold for any further sentence weshall consider in

this section.

The problem TRI-FREE-TRI is the problem overσ2 defined by the following
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sentence:9R9W9B(8x((R(x)^:W(x)^:B(x))_ (:R(x)^W(x)^:B(x))_(:R(x)^:W(x)^B(x)))^8x8y((E(x;y)_E(y;x))) (:(R(x)^R(y))^:(W(x)^W(y))^:(B(x)^B(y))))^8x(:E(x;x))^8x8y8z(:(E(x;y)_E(y;x))_:(E(x;z)_E(z;x))_:(E(y;z)_E(z;y)))):
Note that the problem TRI-FREE-TRI can be considered as a realisation of the

abstract decision problem consisting of those undirected graphs that are tripartite

and in which there is no triangle; that is, as a restriction ofTRI-FREE to tripartite

graphs.

The problem NO-WALK -5 is the problem overσ2 defined by the following

first-order sentence:8x(:E(x;x))^8x18x28x38x48x5(:((E(x1;x2)_E(x2;x1))^ (E(x2;x3)_E(x3;x2))^ (E(x3;x4)_E(x4;x3))^ (E(x4;x5)_E(x5;x4))^(E(x5;x1)_E(x1;x5)))):
Note that NO-WALK -5 can be considered to be a realisation of the abstract de-

cision problem consisting of those undirected graphs in which there is no closed

walk of length 5. The problem NO-WALK -7 is defined similarly. Moreover, con-

sider the problems NO-WALK -5-TRI and NO-WALK -7-TRI respectively, as the

restrictions of NO-WALK -5 and NO-WALK -7 respectively, to tripartite graphs, as

above.

Our first observation is that, if the template defining a problem in CSP over

σ2 has a self-loop, then the problem must consist of the class ofall σ2-structures.

Hence, we may assume that any template has no self-loops as none of the prob-

lems we consider in this section are trivial. Our second observation is that the

template defining a problem in CSP overσ2 must be a yes-instance of the prob-

lem (as the identity map of the template to the template is a homomorphism).

Lemma 2.8 Let G;T 2STRUC(σ2). Suppose that, T2 TRI-FREE. Furthermore,
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suppose that in the undirected graph encoded by G, there is a path of length3

joining two non-adjacent vertices u and v. Then for any Gh T, h(u) 6= h(v).
PROOF. Let u andv be two non-adjacent vertices ofG. Suppose further that there

is a homomorphismh of G to T such thath(u) = h(v). By definition, there is a

pathu;w1;w2;v in the graph encoded byG. BecauseT has no self-loops, we must

have thath(u), h(w1) andh(w2) are pairwise distinct inT and sinceh is a ho-

momorphism, we have(E(h(u);h(w1)) or E(h(w1);h(u))) and(E(h(w1);h(w2))
or E(h(w2);h(w1))) and(E(h(w2);h(u)) or E(h(u);h(w2))) that hold inT; that

is, the graph encoded byT has a triangle. ThusT 62 TRI-FREE. This yields a

contradiction. �
Suppose that some problemP overσ2 is such that:� everyσ2-structure inP is in TRI-FREE; and� for everyn, P contains a structureHn that encodes a graph withn mutually

non-adjacent vertices where there is a path of length 3 joining every pair of

such vertices.

Then, by Lemma 2.8 on the facing page,P is not in CSP (any homomorphism

of Hn to the template must have an image of size at leastn). In the following, we

construct such a family of graphs for all the first-order problems that have been

introduced in this section.

2.4.2 Construction ofHn.

Define the structureHn as follows. The domain ofHn consist of the union of the

sets:� Vn = f1;2; : : : ;ng;� U1
n = f(i; j) : 1� i; j � n; i < jg; and� U2
n = f(i; j) : 1� i; j � n; i > jg.

EHn consist of the union of the sets:



32 CHAPITRE 2. PROBLÈMES D’HOMOMORPHISME� f(i;(i; j)) : 1� i; j � n; i < jg;� f(i;(i; j)) : 1� i; j � n; i > jg; and� f((i; j);( j; i)) : 1� i; j � n; i 6= jg.
The graph encoded byHn can be depicted as in Fig. 2.1 Note that: the graph

encoded byHn is triangle-free; there is a path of length 3 joining any two dis-

tinct vertices ofVn; Vn forms an independent set in this graph; and this graph is

tripartite.

U1
n U2

n(n�1;n) (n;n�1)
...

...(i; j) ( j; i)
...

...(1;3) (3;1)(1;2) (2;1)
Vn 1 2 : : : i < j : : : n�1 n

Figure 2.1: The Graph encoded byHn.

Lemma 2.9 There does not exist a closed walk of length5 or 7 in the graph

encoded by Hn.

PROOF. Suppose that there exists a closed walkW of length 5 or 7 in the graph

encoded byHn. As this graph is tripartite,W must have at least one vertex,w1

say, inVn. Hence, there isw2 2 Vnnfw1g such that either:
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1. w1, (w1;w2), (w2;w1) is a sub-walk ofW; or

2. w1, (w1;w2), w1 is a sub-walk ofW.

Suppose that the length ofW is 5. In case (1), we obtain a contradiction as

every vertex ofU1
n andU2

n is joined to exactly one vertex ofVn. In case (2), we

also obtain a contradiction as this would imply that the graph encoded byHn has

a triangle. Hence, this graph has no closed walk of length 5.

Suppose that the length ofW is 7. In case (1), we must have a closed walk

of length 4 betweenw1 andw2. As every vertex ofU1
n andU2

n has exactly one

neighbour inVn, this yields a contradiction. Case (2) yields a contradiction as it

implies that there must be a closed walk of length 5 in the graph encoded byHn.�
Our observation immediately after the proof of Lemma 2.8 on page 30 yields

the following corollary.

Corollary 2.10 The problemsTRI-FREE, TRI-FREE-TRI, NO-WALK -5, NO--

WALK -7, NO-WALK -5-TRI and NO-WALK -7-TRI are in MMSNP but not in

CSP.

This only leaves the problem NO-MONO-TRI. LetGn be obtained fromHn by

adding in two extra elements,a> anda?, such thata> anda? is joined to every

other vertex in the graph encoded byGn (this means that we have an edge(a>;a?)
too); i.e. set

EGn := EHn[f(a?;w);(a>;w)j such thatw2 jGnjg[f(a>;a?)g:
Lemma 2.11 Suppose that u and v are vertices of Vn in the graph encoded by Gn
and let T be aσ2-structure inNO-MONO-TRI such that there is a homomorphism

h of Gn to T . Then h(u) 6= h(v).
PROOF. Suppose thath(u) = h(v). By arguing as in Lemma 2.8 on page 30,

there are verticesw1 andw2 of Gn n fa>;a?g such thath(w1);h(u) and h(w2)
are pairwise distinct. Also, bothh(a>) and h(a?) must be different from the
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image of any other vertex ofGn. Hence,E(x;y) or E(y;x) holds inT for every

distinct pair of elementsx andy from the setfh(u);h(w1);h(w2);h(a>);h(a?)g
of 5 elements. We obtain a contradiction as this implies thatT 62 NO-MONO-TRI ,

since a structure encoding a clique of size 5 is not in NO-MONO-TRI. �
Lemma 2.12 For every n� 2, Gn 2 NO-MONO-TRI .

PROOF. Colour the elementsa> anda? ‘black’ and the other elements ‘white’.

This is a valid colouring since the part ofGn coloured ‘white’ is a copy of the

structureHn, and encodes a graph that is triangle-free. �
By arguing as above, we immediately obtain the following.

Corollary 2.13 NO-MONO-TRI is in MMSNP but not in CSP.

Notice that among the problems that are in MMSNP but not in CSP, there are

tractable problems (all the problems of Corollary 2.10 on the preceding page are

first-order expressible hence in the complexity classL; i.e. deterministic logarith-

mic space) as well as intractable problem (NO-MONO-TRI is NP-complete,cf.

Chapter 6). We shall provide in Chapter 6 further examples ofsuch problems that

are complete for the complexity classesNL, P andNP.

In Chapter 4, we shall take the approach that has been developed in this chapter

one step further: we shall completely characterise those problems in MMSNP that

are not in CSP where the underlying signature is arbitrary.



Chapitre 3

La logique MMSNP

On introduit précisément la logique MMSNP de Feder et Vardi afin de pou-

voir prouver en détail le théorème de Feder et Vardi concernant l’équivalence

calculatoire entre MMSNP et CSP.

35
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Dans ce chapitre, je donne une preuve détaillée du théorème de Feder et Vardi
(cité au chapitre 2 comme théorème 2.7). L’approche n’est pas originale et suit
la démonstration donnée dans [16]. En effet, la preuve de Feder et Vardi est plu-
tôt courte et difficile. Ceci a motivé ce chapitre. L’idée de la preuve est la sui-
vante : premièrement, de noter que certaines formules de MMSNP, qu’on ap-
pellera formules conformes, définissent des problèmes d’homomorphisme : un
exemple d’une telle formule a été donné au chapitre précédent pour le problème
3-COL. Deuxièmement, de transformer toute formule de MMSNP en uneformule
équivalente qui soit «aussi conforme que possible» de tellesorte qu’on puisse lui
associer un problème d’homomorphisme canonique (notez quetrès probablement,
ce dernier aura une signature différente). Pour montrer l’équivalence calculatoire,
une réduction est assez directe, celle depuis le problème donné par la formule de
MMSNP vers le problème d’homomorphisme canonique. Par contre, cette réduc-
tion n’est pas surjective : il existe des instances du problème d’homomorphisme
canonique qui ne correspondent pas à des instances du problème donné par la
formule de MMSNP. L’idée clé pour contourner cette difficulté, consiste à trans-
former un peu plus les formules de MMSNP en uneforme spéciale, où chaque
conjonction interdite est biconnexe : ceci permettra de définir une fonction du
problème d’homomorphisme canonique vers le problème donnépar la formule
de MMSNP comme une sorte d’inversion canonique de la réduction mentionnée
ci-dessus. On prouve alors qu’il s’agit d’une réduction sauf pour des instances
du problème d’homomorphisme canonique qui ont des «petits»cycles (ici «pe-
tit» est une variable de la formule de MMSNP). Or, Feder et Vardi ont adapté
une construction aléatoire de Erdös relative au nombre chromatique et à la cycli-
cité (minimum des tailles des cycles d’un graphe) : cette construction peut être
utilisée comme «endoréduction» polynomiale probabilistedu problème d’homo-
morphisme canonique pour transformer une instance donnée en une instance équi-
valente avec des cycles suffisamment «grand». Cette construction, couplée avec la
réduction canonique inverse, donne finalement une réduction polynomiale proba-
biliste depuis le problème d’homomorphisme canonique versle problème donné
par la formule de MMSNP. Notez qu’il reste ouvert si cette réduction peut être
déterminisée.

Ce chapitre s’articule comme suit. Dans la section 3.1, la notation est intro-
duite, les définitions de bases données ainsi que quelques exemples. Ensuite dans
la section 3.2, lesformules conformessont définies et l’existence d’une corres-
pondance naturelle entre ces formules et les problèmes d’homomorphismes est
démontrée. La section 3.3 se consacre au paradigme de problème défini par une
formule de MMSNP qu’est le problème NO-MONO-TRI : on y effectue aussi la
preuve du théorème de Feder et Vardi dans ce cas particulier,afin de faciliter la
compréhension de cette preuve dans le cas général. À la section 3.4, la construc-
tion de laforme spécialed’une formule de MMSNP est donnée. La section 3.5
est consacrée à la partie principale de la preuve dans le cas général : le problème
d’homomorphisme canonique associé à une formule spéciale,la réduction cano-
nique et son inversion sont explicitées. Finalement, à la section 3.6, on donne la
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preuve du théorème de Feder et Vardi (théorème 2.7).
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3.1 Preliminaries

3.1.1 Good sentences

In the following, we show how to rewrite any sentence of MMSNPas a “good

sentence”: informally, we remove redundant negated conjuncts and we enforce

that for every first-order variable occurring in a negated conjunct, a full choice of

validity for the monadic predicates is inherent.

Notation Let Φ be a sentence of MMSNP over the signatureσ, that is a sentence

of the following form 9M̄8x̄
î

:(αi(R̄; x̄)^βi(M̄; x̄)):
Let κ(Φ) = (M1;M2; : : :) be the signature consisting of the monadic symbols oc-

curring inΦ but not inσ (when this does not cause confusion, we write simplyκ
instead ofκ(Φ)). Setσ0 = σ[̇κ. Let γ(Φ) denote the set of negated conjuncts that

occur inΦ. Let γ 2 γ(Φ). Denote byXγ, the set of first-order variables that occur

in the negated conjunctγ.

Let Φ be a sentence of MMSNP. For any negated conjunctγ = :(α^ β) in

γ(Φ):(i) if an atom occurs once positively and once negatively inβ then discardγ;

and(ii) if an atom occurs more than once inγ then remove all occurrences of this

atom inγ but one.

The sentence hence obtained is clearly equivalent to the original.

From now on, we only ever consider sentences for which this transformation has

been carried out.

A partial order over negated conjuncts Let X be a set of variables. We define

a binary relation-σ0 over the set of conjunctions of atoms involving relational

symbols from some signatureσ0. Let δ1 and δ2 be two conjunctions of atoms
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involving relational symbols fromσ0 and variables fromX. Let i be a bijective

mapping ofX to X. Denote byi(δ1) the conjunction obtained by replacing every

variablex occurring inδ1 by its image viai. We setδ1 -σ0 δ2 whenever there

exists a bijective mappingi of X to X such thati(δ1) is a subconjunction ofδ2.

Clearly, this binary relation is a partial order. Ifδ1 -σ0 δ2 then we say thatδ1

is a subconjunction ofδ2 up to a renaming of variables. If both δ1 -σ0 δ2 and

δ2 -σ0 δ1 then we writeδ1 �σ0 δ2. Note that�σ0 is an equivalence relation.

This partial order induces a partial order over the negated conjuncts of a sen-

tence of MMSNP. LetΦ be a sentence of MMSNP. Letγ1 = :(α1^ β1) and

γ2 = :(α2^β2), in γ(Φ), be two negated conjuncts. Ifα1^β1 -σ0 α2^β2 then

we write thatγ1 is asub-negated-conjunct (up to a renaming of variables)of γ2.

If γ1 is not a sub-negated-conjunct ofγ2 for any two distinct negated conjunctsγ1

andγ2 in γ(Φ) then we write thatΦ is simplified.

Simplifying a sentence Let Φ be a sentence of MMSNP. Discard all the negated

conjunctsγ in γ(Φ) that are not minimal with respect to the partial order defined

previously, keeping only one occurrence of a negated conjunct for each equiva-

lence class. Since up to a permutation of the variable names,there is a unique

sentence obtained in this way, by an abuse of notation we speak of thesentence

obtained fromΦ by simplification, and we denote it bySimp(Φ).
Lemma 3.1 LetΦ be a sentence of MMSNP. ThenSimp(Φ) is a sentence of MM-

SNP that is simplified and is equivalent toΦ.

PROOF. Let Φ be a sentence of MMSNP that is not simplified;i.e. there are two

distinct negated conjunctsγ1 = :(α1^β1) andγ2 = :(α2^β2) in γ(Φ), and there

exists a bijective mappingi of Xγ1 to Xγ2 such thati(α1^β1) is a subconjunction

of α2^β2. The sentenceΦ is of the form:9M̄8x̄(φ^ γ1^ γ2):
It is equivalent to: 9M̄8x̄φ^8x̄γ1^8x̄γ2:
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Sincei is a bijection, renaming the variables we obtain equivalently:9M̄8x̄φ^8x̄:(i(α1^ i(β1))^8x̄γ2:
The previous sentence is clearly equivalent to the following sentence:9M̄8x̄φ^8x̄(:(i(α1)^ i(β1))^:(α2^β2)):
We can rewrite it as follows:9M̄8x̄φ^8x̄:((i(α1)^ i(β1))_ (α2^β2)):
Since(i(α1)^ i(β1)) is a subconjunction of(α2^β2), we obtain equivalently:9M̄8x̄φ^8x̄:(i(α1)^ i(β1)):
Renaming the variables via the inverse of the bijectioni, we get:9M̄8x̄φ^8x̄γ1:
The previous sentence is finally equivalent to9M̄8x̄(φ^ γ1):
This sentence is clearly a sentence of MMSNP and is equivalent to the original

sentenceΦ, and can be obtained fromΦ by discarding the negated conjunctγ2 that

is not minimal. SinceSimp(Φ) is simplified by construction and can be obtained

via an iteration of the above basic simplification, the result follows. �
In the following, we shall give some examples of this construction.

EXAMPLE. Recall the sentenceΦ1 of MMSNP that expresses the problem TRI-FREE

introduced in Section 2.4.1:8x(:E(x;x))^8x8y8z(:(E(x;y)_E(y;x))_:(E(x;z)_E(z;x))_:(E(y;z)_E(z;y))):
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It is not simplified and contains in fact only two types of negated conjuncts apart from:E(x;x):
� γ1 := :`1(x;y;z) = :(E(x;y)^E(x;z)^E(y;z)); and

� γ3 := :`2(x;y;z) = :(E(x;y)^E(z;x)^E(y;z)).
For exampleγ2 := :`1(x;z;y) = :(E(x;y)^E(x;z)^E(z;y)) is equivalent toγ1: indeed:(E(x;y)^E(x;z)^E(y;z))-σ2 (E(x;y)^E(x;z)^E(z;y))
via the permutation(y;z); and(E(x;y)^E(x;z)^E(z;y))-σ2 (E(x;y)^E(x;z)^E(y;z))
via the inverse of the permutation(y;z) (that is (y;z) itself). Another example isγ4 :=:`1(z;y;x) = :(E(x;y)^E(z;x)^E(z;y)) that is also equivalent toγ1: indeed,(E(x;y)^E(x;z)^E(y;z))-σ2 (E(x;y)^E(z;x)^E(z;y))
via the permutation(x;z;y); and,(E(x;y)^E(z;x)^E(z;y))-σ2 (E(x;y)^E(x;z)^E(y;z))
via the permutation(z;x;y).
Hence, we finally have:

Simp(Φ1) = 8x8y8z:E(x;x)^:`1(x;y;z)^:`2(x;y;z):
As a second example, consider the following sentenceΦ2 of MMSNP that expresses

the problem NO-MONO-TRI that we introduced in Section 2.4.1 (it is not exactly the

sentence given there, but an equivalent sentence rewrittenin a similar way as for the case
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of the problem TRI-FREE).9C8x8y8z :E(x;x)^:(`1(x;y;z)^w(x;y;z))^:(`1(x;z;y)^w(x;y;z))^:(`2(x;y;z)^w(x;y;z))^:(`1(z;y;x)^w(x;y;z))^:(`1(y;x;z)^w(x;y;z))^:(`2(y;x;z)^w(x;y;z))^:(`1(y;z;x)^w(x;y;z))^:(`1(z;y;x)^w(x;y;z))^:(`1(x;y;z)^b(x;y;z))^:(`1(x;z;y)^b(x;y;z))^:(`2(x;y;z)^b(x;y;z))^:(`1(z;y;x)^b(x;y;z))^:(`1(y;x;z)^b(x;y;z))^:(`2(y;x;z)^b(x;y;z))^:(`1(y;z;x)^b(x;y;z))^:(`1(z;y;x)^b(x;y;z));
where:

w(x;y;z) :=C(x)^C(y)^C(z) andb(x;y;z) := :C(x)^:C(y)^:C(z):
We proceed as in the previous case and we getSimp(Φ2):8x8y8z :E(x;x)^:(`1(x;y;z)^w(x;y;z))^:(`2(x;y;z)^w(x;y;z))^:(`1(x;y;z)^b(x;y;z))^:(`2(x;y;z)^b(x;y;z)) N

Let X be a set of variables. A conjunctionβ of positive or negative atoms

involving the monadic symbols fromκ and the variables fromX is said to be

a complete colouring of X with respect toκ if for any variablex in X and any

predicateM in κ, eitherM(x) occurs inβ or :M(x), but not both. LetΦ be a

sentence of MMSNP. Ifβ is a complete colouring ofXγ with respect toκ(Φ) for

every forbidden conjunctγ := :(α^β) in γ(Φ) then we say thatΦ hascomplete

colourings.

Let X be a set of variables. LetK be the set of complete colourings of one

variablex in X with respect toκ. We call an equivalence class ofK for �κ a

κ-colour, or simplycolourwhen this does not cause confusion.
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Enforcing complete colouring on a sentence Let Φ be a sentence of MMSNP.

For any negated conjunctγ = :(α^β) in γ(Φ), if the β-part ofγ is not a complete

colouring ofXγ relative toκ then there exist a variablex in Xγ and a monadic

symbolM in κ, such that neitherM(x) nor:M(x) occur inβ. Replaceγ by the two

following negated conjuncts:(α^β^M(x)) and:(α^β^:M(x)). Repeat this

process until a fixed point is reached and denote the new sentence byComp(Φ).
Lemma 3.2 Comp(Φ) is a well-defined sentence of MMSNP that has complete

colourings and that is equivalent toΦ.

PROOF. Comp(Φ) is well defined since a fixed point must be reached after finitely

many steps (κ(Φ) is finite). Comp(Φ) is a sentence of MMSNP equivalent to

Φ because at each step the sentence obtained is a sentence of MMSNP and is

equivalent to the sentence from the previous stage (note that 9M̄8x̄γ is logically

equivalent to the sentence9M̄8x̄:(α^β^M(x))^:(α^β^:M(x))). �
We say that a sentence of MMSNP that is both simplified and has complete

colourings is agoodsentence of MMSNP.

Proposition 3.3 Let Φ be a sentence of MMSNP. ThenSimp(Comp(Φ)) is a

good sentence of MMSNP that is equivalent toΦ. Moreover

Simp(Comp(Simp(Φ))) = Simp(Comp(Φ)):
PROOF. By Lemma 3.2Φ is equivalent toComp(Φ), which has complete colour-

ings. By Lemma 3.1Comp(Φ) is equivalent toSimp(Comp(Φ)), which is sim-

plified. The latter also has complete colourings, since it isobtained by discarding

some negated conjuncts from the former. This proves the firstassertion.

The second assertion follows from the fact that if a simplification is carried

out before completing the colourings, it can still be carried out afterwards. Let

γ1 = :(α1^β1) andγ2 = :(α2^β2) be two distinct negated conjuncts fromγ(Φ)
such that(α1^β1) -σ0 (α2^β2) via some bijectioni of Xγ1 to Xγ2: i.e. γ2 does

not appear inSimp(Φ). Moreover, assume thatβ1 is not a full colouring, that is

that there exists some variablex in Xγ1 and some monadic predicateM in κ(Φ)
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such that neitherM(x) nor:M(x) occur inβ1. Then eitherM(i(x)) or :M(i(x))
or neither of them occur inβ2. Hence in the two first cases, either(α1^β1^M(x))-σ0 (α2^β2) or (α1^β1^:M(x))-σ0 (α2^β2);
that is, a completion of the colouring ofγ1 is a sub-negated-conjunct ofγ2 via i.

In the third case (α1^β1^M(x))-σ0 (α2^β2^M(x))
and(α1^β1^:M(x))-σ0 (α2^β2^:M(x));

that is, the completions of the colouring ofγ1 in the variablex and the monadic

predicateM are respective sub-negated-conjuncts of the completions of γ2 in the

variablei(x) and the monadic predicateM via i. Thus in any case, the completions

of the colouring ofγ2 in Comp(Φ) do not appear inSimp(Comp(Φ)). �
Notice however that

Comp(Simp(Φ)) = Simp(Comp(Φ))
does not hold in general, since completing a simplified sentence might yield new

simplifications. We shall provide an example for this in the following.

EXAMPLE. The sentenceSimp(Φ1) is a trivial example of a good sentence as it is a

first-order formula.

Consider as another example of a good sentence the sentenceComp(Simp(Φ2)):9C 8x8y8z:(`1(x;y;z)^w(x;y;z))^:(`2(x;y;z)^w(x;y;z))^:(`1(x;y;z)^b(x;y;z))^:(`2(x;y;z)^b(x;y;z))^:(E(x;x)^C(x))^:(E(x;x)^:C(x)):
Indeed, in this particular case, there is no need for furthersimplification. However, this

shall not be the case for our next example.
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Consider the sentence that expresses the problem TRI-FREE-TRI introduced in Sec-

tion 2.4.1: it can be rewritten as the following equivalent sentenceΦ3 of MMSNP:9R9W9B8x8y8z :(R(x)^W(x))^:(R(x)^B(x))^:(W(x)^B(x))^:E(x;x)^:(E(x;y)^R(x)^R(y))^:(E(y;x)^R(x)^R(y))^:(E(x;y)^W(x)^W(y))^:(E(y;x)^W(x)^W(y))^:(E(x;y)^B(x)^B(y))^:(E(y;x)^B(x)^B(y))^:`1(x;y;z)^:`1(x;z;y)^:`2(x;y;z)^:`1(z;y;x)^:`1(y;x;z)^:`2(y;x;z)^:`1(y;z;x)^:`1(z;y;x)
We want to find a good sentence of MMSNP expressing TRI-FREE-TRI. First simplify

the sentence;Simp(Φ3) is9R9W9B8x8y8z :(R(x)^W(x))^:(R(x)^B(x))^:(W(x)^B(x))^:E(x;x)^:(E(x;y)^R(x)^R(y))^:(E(x;y)^W(x)^W(y))^:(E(x;y)^B(x)^B(y))^:`1(x;y;z)^:`2(x;y;z)
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Then, complete its colourings and simplify the sentence to obtain the good sentence

Simp(Comp(Simp(Φ3))) of MMSNP as follows:9R9W9B8x8y8z :(R(x)^W(x)^:B(x))^:(R(x)^W(x)^B(x))^:(R(x)^:W(x)^B(x))^:(:R(x)^W(x)^B(x))^:(E(x;x)^ r(x))^:(E(x;x)^w(x))^:(E(x;x)^b(x))^:(E(x;y)^ r(x)^ r(y))^:(E(x;y)^w(x)^w(y))^:(E(x;y)^b(x)^b(y))^:(`1(x;y;z)^ r(x)^w(y)^b(z))^:(`1(x;y;z)^ r(x)^b(y)^w(z))^:(`1(x;y;z)^w(x)^ r(y)^b(z))^:(`1(x;y;z)^w(x)^b(y)^ r(z))^:(`1(x;y;z)^b(x)^ r(y)^w(z))^:(`1(x;y;z)^b(x)^w(y)^ r(z))^:(`2(x;y;z)^ r(x)^w(y)^b(z))
where:

r(x) := R(x)^:W(x)^:B(x)
b(x) := :R(x)^W(x)^:B(x)
w(x) := :R(x)^:W(x)^B(x)

We prove thatComp(Simp(Φ)) is not necessarily simplified. Consider the case of

Φ3; and, note that,e.g., :(R(x)^W(x)^:B(x))
is a negated conjunct ofComp(Simp(Φ3)) while,:(`1(x;y;z)^R(x)^W(x)^:B(x))
is a sub-negated-conjunct of some negated conjuncts ofComp(Simp(Φ3)). N

From now on, we shall only consider good sentences of MMSNP.
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3.1.2 Structure induced by a negated conjunct

Let Φ be a sentence of MMSNP. Let:(α^β) = γ 2 γ(Φ) be a negated conjunct

of this sentence.

Denote byGα theσ-structure induced as follows:� its universejGαj consists of the variables that occur inγ; and� for every r-ary relation symbolR in σ, defineRGα as follows: for every

r-tuple x̄ of elements ofjGαj, R(x̄) holds inGα if, and only if, it occurs in

α.

We call theσ-structureGα the structure induced byα.

Recall thatσ0 = σ[κ. In the following we usually denoteσ0-structures with a0 (as inG0) to distinguish them fromσ-structures. LetG0 be aσ0-structure. Recall

that thereductof G0 overσ is theσ-structureG that; has the same domain asG0;
and, as relationRG0

for every relation symbolR in σ. Conversely, we say thatG0
is anextensionof G overσ0.

G0
γ is the extension ofGα overσ0 defined as follows.� for any monadic symbolM in κ, defineMG0

γ as follows: for anyx in jG0
γj,

M(x) holds inG0
γ if, and only if,M(x) occurs as an atom inβ.

We call theσ0-structureG0
γ the structure induced byγ.

3.1.3 Connected and biconnected structures

We shall be concerned with a generalisation of the graph-theoretic notions of con-

nectivity and biconnectivity for arbitrary relational structures.

Let t be some finite tuple: we denote byftg the set of elements occurring int.

Let A be aσ-structure andu andv be two elements ofjAj. If there existn> 0

andn tuplest0; t1; : : : ; tn�1 of respective aritiesr i0; r i1; : : : ; r in�1 such that:� Ri0(t0); : : : ;Rin�2(tn�2) andRin�1(tin�1) hold inA;� u2 ft0g, v2 ftn�1g; and



48 CHAPITRE 3. LA LOGIQUE MMSNP� for any 0� j � n� 2, there existsu j in jAj such thatu j 2 ft jg andu j 2ft j+1g,
then we say thatt0; t1; : : : ; tn�1 form apathof lengthn from u to v.

The structureA is said to beconnectedif, and only if, for any distinctu andv injAj, there exists a path fromu to v.

Let A be a connectedσ-structure.A is said to be1-connectedif, and only if, there

exists someu in jAj and a pair(P0;P1) of induced substructures ofA satisfying� jP0j\ jP1j= fug;� jP0j[ jP1j= jAj;� size(Pi) := Σ
R2σ

jRPi j � 1, for i = 0;1; and� for every r-ary symbolR in σ, if RA(t) holds then eitherRP0(t) holds or

RP1(t) holds, but not both.

We say that(P0;P1) forms adecompositionof A in the articulation point u. If

such a decomposition does not exist and thatA is connected thenA is said to be

biconnected.

A σ-structureA is said to beantireflexiveif, and only if, for everyr-ary symbolR

in σ, for anyt 2 jAjr such thatRA(t) holds, all components oft are distinct.

A structureA is said to bemonotupleif Σ
R2σ

jRAj= 1 (note that a monotuple con-

nected structure is biconnected).

Let C be a monotuple structure such thatRC(t) holds for somer-ary symbol inσ
and somet 2 jCjr . If every element of the domain ofC is mentioned in the tuplet

and that some elementu occurs at least twice in the tuplet then we say thatC is a

1-cycle. In other words, the structureC consists of a single tuple, which contains

an elementu occurring at least twice: we callu anarticulation pointof the 1-cycle

C.

Let n> 1. LetC be a structure such that,� there existsn substructuresP0; : : : ;Pn�1 of C with jCj = Si=n�1
i=0 jPij such

that:

– for any 0� i � n�2, there exist somexi 2 jCjwith jPij\jPi+1j= fxig;
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– there exist somexn�1 such thatjP0j\ jPn�1j= fxn�1g; and

– for any 0� i < j < n such thati +1 6= j modn, jPij\ jPj j= /0; and� for any 0� i < n, Pi is monotuple and there exists somer i-ary symbolRi in

σ and some ¯y2 jPijr i such thatRPi(ȳ) andjȳj= r i andjPi j= fȳg,
We say thatC is ann-cycle: furthermore, thexi ’s are calledarticulation pointsof

C; and, theRi(ȳ)’s thetuples of the cycle C.

Let A be someσ-structure that contains a cycle as a substructure. Define the

girth of A as the least integern� 1 such that there exist ann-cycleC that is a

substructure ofA. We writegirth (A) := n. We extend this definition toacyclic

σ-structures (structures that do not contain any cycle as a substructure) by setting

girth (A) := ∞ for any acyclic structureA.

We shall need the following technical result later in this chapter. The proof

of this result can be found in [16]: it is an adaptation from Erdös’ construction of

graphs of arbitrary girth and chromatic number. This resultis used to reduce an

instance of a problem in CSP to an instance without any “small” cycles: indeed,

the converse transformation we mentioned earlier (from thecanonical constraint

satisfaction problem back to the MMSNP problem) can be guaranteed to be a

reduction for such instances.

Lemma 3.4 Let g;d > 0. For everyσ-structure A, there exists aσ-structure B

with:� jBj= jAjδg;d (whereδg;d is a function dependent only on g and d);� girth (B)� g;� B A; and� for everyσ-structure T withjTj � d,

A T if, and only if, B T:
Furthermore, B can be constructed from A in randomised polynomial time.

The definition of a ‘randomised polynomial time reduction’ can be found in

Appendix A.
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3.2 Conform sentence and CSP

Let Φ be a sentence of MMSNP. We say thatΦ is conformif, and only if, every

negated conjunctγ 2 γ(Φ) is either of the form

1. γ = :(α^β); and, the structure induced byα is connected, monotuple and

antireflexive; or of the form

2. γ = :(β), wherejXγj = 1 andβ is a complete colouring ofXγ with respect

to κ.

EXAMPLE. The following conform sentence can be considered as the realisation of the

abstract problem 3-COL.9M19M28x8y :(E(x;y)^M1(x)^M2(x)^M1(y)^M2(y))^:(E(x;y)^:M1(x)^M2(x)^:M1(y)^M2(y))^:(E(x;y)^M1(x)^:M2(x)^M1(y)^:M2(y))^:(:M1(x)^:M2(x))
The two monadic predicatesM1 andM2 encode 4 colours, the fourth of which is forbidden

by the last negated conjunct. N
Lemma 3.5 Every problem in CSP is expressible by a good sentence of MMSNP.

Moreover, every problem expressed by a conform sentence of MMSNP is in CSP.

PROOF. We start with the first assertion. LetT be aσ-structure. Letκ be the

signature that consists of monadic symbolsMi that do not occur inσ, wherei

ranges from 1 tojTj. The following sentenceΦT defines the problemCSP(T) and

belongs to MMSNP:9M̄8x̄ :( V
Mi2κ

:Mi(x0)) ^ V
Mi ;M j2κ(i 6= j):(Mi(x0)^M j(x0))^ V

Rk2σ
(Rk(x̄)) W

t2RT
k

ϕk;t(x̄))
where: x0 is a variable of ¯x; Rk has arityrk; t = (t1; t2; : : : ; trk) and

ϕk;t(x̄) := Mt1(x1)^ : : :^Mtrk
(xrk):
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The existential monadic predicates̄M represent the elements ofjTj and the first

part of the sentence states that they associate one element of jTj with every ele-

ment of an input structureA. The last part of the sentence says that this assignment

is a homomorphism. This sentence is not necessarily good. ByProposition 3.3 it

can be transformed into a good sentence that is logically equivalent.

We now prove the second assertion. LetΦ be a conform sentence of MMSNP.

Construct theσ-structureTΦ defined as follows:

1. jTΦj consists of thoseκ-colours that are not forbidden by the sentence (that

is, that do not correspond to a negated conjunct of type (2) inthe definition

of a conform sentence):i.e. setjTΦj := fk κ-colourj8γ 2 γ(Φ)γ 6�κ :k(x)g; and

2. for anyr-ary symbolR in σ and anyr-tuplet = (ki1;ki2; : : : ;kir ) of elements

of jTΦj, setR(t) to hold, if, and only if, there is no negated conjunctγ in

γ(Φ) such thatγ�σ0 γt , where

γt = :(R(xi1;xi2; : : : ;xir )^ki1(xi1)^ki2(xi2)^ : : :^kir (xir )):
We now prove thatTΦ is a template for the problem expressed by the sentenceΦ.

Let A be aσ-structure andA0 an extension ofA that mentions only colours

from jTΦj (that is, the colours allowed by the sentenceΦ). We can clearly re-

strict ourselves to such extensions: indeed,A j= Φ if, and only if, there exists an

extensionA0 of A to σ0, such that

A0 j= 8x̄
^

γ:
This is equivalent to: there exists an extensionA0 that mentions only colours fromjTΦj such that

A0 j= 8x̄
^

γ not of type (2)

γ:
Note that such an extensionA0 induces a mappingh of jAj to jTΦj: map any

v in jAj to its κ-colour inA0. Conversely, such a mappingh induces an extension
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A0 of A overσ0 as follows: for anyv in jAj, setk(v) to hold inA0, wherek is the

κ-colour given byh(v) = k.

We show thath is a homomorphism if, and only if,

A0 j= 8x̄
^

γ not of type (2)

γ:
Suppose thath is a homomorphism. Letγ be one of the negated conjuncts of

type (1) inγ(Φ). It follows that

γ�σ0 γt = :(R(xi1;xi2; : : : ;xir )^ki1(xi1)^ki2(xi2)^ : : :^kir (xir ))
via some bijectioni (renaming of the variables). Letπ : Xγ ! jA0j be some assign-

ment. We must haveA0 j= γ(x̄=π(x̄)): otherwise, we would have

A0 j= R(πÆ i(xi1); : : : ;πÆ i(xir))^ki1(πÆ i(xi1))^ : : :^kir (πÆ i(xir)):
Hence, there would be a tuplet = (π Æ i(xi1); : : : ;π Æ i(xir)) such thatRA(t) holds

andR(h(t)) does not hold inTΦ, whereh(t) = (ki1; : : : ;kir). A contradiction.

Conversely, assume that

A0 j= 8x̄
^

γ not of type (2)

γ:
Let t be ar-tuple of elements ofjAj, let X = fxi1;xi2: : : : ;xirg be a set of variables

and letπ : X!jAj be a mapping given byxi j 7! t[ j℄;(1� j � r). If A j= R(x̄=π(x̄))
then there can not be a negated conjunct of type (1)γ in γ(Φ) such thatγ�σ0 γh(t):
otherwise, we would have

A0 6j= γh(t)(x̄=hÆπÆ i�1(x̄));
wherei : Xγ ! Xγh(t) is a bijective mapping witnessing thatγ �σ0 γh(t). Therefore,

by construction ofTΦ, we must haveTΦ j= R(x̄=hÆπ(x̄)). �
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3.3 A problem in CSP computationaly equivalent to

NO-M ONO-TRI

The remaining sections of this chapter will lead to a proof ofFeder and Vardi’s

theorem. This proof might seem rather involved to some readers: so, in the present

section we construct a problem in CSP that is computationalyequivalent to NO-

MONO-TRI (in the line of the forthcoming proof). We have seen in the example in

the last paragraph of Section 3.1.1 that the problem NO-MONO-TRI is expressed

by the following good sentence of MMSNP:9C8x8y8z :(`1(x;y;z)^w(x;y;z))^:(`2(x;y;z)^w(x;y;z))^:(`1(x;y;z)^b(x;y;z))^:(`2(x;y;z)^b(x;y;z))^:(E(x;x)^C(x))^:(E(x;x)^:C(x)):
Notice that in this sentence, replacing8x8y8zby8x8y8z(x 6= y)^(x 6= z)^(y 6= z),
leads to a sentence that is logically equivalent. Letτ be the signature consisting of

three symbols: two ternary symbolsR1 andR2 and a unary symbolR3. Consider

the following sentenceΨ overτ:9C8x8y8z :(R1(x;y;z)^w(x;y;z))^:(R2(x;y;z)^w(x;y;z))^:(R1(x;y;z)^b(x;y;z))^:(R2(x;y;z)^b(x;y;z))^:(R3(x)^C(x))^:(R3(x)^:C(x)):
Let PΨ be the problem expressed byΨ. We refer the reader to Appendix A for the

definition of an interpretation. NO-MONO-TRI can be reduced to the problemPΨ

via the following interpretationΠ of τ in σ of width one:

Π := (φ1;φ2;φ3)
where

φ1 := x 6= y^x 6= z^y 6= z^ `1(x;y;z);
φ2 := x 6= y^x 6= z^y 6= z^ `2(x;y;z) andφ3 := E(x;x):
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Note that the sentenceΨ is conform, thus by Lemma 3.5PΨ belongs to CSP and

according to the proof of this lemma, theτ-structureT defined as follows can be

considered as a template forPΨ:� jTj := fb;wg;� RT
1 := jTj3nf(b;b;b);(w;w;w)g;� RT
2 := jTj3nf(b;b;b);(w;w;w)g; and� RT
3 := /0.

Let Π�1 := (ψ) be the first-order interpretation ofσ in τ of width one, where

ψ := 9z(R1(x;y;z)_R1(x;z;y)_R1(z;x;y)_R2(x;y;z)_R2(y;z;x)_R2(z;x;y))_(x= y^ (R3(x)):
We work over different signatures in the following: so, whenwe give a struc-

ture, we write its signature as a superscript (as inAτ).

Fact 3.6 Let Aτ be an antireflexiveτ-structure and let Bτ := Π(Π�1(Aτ)). If

girth (Aτ)> 3 then Bτ j= Ψ if, and only if, Aτ j= Ψ.

PROOF. Aτ is a substructure ofBτ: hence, the direct implication holds (problems

in MMSNP are closed under inverse homomorphism).

We now prove the converse implication. LetAτ0 be a valid extension ofAτ

with respect toΨ: that is,Aτ0 is a model of the first-order part ofΨ. Consider the

extensionBτ0 of Bτ induced by the extensionAτ0 of Aτ (recall that the structures

share the same domain as we consider width one interpretations). Call informally

‘new tuples’ the tuples ofBτ that were not present inAτ. We only need to check

the validity of the extension over those new tuples: there are different cases to

consider.

1. A new tuple belongs toR1: that is, there exist somea;b andc such that

RBτ
1 (a;b;c) holds andRAτ

1 (a;b;c) does not hold. SinceRBτ
1 (a;b;c) holds

then a 6= b^ a 6= c^ b 6= c^ `1(a;b;c) holds in Π�1(Aτ). In particular,
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E(a;b) holds inΠ�1(Aτ) anda 6= b: thus, according to the definition of

Π�1, there exist somed1 in jAτj such that some tuplet1 holds inAτ and

involves the elementsd1;a andb. Similarly for E(b;c) andE(a;c), there

exist two further elements, sayd2 andd3 and two tuplest2 and t3; where

the tuplet2 involvesd2;b andc; and, the tuplet3 involvesd3;a andc. We

now prove that the tuplest1, t2 andt3 coincide. We must haved1 6= a and

d1 6= b (otherwiset1 is a 1-cycle contradicting the fact thatgirth (Aτ)> 3).

Similarly, we must haved2 6= b;d2 6= c;d3 6= a andd3 6= c. If t1 is different

from t2 thend1 6= d2 (otherwiset1 andt2 would form a 2-cycle). Similarly

for the tuplest2 and t3 and the tuplest1 and t3, this impliesd2 6= d3 and

d1 6= d3. Thus, if the tuplest1; t2 andt3 were pairwise distinct then we would

have a 3-cycle (which can not happen sincegirth (Aτ)> 3). So, we proved

thatt1; t2 andt3 are the same tuple. This enforcesd1 = c;d2 = a andd3 = b.

Hence, we now know that there exists only one tuple inAτ that involvesa;b
andc. Sincea 6= b^a 6= c^b 6= c^ `1(a;b;c) holds inΠ�1(Aτ) this tuple

can only correspond to a tuple in some relationRAτ
whose interpretation

in σ includes the interpretation ofR1 in σ up to a renaming of variables.

The relationR1 is the only one that satisfies this criteria: it follows that

RAτ
1 (a;b;c) holds. This yields a contradiction.

2. A new tuple belongs toR2. This case is similar to the previous one.

3. A new tuple belongs toR3: that is, there exists somea such that thatRBτ
3 (a)

holds andRAτ
3 (a) does not hold. SinceRBτ

3 (a) holds thenEΠ�1(Aτ)(a;a)
holds. There can not be any elementd such that the first part ofψ is sat-

isfied: this would mean that a tuple that involvesd anda repeated twice

would occur inRAτ
1 or RAτ

2 (recall thatAτ is antireflexive as by assumption

girth (Aτ) > 3). Hence, according to the definition ofΠ�1, we must have

RAτ
3 (a). This yields a contradiction.

There are no new tuples, thus the converse implication holds. �
Remark. Note that we really proved the following. Ifgirth (Aτ)> 3 thenBτ and

Aτ coincide. However, this shall not be true in the general case.
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It follows from this fact and from Lemma 3.4 thatPΨ = CSP(T) can be re-

duced to NO-MONO-TRI via a randomised polynomial time reduction: first, use

the randomised reduction from the lemma to get an equivalentstructure of girth

greater than 3; then, useΠ�1. Hence, we can state the following corollary of

Feder and Vardi’s theorem for the problem NO-MONO-TRI.

Corollary 3.7 There exists a structure T such that:� NO-MONO-TRI reduces to CSP(T) via qfps; and� CSP(T) reduces toNO-MONO-TRI in randomised polynomial-time.

notation. Let x̄ := x0;x1; : : : ;xn�1. We write86=x̄φ, as an abbreviation for:8x̄( ^
0�i< j<n

xi 6= x jφ):
Remark. Before we move onto the proof of Feder-Vardi’s theorem, we shall

make some remarks on the sentenceΦ (used previously as the defining sentence

of the problem NO-MONO-TRI). Recall thatΦ is the following sentence.9C8x8y8z :(`1(x;y;z)^w(x;y;z))^:(`2(x;y;z)^w(x;y;z))^:(`1(x;y;z)^b(x;y;z))^:(`2(x;y;z)^b(x;y;z))^:(E(x;x)^C(x))^:(E(x;x)^:C(x)):
Note that the sentenceΦ has the following key properties:

1. Φ is a good sentence;

2. The sentence obtained by replacing8x8y8z in Φ by 8 6=x;y;z is equivalent

to Φ; and

3. for any negated conjunctγ = :(α^β) in γ(Φ), the structure induced byα
is biconnected and the structure induced byγ is connected.

(1) is necessary to ensure that Lemma 3.5 can be used to prove that the new sen-

tenceΨ expresses a problem that is a CSP. Each symbol inτ corresponds to the
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α-part of a negated conjunct ofΦ. (2) is necessary to ensure that (3) makes sense

together with Lemma 3.4 in the proof of Fact 3.6: that is, for structures of girth

greater than 3,Π�1 is a reduction fromPΨ to NO-MONO-TRI. Indeed, the exis-

tence of cycles is derived from the fact that we have biconnected structures (which

make sense only if the variables can not be identified). In Section 3.4.1, we shall

introduce the notion of a ‘collapsed’ sentence of MMSNP, that corresponds to

(2); and, in Section 3.4.2, the notion of a ‘biconnected’ sentence of MMSNP, that

corresponds to (3).

3.4 Transforming a sentence into a special form

In this Section we transform a sentence of MMSNP into a special form: this spe-

cial form is used in the proof of Theorem 2.7. There are two main steps: first,

we collapsethe sentence of MMSNP; that is, we transform the original sentence

into an equivalent sentence where the sequence of universalfirst order quantifiers8x8y: : : are replaced by the variant86=x;y whose semantic is “for every choice of

distinct elements of the structurex, y,...” (cf. previous Section). Secondly, we

split each negated conjunct of this collapsed sentence into its biconnected com-

ponents. This transformation is quite trivial in the case ofa negated conjunct that

has disjoint components; it involves introducing new nullary predicates (basically

it corresponds to a transformation of a MMSNP problem into the union of con-

nected MMSNP problems). However, it is slightly more subtlein the case of a

1-connected negated conjunct that is not biconnected and that is split along some

articulation point; it involves the introduction of a new monadic predicate.

3.4.1 Collapsed sentences

Later on we shall need the notion of a biconnected negated conjunct; this makes

sense only if we deal with sentences where the first-order variables within a

negated conjunct can not be identified. In other words, we want to restrict our-

selves to injective assignment when checking the satisfiability of a sentence.

Let Φ be a sentence of MMSNP. If the sentence obtained by replacing8x̄ in Φ
by 86=x̄ is equivalent toΦ then we say thatΦ is collapsed.
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collapsing a sentence Let Φ be a sentence of MMSNP. Letγ be some negated

conjunct occurring inΦ and letm be some mapping ofXγ to Xγ. Denote bym(γ)
the negated conjunct obtained fromγ by replacing inγ every first order variablex

in Xγ by its imagem(x) and removing redundancies. For every negated conjunctγ
in Φ and for every mappingm : Xγ !Xγ, add to the sentence all negated conjuncts

m(γ) that are not trivially true1. Simplify this sentence and denote it byColl(Φ).
Lemma 3.8 If Φ is a good sentence of MMSNP thenColl(Φ) is a good sentence

of MMSNP that is collapsed and equivalent toΦ.

PROOF. Notice that ifγ had a complete colouring relatively toκ then so hasm(γ).
ThusColl(Φ) is a good sentence of MMSNP.

By construction, for anyσ-structureA, if A j=Coll(Φ) thenA j=Φ (asColl(Φ)
is obtained fromΦ by adding negated conjuncts).

Conversely, suppose thatA j= Φ. Then, there exists an extensionAσ0
of A

to σ0 such that for any assignmentπ : X ! jAj, Aσ0 j= φ(x̄=π(x̄)), whereφ is the

quantifier-free first-order part of the formulaΦ. We shall show now for any as-

signmentπ : X ! jAj, Aσ0 j= ψ(x̄=π(x̄)), whereψ is the quantifier-free first-order

part ofColl(Φ). Let γ be some negated conjunct inΦ andm : Xγ ! Xγ be some

mapping such thatm(γ) occurs inψ. Let π : X ! jAj. SinceA j= Φ, it follows that

Aσ0 j= γ(x̄=πÆm(x̄)). Hence,Aσ0 j= m(γ)(x̄=π(x̄)). Thus,A j= Coll(Φ).
It remains to show that the construction yields a collapsed sentence: that is,

we show that after this construction, we can restrict ourselves to assignments to

the first-order variables that do not identify any two variables occurring in the

same negated conjunct. More precisely,A j= Coll(Φ) if, and only if, there ex-

ists an extensionAσ0
such that for any negated conjunctγ in γ(Coll(Φ)) and

for any one-to-oneπ : Xγ ! jAj, we haveAσ0 j= γ(x̄=π(x̄)). The direct implica-

tion is clear. For the converse, we have to show, that this holds for assignments

that are non-injective. Letπ : Xγ ! Xγ be a non-injective mapping. Denote by

R(π) := f(x;y)2X2
γ jπ(x)= π(y)g the equivalence relation associated withπ. Take

some representatives for each equivalence class. Denote byẋ the representative

1By this we mean a negated conjunct satisfying the condition(ii) in the first paragraph of
Section 3.1.1.
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of x. Then, letm : Xγ ! Xγ be the mapping defined as follows.m(x) = ẋ. By

assumption,Aσ0 j= m(γ)(x̄=π Æm(x̄)). Hence,Aσ0 j= γ(x̄=π(x̄)). Thus, the result

follows. �
To illustrate the above construction, consider the following example.

EXAMPLE. Let Ψ be the following sentence of MMSNP:9C8x8y8z :(`1(x;y;z)^w(x;y;z))^:(`2(x;y;z)^w(x;y;z))^:(`1(x;y;z)^b(x;y;z))^:(`2(x;y;z)^b(x;y;z)):
ThenColl(Ψ) is the following sentence:9C8x8y8z :(`1(x;y;z)^w(x;y;z))^:(`2(x;y;z)^w(x;y;z))^:(`1(x;y;z)^b(x;y;z))^:(`2(x;y;z)^b(x;y;z))^:(E(x;x)^C(x))^:(E(x;x)^:C(x)):

Notice that this is a sentence of MMSNP that expresses the problem NO-MONO-TRI;

and, moreover that this is the sentence we used previously tofind an equivalent problem

in CSP. N
3.4.2 Biconnected sentences

Let Φ be a sentence of MMSNP. IfGα is connected (respectively biconnected)

for every negated conjunctγ = :(α^β) in γ(Φ) then we say thatΦ is connected

(respectivelybiconnected).

We extend the logic MMSNP by allowing existential quantification over nul-

lary predicates and call MMSNP with nullary predicates thisnew logic; all the

notions introduced in this chapter; that is, the notion of a simplified sentence, of a

sentence with full colourings etc, are naturally extended.

Lemma 3.9 Let Φ be a good sentence of MMSNP. Then, there exists a good bi-

connected sentenceΨ in MMSNP with nullary predicates that is equivalent to

Φ.
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The remainder of this section is devoted to the proof of this result.

Let Φ be a good sentence of MMSNP. We shall construct an equivalentsen-

tenceΨ that is good and biconnected. There are different cases to consider. From

now on, we denote byΦ the sentence equivalent to the original MMSNP sentence

and that has been obtained up to this point of the construction, and we denote by

Ψ the (to be shown) logically equivalent new sentence. As longas there exists a

negated conjunctγ that is not biconnected, we proceed as follows, depending on

γ’s form:

1. disjoint case: γ = :(δ0(x̄)^δ1(ȳ)) with fx̄g andfȳg disjoints.

We introduce a new existential nullary predicatep (i.e. a Boolean variable)

and replaceγ by (δ0(x̄)) p)^ (δ1(ȳ)):p).
Fact 3.10 The new sentence is equivalent.

PROOF. Let Aσ be aσ-structure. Suppose thatAσ j= Φ. Let σ00 := σ0[̇fpg.
Then there exists an extensionAσ0

of Aσ such thatAσ0 j= 8x̄8ȳφ, whereφ
denotes the quantifier-free first-order part ofΦ. In particular,Aσ0 j= 8x̄8ȳγ.

Thus it can not be the case that there exist someπ : Xγ ! jAj such that

both Aσ0 j= δ0(x̄=π(x̄)) and Aσ0 j= δ1(x̄=π(x̄)). ExtendAσ0
as follows: if

there exist someπ : Xγ ! jAj such thatAσ0 j= δ0(x̄=π(x̄)) holds then set

pAσ00
:= true, otherwise setpAσ00

:= false. ClearlyAσ00
witnesses thatAσ j=

Ψ. Conversely, assume thatAσ j= Ψ. Then there exist some extensionAσ00
such thatAσ00 j= 8x̄8ȳψ, whereψ denotes the quantifier-free first-order part

of Ψ. Let Aσ0
denotes the reduct ofAσ00

to σ0. We finally show thatAσ0 j=8x̄8ȳφ: w.l.o.g. pAσ00 = true thus for any assignmentπ : Xγ ! jAj, we have

Aσ0 j= :δ1(ȳ) henceAσ0 j= :γ. �
2. 1-connected case: γ = :(δ0(x̄;z)^δ1(ȳ;z)), with x̄ andȳ disjoints.

We replaceγ by δ0(x̄;z)) Mγ(z))^ (δ1(ȳ;z)) :Mγ(z)) and introduce a

new existential monadic predicateMγ.

Fact 3.11 The new sentence is equivalent.



3.4. TRANSFORMING A SENTENCE INTO A SPECIAL FORM 61

PROOF. A j= Φ if, and only if, there exists an extensionAσ0
of A on σ0

such that for each negated conjunctγ in γ(Φ) and for every assignment

π : Xγ ! jAj, Aσ0 j= γ(x̄=π(x̄)). Let σ00 be σ0[fMγg. ExtendAσ0
on σ00 as

follows. set

MAσ00
γ := fz2 jAj such thatAσ0 j= 9x̄δ0(x̄;z)g:

Now, letπ0 : Xδ0
! jAj. By definition ofAσ00

, we have

Aσ00 j= :(δ0(x̄=π0(x̄);z=π0(z))^:Mγ(z=π0(z))):
Let π1 : Xδ1

! jAj. We must have

Aσ00 j= :(δ1(x̄=π1(x̄);z=π1(z))^Mγ(z=π1(z)));
otherwise,

Aσ00 j= δ1(x̄=π1(x̄);z=π1(z))^Mγ(z=π1(z)):
Hence, by definition ofMσ00

γ , we would haveAσ0 j= 9x̄δ0(x̄;z=π1(z)), that

is there exists someπ0 : Xδ0
! jAj with π0(z) := π1(z) such thatAσ0 j=

δ0(x̄=π(x̄);z=π(z)). Hence, we would have someπ : Xγ ! jAj induced byπ0

andπ1 such that

Aσ0 j= δ0(x̄=π(x̄);z=π(z))^δ1(ȳ=π(ȳ);z=π(z));
a contradiction. It follows thatA j= Ψ.

Conversely,A j= Ψ if, and only if, there exists some extensionAσ00
of A over

σ00 such that for all negated conjunctγ in γ(Ψ), and for allπ : Xγ ! jAj,
Aσ00 j= γ(x̄=π(x̄)). In particular, for anyπ : Xγ ! jAj.

Aσ00 j= :(δ0(x̄=π(x̄);z=π(z))^:Mγ(z=π(z)))
and

Aσ00 j= :(δ1(x̄=π(x̄);z=π(z))^Mγ(z=π(z))):
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It follows that

Aσ00 j=:(δ0(x̄=π(x̄);z=π(z))^:Mγ(z=π(z)))^:(δ1(x̄=π(x̄);z=π(z))^Mγ(z=π(z))):
Let Aσ0

be the reduct ofAσ00
overσ0. Then,

Aσ0 j= :δ0(x̄=π(x̄);z=π(z)) if Aσ00 j= Mγ(z=π(z)
andAσ0 j= :δ1(x̄=π(x̄);z=π(z)) if Aσ00 j= :Mγ(z=π(z):

It follows that there exists an extension ofAσ0
of A over σ0 such that for

anyπ : Xγ ! jAj, Aσ0 j= :(δ0(x̄=π(x̄);z=π(z))^δ1(ȳ=π(ȳ);z=π(z))). Hence,

A j= Φ. �
Once every negated conjunct is biconnected, we transform the sentence into

a good sentence;i.e. we complete the colouring and simplify the sentence. This

concludes the proof of Lemma 3.9.

Together with Lemma 3.8 this yields the following corollary(since if one as-

sumesΦ to be collapsed in Lemma 3.9 then the sentenceΨ is also collapsed).

Corollary 3.12 Let Φ be a good sentence of MMSNP. Then there exists a

sentence of MMSNP with nullary predicates equivalent toΦ, that is good,

collapsed and biconnected (we call this sentence thespecial formof Φ).

Remark on MMSNP with nullary predicates Notice that a problem defined by

a sentence with nullary predicates simply corresponds to a finite union of problems

expressed by sentences without nullary predicates. Lemma 3.5 can be generalised

to conform sentences of MMSNP with nullary predicates; indeed, we can do a

case analysis on the values of these nullary predicates and for each of these cases

apply the lemma and construct a templateTi , and makeT the disjoint union of

these templates. However, we must ensure that the cases are disjoint for the non-

uniform CSP problem as well, and that disconnected instances are in the problem

if, and only if, there is an homomorphism into a singleTi. Hence, we add a binary

symbolR to σ and setRT := Si jTij2 and for every instanceA we setRA := jAj2.
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Note that this can be achieved via qfps from the constraint satisfaction problem

to the MMSNP problem and via a polynomial-time reduction from the MMSNP

problem to the constraint satisfaction problem.

3.5 Main part of the reduction

The idea of the reduction is as follows: given a problem expressed by a sentence

Φ over σ (of the special form given by the previous corollary) we consider the

problem over the signatureτ, whereτ is induced by theα-parts of the negated

conjuncts occurring inΦ; one new relational symbolRα is introduced for every

equivalence class ofα(Φ) for�σ; and, its arity is the number of different variables

occurring inα. Now, choose oneα in each equivalence class and let

φα := ^
xi 6=x j2Xα

xi 6= x j ^α:
This provides an interpretation ofτ in σ of width one:Π = (φαjRα 2 τ):

Replace everyα-partα(x̄) of the negated conjuncts inΦ by the corresponding

symbolRα(x̄) Denote this sentence byΨ.

Note thatΨ is conform and thatAσ j= Φ if, and only if Π(Aσ) j= Ψ. However,

we are also interested in the reduction from the problem expressed byΨ to the

problem expressed byΦ. Let Bτ be aτ-structure. IfRα(t) holds inBτ for some

tuple of elementst suitable in length then we wantα(t) to hold in the structureAσ

obtained fromBτ. In other words, we just reverse the interpretationΠ as follows:

for everyR in σ, let

φR(x̄) = _
R(x̄) occurs inα(x̄;ȳ)9ȳα(x̄; ȳ)

This provides an interpretation ofσ in τ of width one: Π�1 = (φRjR2 σ) (note

that for simplicity in the above, we did not take into accountthe fact that we might

have to rename variables). We want:

Bτ j= Ψ if, and only if Π�1(Bτ) j= Φ.
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This would clearly hold if:

Π(Π�1(Bτ)) = Bτ

would hold, but this is not the case in general. This is where the notion of high

girth is needed. Indeed, each tuple in a relation in theτ-structuresΠ(Π�1(Bτ))
corresponds either:

1. to a monotuple connected substructure ofΠ�1(Bτ); or

2. to a non-monotuple biconnected substructure ofΠ�1(Bτ).
So, according to case (2): different tuples inBτ could give rise to some tuples in

Π�1(Bτ); these latter tuples might satisfy someα in α(Φ); and, it may yield a

tuple inΠ(Π�1(Bτ)) that is not present inBτ.

Let gΦ be the maximal number of atoms occurring in anα-part of Φ. If Bτ has

girth greater thangΦ andR(t) holds inΠ�1(Bτ) (for some relation symbolR of

arity r in σ and somer-tuplet) thent must be induced according to case (1):i.e.

t must be contained in some tupletα in some relationRα in Bτ.

Hence, we have to enforce the following: if a colouringβ1 is forbidden by a

negated conjunctγ1, whoseα-partα2 is a subconjunction of a strictly largerα-part

of some other negated conjunctγ2 then the constraint given byβ1 is propagated to

α2. In the following, we amend our construction ofΨ to make sure that this is the

case.

Construction of Ψ. First, for every negated conjunctγ1 = :(α1^ β1), γ2 =:(α2^β2) in γ(Φ) and permutationm : Xγ1 ! Xγ2 such thatm(α1) is a subcon-

junction ofα2; we add the following negated conjunct toΦ:

γ1;2 = :(α2^m(β1)):
Secondly, we complete the colouring of this new sentence anddenote it byΦ̃.

Note thatΦ̃ is equivalent toΦ and also that̃Φ is not necessarily simplified. How-

ever, Φ̃ has all the other properties that a sentence obtained via Corollary 3.12

would have; it is biconnected and collapsed and has completecolourings. Denote
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by Ψ the formula obtained from̃Φ by replacing everyα by the corresponding

symbolRα in τ.

Note thatΨ is conform.

Lemma 3.13 Let Φ be a sentence of MMSNP with nullary predicates that is

of the special form (given by Corollary 3.12). There exist a signatureτ, an

interpretationΠ of width one fromτ in σ, an interpretationΠ�1 of width one

fromσ in τ and a conform sentenceΨ overτ such that the following holds:(i) for anyσ-structure Aσ, Aσ j= Φ if, and only ifΠ(Aσ) j= Ψ; and(ii) for any τ-structure Bτ of girth greater than gΦ, Π(Π�1(Bτ)) j= Ψ if,

and only if Bτ j= Ψ.

PROOF. Let τ be the signature induced bỹΦ, let Π be the interpretation of width

one ofτ in σ let Π�1 be the corresponding interpretation ofσ in τ and letΨ be

defined as previously.(i) is clear. We now prove(ii). By monotonicity ofΨ and becauseBτ can be

embedded inΠ(Π�1(Bτ)), clearlyΠ(Π�1(Bτ)) j= Ψ impliesBτ j= Ψ. Now, sup-

pose thatBτ j= Ψ. Then there exists some extensionBτ0 of Bτ to τ0 := σ[κ such

that for each negated conjunctγ in γ(Ψ), and for every assignmentπ : Xγ ! jBτj
Bτ0 j= γ(x̄=π(x̄)) holds. LetAτ0 be the extension ofΠ(Π�1(Bτ)) to τ0 constructed

as follows: the reduct ofAτ0 over κ is the same as the reduct ofBτ0 overκ. We

show that this extension witnesses thatΠ(Π�1(Bτ)) j= Ψ.

Note that, we have to check only those tuples that were not present inBτ. We

call informally “new tuples” such tuples. SinceBτ has girth greater thangΦ, a

new tuple must be the projection over some indices of a longertuple present in

Bτ. Indeed, anyk tuplesti in RBτ
i of arity r i give rise to an acyclic substructure

of Bτ becauseBτ has girthgΦ > k. Therefore, a new tuplet1 in someRΠ(Π�1(Bτ))
α1

must be induced by some tuplet2 in RBτ
α2

, whereα1 andα2 belong toα(Φ) and

α1 -σ α2 (recall thatΦ is biconnected). Hence, if there existγ1 = :(Rα1^β1) in

γ(Ψ) andπ1 : Xγ1 ! jBτj such that

Π(Π�1(Bτ)) j= Rα1(x̄=π(x̄)):
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Then, there exist a negated conjunct:(α2^ β2) in γ(Φ), a one-to-one mapping

m : Xα1 ! Xα2 such thatm(α1) is a subconjunction ofα2; and, moreover, there

existsπ2 : Xα2 ! jBτj such thatπ2Æm= π1 overXα1 andBτ j= Rα2(ȳ=π2(ȳ)). By

construction, some negated conjunct obtained fromγ1;2 is present inΨ; that is, a

negated conjunct of the following form:

γβ
1;2 = :(Rα2^m(β1)^β):

SinceBτ j= Ψ, it follows that for all suchβ:

Bτ0 j= :(Rα2(ȳ=π2(ȳ)^m(β1)(ȳ=π2(ȳ))^β(ȳ=π2(ȳ))):
Hence,

Bτ0 j= :m(β1)(ȳ=π2(ȳ));
and it follows that:

Bτ0 j= :β1(x̄=π1(x̄)):
Therefore,

Aτ0 j= :β1(x̄=π1(x̄)):
Finally, we get:

Π(Π�1(Bτ)) j= Ψ: �
3.6 A Proof of Feder and Vardi’s theorem

Combining together the results of this chapter, we can now give a proof of Feder

and Vardi’s theorem.
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Theorem 3.14 (Feder and Vardi)

Every problem in CSP is expressible by a sentence of MMSNP. Every prob-

lem PΦ expressible by a sentenceΦ of MMSNP is equivalent to a problem

CSP(TΦ) in CSP:PΦ reduces to CSP(TΦ) in polynomial time; and, CSP(TΦ)
reduces toPΦ in randomised polynomial time.

PROOF.CSP is contained in MMSNP by lemma 3.5.

By Corollary 3.12, we can assume thatΦ is a sentence of MMSNP with nul-

lary predicates that is good, collapsed and biconnected. Then, it follows from

Lemma 3.13 that there exists a conform sentenceΨ (with possibly some nullary

predicates) over a signatureτ such that: the problem expressed byΦ reduces to

that ofΨ via a qfp of width one; and, the problem expressed byΨ, when restricted

to τ-structures of girth greater thangΦ, reduces to the problem expressed byΦ via

a positive first-order interpretation of width one.

It follows from the remark on nullary predicates on the end ofSubsection 3.4.2

that the problemPΨ (the problem expressed byΨ) is computationaly equivalent

to a problemCSP(TΨ) in CSP:PΨ reduces toCSP(TΨ) via a polynomial-time re-

duction; and,CSP(TΨ) reduces toPΨ via a qfp.

It follows from Lemma 3.4 that the problemCSP(TΨ) reduces to its restriction

over τ-structures of girth greater thangΦ in randomised polynomial-time. This

restricted constraint satisfaction problem reduces toPΨ via a trivial qfp that shall

not decrease the girth; it consists only in dropping one relation symbol (the sym-

bol introduced to enforce that a disconnected instance would map into a single

template). Thus, altogether we provided a randomised polynomial-time reduction

from CSP(TΨ) to PΦ. �
In [16], the authors mention the possibilities of usingquasi-random graphsto

derandomizethe reduction from the constraint satisfaction problem to the problem

expressed by a sentence of MMSNP problem. In other words,

Question 3.15 is it possible to have polynomial-time reductions in Theorem 2.7

in both directions?

An unsuccessful attempt along this line lead me to the following question:

Question 3.16which problems in MMSNP are not in CSP?
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We know that such problems exist (cf. Section 2.4). Moreover, if hopefully I

could provide some exact characterisation for the latter question, I could possibly

answer negatively to a restriction of the former question. Indeed, proving a nega-

tive result for any polynomial-time reduction seems to be rather tricky in front of

the immmense diversity that such reductions have to offer. However, if we restrict

ourselves to some particular meaningful reductions, say first-order projections, we

could hopefully prove that some property that ensures that aproblem is not a CSP

could be conserved by such transformations. As a matter of fact, I have not yet

answered even a restriction of the former question. I answered however the latter.

This rather innocent looking question has lead me to a proof involving objects and

notions which I consider personally as interesting by themselves. I hope to con-

vince the reader in the next chapter, which is fully devoted to this characterisation.

If the reader was not yet convinced of the interest of Question 3.16, we hope to

eventually convince him in Chapter 5. There, we shall relatein some detail some

recent and independent results by Tardiff and Nešetřil (cf. [45]), which can be

obtained as a corollary of our forthcoming characterisation.



Chapitre 4

Problèmes de motifs interdits

Une nouvelle classe de problèmes combinatoires est introduite : la classe

des problèmes de motifs interdits. Ces derniers correspondent exactement à la

logique MMSNP de Feder et Vardi. Le concept central derecoloriageentre

les représentationsde tels problèmes est défini : ce concept généralise la no-

tion d’homomorphisme. Par la suite, on met en évidence uneforme normale

pour de tels problèmes. Celle-ci permet finalement decaractériser exacte-

ment les problèmes de motifs interdits qui ne sont pas des problèmes d’homo-

morphisme. La preuve est de nature constructive, au sens où, étant donnée la

représentation d’un problème de motifs interdits, sa formenormale estcal-

culée, puis un critère simple permet de décider si le problème appartient à

CSP. De plus, si c’est le cas, son patron peut être calculé, sinon une procédure

permettant de construire une famille de contre-exemples (qu’on appellera une

famille de témoins) est donnée.

69
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Dans ce chapitre, j’introduis une nouvelle classe de problèmes combinatoires
qui correspondent exactement à la logique MMSNP : lesproblèmes de motifs in-
terdits(FP). Le théorème de Feder et Vardi implique donc que les classes CSP et
FP sont calculatoirement équivalentes. Cependant, certains problèmes de motifs
interdits ne sont pas dans CSP (corollaire des résultats obtenus section 2.4). On
voudrait répondre à la question 3.16 dans ce nouveau cadre ; àsavoir, caractériser
exactement les problèmes de motifs interdits qui ne sont pasdans CSP. Un pro-
blème de motifs interdits est donné par unereprésentation, qui dans un certain
sens généralise la notion de structure. Adopter une formulation plus algébrique
des problèmes définissables par des formules de MMSNP, me permet alors de dé-
gager une notion demorphisme de représentation: le recoloriage. Par suite, on
peut s’intéresser aux notions engendrées derétraction, puis decoeur. Par ailleurs,
on a vu au chapitre précédent que le problème associé à une formule conforme de
MMSNP est dans CSP : on adapte directement la preuve pour obtenir la notion clé
depatron d’une représentation(il s’agit d’une structure induite par des motifs in-
terdits particuliers, les motifs dits conformes). Finalement, je construis minutieu-
sement uneforme normaleen recoupant attentivement la notion de coeur d’une
représentation avec une adaptation des techniques de la section 3.4.2 (qu’on appel-
leratransformation de Feder-Vardi). Je généralise alors l’idée des preuves données
section 2.4. Ainsi, pour montrer qu’un problème de motifs interdits donné n’est
pas dans CSP, je m’attache à construire des familles de structures particulières, les
familles de témoins. Je suis alors en mesure de décrire uneconstruction générique
de telles familles, à condition que le problème soit donné par unereprésentation
connexe et normale qui n’est pas conforme. Par suite, je réponds complètement
à la question posée en introduisant la notion d’ensemble de représentations nor-
males connexes.

Ce chapitre s’organise de la manière suivante. Dans la section 4.1, je tente de
donner l’intuition derrière les notions de représentationet de recoloriage avant
de les définir ainsi que la classe FP des problèmes de motifs interdits. Je montre
ensuite rapidement que FP correspond exactement à la logique MMSNP. La sec-
tion 4.2 est entièrement consacrée à la notion de rétraction: je rappelle cette no-
tion pour les structures avant de l’étendre aux structures coloriées puis aux repré-
sentations. Dans la section 4.3, je définis la notion depatron d’une représenta-
tion et à la section 4.4, celle de transformation de Feder-Vardi.La section 4.5 se
consacre à la construction d’une forme normale pour une représentation : de nom-
breux exemples sont également donnés. À la section 4.6, je définis les familles
de témoins, et je montre que si un problème de motifs interdits possède une telle
famille, alors il ne peut pas appartenir à CSP. Ensuite, je donne une construction
générique de famille de témoins dans le cas d’une représentation normale connexe
non conforme. Finalement, à la section 4.7, je prouve le résultat principal de ce
travail ; i.e., une caractérisation exacte des problèmes de motifs interdits qui ne
sont pas dans CSP (à condition qu’il soit donné par une représentation connexe).
J’illustre alors mon résultat par de nombreux exemples. Finalement, dans le reste
du chapitre, j’étends mon résultat à n’importe quelle représentation.
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4.1 Preliminaries

In this section, we start by introducing the notion of a coloured structure and of

a homomorphism for coloured structures, the so-calledcolour preserving homo-

morphisms. Next in Subsection 4.1.2 we provide various examples to illustrate

these notions; these examples are rather numerous as we shall need them later to

provide examples of representations. In Subsection 4.1.3 we introduce the notion

of a representationtogether with a new combinatorial problem, the so calledfor-

bidden patterns problemassociated to a given representation. We introduce the

key notion of arecolouringbetween representations and show that it is a mor-

phism for representations and that, moreover, the existence of a recolouring be-

tween two given representations implies the inclusion of the problems they define;

thus we obtain a result similar to Proposition 2.1. Next we illustrate these newly

introduced notions by various examples. Finally, in Section 4.1.4 we provide two

technical lemmas showing that the logic MMSNP captures exactly FP, the class

of forbidden patterns problem.

4.1.1 Finite coloured structures and colour preserving homo-

morphisms

Let µ be a finite set. We call the elements ofµ colours. A finite µ-colouredσ-

structureconsists of a finiteσ-structureA, together with a mappingcA
µ : jAj ! µ.

We write (A;cA
µ). We say that(A;cA

µ) is connected(respectivelybiconnected)

wheneverA is connected (respectively biconnected). Let(A;cA
µ) and(B;cB

µ) be

two µ-colouredσ-structures. Acolour preserving homomorphismof (A;cA
µ) to(B;cB

µ) is a homomorphismA h B that preserves the colourings ofA andB, i.e.

such thatcB
µ Æh = cA

µ, and we write,(A;cA
µ) h (B;cB

µ): If there exists some map-

ping h such that(A;cA
µ) h (B;cB

µ) then we write(A;cA
µ) (B;cB

µ): If it is not the

case that(A;cA
µ) (B;cB

µ) then we write(A;cA
µ) = (B;cB

µ). We shall make use of

diagrams to illustrate definitions and proofs in the following. If (A;cA
µ) h (B;cB

µ),
we draw the following1.
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A
h

cA
µ

B

cB
µ

µ

Whenh is a surjective colour preserving homomorphism, we write(A;cA
µ) h (B;cB

µ):
Whenh is an injective colour preserving homomorphism, we write(A;cA

µ) h (B;cB
µ):

If (A;cA
µ) h (B;cB

µ) then we say that(A;cA
µ) is a subcoloured structure of(B;cB

µ)
(Note that it may be the case that(A;cA

µ) is not an induced subcoloured structure

of (B;cB
µ)).

A colour preserving isomorphismis a bijective colour preserving homomorphism

whose inverse is a colour preserving homomorphism. If(A;cA
µ) h (B;cB

µ) andh

is a colour preserving isomorphism then we write(A;cA
µ) t (B;cB

µ). We denote

by STRUCµ(σ) the class of all finiteµ-colouredσ-structures. To avoid having to

use too heavy a notation, when the set of colours is clear fromthe context, we

shall not specify it, as in(A;cA). Moreover, we shall speak of a homomorphism

of (A;cA) to (B;cB) as meaning a colour preserving homomorphism.

Notice moreover that the composition of two colour preserving homomor-

phisms is itself a colour preserving homomorphism. As for the case of struc-

tures, we have an identity homomorphism associated with anycoloured structure(A;cA), induced by the identity map overjAj, which we shall denoteid(A;cA). One

can therefore speak of thecategory of finite µ-colouredσ-structures.

In the next subsection, we introduce variousσ2-structures and colouredσ2-

structures and discuss the existence of homomorphisms and colour preserving

homomorphisms between them: we shall need this later to build further examples

of problems captured by sentences of MMSNP.

1A µ-colouringcA
µ of a structureA can be seen as a homomorphism ofA to Kµ, the complete

structure with domainµ,cf. remark on the end of Subsection 4.3.2.
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4.1.2 Examples

Someσ2-structures. Recall thatσ2 := fEg, whereE is a binary relation sym-

bol. σ2-structures can be considered as an encoding of finite directed graphs (pos-

sibly with self-loops). Denote byDCn, n > 1, the followingσ2-structure (DC

standing for directed cycle).� jDCnj := f0;1; : : : ;n�1g; and� for any elementsx;y in jDCnj, E(x;y) holds if, and only if,x+1= y modn.

Denote byCn, n> 1, the followingσ2-structure.� jCnj := f0;1; : : : ;n�1g; and� for any elementsx;y in jCnj, E(x;y) holds if, and only if,x+1= y modn

or y+1= x modn.

Moreover, setC1 andDC1 to be the structure with a single elementx such that

E(x;x) holds. Some of these structures are depicted in Figure 4.1 (the nodes not

being labelled for the sake of simplicity). In the case of thestructuresCn, we write

a double arrow to denote that the relationECn is symmetric.

DC3 DC4 DC5 DC6ÆÆ Æ ÆÆÆ Æ ÆÆÆ Æ Æ ÆÆÆÆ Æ Æ
C3 C4 C5 C6ÆÆ Æ ÆÆÆ Æ ÆÆÆ Æ Æ ÆÆÆÆ Æ Æ

Figure 4.1: Directed Cycles and Cycles

1. Clearly, any graph maps homomorphically intoDC1.
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2. For anyn> 0, there is a natural bijective homomorphismhn;n of DCn toCn,

wherehn;n is the identity mapping over the setf0;1; : : : ;n�1g. However

notice thathn;n is not an isomorphism except forn� 2 since its inverse is not

a homomorphism. Thus to sum up, we have the following; for anyn� 2,

hn;n : DCn Cn

x 7! x

h�1
n;n : Cn = DCn

x 7! x

3. Letn;m> 0 be such thatm dividesn. Consider the mapping

hn;m : f0;1; : : : ;n�1g ! f0;1; : : : ;m�1g
x 7! x modm

It is easy to check thatDCn
hn;m

DCm and thatCn
hn;m

Cm.

4. If m< n then there is no homomorphism ofDCm to DCn.

5. Moreover, notice that ifn;m> 1 are such thatn 6= m andn andm are rela-

tively prime thenDCn = DCm.

6. The case of cycles is different; even cycles are homomorphically equivalent.

Let
f2 : f0;1g ! f0;1; : : :;2p�1g

x 7! x

We haveC2p
h2p;2

C2 andC2
f2 C2p. Notice thath2p;2Æ f2 = id2. However,

the two structures are not isomorphic.

Since any even length cycleC2p; p > 0, is homomorphically equivalent to

C2, we haveC2p Cn for anyn> 1.

However it is easy to check that odd cycles do not map into evencycles:

as for anyq� 0, C2q+1 = C2, it follows from the fact that even cycles are

homomorphically equivalent that; for anyp;q� 0,C2q+1 = C2p.

7. Let p� 0. The odd cycleC2p+3 maps homomorphically into the odd cycle

C2p+1: simply map vertex 2p+1 ofC2p+3 to vertex 0 ofC2p+1; map vertex

2p+2 of C2p+3 to vertex 1 ofC2p+1; and, map any other vertexi of C2p+3
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to vertexi of C2p+1. Since the composition of two homomorphism is again

a homomorphism, we have proved the following. letn> m> 1. If n andm

are both odd thenCm Cn.

8. However, it can be easily checked that, ifn> m> 1 are such thatn andm

are both odd thenCm = Cn.

WDC3 ADC4 WDC5 ADC6}} } }�} � }}}} } }�}� } �
AC3 BC4 AC5 BC6}� } ��� � }�}� } ���� � �

Figure 4.2: some coloured structures

Some 2-colouredσ2-structures. Let 2 := f0;1g. In our picture, we shall colour

an element in white for the colour 0 and in black for the colour1. Consider the

following colourings,

w2
n : jDCnj ! 2

x 7! 0

b2
n : jDCnj ! 2

x 7! 1

a2
n : jDCnj ! 2

x 7! 8<:0 if x is even

1 otherwise.

Let WDCn := (DCn;w2
n) and BDCn := (DCn;b2

n) for n � 1, and forn > 1 set

ADCn := (DCn;a2
n) (WDC stands for White Directed Cycle, BDC for Black Di-

rected Cycle and ADC for Alternated Directed Cycle). Examples among such

structures are depicted in Figure 4.2.

Define similarly,WCn := (Cn;w2
n), BCn := (Cn;b2

n) andACn := (Cn;a2
n).
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1. Letn;m> 1 be such thatm dividesn andp;q> 1 such thatq dividesp. It

is easy to check the following,

WDCn
hn;m

WDCm

BDCn
hn;m

BDCm

ADC2p
h2p;2q

ADC2q

WCn
hn;m

WCm

BCn
hn;m

BCm

AC2p
h2p;2q

AC2q

2. However, for anyp;q> 1, ADC2p+1 = ADC2q since there is the edge(n�
1;0) where bothn�1 and 0 are coloured white, whereas no such coloured

edge occurs inADC2q. Since no edge ofADC2q can be mapped over the

white-white edge ofADC2p+1, if ADC2q ADC2p+1 then this would imply

thatADC2q can be mapped homomorphically into a directed path, which is

not the case: henceADC2q = ADC2p+1.

3. Similarly for anyp;q> 1, we haveAC2p+1 = AC2q.

4. However,AC2p AC2q+1. Indeed,AC2p AC2.

5. Moreover, clearly there is no homomorphism between any choice of colou-

red structures of different type among the three types of colouring intro-

duced, white, black or alternated, since the colourings arealways incompat-

ible (except forWDC2tWC2 AC2p+1 for p> 1).

6. The following gives the relation between the coloured cycles and the di-

rected coloured cycles.

WDCn
hn;m

WCm

BDCn
hn;m

BCm

ADCn
hn;m

ACm

4.1.3 Representations, recolourings and FP

Next, we shall introduce the notion of a representation for aforbidden patterns

problem (that shall be defined shortly afterwards). First weshall discuss in some
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detail the intuition behind these forthcoming definitions.In the case of homomor-

phism problems, a problem is represented by its template, and for two templatesA

andB, we haveCSP(A)�CSP(B) if A B (notice that the converse also holds,

cf. Proposition 2.1). The notion of a recolouring of one representation to another

shall have a similar behaviour:

1. a recolouring shall define a notion of morphism from one representation to

another; and

2. if there exists a recolouring of one representation to another then the forbid-

den patterns problem defined by the first representation is contained in that

defined by the second.

A finite σ-representationwith coloursµ is a pair(µ;M ), whereµ is a finite set and

M is a finite set ofµ-colouredσ-structures. We call the elements ofM theforbid-

den patternsof (µ;M ). Let REP(σ) denote the class of finiteσ-representations.

EXAMPLE. Let n� 1 andp� 1. Consider the followingσ2-representations:MDC2
n := f2;fW DCn;BDCnggMC2
n := f2;fWCn;BCnggADC2

2p�ME := f2;fADC2p;WDE;BDEgg
whereWDE, respectivelyBDE, denotes a single directed edge whose vertices are colou-

red in white, respectively black (the names of these representations standing for Mono-

chromatic Directed Cycles, Monochromatic Cycles, and, Alternated Directed and Mono-

chromatic Edges, respectively). See Figure 4.3 for some examples. In this picture, each

cell in an array stands for a single forbidden pattern (as a forbidden pattern is not neces-

sarily connected), except for the top cell which representsthe set of colours. N
A coloured structure(A;cA

µ) in STRUCµ(σ) is said to bevalid with respect

to (µ;M ), if, and only if, none of the forbidden patterns maps into(A;cA
µ) via a

colour preserving homomorphism. In other words, for any(M;cM
µ ) in M and for

any mappingh of jMj to jAj, eitherM =h A or cM
µ Æh 6= cA

µ. When(A;cA) is not
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DC1
3 MDC2

3 ADC2
4�ME

}}} }
}�}} }�� �

}� }�} �} }� �DC1
3�B MC2

5 MDC2
2 =MC2

2}�}} }�
}� }}}} }��� � �

}�} }� �
Figure 4.3: some representations for directed graphs
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valid with respect to some(M;cM
µ ) in M via some colour preserving homomor-

phismh, we shall use the following diagram.M
h

cM
µ

M

A

cA
µ

µ

EXAMPLE. Consider the representationMDC2
3 (see Figure 4.3) and theσ2-structure

DC5. Consider now this structure together with a colouring thatmaps every vertex to

the colour “white”; that is, the coloured structureWDC5. WDC5 is valid with respect toMDC2
3 as the forbidden patterns do not map intoWDC5 via a colour preserving homo-

morphism. N
Let (µ;M ) be aσ-representation. Define theforbidden patterns problemwith

representation(µ;M ), denotedFP(µ;M ), to be the problem with yes-instances

thoseσ-structuresB such that:� there exists a mappingcB
µ such that(B;cB

µ) is valid for (µ;M ).
Denote byFPσ the class of forbidden patterns problems given by aσ-repre-

sentation and set:

FP :=[
σ

FPσ:
We now define a notion that isabsolutely essentialin the remainder of this

work, namely the notion of arecolouring between representations. As we shall see

later, the notion of a representation generalises the notion of a template, and the

notion of a recolouring generalises the notion of a homomorphism. To grasp the

idea behind the following definition, consider the contrapositive of the definition

of a homomorphism as given in Section 2.1:� for any r-ary symbol inσ and for anyb̄ in jBjr , for any ā in jAjr such that

h(ā) = b̄, if RB(b̄) does not hold thenRA(ā) does not hold.

That is, informally, the inverse image of a tuple not presentin the target structure

is not present in the source structure. As we shall see later,a tuple not present

in the template of a homomorphism problem corresponds to a forbidden pattern
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of a special kind. Hence, the intuition behind our definitionof a recolouring is

that it induces inverse images of forbidden patterns and that the inverse image of

something forbidden is forbidden.� for all forbidden patterns(N;cN
ν ) in N and all functionscN

µ of jNj to µ

with cN
ν = r ÆcN

µ , the coloured structure(N;cN
µ ) is not valid with respect

to the representation(µ;M ).
If r is a recolouring of(µ;M ) to (ν;N ) then we write(µ;M ) r (ν;N ).
So for any(N; r ÆcN

µ ) in N , there exists some(M;cM
µ ) in M with the property

thatM m N such that the following diagram commutes.

M
m

cM
µ

M

N

cN
µ

cN
ν

N

µ r ν

EXAMPLE. Consider now the following mappings:

id2 : 2 ! 2

0 7! 0

1 7! 1

s2 : 2 ! 2

0 7! 1

1 7! 0

c02 : 2 ! 2

0 7! 0

1 7! 0

c12 : 2 ! 2

0 7! 1

1 7! 1

In the following, letn�m> 1 such thatm dividesn.

1. We claim thatid2 is a recolouring ofMDC2
n toMDC2

m.

Indeed, the only pre-image ofWDCm via id2 is WDCm; and, we have seen previ-

ously thatWDCn WDCm if n�m> 1 andm dividesn; thus,WDCm is a valid

colouring with respect toMDC2
n The case of the other forbidden patternBDCn is

similar. Hence, we have shown that:

if n�m> 1 andm dividesn thenMDC2
n

id2 MDC2
m:
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2. By symmetry of the considered representation with respect to its colours, we have:

if n�m> 1 andmdividesn thenMDC2
n

s2 MDC2
m:

3. However, notice thatid2 is not a recolouring ofMDC2
m toMDC2

n, since

WDCm = WDCn andBDCm = WDCn:
4. Similarly,s2 is not a recolouring ofMDC2

m toMDC2
n.

5. For the two other mappings,c02 andc12, one can easily check that they are not

recolourings, for exampleADCm is a pre-image ofWDCm via c02, respectively of

BDCm via c12, and we have seen that there is no homomorphisms between the

alternated coloured cycles and the uniformly coloured cycles in the directed case.

These maps are not recolourings ofMDC2
m toMDC2

n either.

6. It follows therefore that there is no recolouring ofMDC2
m to MDC2

n, which we

denote by:

if m;n> 1 andmdividesn thenMDC2
m = MDC2

n: N
The notion of recolouring we just defined satisfies the properties we required.

Indeed, notice that the composition of two recolourings is arecolouring and that

we have an identity recolouring associated with any representation(µ;M ) induced

by the identity map overµ, which we shall denoteid(µ;M ). One can therefore

speak of thecategory ofσ-representations. This proves (1). As in the case ofσ-

structures, this category has further interesting properties that shall be investigated

in Chapter 5. For (2) consider the following proposition.

Proposition 4.1 Let (µ;M ) and(ν;N ) be twoσ-representations. If there exists

a recolouring(µ;M ) r (ν;N ) then FP(µ;M )� FP(ν;N ).
PROOF. Let A be aσ-structure. Assume thatA is a no-instance ofFP(ν;N ). Let
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cA
µ be a colouring ofA. (A; r Æ cA

µ) can not be valid

for (ν;N ). Hence, there exists some forbidden

pattern(N;cN
ν ) in N and some colour preserving

homomorphismn such that(N;cN
ν ) n (A; r Æ cA

µ).
Sincer is a recolouring andr ÆcA

µÆn= cN
ν , it follows

that there exists some forbidden pattern(M;cM
µ ) in

M and some colour preserving homomorphismm

M
m

cM
µ

M

nÆm
N

cN
µ

cN
ν

N
n

µ r ν A
cA

µ

rÆcA
µ

such that(M;cM
µ ) m (N;cA

µ Æ n). Finally, it follows that,(M;cM
µ ) nÆm (A;cA

µ) (to

see this, note thatnÆm is a homomorphism and that it respects colourings). Hence,(A;cA
µ) is not valid for(µ;M ). Thus,A is a no-instance ofFP(µ;M ). �

The converse does not hold in general; we shall provide a non-trivial counter-

example at the end of Section 4.4 and some trivial counter-examples in the fol-

lowing.

Trivial representations. Notice that there are only two representations with

colour setµ = /0. Indeed, there is only one structure (up to isomorphism) that

can be/0-coloured: it is the void structure that has no elements, which we shall

denote 0σ. It can be coloured by the mappingc0σ
/0 (considering a mappingc0σ

S of /0
to some setSas a special binary relation,/0 = c0σ

S � j0σj�S= /0). Hence the only

two representations with an empty set of colours are0σ := ( /0;f(0σ;c0σ
/0 )g) and0̃σ := ( /0; /0). The former represents the trivial problem without any yes-instances

and the latter represents the problem with a single yes-instance, namely the void

structure 0σ. However, there are some other representations that define the same

problems to those defined by these two trivial representations:� the representations with a non-void set of coloursµ and with a set of forbid-

den patternsM consisting only of the coloured structure(0σ;c0σ
µ ); and� the representations with a non-void set of coloursµ and with a set of for-

bidden patternsM̃ consisting of the coloured structuresK1
k

with a single

element colouredk, for any colourk in µ.

Clearly we have

FP(µ;M ) = /0 = FP(0σ)
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and

FP(µ;M̃ ) = f0σg= FP(0̃σ):
However, there can not be any mapping ofµ to /0 asµ is non-void. Hence,

there is neither a recolouring of(µ;M ) to 0σ nor of (µ;M̃ ) to 0̃σ. This provides

some trivial counter-examples for the converse of the last proposition. The first

problem is not in CSP as it has no yes-instances, and any CSP problem has at least

one yes-instance, its template. Note that the second problem is nothing else than

the problemCSP(0σ). Having dealt with these problems, we shall assume in the

following that none of the representations we consider define problems equal to

FP(0σ) or FP(0̃σ).
As we have seen earlier, with the notion of a recolouring we have a morphism

of representations, thus we can consider the induced notionof monomorphism (re-

spectively epimorphism): it corresponds to the recolourings induced by mappings

that are injective (respectively surjective). We use a similar notation for recolour-

ings as we did for homomorphisms and colour preserving homomorphisms. Ifr

is an injective recolouring then we say thatr is amonorecolouringand we write(µ;M ) r (ν;N ). In this case, by analogy with the case ofσ-structures, we say

that(µ;M ) is asubrepresentationof (ν;N ). Let

M 0 = f(M;cM
µ ) 2 STRUCµ(σ)j(M; r ÆcM

µ ) 2N g
We call the representation(µ;M 0) thesubrepresentation of(ν;N ) induced by the

recolouring i(or induced subrepresentationof (ν;N ) for short). Ifr is a surjective

recolouring then we say thatr is anepirecolouring, and we write(µ;M ) r (ν;N ).
A recolouring that is bijective and whose inverse is a recolouring is called an

isorecolouring. If (µ;M ) r (ν;N ) andr is an isorecolouring then we write(µ;M )t(ν;N ):
Let (µ;M ) be a representation. We say that(µ;M ) is simpleif, eitherjM j � 1

or for any pair of distinct forbidden patterns(M;cM
µ ) and(M0;cM0

µ ) in M , we have(M;cM
µ ) = (M0;cM0

µ ).
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EXAMPLE. TheMDC2
m’s from the previous example are easily seen to be simple repre-

sentations. N
As the following result shows, for every representation, there exists a simple

representation that is equivalent up to isorecolouring.

Lemma 4.2 Let (µ;M ) be a representation. There exists a simple representation(ν;N ) such that: (µ;M )t (ν;N ):
PROOF. Suppose that(µ;M ) is not simple. Setν := µ and constructN from

M as follows. Start withN = M and as long as there exists a pair of distinct

forbidden patterns(M0;cM0) and(M1;cM1) in N such that(M1;cM1) (M0;cM0)
remove(M0;cM0) fromN . This construction terminates eventually asN is finite

and clearly(ν;N ) is simple. The mappingr : µ! ν induced byidµ (recall that

ν= µ) is a recolouring: for every forbidden pattern(N;cN) inN , its inverse image

via r is (N;cN) itself and is present inM by construction ofN . The inverse of

r is clearly a recolouring as for any forbidden pattern(M0;cM0) in M that is no

longer present inN , there exists some(M1;cM1) in M such that(M1;cM1) (M0;cM0):
If (M1;cM1) is not present inN either then, by construction of(ν;N ), there exists

somen> 1 and forbidden patterns(Mi;cMi ) in M (1< i � n) such that(Mn;cMn) (Mn�1;cMn�1) : : : (M1;cM1) (M0;cM0);
and such that(Mn;cMn) is in N . Since the composition of colour preserving

homomorphisms is a colour preserving homomorphism, it follows that for any(M;cM) inM , its inverse image induced by the mappingidµ, that is(M;cM) itself,
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is such that there exists some(N;cN) in N such that(N;cN) (M;cM):
In other words,r�1 is a recolouring of(ν;N ) to (µ;M ). Thus we have proved

thatr is an isorecolouring, hence we have(µ;M )t (ν;N ): �
In fact, by analogy toσ-structures, a representation that is not simple would

correspond to a structure in which we would list more than once a tuple in some

relation.

The previous result together with Proposition 4.1 leads to the following.

Corollary 4.3 Every forbidden patterns problem can be given by a representation

that is simple.

EXAMPLE. With reference to earlier examples, via similar reasoningto that developed

in the case of representations involving directed cycles, we obtain the following for the

case of cycles:
if m;n> 1 andmdividesn thenMC2

n
id2 MC2

m MC2
n

s2 MC2
m

Moreover, forp� 1, we haveWC2p
h2p;2

WC2 andWC2
f2

WC2p and similarly for the

BC. Hence, the following holds:MC2
2p

id2 MC2
2 andMC2

2p
id�1

2 MC2
2

So,id2 is an isorecolouring betweenMC2
2p andMC2

2, and we write:MC2
2ptMC2

2:
These previous results might seem a bit odd to the reader who is used to the corresponding

notion of isomorphism forσ-structures; in fact, note that a forbidden patterns problem can
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be given by numerous simple representations, that are equivalent via isorecolourings by

replacing any forbidden pattern by another that is homomorphically equivalent to it as in

the previous example.

We leave the following as an exercise for the reader:

if p;q� 1 andq dividesp thenADC2
2p�ME id2 ADC2

2q�ME andADC2
2p�ME s2 ADC2

2q�ME
Consider as further examples,WDC2

3�B := f2;fW DC3;BggDC1
3 := f1;fW DC3gg

whereB is the structure consisting of a single element coloured black and1= f0g (and we

shall consider 0 to be white as before). These representations are depicted in Figure 4.3.

It is easy to check that, WDC2
3�B id2 MDC2

3WDC2
3�B c02;1 DC1

3 andDC1
3

c01;2 WDC2
3�B

where,
c02;1 : 2 ! 1

0 7! 0
and

c01;2 : 1 ! 2

0 7! 0

However,DC1
3 6tWDC2

3�B. N
Furthermore, we shall make use of the notion of animage of a represen-

tation via a recolouring. Let (µ;M ) and (ν;N ) be two σ-representations and(µ;M ) r (ν;N ). Define r(µ;M ) := (r(µ);f(N;cN
ν )jcN

ν (jNj) � r(µ)g), where

r(µ) denotes the image of the set of coloursµ via the mappingr.

4.1.4 MMSNP captures exactly FP

We have already seen in Section 3.1.2 how to associate a structure to a negated

conjunct of a sentence of MMSNP. Theκ-colours of a given sentence of MMSNP

correspond to the set of colours of a representation whose forbidden patterns are
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simply the structures induced by the negated conjuncts (throughout we use the

notation established in the previous chapter,e.g. κ, σ0...). The following lemma

shows that the obtained representation characterises the forbidden patterns prob-

lem captured by the given sentence of MMSNP.

Lemma 4.4 Let Φ be a sentence of the logic MMSNP. There exists a representa-

tion (µΦ;MΦ) such that FP(µΦ;MΦ) is expressed byΦ.

PROOF. Let Φ be a sentence of MMSNP. By Lemma 3.2 we can assume w.l.o.g.

that it has full colourings. For uniformity, let us fix thingsso that there is at least

one monadic predicate. One way to achieve this is as follows.If Φ is a first-order

sentence then simply add an existential monadic predicateM, replace any negated

conjunctγ = :(α) by :(α^ β), whereβ := Vx2Xγ M(x), and add the negated

conjunct:(:M(x)), for some particular bound variablex: the new sentence is

clearly equivalent toΦ and has full colourings. Hence assume w.l.o.g. thatΦ has

full colourings and is not a first-order sentence.

Consider(µΦ;MΦ) to be the representation defined as follows: setµΦ to be

the set ofκ-colours, whereκ is the signature containing the existential monadic

predicates ofΦ (it can not be void as we ensured beforehand that the sentence

is not first order); and setMΦ to be the set ofµΦ-colouredσ-structures(G;cG)γ

induced by each negated conjunctγ = :(α^β) in γ(Φ) as follows:� G is theσ-structure induced byα (denoted byGα in Subsection 3.1.2, recall

that it has domainXγ); and� for anyx in jGj, setcG(x) to be theκ-colour given byβ to x.

We claim thatFP(µΦ;MΦ) is expressed byΦ.

Let A be aσ-structure.A j= Φ if, and only if, there exists an extensionA0 of A

to σ0 such that for eachγ 2 γ(Φ) and for anyπ : Xγ ! jAj,
A0 j= γ(x̄=π(x̄)):

The latter holds if, and only if,

A0 6j= α(x̄=π(x̄)) or A0 6j= β(x̄=π(x̄)):
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That is, in the first case that there exists somer-ary symbolR in σ such thatR(x̄)
occurs inα andR(x̄=π(x̄)) does not hold inA; in other words, according to the

definition of(G;cG)γ, thatπ is not a homomorphism ofG to A. In the second case,

there exists some monadic symbolM in κ and some variablex in Xβ such thatM(x)
occurs inβ andM(x) does not hold inA0, or:M(x) occurs inβ andM(x) holds in

A0. LetcA
µΦ

be the mapping induced byA0: it maps each element ofA to itsκ-colour

in the extensionA0. Then the second case is equivalent tocA
µΦ Æπ 6= cG. The two

cases together are equivalent toπ not being a colour preserving homomorphism of(G;cG)γ to (A;cA
µΦ
). Hence we have proved that there exists some valid colouring

for A; in other words, thatA is a yes-instance ofFP(µΦ;MΦ). For any colouring

cA
µΦ

, one can derive an extension ofA by setting the monadic predicates fromκ
according to theκ-colours of the elements ofA given bycA

µΦ ; thus, clearly the

converse also holds. �
The following lemma deals with the converse translation; that is, converting

a representation into a sentence of MMSNP. One can label eachelement ofµ

with an integer written in binary, each such integer inducing aκ-colour, whereκ
contains one monadic predicate for each place (simply consider the binary expan-

sions to be padded with zeros to the left and for each place setthe corresponding

monadic predicate inκ negatively for a zero and positively for a one). Hence,

each forbidden pattern induces a negated conjunct.

Lemma 4.5 Let (µ;M ) be a non-trivial representation. There exists a sentence

Φ(µ;M ) of MMSNP such that FP(µ;M ) is expressed byΦ(µ;M ).
PROOF. We can assume w.l.o.g. that there exists somen> 0 such thatjµj= 2n.

Indeed, if it were not the case, add new colours toµ to reach the nearest power

of 2 then add toM the forbidden patterns consisting of a single vertex coloured

by one of the new colours. Clearly this new representation defines an equivalent

problem. Letκ := (M1;M2; : : : ;Mn) be a signature consisting of monadic sym-

bols that do not occur inσ. There are 2n κ-colours, thus we can identify each

element ofµ with a κ-colour. ConsiderΦ(µ;M ) to be the sentence of MMSNP

with: existential monadic predicates, the elements ofκ; with universal first-order

variables, the union of the universes of theσ-structures of the forbidden patterns
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in M ; and to have a negated conjunctγ(G;cG
µ ), for each forbidden pattern(G;cG

µ )
in M , constructed as follows:� its α-part contains the atomR(t) wheneverR(t) holds inG; and� its β-part is the conjunction, for each elementx of jGj, of theκ-colour given

by cG
µ (x).

If one applies the constructions used in the previous lemma to derive a represen-

tation from this sentence, one obtains a representation that is clearly equivalent to(µ;M ). Thus it follows thatFP(µ;M ) is expressed byΦ(µ;M ). �
Notice that in Lemma 4.5, we have not considered the case of trivial repre-

sentations. The case of the trivial representations equivalent to 0̃σ is clear, as we

can proceed as in the above proof. The case of the representations equivalent to0σ is different. It does not really correspond to any sentence of MMSNP, as the

standard semantics for logics ensures that 0σ is always a yes-instance, unless we

extend MMSNP by adding the “sentence” ‘False’. With this convention, from the

two previous lemmas one can derive the following.

Corollary 4.6 MMSNP captures exactly FP.

EXAMPLE. The problemFP(MDC2
3) is expressed by the following sentence of MM-

SNP: 9C8x8y8z:(`2(x;y;z)^w(x;y;z))^:(`2(x;y;z)^b(x;y;z)):
Recall the abbreviation introduced in Section 2.4.1:`2(x;y;z) = :(E(x;y)^E(z;x)^E(y;z))

w(x;y;z) =C(x)^C(y)^C(z) andb(x;y;z) := :C(x)^:C(y)^:C(z): N
4.2 Retracts

The notion ofretract allows us to define the notion of acore, that is of a minimal

retract. We recall this notion for the case of structures, extend it to coloured struc-
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tures and develop a notion of core with respect to recolouring for representations.

Together with the notion oftemplate of a representationthat shall be introduced

in the next section, the notion of acore of a representationshall allow us to exhibit

a structure that is a no-instance of a given forbidden paterns problem but that can

be coloured nonetheless in a way that respects particular forbidden patterns: these

structures shall be used later in Section 4.6 to buildwitness families.

4.2.1 Retracts, cores of finite structures and automorphic struc-

tures

A retractionof a structureA is a triplet(B; i;s), whereB is a substructure ofA via

B i A such thatA s B andsÆ i = idB; that is, such that the following diagram

commutes:

B
i

idB

A

s

B

In this case we say thatB is aretractof A. A structureA is said to beautomor-

phic2 if it has no proper retracts, that is, every retract ofA is isomorphic to A. An

automorphic retract ofA is called acoreof A.

Proposition 4.7 Every structure has a unique core (up to isomorphism).

PROOF. We prove the existence first. LetA be a structure. We prove thatA has

a core by induction onjAj. The base case is clear: ifjAj = 0 thenA is clearly

automorphic, hence it has a core, itself. Assume that any structureA with jAj � n

has a core. LetA be a structure such thatjAj = n+1. If A is automorphic then

we are done. Assume that this is not the case. So there exists aproper retractB of

A. HencejBj � n and it follows from the induction hypothesis thatB has a core.

Since clearly a retract ofB is a retract ofA, it follows that a core ofB is a core of

A. Finally A has a core.

We now prove the uniqueness of the core of a structure up to isomorphism. Let

A be a structure andB1 andB2 be cores ofA. That is, there areB1
i1 A, A

s1 B1

2We use the terminology proposed in [22].
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such thats1Æ i1 = idB1 andB2
i2 A, A

s2 B2 such thats2Æ i2 = idB2. Consider the

homomorphic image ofB1 via s1Æ i2Æs2Æ i1: it is clearly a retract ofB1. SinceB1

is automorphic, it follows thats1Æ i2 is surjective ands2Æ i1 is injective. One can

consider as well the homomorphic image ofB2 via s2Æ i1Æ s1Æ i2 and derive that

s2 Æ i1 is surjective ands1 Æ i2 is injective. Hence we have proved thatB1 andB2

are isomorphic, sinces1Æ i2 ands2Æ i1 are isomorphisms. �
Let A be aσ-structure. Denote bycore(A) some representative among the set

of cores ofA.

EXAMPLE. Any DCn is automorphic. However, for cycles: forp� 2, C2p is not auto-

morphic and its core isC2; and forp� 1,C2p+1 is automorphic. N
It follows from Proposition 2.1 thatCSP(core(A)) = CSP(A). Hence in our

study of homomorphism problems, we can restrict ourselves to problems whose

templates are cores without loss of generality. Notice however that if one is in-

terested in counting the number of homomorphisms, that is, in complexity classes

like ℄P as in [7] then this is not necessarily the case;i.e. the problem℄CSP(A) (the

number of homomorphism of a givenB to A) is not the same as℄CSP(core(A)) in

general. Furthermore, Hell and Nešetřil have shown in [24], that deciding whether

a graph is a core or not is co-NP-complete.

4.2.2 Retracts, cores of coloured structures and automorphic

coloured structures

A retractionof a coloured structure(A;cA) is a triplet((B;cB); i;s), where(B;cB)
is a subcoloured structure of(A;cA) via (B;cB) i (A;cA), (A;cA) s (B;cB) sat-

isfying sÆ i = id(B;cB). In this case,(B;cB) is called aretract of (A;cA). This

property can be summarised by the following diagram.

B

idB

A
s cA

µ

B

cB
i
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A coloured structure(A;cA) is said to beautomorphicif it has no proper retracts.

An automorphic retract of(A;cA) is called acoreof (A;cA).
Proposition 4.8 Every coloured structure has a unique core (up to isomorphism)

PROOF. Similar to the proof of Proposition 4.7. �
Let (A;cA

µ) 2 STRUCµ(σ). Denote bycore(A;cA
µ) some representative among

the set of cores of(A;cA
µ).

EXAMPLE. Notice that ifA is automorphic then(A;cA) is automorphic for anycA,

however the converse is not true: consider for a counter-example the2-coloured structure

consisting of two elements, one coloured black, the other white, connected via an edge to

some white element, depicted as follows,� } }
As a coloured structure it is automorphic, however, if one consider this structure without

its colouring, that is as follows, Æ Æ Æ
then it is not a core.

Let n> 0: WDCn, BDCn andADCn are automorphic.

Let p� 0: WC2p+1, BC2p+1 andAC2p+1 are automorphic.

Let p� 1: WC2p, BC2p andAC2p are not automorphic and have for respective cores,WC2,

BC2 andAC2. N
Lemma 4.9 Let (µ;M ) be a representation. There exists a representation(ν;N )
such that every forbidden pattern(N;cN) in N is a coloured core and(µ;M )t (ν;N ):
PROOF. Setν := µ andN := fcore(M;cM) such that(M;cM) 2M g. It follows

directly from the definition of a coloured core that the mapping r defined as in the

proof of Lemma 4.2 is an isorecolouring. �
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The following follows from Lemma 4.2 and from the previous lemma.

Corollary 4.10 Every forbidden patterns problem can be given by a simple rep-

resentation(µ;M ) such that every forbidden pattern(M;cM) in M is a coloured

core.

In the light of this corollary, from now on, unless otherwisestated we shall

only ever consider simple representations such that each forbidden pattern is a

coloured core. We now show by way of a back and forth argument thatif two such

representations are equivalent up to isorecolouring then they are just the same up

to a renaming of the colours.Hence one obtains a notion of isorecolouring nearer

to the intuitive one derived from the notion of isomorphism in the case of such

representations.

M0
h0

cM0
µ

M
hÆh0=

N
h

cN
ν

N

M

cM
ν

cM
µ

M

ν r
µ

Let (µ;M ) and (ν;N ) be two simple representations whose forbidden patterns

are coloured cores. Letr be some isorecolouring of(ν;N ) to (µ;M ). Let(M;cM
µ ) 2 M . Since r is a recolouring, the inverse image of(M;cM

µ ) via r,

that is (M;cM
ν ), wherecM

ν = r�1 Æ cM
µ , is not valid for(ν;N ). Hence there ex-

ists some forbidden pattern(N;cN
ν ) in N and some colour preserving homomor-

phism (N;cN
ν ) h (M;cM

ν ). Now r�1 is a recolouring, thus there exists some

forbidden pattern(M0;cM0
µ ) in M and some colour preserving homomorphism(M0;cM0

µ ) h0 (N;cN
µ ), wherecN

µ = (r�1)�1 Æ cN
ν = r Æ cN

ν . Hence by composition

with r it follows that(N;cN
µ ) h (M;cM

µ ). The composition ofh andh0 leads there-

fore to(M0;cM0
µ ) hÆh0 (M;cM

µ ). Now, since(µ;M ) is simple(M0;cM0
µ ) and(M;cM

µ )
must be the same forbidden pattern. Finally,(M;cM

µ ) and(N;cN
µ ) are homomor-

phically equivalent viah andh0. Since they are cores by assumption, they must

be the same forbidden pattern. This proves our claim that simple representations



94 CHAPITRE 4. PROBLÈMES DE MOTIFS INTERDITS

whose forbidden patterns are coloured cores that are equivalent up to isorecolour-

ing are simply obtained from each other via a permutation of the colours.

4.2.3 Retracts, cores of representations and automorphic rep-

resentations

From now on and unless otherwise stated we only ever considersimple repre-

sentations whose forbidden patterns are coloured cores. Aretraction of a rep-

resentation(µ;M ) is a triplet((ν;N ); i;s), where(ν;N ) is a subrepresentation

of (µ;M ) via the monorecolouring(ν;N ) i (µ;M ) ands is an epirecolouring(µ;M ) s (ν;N ) such thatsÆ i = id(ν;N ). In this case we say that(ν;N ) is a

retract of (µ;M ). A representation(µ;M ) is said to beautomorphicif it has

no proper retracts, that is, every retract(ν;N ) of (µ;M ) is such that(µ;M ) t(ν;N ): An automorphic retract of(µ;M ) is called acoreof (µ;M ).
EXAMPLE. Recall thatWDC2

3�B c02;1 DC1
3, and thatDC1

3
c01;2 WDC2

3�B but thatDC1
3 6tWDC2

3�B. Notice further that;c02;1 is an epirecolouring; and thatc01;2 is a

monorecolouring such thatc02;1 Æ c01;2 = idDC1
3
. In other words(DC1

3;c01;2;c02;1) is a

retraction of the representationWDC2
3�B. Furthermore the latter is not automorphic

since it has a proper retract, namelyDC1
3. HoweverDC1

3 is automorphic since there can

not be any recolouring of it to a trivial representation; indeed, there is no mapping of1 to

/0. N
Proposition 4.11 Every representation has a unique core (up to isorecolourings).

PROOF. The proof is similar to the proof of Proposition 4.7. We prove that(µ;M )
has a core by induction onjµj= n.

The base case is clear: if(µ;M ) is a representation such thatjµj = 0 then it

can not have a proper retract.

Assume that any representation withn colours has a core. Let(µ;M ) be a

representation such thatjµj = n+1. If (µ;M ) is automorphic then it has a core:

itself. Assume that(µ;M ) is not automorphic. So it has a proper retract(ν;N ). It

follows thatjνj< n+1, otherwisei being a bijection we would haves= i�1 and
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i would be an isorecolouring contradicting the fact that(ν;N ) is a proper retract.

Sinceν� n, by the induction hypothesis, it follows that(ν;N ) has a core. Hence

by composition,(µ;M ) has a core.

We now prove the uniqueness of the core of a representation upto isore-

colouring. Let(µ;M ) be a representation and(µ1;M1) and (µ2;M2) be cores

of (µ;M ). That is, there are(µ1;M1) i1 (µ;M ), (µ;M ) s1 (µ1;M1) such that

s1Æ i1 = id(µ1;M1) and(µ2;M2) i2 (µ;M ), (µ;M ) s2 (µ2;M2) such thats2Æ i2 =
id(µ2;M2). Consider the image of(µ1;M1) via the recolourings1 Æ i2Æ s2 Æ i1: call

this image(µ01;M 0
1). We now show that(µ01;M 0

1) is a retract of(µ1;M1). Indeed,

s01 := s1 Æ i2Æ s2 Æ i1 is an epirecolouring of(µ1;M1) to (µ01;M 0
1) by definition of(µ01;M 0

1). Moreover seti01 to be simplyid(µ1;M1) restricted toµ01. It is clearly a

monorecolouring of(µ01;M 0
1) to (µ1;M1). Thus((µ01;M 0

1);s01; i01) is a retract of(µ1;M1). Since(µ1;M1) is automorphic, it follows thats1Æ i2Æs2Æ i1 is an isore-

colouring. Hences1 Æ i2 is surjective ands2Æ i1 is injective. One can consider as

well the image of(µ2;M2) via the recolourings2Æ i1Æs1Æ i2 and derive thats2Æ i1 is

surjective ands1Æ i2 is injective. Hence we have proved that(µ1;M1)t (µ2;M2),
sinces1Æ i2 ands2Æ i1 are isorecolourings. �

Let (µ;M ) be aσ-representation. Denote byCore(µ;M ) some representative

among the set of cores of(µ;M ) that have the properties of being:� simple; and� whose forbidden patterns are all coloured cores.

Note that the above is well-defined according to Lemma 4.2 andLemma 4.9.

The following corollary follows from Proposition 4.1.

Corollary 4.12 Let (µ;M ) be aσ-representation. Then,

FP(µ;M ) = FP(Core(µ;M )):
EXAMPLE. We show thatMDC2

n is an automorphic representation for anyn� 2 . Notice

first that it is simple and each forbidden pattern is a connected core. In order to check

whether it is automorphic, it is enough to check for proper retracts induced by retractions
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that are simple and whose forbidden patterns are coloured cores (by Corollary 4.10). Let((ν;N ); i;s) be such a retract. The maps must identify at least two colours, that is,

w.l.o.g. ν = 1 andi is the recolouring such thati(0) = 0. We claim that this implies that

WDCn2N . Indeed, sincei is a recolouring and we assumed thati(0) = 0, we would have

a forbidden pattern inN that would map intoWDCn (the inverse image of the forbidden

patternWDCn via i). Moreover sincesÆ i = id(ν;N ) ands is a recolouring,WDCn would

map to this forbidden pattern (the particular inverse imageof this forbidden pattern via

s coloured in white only). Hence, it follows from our assumption on the retract(ν;N )
(simple and coloured cores only) that this forbidden pattern is nothing else thanWDCn.

But then one inverse image ofWDCn via s would beADCn. But the latter is valid with

respect toMDC2
n. So there is only one case left to check which trivially can not hold; the

case of the representation with a void colour set. There is simply no mapping to the void

set from any set except the void set himself, so there can not be any epirecolouring of the

considered representation to this trivial representationand we are done.

It can be easily checked that the representationsMC2
2p+1 andMC2

2 are automorphic.

The proof is similar to the previous one. The representationsMC2
2p, for any p� 1, are

examples of representations that are automorphic too. Theyare all equivalent toMC2
2, up

to isorecolouring, as we said earlier.

The representationsADC2
2p�ME, for any p� 1, are automorphic. Indeed, if there

were some proper retract((ν;N ); i;s) then the only case to check is the case whenν

contains exactly one colour. So assume w.l.o.g. thatν = 1 andi(0) = 0. Then there must

be some forbidden pattern(N;cN) in N such that there exists some(N;cN) n WE. One

possible inverse image of(N;cN) via s being monochromatic and, say, white (since the

only monochromatic white forbidden pattern isWE itself and since we assumed(ν;N ) to

be simple and to have only coloured cores as forbidden patterns) it follows that(N;cN) is

the coloured structureWE. One possible inverse image ofWE is the structure consisting

of a single edge whose origin is coloured white and target is coloured black. However,

this coloured structure is clearly valid forADC2
2p�ME. Thus our claim follows. N

4.3 Templates

In this section, we shall introduce the notion of atemplate for a representation; it

is a structure associated with some particular forbidden patterns of a given repre-
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sentation, the so-calledconform forbidden patterns. It is constructed in the same

way as the template of a problem that is captured by a sentenceof MMSNP that

is conform (cf. the proof of Lemma 3.5 in the previous chapter). Hence it is not

surprising that a problem given by a conform representationis in CSP (in the light

of Lemma 4.4). Furthermore, we shall see thatif the template of a given represen-

tation has a valid colouring then this representation has a conform retract. This

leads to an important result: the template of an automorphicrepresentation that is

not conform has no valid colouring. However, it can be coloured in such a way

that the only forbidden patterns that witness that the colouring is not valid are not

conform; in other words, one can colour the template such that it is valid if one

considers each of its tuples separately.

This section is organised as follows. First, we shall define precisely the notion

of aconform forbidden patternand derive from results of the previous chapter that

CSP is a strict subset of FP. Secondly, in Section 4.3.2, we shall define the notion

of a template of a representationand we shall investigate the relation between the

existence of recolourings between two given representations and the existence of

homomorphisms between their templates (we hope to make clear to the reader in

which sense we consider a recolouring to be a generalisationof a homomorphism).

Finally, in Section 4.3.4, we prove the result mentioned above.

4.3.1 CSP is included in FP

A coloured structure(A;cA) is said to beantireflexivewheneverA is antireflexive.

A coloured structure(A;cA) is said to bemonotuplewheneverA is monotuple, and

non-sbavate3 whenever for eacha2 jAj, there exists somer-ary relation symbol

R in σ and somer-tuple ā such thatRA(ā) holds anda 2 fāg. A representation(µ;M ) is said to beconformif every forbidden pattern(M;cM
µ )2M is monotuple,

non-sbavate and antireflexive.

Let (µ;M ) be a conformσ-representation. Then the sentence of MMSNP that

expressesFP(µ;M ) given by Lemma 4.5 is clearly conform. Thus by Lemma 3.5,

it follows thatFP(µ;M ) is in CSP. However we can state more.

3from the italian, literally that does not dribble; when a kidis colouring in outside the lines,
italians say that the colours have dribbled.
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Proposition 4.13 Let (µ;M ) be a conformσ-representation. There exists aσ-

structure T such that CSP(T) = FP(µ;M ). Conversely, let T be aσ-structure.

There exists a conformσ-representation(µ;M ) such that CSP(T) = FP(µ;M ).
Moreover this is a one-to-one correspondence.

PROOF. For the first part, one could use the argument given above, but we shall

implement the construction directly, as this constructionshall be used later. Let(µ;M ) be a conformσ-representation. ConstructT as follows.� jTj := µ; and� for any r-ary relation symbolR in σ and anyt̄ = (t1; t2; : : : ; tr) 2 jTjr , set

RT(t̄) to hold if, and only if, there is no forbidden pattern inM that is

equivalent to(M;cM) up to colour preserving isomorphism, whereM is the

antireflexive, non-sbavate and monotuple structure definedas follows:

– jMj := fx1;x2; : : : ;xrg; and

– RM(x1;x2; : : : ;xr) is the only tuple to hold,

and is coloured as,

cM : jMj ! µ

xi 7! ti (1� i � r):
Conversely, letT be aσ-structure. We derive a representation(µ;M ) from T as

follows:� µ := jTj; and� for any symbolR in σ and anyr-tuple t̄ 2 jTjr such thatRT(t̄) does not

hold, add the following antireflexive, non-sbavate and monotuple coloured

structure(M;cM
µ ) as a forbidden pattern:

– jMj := fx1;x2; : : : ;xrg; and

– RM(x1;x2; : : : ;xr) is the only tuple to hold,
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and is coloured as,

cM : jMj ! µ

xi 7! ti (1� i � r):
This clearly establishes a one-to-one correspondence betweenσ-structures and

conformσ-representations. We now prove thatFP(µ;M ) = CSP(T). Let A be a

σ-structure.

A2 FP(µ;M )() 9cA
µ : jAj ! µ;(A;cA

µ) is valid for (µ;M )() 9cA
µ : jAj ! µ; V(M;cM

µ )2M (M;cM
µ ) = (A;cA

µ)() 9cA
µ : jAj ! µ; V(M;cM

µ )2M8m : jMj ! jAj(M = A_cA
µ Æm 6= cM

µ )() 9cA
µ : jAj ! µ;V(M;cM

µ )2M8m : jMj ! jAj(:RA(m(x1);m(x2); : : : ;m(xr))_cA
µ Æm 6= cM

µ )() 9cA
µ : jAj ! µ;V(M;cM

µ )2M8a1;a2; : : :ar 2 jAj(:RA(a1;a2; : : : ;ar)_91� i � r;cA
µ(ai) 6= cM

µ (xi))() 9cA
µ : jAj ! µ; V:RT(t̄);t̄2jTjr8ā2 jAjr ;cA

µ(ā) = t̄ ):RA(ā)() 9cA
µ : jAj ! µ= jTj;8r-aryR2 σ;8ā2 jAjr ;:RT(cA

µ(ā))):RA(ā)() 9cA
µ : jAj ! µ;A cA

µ
T() A2CSP(T): �

We then derive the following:

Corollary 4.14 CSP( FP.

PROOF. The inclusion comes from the previous lemma. It is strict since, for

example, the problem NO-MONO-TRI was shown in Section 2.4.1 to be expressed

by a sentence of MMSNP and not in CSP. Thus, by Lemma 4.4 this provides an

example of a forbidden patterns problem that is not in CSP. �
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4.3.2 Template of a representation

In fact, one can put aside in a given representation those forbidden patterns that are

monotuple, non-sbavate and antireflexive, and for this subrepresentation construct

a template. Thus, one can associate to any representation a template that shall

somehow measure its conform part. Let(µ;M ) be aσ-representation. Consider

its subrepresentation(µ;D) that corresponds to its conform part, that is, whereD

is the following subset ofM :f(M;cM
µ ) s.t. (M;cM

µ ) 2M and is antireflexive, non-sbavate and monotupleg:
The subrepresentation(µ;D) of (µ;M ) is conform, hence it follows from Propo-

sition 4.13 that there exists some templateT such that

CSP(T) = FP(µ;D)� FP(µ;M ):
We callT thetemplateof the representation(µ;M ).

We claimed that our notion of recolouring generalises the notion of homomor-

phism; and the following proposition makes this more precise.

Proposition 4.15 Let (µ;M ) and(ν;N ) be twoσ-representations and let T(µ;M )
and T(ν;N ) be their respective templates. If(µ;M ) h (ν;N ) and every forbidden

pattern inM is non-sbavate then T(µ;M ) h T(ν;N ).
When we consider a monotuple antireflexive structureN;� with domainfx1;x2; : : : ;xrg; and� with the tupleR(x1;x2; : : : ;xr), whereR is somer-ary symbol fromσ.

We shall simply speak of the structureR(x1;x2; : : : ;xr).
PROOF. Let R be ar-ary symbol inσ and t̄ 2 µr = jT(µ;M )jr . By construction

of T(ν;N ), RT(ν;N )(h(t̄)) does not hold if, and only if, there exists some forbidden

pattern that is isomorphic to(R(x1;x2; : : : ;xr);hÆcN
µ ) in N , where,

cN
µ : jNj ! µ

xi 7! ti (1� i � r):
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As h is a recolouring,(R(x1;x2; : : : ;xr);cN
µ ) is not valid for(µ;M ). Hence, there

exists some(M;cM
µ ) 2M and somef such that,(M;cM

µ ) f (R(x1;x2; : : : ;xr);cN
µ ):

Since(M;cM
µ ) is non-sbavate and since(R(x1;x2; : : : ;xr);cN

µ ) is antireflexive, it

follows that(R(x1;x2; : : : ;xr);cN
µ ) is a subcoloured-structure of(M;cM

µ ). In other

words, (M;cM
µ ) is homomorphically equivalent to(R(x1;x2; : : : ;xr);cN

µ ). More-

over, since we consider only representations whose forbidden patterns are colou-

red cores (cf. Section 4.2.3) then we must have(M;cM
µ )t (R(x1;x2; : : : ;xr);cN

µ ).
Finally, by definition of the template it follows thatRT(µ;M )(t̄) does not hold. �

The notions of a homomorphism and of a recolouring clearly coincide in the

case of conform representations and, furthermore, one can state a weaker form of

the converse of the previous proposition; the converse itself being obviously false.

Indeed, considerMDC2
2 andMDC2

3. These representations share the same tem-

plate, the structure with domain2 and all possible edges between the elements, as

they do not have any antireflexive, non-sbavate and monotuple forbidden patterns.

However, there is no recolouring ofMDC2
2 toMDC2

3 (since 2 does not divide 3).

Proposition 4.16 Let (µ;M ) and(ν;N ) be twoσ-representations and let T(µ;M )
and T(ν;N ) be their respective templates. If T(µ;M ) h T(ν;N ) and(ν;N ) is conform

then(µ;M ) h (ν;N ).
PROOF. Let R be ar-ary relation symbol inσ andt̄ 2 µr = jT(µ;M )jr .
Let (R(x1;x2; : : : ;xr);hÆcN

µ ) 2N , where,

cN
µ : jNj ! µ

xi 7! ti (1� i � r):
By definition, RT(ν;N )(h(t̄)) does not hold, henceRT(µ;M )(t̄) does not hold since

T(µ;M ) h T(ν;N ). Thus by construction ofT(µ;M ), it follows that the forbidden

pattern(R(x1;x2; : : : ;xr);cN
µ ) belongs toM . Hence, we have(µ;M ) h (ν;N ).�
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Remark. Notice that we can relax a bit the hypothesis “(ν;N ) is conform” to

replace it by “any forbidden pattern of the form(M;hÆcM
µ ) in N is conform”.

In the following we prove that any non-conform forbidden pattern of a simple

representation with templateT is in fact aT-coloured structure. Hence, we can

give equivalently a simple representation by giving its template together with its

set of non-conform forbidden patterns.

Proposition 4.17 Let (µ;M ) be a representation with template T . If(µ;M ) is

simple then for any non-conform(M;cM) in M , we have McM
T.

PROOF. Let (µ;M ) be a simple representation. LetT be its template. Sup-

pose that(M;cM) in M is a non-conform forbidden pattern such thatM =cM
T.

Let R be somer-ary relation symbol inσ and ȳ be somer-tuple in M such that

RM(ȳ) holds butRT(cM(ȳ)) does not. By definition of the template of a represen-

tation, there is some conform forbidden pattern(D;cD) in M that is isomorphic to(R(x1; : : : ;xr); x̄ 7! cM(ȳ)) via somei. Hence we would have(D;cD) mÆi�1 (M;cM),
wherem is defined by settingm : x̄ 7! ȳ (this is well defined as(D;cD) is conform

and so it must be antireflexive). We obtain a contradiction aswe assumed the

representation(µ;M ) to be simple. �
In the light of the previous proposition, we can give a simplerepresentation

equivalently as aσ-structureT together with a setM of T-coloured non-conform

structures, that is, a set of non-conform coloured structures (M;cM) such that

M cM
T. We denote by(T;M ) a representation in this new setting. The defini-

tion of validity of a coloured structure(A;cA) becomes the following in this new

setting. (A;cA) is valid w.r.t. (T;M ) if, and only if, A cA
T and for anyM cM

T

in M and anyM m A, cA Æm 6= cM. That is,A is not valid if A = T or for any

cA : A T, there exists some(M;cM) in M and somem : M A such that the
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following diagram commutes.

M
m

cM

M

A

cA

T

Notice that our new notation is compatible with the notationpreviously used,

as one can consider that someµ-coloured structure(M;cM
µ ) is in fact aKµ-coloured

structure whereKµ denotes theclique with jµj-elements; that is theσ-structure

with domainµ and such that for anyr-ary relation symbolR in σ, RKµ = µr .

Hence instead of(µ;M ), read(Kµ;M ). We chose not to incorporate the template

within the definition of a representation for various reasons. First, it would have

made the translation between MMSNP and FP harder; secondly,it would have

complicated a great deal the definition of recolouring and therefore of the key

notions of retracts and so forth, unless we had assumed already many properties

of a representation, as being non-sbavate, simple, etc which would have made the

above mentioned translation “less” one-to-one.

4.3.3 Canonical representation

Recall that in the previous chapter, we introduced the notion of “collapsed” sen-

tences of MMSNP. We shall do something similar with simple representations.

We define a representation(T;M ) to berigid whenever the validity of a coloured

structure is equivalent to a weaker property, namely if, andonly if, the following

holds.� Any jTj-coloured structure(A;cA) is valid for(T;M ) if, and only if,A cA
T

and for anyM cM
T in M and anyM m A, cAÆm 6= cM.
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That is,A is not valid ifA = T or for anycA : A T, there exists some(M;cM) in

M and some embeddingm : M A such that the following diagram commutes.

M
m

cM

M

A

cA

T

For any simple representation(T;M ), there exists a rigid representation that

is equivalent up to isorecolouring, namely(T;HM ), whereHM denotes the set

of homomorphic images of structures fromM that preserve the colouring. That

is, for any(M;cM) in M , and any homomorphic imageh(M) of M such that the

following diagram commutes,

M
cM

h

T

h(M) ch(M)
consider the coloured structure(h(M);ch(M)) as a new forbidden pattern. Notice

that the representation hence obtained is not necessarily simple anymore; however

we show easily that it is rigid. Assume that some coloured structure(A;cA) is not

valid with respect to this new representation: some forbidden pattern(M;cM)
maps into(A;cA) via some colour preserving homomorphismm. By construc-

tion, the homomorphic image of(M;cM) via m is also a forbidden pattern, and it

embeds in(A;cA).
We can ensure furthermore that there is no redundancy by removing from

HM those structures, a proper substructure of which also occurs inHM ; i.e., we

simplify with respect to embedding instead of homomorphism, keeping only one

isomorphic copy. Denote bySHM the set hence obtained. Notice that it follows

that SHM contains coloured cores only. Call a representation that isrigid and

simple (with respect to embedding) and whose forbidden patterns are coloured

cores, acanonicalrepresentation. We have proved the following.
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Proposition 4.18 Any simple representation is equivalent to a canonical repre-

sentation, up to isorecolouring.

4.3.4 Valid colourings of the template and retracts

We show that if the template of the representation of a forbidden patterns problem

is a yes-instance of this problem then this representation has a particular retract

that is conform. Hence, the problem is in fact in CSP.

Proposition 4.19 Let (T;M ) be a simple representation. If(T;cT) is valid w.r.t.(T;M ) then(T;M ) has a conform retract, namely(cT(T); /0).
PROOF. Let (T;M ) be a simple representation. Assume that(T;cT) is valid. It

follows that T cT
T and that there can not be any non-conform forbidden pat-

tern (M;cM) in M such that(M;cM) m (T;cT). Hence, there is simply no non-

conform forbidden pattern of the form(M;cT Æm) in M . It follows by (the remark

following) Proposition 4.16 thatcT defines an endorecolouring of(T;M ) (a re-

colouring of(T;M ) to (T;M )). Consider its image; that is, the representation(cT(T); /0). Let i be the identity ofcT(T). Then((cT(T); /0);cT; i) is a retract of(T;M ). �
Notice that this result also holds for canonical representations (we do not really

use the fact that the representation is simple but a weaker property possessed by

canonical representations, namely that the non-conform forbidden patterns areT-

coloured structures).

Theorem 4.20 Let (T;M ) be some non-conform simple automorphic represen-

tation. There is no valid colouring for T with respect to(T;M ).
PROOF. If T were to have a valid colouring then it would follow from the pre-

vious result that(T;M ) would have a conform retract.i.e. that it is equivalent

to a conform representation, up to isorecolouring, since ithas no proper retracts.

Therefore, it would follow that it is conform itself. Which yields a contradiction.�
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4.4 Feder-Vardi transformation of a representation

The idea of this transformation is directly inspired from that performed on sen-

tences of MMSNP in the previous chapter: it consists in picking any forbidden

pattern(S;cS
µ) that can be decomposed into two components(P0;cP0) and(P1;cP1)

with only one common articulation pointx of colour χ 2 µ; replacingχ by two

copiesχ0 andχ1; and making copies of the forbidden patterns accordingly (any

vertex that has colourχ takes now either the colourχ0 or the colourχ1) except

for (S;cS
µ) which is replaced by two families of forbidden patterns: onefamily

is induced by(P0;cP0) and the other by(P1;cP1); χ0 andχ1 replace the colourχ
as above, with the exception of the articulation pointx; it has colourχ0 (respec-

tively χ1) in the forbidden patterns induced by(P0;cP0) (respectively(P1;cP1)).
This transformation leads to a representation that defines the same problem. As

in the case of sentence of MMSNP, we would like to apply a sequence of these

elementary transformations until there are only biconnected forbidden patterns re-

maining; but, it is not clear whether this procedure terminates. Indeed, at each step

we add a colour and get about twice as many forbidden patternsas before. No-

tice however that this transformation concerns more the structure of a forbidden

pattern than its set of colour: we can simultaneously carry out the transformation

over a set of forbidden patterns that share the same structure. This leads us to the

notion of acompactcoloured structure that shall allow us to split simultaneously

all forbidden patterns that share the sameσ-structure.

We say that a representation(µ;M ) is connected(respectivelybiconnected) if

every forbidden pattern(M;cM) 2M is connected (respectively biconnected).

4.4.1 Compact forbidden patterns and compact representation

We call a pair(M;cM
℘(µ)) whereM is aσ-structure andcM

℘(µ) a function ofjMj to

℘(µ) (the powerset ofµ) acompact coloured structure. Note that in the following

we see a compact coloured structure as a set of coloured structures: we see the

colour set asociated with a vertex as a choice. A compact coloured structure is

only a useful shorthand to prove termination. Bearing this in mind, we can extend

the definition of a representation to allow compact colouredstructures as forbid-



4.4. FEDER-VARDI TRANSFORMATION OF A REPRESENTATION 107

den patterns, and call such a representation acompact representation. All related

notions (e.g., recolouring, validity of a colouring for a given structureetc) extend

naturally to compact representations.

Let (µ;M ) be a representation. We can easily transform(µ;M ) into a compact

representation;e.g.consider the compact representation with:� colour setµ; and� replace every forbidden pattern(M;cM
µ ) in M by (M;cM

℘(µ)) where for every

x in jMj: cM
℘(µ)(x) := fcM

µ (x)g.
4.4.2 Elementary Feder-Vardi transformations

We defined the notion of a decomposition in Subsection 3.1.3 for σ-structures.

This notion extends to compact coloured structures. Letµ 6= /0 and let(S;cS
℘(µ)) be

some compact coloured structure. Suppose that there exist an elementx of Sand

two substructures ofS, P0 andP1 satisfying the following:� jP0j[ jP1j= jSj;� jP0j\ jP1j= fxg;� for everyr-ary relation symbolR in σ and for any ¯x in jSjr , if RS(x̄) holds

then eitherRP0(x̄) holds orRP1(x̄) holds but not both; and� P0 andP1 have at least one tuple each.

Let cP0 (respectivelycP1) be the restriction ofcS to P0 (respectivelyP1). We say

that the pair((P0;cP0);(P1;cP1)) forms adecompositionof (S;cS
µ) in thearticula-

tion point x. We denote this by(P0;cP0) ./
x
(P1;cP1).

Let (µ;M ) be a compact representation such thatM =M 0[(S;cS) and(P0;cP0) ./
x(P1;cP1) forms a decomposition of(S;cS). Let C = cP0(x) = cP1(x). The colour

setsC0 andC1 are defined asfχijχ 2Cg, for i = 0;1. We assume furthermore that

C, C0 andC1 are mutually disjoint. Consider the representation with:
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1. (S;cS) is replaced by the two compact forbidden patterns induced

from the decomposition(P0;cP0) ./
x
(P1;cP1) of (S;cS) so that:

– in the compact forbidden pattern(P0;cP0), cP0(x) =C0; and

– in the compact forbidden pattern(P1;cP1), cP1(x) =C1.

2. every remaining occurrence of a colourχ 2 C in a compact for-

bidden pattern (including the two previous ones that have replaced(S;cS)) is replaced byχ0 andχ1.

We call this representation theelementary Feder-Vardi transformationof (µ;M )
with respect to(P0;cP0) ./

x
(P1;cP1).

The following result shows that applying some elementary Feder-Vardi trans-

formation to some representation does not change the problem represented.

Proposition 4.21 Let (µ;M ) be some compact representation such that

M =M 0[ (P0;cP0) ./
x
(P1;cP1)

and let(ν;N ) be its elementary Feder-Vardi transformation with respectto the

compact forbidden pattern(P0;cP0) ./
x
(P1;cP1). The following holds:

FP(µ;M ) = FP(ν;N ):
PROOF. Let r be the mapping ofν to µ that� sends everyχi 2Ci ontoχ 2C, for i = 0;1; and� leaves the other colours fixed.

We show thatr is a recolouring. By construction, the inverse images of anyfor-

bidden pattern inM 0 belong toN . So, it remains to check the inverse images of(S;cS). We may assume without loss of generality that we are checking an inverse
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image of(S;cS) whose vertexx takes a colour fromC0. Now consider the induced

sub-coloured-structure overP0: by construction, it is forbidden by the compact

forbidden pattern withσ-structureP0 (remember how we see a compact forbid-

den pattern as a shorthand for a set of forbidden patterns). This proves thatr is a

recolouring. So, it follows by Proposition 4.1 thatFP(µ;M )� FP(ν;N ).
We now prove the converse inclusion. LetA be some yes-instance of the

problemFP(µ;M ). There exists somejAj cA
µ

µ such that(A;cA
µ) is valid with

respect to(µ;M ). Now, we construct a valid colouringcA
ν from cA

µ as follows. For

any y 2 jAj such thatcA
µ(y) 62 C, setcA

ν(y) := cA
µ(y). Suppose now thatcA

µ(y) =
χ 2 C. (P0;cP0) ./

x
(P1;cP1) belongs toM and (A;cA

µ) is valid with respect to(µ;M ): it follows that(P0;cP0) ./
x
(P1;cP1) = (A;cA

µ). Thus, we can not have both(P0;cP0) h0 (A;cA
µ) and(P1;cP1) h1 (A;cA

µ), whereh0(x) = h1(x) = y.� If y is such that(P0;cP0) h0 (A;cA
µ) with h0(x) = y, we can not also have(P1;cP1) h1 (A;cA

µ) for someh1 such thath0(x) = h1(x) = y. Hence, we can

safely setcA
ν(y) := χ1.� Similarly, if y is such that(P1;cP1) h1 (A;cA

µ) with h1(x) = y, we can set

cA
ν(y) := χ0.� Otherwise, we set arbitrarilycA

ν(y) := χ0 or cA
ν(y) := χ1.

By definition of the elementary Feder-Vardi transformation(A;cA
ν) is valid with

respect to(ν;N ) and we have proved the converse inclusion, that is,FP(µ;M )�
FP(ν;N ). �
4.4.3 Rewriting representations

We prove first that every sequence of elementary Feder-Varditransformations is

finite; and, secondly, that the representations resulting from such sequences are

the same (up to isorecolouring).
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Termination. Let (S;cS) be a connected compact coloured structure. Assume

that(S;cS) requiresi splittings in order to yield biconnected structures only; that

is, (S;cS) is a structure of the form:(P0;cP0) ./
x0

((P1;cP1) ./
x1

(: : :(Pi�1;cPi�1) ./
xi�1

(Pi;cPi)) : : :));
where(Pj ;cPj) is biconnected, forj = 0;1; : : : ; i. We calli therankof the structure(S;cS).
Let (µ;M ) be a connected compact representation. Letai be the number of dis-

tinct compact forbidden patterns inM that have ranki. We associate to the repre-

sentation(µ;M ) the polynomialP(X) = ΣiaiXi .

Recall that we want to transform a given connected representation via a sequence

of elementary Feder-Vardi transformations until there arebiconnected or conform

forbidden patterns only.

We show that there can not be an infinite sequence of elementary Feder-Vardi

transformations. After each elementary transformation, we get a polynomial that

is strictly smaller; if we split according to some compact forbidden pattern of

rank j > 1 with respect to some decomposition that leaves one forbidden pattern

of rank k < j and one of rankj � k then we get the polynomialP0(X) = ΣibiXi

where,

bi =8>>>><>>>>: a j �1 , if i = j

ak+1 , if i = k

a j�k+1 , if i = j�k

ai , otherwise.

So, we haveP0 < P, where< denotes the standard linear order over polynomials

(which is well-ordered) and the result follows.

Uniqueness. We prove that the order in which the elementary transformations

are carried out over a given representation is not relevant4, the representations are

equivalent up to isorecolouring.

LetM be a set of compact forbidden patterns. We denote by[M ℄χxχ0_χ1 the set

4In the terminology of rewriting systems, that is, if we see each elementary transformation as
a rewriting rule, then our system would be said to belocally confluent.
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of compact forbidden patterns obtained fromM by replacing every occurrence of

the colourχ by χ0 andχ1. We sometimes need to have an exception to such a

replacement rule and so we denote by[M [f(P0;cP0)x7!χ0g℄χxχ0_χ1 the fact the

replacement ofχ by χ0 andχ1 does not apply to vertexx of (P0;cP0) which must

take colourχ0 only. According to this notation, the elementary Feder-Vardi trans-

formation of(µ;M 0[f(P0;cP0) ./
x
(P1;cP1)g) with respect to(P0;cP0) ./

x
(P1;cP1),

if we assume further that vertexx has colour setfχg in(P0;cP0) ./
x
(P1;cP1), has

the following set of compact forbidden patterns:[M [f(P0;cP0)x7!χ0g;(P1;cP1)x7!χ1g℄χxχ0_χ1

Let (µ;M ) be a connected compact representation.

Consider first the case of different compact forbidden patterns that could be used

for an elementary Feder-Vardi transformation; that is, assume thatM = M 0 [f(S;cS);(U;cU)g, where:(S;cS) = (P0;cP0) ./
x
(P1;cP1) and(U;cU) = (Q0;cQ0) ./

y(Q1;cQ1). We assume for simplicity thatcS(x) = fχxg andcU(y) = fχyg. There

are different cases to consider.

(α1) χx 6= χy

It can be easily checked that applying a transformation withrespect to(P0;cP0) ./
x
(P1;cP1), followed by a transformation with respect to the com-

pact forbidden pattern induced by(Q0;cQ0) ./
y
(Q1;cQ1) leads to the same

transformation as the other way around (note also that this case is very sim-

ilar to the case (β1) which is treated thoroughly underneath).

(α2) χx = χy = χ
Splitting according to(P0;cP0) ./

x
(P1;cP1), we get:[M 0[f(P0;cP0)x7!χ0;(P1;cP1)x7!χ1;(Q0;cQ0) ./

y
(Q1;cQ1)g℄χxχ0_χ1

Splitting according to(Q0;cQ0) ./
y
(Q1;cQ1), we finally get:"

M 0 [ f(P0;cP0)x7!χ00_χ01;(P1;cP1)x7!χ10_χ11;(Q0;cQ0)y7!χ00_χ10;(Q1;cQ1)y7!χ01_χ11g #
χxχ00_χ01_χ10_χ11
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Splitting first according to(Q0;cQ0) ./
y
(Q1;cQ1) and then according to(P0;cP0) ./

x
(P1;cP1), we get:"

M 0 [ f(P0;cP0)x7!χ00_χ10;(P1;cP1)x7!χ01_χ11;(Q0;cQ0)y7!χ00_χ01;(Q1;cQ1)y7!χ10_χ11g #χxχ00_χ01_χ10_χ11

Consider the mappingr that sendsχi j to χ ji , for i = 0;1 and j = 0;1, and

leaves the other colours invariant:r is clearly an isorecolouring.

Consider now the case of a compact forbidden pattern that admits two different

decompositions; that is,M = [M 0[f(S;cS)g℄, where:(S;cS) = ((P0;cP0) ./
x
(P1;cP1)) ./

y
(P2;cP2) = (P0;cP0) ./

x
((P1;cP1) ./

y
(P2;cP2)):

We assume for simplicity thatcS(x) = fχxg andcS(y) = fχyg. There are different

cases to consider.

(β1) χx 6= χy

Splitting according to((P0;cP0) ./
x
(P1;cP1)) ./

y
(P2;cP2), we get:[M 0[f((P0;cP0) ./

x
(P1;cP1))y7!χy0;(P2;cP2)y7!χy0g℄χyxχy0_χy1

Splitting according to((P0;cP0) ./
x
(P1;cP1))y7!χy0, we finally get the follow-

ing setN of compact forbidden patterns;"
M 0 [ f(P0;cP0)x7!χx0;(P1;cP1)x7!χx1^y7!χy0;(P2;cP2)y7!χy1g #χxxχx0_χx1^χyxχy0_χy1

Similarly, if we proceed by first splitting according to(P0;cP0) ./
x
((P1;cP1) ./

y(P2;cP2)) and then according to((P1;cP1) ./
y
(P2;cP2))x7!χx1, we get the fol-

lowing setN 0 of compact forbidden patterns;"
M 0 [ f(P0;cP0)x7!χx0;(P1;cP1)x7!χx1^y7!χy0;(P2;cP2)y7!χy1g #

χxxχx0_χx1^χyxχy0_χy1
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Hence thatN = N 0 so as the representations obtained are identical, they

area fortiori equivalent up to isorecolouring.

(β2) χx = χy = χ
We leave the last case since it is very similar to case (α1).

4.4.4 Definition

We definethe Feder-Vardi transformationof a given connected representation to

be the representation obtained from the iteration of elementary Feder-Vardi trans-

formations until there are only biconnected forbidden patterns remaining (we then

expand every compact forbidden pattern into its corresponding set of forbidden

patterns).

This definition together with the previous proposition leads to the following

corollary.

Corollary 4.22 Let (µ;M ) be a representation and(ν;N ) its Feder-Vardi trans-

formation. Then FP(µ;M ) = FP(ν;N ):
4.4.5 Example

Consider the followingσ2-representationP1
2 := (1;fWOP2g), whereWOP2 is

a white directed path of length 2;i.e. it consists of a structureOP2 with three

elementsfx;y;zg such thatEOP2 = f(x;y);(y;z)g, that is coloured white (the only

colour). The Feder-Vardi transformation of this representation is the following

after simplification;Q = (2;fWDE;BDE;BDEWg), whereWDE, respectively

BDE, consists of a single directed edge coloured in white, respectively in black

andBDEWconsists of a single directed edge with its origin coloured in black and

its target coloured in white. Indeed, a new colour has been introduced ‘black’ and

WOP2 has been split iny yielding two types of forbidden patterns; the first type

consists of a single directed edge whose target must be coloured white, and whose

origin can be either white (the original colour) or black (the copy of the original

colour); and the second type consists of a single directed edge whose origin must

be coloured black (the new colour) and whose target can be either white or black.

This transformation is depicted on Figure 4.4.
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P12}} } } After elementary
Feder-Vardi trans-
formation

}�(}_�) }� (}_�)
After simplification

}�} }� }� �
FV(P1

2) =Q
Figure 4.4: example of a Feder-Vardi transformation
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By the previous corollary the two representations define thesame problem and

since the later is conform it follows from Proposition 4.13 that the problem they

define is in CSP. Notice that these representations provide acounter-example to

the converse of Proposition 4.1 as there does not exist any recolouring ofP1
2 toQ. For this, consider the mapping sending white to white, the inverse image of

WDE is WDE and there does not exist any colour preserving homomorphismof

WOP2 (the unique forbidden pattern ofP1
2) toWDE; hence it is not a recolouring.

Similarly the mapping sending white to black is not a recolouring. The templates

of these representations are depicted on Figure 4.5 (we depicted the templates’

element with their corresponding colour, however beware that the template of a

representation is a structure andnota coloured structure).

TP1
2

TQ} } �
Figure 4.5: Templates ofP1

2 andQ
4.4.6 Feder Vardi transformation and rigidity

We have seen previously that any simple representation is equivalent up to isore-

colouring to a canonical representation. Let(T;M ) be some connected canonical

representation that is not conform, that isM 6= /0. We claim that the Feder-Vardi

transformation of such a representation is rigid.

Suppose there is some (non-conform) forbidden pattern(S;cS) in M that ad-

mits a decomposition(P0;cP0) ./
x
(P1;cP1). Let (ν;N ) be the representation ob-

tained from(T;M ) via the elementary Feder-Vardi transformation with respect to(P0;cP0) ./
x
(P1;cP1). We have seen in the proof of Proposition 4.21 that there ex-

ists a recolouringr of (ν;N ) to (T;M ). Furthermore, since(T;M ) is canonical

it is non-sbavate and by construction so is(ν;N ). Hence ifT 0 is the template of(ν;N ), it follows by Proposition 4.15 thatT 0 r T. LetAbe some non-valid struc-

ture of the problem represented by(ν;N ) (and(T;M ) by Proposition 4.21). If

A cA
T 0 thenA rÆcA

T. A 62 FP(T;M ) and(T;M ) rigid implies that there is some
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Thus, we have(M;cM) m (A;cA). Now by construction, either(M;cM) is a for-

bidden pattern of the new representation or if(M; r Æ cM) is (S;cS) then without

loss of generality we may assume that some forbidden patterninduced by(P0;cP0)
is a substructure of(M;cM). Hence, in any case some forbidden pattern of the(ν;N ) embeds in(A;cA) by composition. We have therefore proved that(ν;N )
is rigid.

Notice that it is however not necessarily canonical, but it can be altered slightly

to obtain a canonical representation; each forbidden pattern can be replaced by its

coloured core without affecting the property of being rigid. Furthermore, the set

of forbidden patterns can be simplified with respect to embedding without affect-

ing this key property either. Finally, if some forbidden pattern is not properly

T 0-coloured, simply discard it. We denote byFV(T;M ) the canonical represen-

tation hence obtained. Notice that by construction if(T;M ) was connected then

FV(T;M ) is biconnected.
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4.5 Normal representation

In this section we define thenormal form of a connected representation(µ;M );
essentially, it is an automorphic, biconnected and canonical representation that

is equivalent to(µ;M ) (i.e. it represents the same problem). Constructing the

normal form involves the notions of a core (of a representation) from Section 4.2

and of a Feder-Vardi transformation from Section 4.4.

This section is organised as follows. In Subsection 4.5.1, we define the normal

form of a connected representation. In Subsection 4.5.2, weillustrate this notion

by computing the normal form of numerous examples.

4.5.1 Definition

Informally the normal form of a canonical connected representation (T;M ) is

built as follows. First, consider its canonical Feder-Vardi transformationFV(T;M );
recall that it has the following properties:� each forbidden pattern is biconnected; and� it is canonical (rigid and simple with respect to embeddings).

Secondly, we want to construct an automorphic representation from FV(T;M )
but keeping the two above properties. So, ifFV(T;M ) is automorphic, we are

done. Otherwise, we are going to take its core. Recall that the core of a represen-

tation is defined up to isorecolouring. So, we consider a particular core to make

sure that the key properties listed above are preserved.
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Let R be a connected representation. Let(T;M ) be the canonical repre-

sentation equivalent toR (via some isorecolouring).

1. If FV(T;M ) is automorphic then setnormal(R) := FV(T;M ).
2. Otherwise, consider its corecore(FV(T;M )); that is,core(FV(T;M ))

is automorphic and there exist some epirecolouringsand some monore-

colouringi with sÆ i = id such that(core(FV(T;M ));s; i) is a retract of

FV(T;M ). Setnormal(R) to be the subrepresentation ofFV(T;M )
inducedby the monorecolouringi.

We callnormal(R) thenormal representationof R.

The following result shows that the above construction has the properties we

required.

Theorem 4.23 LetR be a connected representation.normal(R) is an automor-

phic biconnected and canonical representation such that:

FP(R) = FP(normal(R)):
PROOF. We use the same notation as in the above definition. case (1) is clear.

We now deal with case (2). Letµ be the colour set ofFV(T;M ) andν that of

core(FV(T;M )). We show thatcore(FV(T;M )) andnormal(R) are equivalent

up to isorecolouring: More precisely, we show thatidν is an isorecolouring.

Let (N;cN
ν ) be a forbidden pattern ofnormal(R). Recall thatnormal(R)

is an induced subrepresentation ofFV(T;M ): that is, by definition,(N;cN
ν ) is

a forbidden pattern ofnormal(R) whenever(N; i Æ cN
ν ) is a forbidden pattern of

FV(T;M ). i is a recolouring ofcore(FV(T;M )) to FV(T;M ) implies that the

coloured structure(N;cN
ν ) (the inverse image of the forbidden pattern(N;cN

ν ) via

idν) is not valid forcore(FV(T;M )). This proves that:

core(FV(T;M )) idν normal(R):
Let (N;cN

ν ) be a forbidden pattern ofcore(FV(T;M )). Recall thatsÆ i = idν.

Sinces is a recolouring ofFV(T;M ) to core(FV(T;M )), it follows that there
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exists some forbidden pattern(M;cM
µ ) of FV(T;M ) and some homomorphism(M;cM

µ ) m (N; i Æ cN
ν ). This means thatcM

µ = i Æ cN
ν Æm and it follows by defi-

nition of an induced subrepresentation that(M;cN
ν Æm) is a forbidden pattern of

normal(R) such that(M;cN
ν Æm) m (N;cN

ν ). Thus,(N;cN
ν ) (the inverse image of(N;cN

ν ) via idν) is not valid fornormal(R). We have proved that:

normal(R) idν core(FV(T;M )):
It follows directly from the definition that:normal(R) is biconnected; every

of its forbidden patterns are coloured cores; and, it is simple with respect to em-

beddings (any non-conform forbidden pattern is not a substructure of another non-

conform forbidden pattern). We show that it is also rigid. Let T 0 be the template

of normal(R). normal(R) is connected. So if it has some non-sbavate forbidden

pattern then it must be a forbidden pattern that consists of asingle vertex and no tu-

ple (a forbidden pattern that forbids a colour). Butnormal(R) can not have such a

forbidden pattern since it is also automorphic. Hencenormal(R) is non-sbavate.

Thus, by Proposition 4.15, it follows thatT 0 i T. Let A be some no-instance of

FP(FV(T;M )). Recall thatFV(T;M ) is rigid (it is canonical). IfA cA
T 0 then

by compositionA
iÆcA

ν T. Thus, there exists some non-conform forbidden pattern(M;cM
µ ) of FV(T;M ) such that(M;cM

µ ) m (A; i ÆcA
ν). ThuscM

µ = i ÆcA
ν Æmholds

and it follows that(M;cA
ν Æm) is a forbidden pattern ofnormal(R). Hence, we

have proved that(M;cA
ν Æm) m (A;cA

ν). This proves thatnormal(R) is rigid. �
Remark. The construction of the normal form of a given connected representationR can be summarised as follows.



120 CHAPITRE 4. PROBLÈMES DE MOTIFS INTERDITSRt isorecolouring (Subsection 4.3.3)(T;M )
same problem

canonical representation(Subsection 4.4.6)
FV(T;M )epirecolouring

s

canonical Feder-Vardi transformation(Subsection 4.2.3)
core(FV(T;M ))i t isorecolouring

core (of the representation)(this section)
normal(R)i

induced subrepresentation
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4.5.2 Examples

Consider the following rep-

resentation.}}} }}} }
Notice that it corresponds

to the problem TRI-FREE

that was introduced in Sec-

tion 2.4. We can make

it canonical as in Subsec-

tion 4.3.3: }}} }}} }}
Note that the above repre-

sentation is also automor-

phic and biconnected. So, it

is the normal form.

Consider as another ex-

ample, the representation of

the problem TRI-FREE-TRI

defined in Section 2.4,|;};~|} ~|} ~|~ }
...~| }~} || |} }~ ~

We show that this is already

the normal form. Note first

that it is rigid and that every

forbidden pattern is a bicon-

nected coloured core. It re-

mains to show that it is auto-

morphic. Assume that this

was not the case and that

(R;s; i) is a proper retract

of this representation. We

may assume w.l.o.g. that|
is a colour ofR, i(|) = |
ands(|) = s(~). It follows

that: | |
is a forbidden pattern ofR.

However, one of its inverse

image vias is the following:| ~
It is valid, sos is not a re-

colouring. This yields a

contradiction.

Consider now, the rep-

resentation of NO-WALK -5

from the same Section. It

has a single colour and as

forbidden patterns all possi-

ble orientations of the undi-

rected 5-cycle. In particular

the following:}} }} }
which has the following as
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homomorphic image:}} }
via the homomorphism that

identifies element as de-

picted as follows by double

arrows: }} }} }
Similarly, we get:}} }
for: }} }} }
So, making this representa-

tion rigid by taking all pos-

sible homomorphic images

and simplifying with respect

to embedding, we get the

following representation:}}} }} }
...}} }} }}} }}} }}

Now, every forbidden pat-

tern being biconnected and

the representation being

clearly automorphic, the

above depicts in fact the

normal form of the repre-

sentation of the problem

NO-WALK -5.

The restriction NO-

WALK -5-TRI of the pre-

vious problem as defined in

Section 2.4 can be depicted

as follows:|;};~|~ }| ~
...

all orientations

and all proper

3-colouring
...~} }~ || |} }~ ~

This case is similar to the

previous one. Its normal
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form is as follows:|;};~|~ }| ~
...

all orientations

and all proper

3-colouring
...~} }~ ||} ~

idem
...~} || |} }~ ~

In the above, by ‘proper 3-

colouring’, we mean that the

extremities of any edge have

different colours.

We shall now compute

some of the normal form of

the representations we intro-

duced in this Chapter. We

leave the cases ofMDC2
3

andMDC2
4 as an exercise

for the reader (it is enough

to make them canonical as

in the previous examples).

The normal form ofMDC2
3

can be depicted as follows:}�}} }�� �}�
The normal form ofMDC2

4

can be depicted as follows:}�} }} }� �� �} }� �}�
The case ofMDC2

5 is

more interesting; it is the

first example of a case

where we need to apply

the Feder-Vardi transforma-

tion. The two colours play

a symmetric role, so we

may consider only the case

of the white forbidden pat-

terns. There are two types

of homomorphic image of

the directed 5-cycle; the ho-

momorphic images which

contain WC1 (a self-loop),

and that which contain both
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WC2 andWC3 but noWC1.

As WC1 is also a homomor-

phic image ofWC5, we may

ignore the structures of the

first type, as they shall be

simplified out later. There

are only two structures of

the second type (up to iso-

morphism): }} } }
and }} }
The first structure is not

biconnected; hence, during

the Feder-Vardi transforma-

tion, the colour } shall

be replaced by two new

colours, say,} and~; and,

this structure is replaced by

the following two (compact)

forbidden patterns (we leave} as an abbreviation forf};~g): } }
and }~ }

As for the second structure,

it can be ignored; it shall

be simplified later by one of

the two previous forbidden

patterns (depending on the

choice of the colour). For

example,~ }
embeds in:}~ ~
Note that this is a general

property of the homomor-

phic image (S;PS) of any(P0;cP0) ./
x
(P1;cP1) that sat-

isfies that both(P0;cP0) and(P1;cP1) are substructures of(S;PS). From now on, we

shall ignore such homomor-

phic images. The case of

the black forbidden patterns

is symmetric: we denote by| and� the two copies of

the colour � and as above� stands forf|;�g. The

Feder-Vardi transformation

of the canonical represen-

tation equivalent toMDC2
5

can be depicted as follows:};~;|;�}}}} } ��� � �} }� |}~ }�� �}�
The above depicts the nor-

mal form ofMDC2
5; indeed,

it is easy to check that it is

automorphic.

Computing the normal

form of MDC2
n becomes

more tedious asn increases;
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indeed, there are more pos-

sible homomorphic images

and in particular more non-

biconnected homomorphic

images that need to be split.

However, notice that any

of the biconnected compo-

nents of the homomorphic

image of a directed cycle is

non-conform, hence the nor-

mal form of any of these

representations is not con-

form.

Consider now the case

of representationsADC2
2p�ME. The case ofADC2
4�ME is easy (no Feder-Vardi

transformation is needed)

and its normal form can be

depicted as follows:}� }�} �} �} }� �
For p = 3 and p = 4, the

normal form is not difficult

either and there is no need

to split. It becomes more in-

teresting forp = 5. As in

the case ofMDC2
5, it suf-

fices to consider the follow-

ing homomorphic images of

ADC10: }� �}� �} }�

its symmetric:�} }�} }� �}
and: } �
Using the same notation

as above, after Feder-Vardi

transformation, we finally

get (note that some of the

compact forbidden patterns

represent the same forbid-

den pattern, so to be com-

pletely coherent with the

definition of the normal

form, we should have listed

all possibilities; we beg the

reader for some comprehen-
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sion): };~;|;�}�}�}�} � } �}� �}~� �} }��} }|�} }� �}} �} }� �
Using a similar argument as

in the case ofMDC2
n, we

can prove that: for anyp�
1, the representationADC2

2p

has a normal form that is not

conform.

It leaves the case of the

representationsMC2
n. We

have seen previously that

for evenn, these representa-

tions are all equivalent up to

isorecolouring; and, the nor-

mal form ofMC2
2 can be de-

picted as follows:}�} }� �}�
We consider the case of odd

n. We leave as an exercise

to the reader that the follow-

ing depicts the normal form

of the representationMC2
5.};~;|;�}}}} } ��� � �}} ~} }�� |� �}�

The same argument as the

one used before can be ap-

plied to show that the nor-
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mal form of any representa-

tionMC2
n is not conform.
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4.6 Witness families

In the first part of the present section, we introduce our maintool to prove that

a forbidden patterns problem is not a homomorphism problem,namely awitness

family. Informally, it can be seen as a particular winning strategyfor Spoiler

in the following two player game. A representationR is given. The first player,

Duplicator, wants to show that the forbidden patterns problem represented byR is

in fact a homomorphism problem. The second player,Spoiler, wants to prove him

wrong. At each round, Duplicator provides some structureB, claiming that the

homomorphism problem with templateB is the same problem as the forbidden

patterns problem represented byR. Spoiler proves him wrong by giving him

either a yes-instanceA of FP(R) such thatA = B or a no-instanceA such that

A h B. If Spoiler is unable to do this at some round then he has lost the game,

otherwise if Spoiler can keep Duplicator going for ever thenSpoiler wins. More

formally, a witness family forR consists of a family of structuresF that are all

yes-instances ofFP(R) such that for any fixedσ-structureB (which is a possible

candidate for a template if the problem were to be a homomorphism problem)

there exists a structureA in F that witnesses thatB can not be such a template.

That is, such that eitherA = B or for someA h B, h(A) is not inFP(R).
In the second part of the present section, we only ever consider connected nor-

mal representations. If a problem is given by a connected normal representation

that is not conform, we shall build a witness family.

The idea behind the construction is as follows. Suppose we have a normal rep-

resentation(T;M ) that is not conform and a structureN that is not valid. Assume

further that there exists a colouringcN for N that is not valid and that(N;cN) has

the following property:� N cN
T (the colouringcN is “OK on the edges”); and,� there exists exactly one forbidden pattern(M;cM) in M ((M;cM) must be

a biconnected non-conform forbidden pattern as(T;M ) is normal) such

that (M;cM) e (N;cN) and exactly one such embeddinge (the colouring

is “wrong” but only because of a single occurrence of a biconnected non-

conform forbidden pattern).
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We can “open-up” this colouring ofN: pick some vertexu from this single occur-

rence of(M;cM); add a copyv of u; and, from this single occurrence of(M;cM),
pick a tuplet that involvesu and replace one occurrence ofu in t by v. We call

this new structure informally the gadget andu andv its plug-points.

When given some undirected graphG, we can build a large structureS as

follows: replace every edge between two verticesx andy of G by a copy of the

gadget (identifyu with x andv with y).

The structureS is a yes-instance whenever the graphG has a girth higher than

the following parameter of the representation(T;M ): the size of the largest cycle

that is a substructure of any forbidden pattern.

Now, for any candidateB to the role of template for our problem (assume our

problem to be in CSP), providedG has a chromatic number higher than the size of

this candidateB, any homomorphism of the structureSto B must identify the two

plug-points of some copy of the gadget. Hence some homomorphic image ofN is

a substructure ofB andB is a no-instance: therefore,B can not be the template of

our problem.

Given Erdös’ result on graphs of high girth and high chromatic number, we are

therefore able to rule out anyB by constructing some witnessS from an adequate

graphG.

In the examples of this construction described in the following we use the

language of graph theory to describe the various structuresinvolved and consider

the structures to be graphs even though they should really bedirected graphs (all

the graphs in the following can be easily transformed into directed graphs in a

suitable way). It should be noted that this construction works for problems that

correspond to a first-order MMSNP sentence. Consider, for example, the problem

TRI-FREE: the structureN in this case is simply a triangle, and opening upN leads

to a path of length 3. Callu andv the extremities of this path. Now, ifG is a graph

of girth g, the structureSobtained by replacing every edge between two vertices

x andy by a copy of the path of length 3, identifyingu with x andv with y has

girth 3g. So if we considerG to be self-loop-free, that isg> 1, S is triangle-free.

This construction also works for more complex problems likeNO-MONO-TRI:

one can consider for the structureN, the 5-clique coloured as follows; 3 vertices

coloured in black and the two remaining coloured in white. One can open it to
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obtain the following gadget: take a 4-clique, add two verticesu andv; connect

u to two elements of the 4-clique andv to the two other elements. Consider the

following colouring of this gadget: setu andv to be black; and, for bothu andv,

one neighbour is black and one neighbour is white. The distance betweenu and

v being 3, any structureS induced by a graphG of girth g> 1 is a yes-instance;

it can be coloured according to the colouring of the gadget described above; and,

any cycle ofS that is not a substructure of a copy of the gadget has size strictly

greater than 3 (hence, it can not correspond to a forbidden pattern).

For this construction to work we need a structureN that is not valid and for

which there is a colouring with asingleoccurrence of a forbidden pattern, or more

precisely that can be opened up to yield a structure (the gadget) that has a valid

colouring that sendsu andv (the plug-points) to thesame colour. At first I thought

that such a property can be achieved by enforcing some condition of minimality

on the considered representation. As to whether this is the case remains open, but

I was led to the notions of a recolouring and an automorphic representation and

consequently to the notion of a normal representation. However the key idea of

this construction can be reused. We proved that for any normal representation that

is not conform there are non-valid structuresN that can be nonetheless coloured in

a correct way on the edges; in other words, whose colouring isa homomorphism

of N to the template of the considered representation. According to this colouring,

the structureN can be opened up, leading to a gadget that is not necessarily a

“bipede creature” as above but a many-legged one, a “centipede”... So we can no

longer use Erdös’ result.

In order to build a large structure, we shall have some set of special vertices

corresponding to each type of “leg”(the type of a “leg” beinggiven by the cor-

responding vertex inN). We can plug copies of the “centipede” in all possible

ways between those sets. If the large structures we obtain are always valid then

we have a family of witnesses (just like in our examples above) and we are done.

If one of the large structure is not valid then we can still colour it via the colouring

induced by the colouring ofN in such a way that we have a homomorphism into

the template of the representation of the considered problem. We can open up

this structure and obtain hence some larger structure than the “centipede” we had

before, obtaining a new many-legged gadget, let’s call it a “millipede” (as a matter
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of fact it does not have necessarily more legs it is just larger). By carefully choos-

ing the way we open up, we make sure that the large structures obtained from the

“millipede” are “sparser”. If these large structures obtained from the “millipede”

are still not valid then we carry own opening-up: we obtain eventually a family of

witnesses.

4.6.1 Definition

We formally define a witness family as follows.

Definition 4.24 A family ofσ-structuresF is said to be awitness familyfor a

representationR if:� F � FP(R); and� for anyσ-structure B, there exists some A inF such that,

– either A62CSP(B); or

– for some A h B, h(A) 62 FP(R).
The following result is the corner-stone of the proof of our main result.

Lemma 4.25 If a representationR has a witness family then the problem FP(R)
is not a homomorphism problem.

PROOF. Let F be a witness family forR. If FP(R) were a homomorphism

problem with templateB then we would have someA 2 FP(R) such that either

A 62 CSP(B), or for someA h B, h(A) 62 FP(R), that is eitherFP(R) 3 A 62
CSP(B) or FP(R) 63 h(A) 2CSP(B), in any case a contradiction. �

We would like to construct a witness family in a generic way for problems

given by representations for which we are not able to construct a template; that

is, that are not conform. We shall make use of two important features of normal

representations that are not conform: first, they are automorphic, therefore by

Theorem 4.20 their templates must be no-instances; secondly, every non-conform

forbidden pattern is biconnected, by Theorem 4.23.
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4.6.2 Opening-up an invalid structure

Let M be a structure andC a cycle such thatC e M. Let x0 be some articulation

point ofC. If C is the 1-cycleR(x̄) (with x0 occurring at least twice in ¯x) then let

G be the structure defined fromM andC as follows:� jGj := jMj[̇fy1g; and� G agrees withM everywhere except that the tupleR(e(x̄)) is replaced by

R(ȳ), where ¯y is obtained frome(x̄) by replacing thefirst occurrence of

y0 := e(x0) by y1.

If C is an-cycle (n> 1) andR(x̄) a tuple fromC such that (the articulation point)

x0 occurs in ¯x then letG be the structure defined fromM andC as follows:� jGj := jMj[̇fy1g; and� G agrees withM everywhere except that the tupleR(e(x̄)) is replaced by

R(ȳ), where ¯y is obtained frome(x̄) by replacingeveryoccurrence ofy0 :=
e(x0) by y1.

We callG theopeningof M with respect toC;e;R(x̄) andx0. We cally0 andy1 the

plug-pointsof G. Notice that the mapping that sendsy1 to y0 and fixes the other

elements is a homomorphism ofG to M.

We extend this definition to coloured structures, setting the colour of the new

vertex y1 to be the same colour asy0. Figure 4.6 illustrates this construction

(notice that in this case there was only one occurrence ofy0 in the tupleR(e(x̄))).
EXAMPLE. Let σ3 be the signature consisting of a single ternary symbolR.

1. LetM be theσ3-structure with domainfa;b;c;dg and letRM := f(a;b;c);(a;d;a)g.
Consider the 1-cycleR(x;y;x) and lete be the embedding fromR(x;y;x) to M de-

fined bye(x) = a and e(y) = d. The opening up ofM with respect toR(x;y;x)
and e in the articulation pointx is isomorphic to the structureG with domainfa;a0;b;c;dg with RG = f(a;b;c);(a0 ;d;a)g.

2. LetN be theσ3-structure withRN := f(a;a;b);(a;b;c);(b;c;d);(a;d;c)g over the

domainfa;b;c;dg. Consider the 3-cycleC with domainfx;y;z; tg andRC= f(x;x;y);(x;y;z);(y;z; t)g and let f be the embedding defined byf (x) = a, f (y) = b, f (z) = c
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cycle

C

R(x̄)
x0

e

M

R(e(x̄))
y0

y0=y1

G

R(ȳ)
y0 y1

Figure 4.6: Opening a coloured structure
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and f (t) = d. The opening up ofM with respect toC;e and the tupleR(x;x;y) in

the articulation pointx is isomorphic to the structureH with domainfa;a0;b;c;dg
with RG = f(a0;a0;b);(a;b;c);(b;c;d);(a;d;c)g. N

In the remainder of this section, let(T;M ) be some non-conform normal rep-

resentation and let(N;cN) be non-valid with respect to(T;M ) such thatN cN
T.

Since(T;M ) is rigid andN cN
T, there exists some(M;cM) 2M such that(M;cM) e (N;cN). Since(T;M ) is normal, it follows that(M;cM) is bicon-

nected and therefore that it contains a cycleC. Let R(x̄) be a tuple inC andx0

an articulation point ofC with x0 2 fx̄g. Let (G;cG) be the opening of(N;cN)
with respect toC;e�C;R(x̄) andx0. If (G;cG) is not valid with respect to(T;M ),
start this construction over again. Denote by(G;cG) the valid structure eventually

obtained and letfy1;1;y1;2; : : : ;y1;p1;y2;1;y2;2; : : : ;y2;p2; : : : ;yq;1;yq;2; : : : ;yq;pqg
be its set of plug-points (the first index giving the type of a plug-point, that is, the

yi;�’s correspond to the same element ofN); in other words(G;cG) f (N;cN),
where f identifies the plug-points of the same type,

f : G ! N

y 7! 8<:y , if y2 jNj;
yi;1 , if there is some 1� j � pi such thaty= yi; j :
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EXAMPLE .

Refer to Section 4.5.2 for the normal form

of the representationADC2
10. Its template

is as follows. } �| ~
We are going to gradually open it up, con-

sidering it as a coloured structure as de-

picted on the previous figure. Notice that

there are many ways of opening up. We

highlight the considered forbidden pattern

at each stage by using dotted arrows (which

shall be seen as a cycle in our case), ex-

cept for the tuple considered which shall

be depicted by a dashed arrow. Moreover

we mark the chosen articulation point by

enclosing it within a circle. For example,

opening up the template according to the

following, } �| ~
yields the coloured structure.}1 }0 �| ~

The latter is not valid and we open it up fur-

ther. }1 }0 �| ~}2}1 }0 �| ~}2}1 }0 �|0 ~|1

Finally, we obtain the following valid struc-

ture. }2}1 }0 �0 �1|0 ~|1

The latter has three types of plug points,

that we denoted on the figure by}0, }1,}2,|0,|1,�0 and�1. N
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4.6.3 Constructing a large coloured structure

Let (G;cG) be a valid coloured structure (informally called the gadget) obtained

from some non-valid(N;cN) as in the previous section. For any ¯n=(n1;n2; : : : ;nq)
with n1 � p1;n2 � p2; : : : ;nq � pq, we build a large coloured structure(In̄;cIn̄)
from the gadget as follows. It has a set ofspecial elementsjSj � jIn̄j that is

partitioned intoq pairwise disjoint setsXi := fxi; j j1� j � nig (1� i � q). For

any 1� i � q and for any choice ofpi elementsxi;k1;xi;k2; : : : ;xi;kpi
in jXij such

that k1 < k2 < :: : < kpi , plug in a copy of the gadget(G;cG), identifying the

plug-points of(G;cG) with the corresponding chosen special vertices; that is, set

xi;k j := yi; j for any 1� i � q and for any 1� j � pi .

EXAMPLE. Depicting a large structure with the gadget used in the previous example

would not be really helpful as the gadget obtained there is quite complicated. We build

therefore an alternative gadget first. Consider for this thestructureDC2. It is clearly a

no-instance of the problemFP(ADC2
10). However, it can be coloured to obtain a valid

colouring with respect to the template of the normal representation ofADC2
10 as follows.} �

According to this colouring, we can open up to obtain the following gadget.}0 � }1

It has only two plug-points, denoted by}0 and}1, respectively. The following depicts

the “large” coloured structure obtained using this gadget for n= 3.�� �}x1 }x2 }x3 N
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4.6.4 General construction of witness families

By Theorem 4.20, since(T;M ) is automorphic and not conform, it follows that its

templateT is not valid. Consider any homomorphismcT : T T, e.g. cT = idT

and set(N;cN) := (T;cT). Then we haveN cN
T and(N;cN) not valid with re-

spect to(T;M ). Let (G;cG) be its opening as defined above in Subsection 4.6.2.

Let F be the set of structuresIn̄ in STRUC(σ) for n̄ = n1;n2; : : : ;nq, with n1 �
p1;n2� p2; : : : ;nq� pq obtained from the gadget(G;cG) as in Section 4.6.3.

case 1: F � FP(T;M )
We prove thatF is a witness family with respect to(T;M ).
Let B be someσ-structure. We may assume w.l.o.g. that for anyA in F , A B.

Let n̄= (n1;n2; : : : ;nq), whereni > pi:jBj� jBj for any 1� i � q. By assumption,

we haveIn̄
b B for someb. By construction ofIn̄ there must be a copy of the

gadgetG in In̄ whose plug-points are all identified byb. HenceN b̃ B for some

b̃ induced byb and alsõb(N) 62 FP(T;M ). This proves the claim.

case 2: F 3 In̄ 62 FP(T;M ), for some ¯n.

Consider the coloured structure(In̄;cIn̄). Notice that the following holds:� In̄ is a no-instance; and� (In̄;cIn̄) is not valid butIn̄
cIn̄

T.

We shall repeat the construction, deriving this time a gadget from (In̄;cIn̄). How-

ever, we choose with great care the elements at which we open-up: they shall

always be special elements ofIn̄ (as defined in Subsection 4.6.3).

Recall that the only forbidden patterns occurring in(In̄;cIn̄) are biconnected.

Moreover, by construction such an occurrence of a biconnected forbidden pattern

must involve at least two copiesG1 and G2 of the gadget. Letx be a special

vertex common toG1, G2 and to that occurrence. Now, add a new vertexx0 and

replace every occurrence of the vertexx in every tuple ofG2 by this new vertex

x0. Proceed similarly for every occurrence of a forbidden pattern. We call the

structure obtainedG0. By constructionG0 is a yes-instance ofFP(T;M ); consider
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cG0
to be the valid colouring ofG0 induced bycIn̄ and defined as follows. Every

vertex occurring inIn̄ is coloured according tocIn̄ and any new vertexx0 takes the

same colour as its corresponding vertexx viacIn̄. LetF 0 be the family of structures

obtained from the new gadgetG0 (the plug-points being the special verticesx at

which we opened-up and their copiesx0 in G0). If F 0 � FP(T;M ) then we are

back to the first case and we have constructed a witness family. Otherwise, we

simply loop back to case 2.

Denote byGk the gadget used at stagek and byI k
n̄ the structures build from

Gk.

We claim that we eventually reach case 1. Consider for contradiction the se-

quence(uk)k�0 defined as follows:u0 is the minimal distance between any two

plug-points of the gadgetG (here by distance between two vertices we mean the

length of the shortest path between those two vertices);uk is defined to be the

minimal distance between two plug-points of the gadget constructed at stagek.

By construction, this sequence is non decreasing; that is, for anyk� 0, we have

uk+1� uk. Assume further that this sequence is not stationary (we shall prove this

shortly). Letd be the size of the largest cycle that embeds into a non-conform

forbidden pattern ofM . Let k� 0 such thatuk > d
2 . By assumption for some ¯n

the structureI k
n̄ is a no-instance ofFP(T;M ). Consider its canonical colouring(I k

n̄;cIk
n̄). This colouring is valid for each copy of the gadgetGk by construction.

It follows that some non-conform forbidden pattern must embed in more than one

copy ofGk. However, this is not possible: it would imply that this forbidden pat-

tern would contain a cycle of size greater or equal than 2:uk, that is strictly greater

thand. This yields a contradiction. Therefore we proved the following: if the

sequence(uk)k�0 is not stationary then we eventually go out of the loop in case2;

that is, our construction terminates and we eventually obtain a witness family. We

now prove that the sequence(uk)k�0 is not stationary.

The sequence(uk)k�0 is not stationary. Assume for contradiction that this is

not the case; that is, that for somek� 0 and for anyk0 � k we haveuk0 = uk. By

construction, inGk+1 the distance between two plug-points of the same type (that

is, two vertices that correspond to the same special vertex of I k
n̄) is greater or equal

than 2:uk. However, sinceuk = uk+1, there must be two plug-pointsx andy at
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distanceuk in Gk+1. These two plug-pointsx andy must necessarily be incident

to the same copy ofGk within Gk+1. This leads us to the following definitions.

For any copyGk
i of Gk in Gk0 defineP(k;k0) to be the set of pairs of plug-points

of Gk0 incident toGk
i that are at distance exactlyuk in Gk

i . For any copyGk
i of Gk

in Gk0, definefree(k;k0) to be the set of plug-points mentioned by the pairs of

P(k;k0). Furthermore, fix somexk;k0 in free(k;k0).
We add another constraint to the construction in case 2: while opening forbid-

den patterns, for each copy ofGk
i in Gk0, never open-up atxk;k0 .

Note that the process of opening does not increase the numberof new plug-

points incident with any copy ofGk, and it does not reduce the distance between

any pair of new plug-points incident with any copy ofGk. Hence, for any copy

Gk
i of Gk in Gk+1, free(k;k+1) < free(k;k). It follows that after finitely many

steps, say, at stepk0 > k, we must haveuk0 > uk. This yields a contradiction. So,

we have proved that the sequence(uk)k�0 is not stationary.

To summer-up, we have provided a generic construction whichallows us to

build a witness family for any given non-conform normal representation.

4.7 Characterisation

In this Section, we state our main result, that is the exact characterisation of these

forbidden patterns that are not in CSP. We first state this result in the case of con-

nected representation, before illustrating it by some examples. Finally, we extend

the result to any representation by generalising the notionof normal representa-

tion to disconnected representation; there we introduce the notion ofset of normal

representations.

4.7.1 Main result

The previous results leads to a full characterisation of connected representations

with respect to the property of representing a CSP problem.

Theorem 4.26 (théorème de Louison5)

Let (µ;M ) be a connectedσ-representation. The following are equivalent.
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PROOF. It follows from the construction of the previous section that (i)) (iii ).(iii )) (ii) by Lemma 4.25. Hence, it follows that(i)) (ii). The converse holds

since:(i)):(ii) by Proposition 4.13. Thus we have proved(i) () (ii) and

the other equivalences follow. �
4.7.2 Examples

We have seen earlier that numerous representations were normal and not conform,

so as a corollary from our main result, we know that they are not in CSP.

Corollary 4.27 Let n� 1. The forbidden patterns problem represented byMDC2
n

is not a CSP. The forbidden patterns problem represented byMC2
n is not a CSP.

Let p� 0. The forbidden patterns problem represented byADC2
2p�ME is not a

CSP.

Notice as well that all the problems introduced in Section 2.4 are proved to

be not in CSP by hand of the main result, as we computed their normal form in

Section 4.5.2 and none of them were conform.

Furthermore, notice that we have given only examples with directed graphs as

they are easier examples but the main theorem holds for any signature.

4.7.3 The case of disconnected representation

We can extend the notion of Feder-Vardi transformation of a representation to

the disconnected case; that is when a forbidden pattern is not connected. Let(µ;M ) be a representation such that there exists a disconnected forbidden pattern

5In the eventuality that the reader might want to refer to thisresult, please quote it asle
théorème de Louison, as today I am the proud “republican godfather” of Louison.
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µ ) 2M , that isF consists of the disjoint union of two structuresF0 andF1.

It is not difficult to see thatFP(µ;M ) = FP(µ;M0)[FP(µ;M1) whereMi :=(M nf(F;cF
µ )g)[f(F1;cFi

µ )g with cFi
µ := cF

µ �Fi
.

So we extend the notion of normal representation to the disconnected case and

consider the following recursive definition; theset of normal representationsof a

representation(µ;M ) is� the set containingnormal(µ;M ) if (µ;M ) is a connected representation;

and� the simplified union of the set of normal representations of(µ;M0) and(µ;M1) if (µ;M ) is as above,

where by simplified union, we mean that we remove a representation whenever

there exists a recolouring into another (analogous operation as when we dealt

with forbidden patterns). We denote the set of normal representations of a repre-

sentation(µ;M ) by Normal(µ;M ).
We can extend our main result to disconnected instances.

Theorem 4.28 Let (µ;M ) be aσ-representation. The following are equivalent.(i) The setNormal(µ;M ) contains a single conform connected representation.(ii) FP(µ;M ) is a CSP

PROOF. The case whenNormal(µ;M ) is a singleton was done previously; so, let(µ0;M0);(µ1;M1) 2 Normal(µ;M ). Let T0 andT1 be their respective templates.

We claim thatT0 is a no-instance of(µ1;M1). Indeed, ifT0 were accepted then it

would induce the existence of a recolouring of(µ0;M0) to (µ1;M1) which would

contradict the definition of set of normal representations (the proof is very sim-

ilar to the proof of Proposition 4.3.4). In the case whereT0 is a yes-instance of(µ0;M0) then the latter is a conform representation andFP(µ0;M0) a CSP. So

assume further that not all the representations among the set of normal represen-

tations of(µ;M ) are conform (we shall deal later with this case) and therefore

without loss of generality thatT0 is not a yes-instance of(µ0;M0). Hence, we

have a structure that is a no-instance but can be coloured correctly on the edges
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with respect to the non-conform representation(µ0;M0). So we can use it to build

the gadget for the generic construction that lead to the mainresult and eventually

obtain a witness family. Now if all the representations among the set of normal

representations of(µ;M ) are conform then we can see(µ;M ) as the conjunc-

tion of CSP of respective templatesT0;T1; : : : ;Tn. Those templates can not map

into each other (otherwise this would lead to the existence of a recolouring). If

FP(µ;M ) were a CSP then letT be its template. SinceTi 2 FP(µ;M ), we would

haveTi T thus the structureS consisting of disjoint copies of theTi ’s would

satisfyS T and thusS2 FP(µ;M ). Hence there would be someTj such that

S Tj and finally we would haveTi Tj for somei 6= j, a contradiction. �
We conclude this chapter with a few remarks. First, notice that the normal

form of a representation is quite complicated to compute as the reader may have

noticed with the few simple examples provided. In order to implement efficiently

an algorithm that would decide whether a forbidden patternsproblem is a CSP,

some simplifications are needed; representations should begiven in a compact

form as in Section 4.4. Moreover, notice that we decided to work with colou-

red structures to simplify the proofs but the same work couldbe achieved with

partially coloured structures. Furthermore on this matter, we enforced the fol-

lowing order when computing the normal representation; first enforcing the rep-

resentation to be canonical (which involves taking homomorphic images of for-

bidden patterns, which increases the size of the representation) then applying a

canonical Feder-Vardi transformation (which involves adding more colours, thus

also increasing the size) and finally taking a particular core (which decreases the

size). Notice moreover that the last transformation is the most complicated, as it

is clearlyNP-hard. Hence, it would be probably more efficient to take the core

of the representation as often as possible. Notice however,that since we want an

automorphic representation on the end, we must take the corebefore finishing, as

it might be the case that the Feder-Vardi transformation of an automorphic repre-

sentation is not automorphic. It would be interesting to study in more details the

rewriting system associated with the three transformations mentioned above. It is

not clear whether it is confluent. In other words, the normal representation might

not be definable as the unique rewrite of this system.
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Our second remark concerns the gadget used for the construction of witness

families. A part of the proof is quite complicated because ofthe fact that we might

deal with a gadget that has many legs of possibly different types. However, for

every examples that we investigated on graphs, we were able to build a simple

bipede gadget as in the example above in Subsection 4.6.3. Ifwe could prove

that such a simple bipede gadget exists for any representation, we could simplify

further our proof by using Erdös’ theorem.

Finally, notice that recolourings alone do not provide a satisfactory morphism

for representation as the converse of Proposition 4.1 does not hold. We shall

discuss this issue in more details in the next chapter in Subsection 5.3.2.

In the next chapter, we relate also our main result with some results by Tardif

and Nešeťril and we shall investigate the structure of the category ofrepresenta-

tions.

In Chapter 6, we shall give some examples of complete forbidden patterns

problems that are not in CSP for the complexity classNL,P andNP. We shall

also investigate some restrictions that lead to tractability of forbidden patterns

problems.
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Chapitre 5

Algèbres de Heyting, densité et

dualité

On résume les résultats de Tardif et Nešetřil sur la dualité et la densité ; puis,

des liens entre ceux-ci et le résultat principal du chapitreprécédent sont mis en

évidence. En particulier, on montre que les coeurs de structures forment une

algèbre de Heyting. La correspondance entre dualité et densité est démontrée

dans le cas général d’une algèbre de Heyting. Enfin, le fait que les coeurs de

représentations forment aussi une algèbre de Heyting est mis en évidence.

145
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Dans ce chapitre, je rappelle tout d’abord certaines propriétés algébriques de
la catégorie desσ-structures. On verra que les coeurs de structures forment une
algèbre de Heyting: c’est-à-dire un treillis distributif avecexponentiel. Cette ma-
chinerie algébrique a permis à Tardif et Nešetřil de mettre en évidence dans un
travail récent (voir [45]) l’existence d’unecorrespondanceentre lespaires cou-
vrantes(lieux du treillis qui ne sont pas denses) dans ce treillis (des coeurs de
structures) avec lespaires duales. Ces dernières correspondent en fait à des pro-
blèmes de motifs interdits qui sont dans CSP et qui sont très simples : ils peuvent
être donnés par une représentation qui a une seule couleur etun seul motif inter-
dit. D’où leur nom deproblèmes monochrome de motif interdit. Tardif et Nešeťril
ont caractérisé les paires duales (plus précisément, ils ont caractérisé les paires
couvrantes, et obtiennent une caractérisation des paires duales par le biais de la
correspondance mentionnée ci-dessus). Notons que le résultat principal du cha-
pitre précédent donne unecaractérisation alternative des paires duales. Remar-
quons également que la caractérisation (des paires duales)donnée dans [45] est
bien plus simple que la mienne. Ceci peut cependant être contrasté avec le fait que
ma construction pour le patron (lorsqu’elle est possible) est beaucoup plus simple
que la leur. Je donne également une preuve de la correspondance entre dualité
et densité dans le cas général d’une algèbre de Heyting. De plus je prouve que
les coeurs de représentations forment eux aussi une algèbrede Heyting. Ainsi, je
montre qu’il existe aussi une correspondence entre densitéet dualité dans ce cas ;
ce résultat est cependant moins satisfaisant que celui obtenu pour les structures
et me conduit à poser quelques questions ouvertes que je motive par des résultats
partiels.

Toutes les notions catégorielles nécessaires sont donnéesen Appendice B.
Nous conseillons vivement [38] au lecteur intéressé pour lathéorie des catégo-
ries et recommendons [44] pour l’algèbre universelle en général et la théorie des
treillis en particulier.
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5.1 Heyting algebras

In this section, we shall recall the definition and some basicfacts aboutHeyting

algebras. In a second part we show that the cores form a Heyting algebra.

5.1.1 Definition

A Heyting Algebrais a structure over the signatureλh consisting of three binary

function symbolŝ ,_ and), and of two constant symbols0 and1; this structure

is a lattice with respect tô and_ with least element0 and greatest element1,
i.e. it satisfies the following identities

x^y= y^x x_y= y_x

x^ (y^z) = (x^y)^z x_ (y_z) = (x_y)_z

x^x= x x_x= x

x^ (x_y) = x x_ (x^y) = x

x^0= 0 x_1= 1
We define the partial order� that corresponds to this lattice as usual; that is, we

setx� y if, and only if,x^y= x. A further property of these algebras is that, for

anyx;y andz,

z� x) y, if, and only if,z^x� y:
5.1.2 The Heyting algebra of cores

The fact that the cores form a Heyting algebra and the existence of the exponential

plays an important role in graph theory. It is not quite clearwho exactly made this

discovery first. It seemed to have been a well known fact in some research groups

for a few decades. There is a note about this in case the readeris interested in [50],

a survey on Hedetniemi’s conjecture, by Norbert Sauer, which we suggest also as

it contains further examples of the use of exponentials in graph theory.

Let’s consider the quasi-order given by homomorphisms betweenσ-structures
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up to homomorphism equivalence: two structuresA andB are homomorphically

equivalent (denoted byA� B) wheneverA B andB A. Hence when we fac-

tor out STRUC(σ) by � we obtain a partial order. As representatives for each

equivalence class, one can consider cores as we have seen earlier in Proposi-

tion 4.7,i.e. hSTRUC(σ); i� t hCORE(σ); i
whereCORE(σ) denotes the class of cores ofσ-structures considered up to iso-

morphism, that is according to the notation of the previous chapter,

CORE(σ) := [
A2STRUC(σ)core(A):

In fact, there is a much richer structure than just a partial order. Indeed, one

can define theproductand thecoproductof structures with respect to homomor-

phisms, which lead themselves to the notion ofsupremumandinfimumfor cores.

Hence the partial orderhCORE(σ); i is in fact alattice.

Lemma 5.1 The category ofσ-structures has products and coproducts.

PROOF. For any given pair ofσ-structures(A;B), define the1 product A�B of A

andB as follows.� jA�Bj := jAj� jBj (Cartesian product of the two sets); and� for anyr-ary symbolR in σ, and anyr-tuple((a1;b1);(a2;b2); : : : ;(ar ;br))
of elements ofjA�Bj, R((a1;b1);(a2;b2); : : : ;(ar ;br)) holds in A�B if,

and only if,R(a1;a2; : : : ;ar) holds inA andR(b1;b2; : : : ;br) holds inB.

We can also define the1 coproductof A andB denoted byA+B to be simply the

structure consisting of the disjoint union of the two structures, that is,� jA+Bj= A[̇B; and� for anyr-ary symbolRand anyr-tuple(x1;x2; : : : ;xr) of elements ofjA+Bj,
R(x1;x2; : : : ;xr) holds inA+B if, and only if, R(x1;x2; : : : ;xr) holds either

in A or in B.
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It is a straightforward exercise to check that these definitions satisfy indeed the

defining properties of the product and coproduct; in other words, that for any

triple of σ-structures(A;B;C),� C A�B if, and only if,C A andC B; and� A+B C if, and only if,A C andB C. �
For any two coresA andB, we set� A^B := core(A�B); and� A_B := core(A+B).

The following result follows directly from the previous proposition.

Corollary 5.2 hCORE(σ);^;_i is a lattice.

Furthermore, this category hasexponentials(in a lattice, an exponential cor-

responds to a pseudo-complement; and, in the category of sets, an exponential is

simply the set of functions of one set to another).

Lemma 5.3 The category ofσ-structures has exponentials.

PROOF. For any pair ofσ-structures(A;B) we defineAB, as follows.� jABj := jAjjBj (the set of functions ofjBj to jAj); and� for anyr-ary symbolRand anyr functionsf1; f2; : : : ; fr of jBj to jAj, R( f1; f2; : : : ; fr)
holds inAB if, and only if, for anyr-tuple(b1;b2; : : : ;br) of elements ofB,

if R(b1;b2; : : : ;br) holds inB thenR( f1(b1); f2(b2); : : : ; f (br)) holds inA.

It can be easily checked thatAB satisfies the defining property of the exponential,

that is,

for anyC in STRUC(σ);B�C A if, and only if,C AB:
1Note that these notions are defined up to isomorphisms as usual in category theory, in the

following we shall feel free to define every categorical notion as such without further warnings.
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It follows from the existence of exponentials that the product and the coprod-

uct are distributive with respect to each other: that is, thefollowing distributive

lawshold.

A� (B+C)t (A�B)+(A�C) and A+(B�C)t (A+B)� (A+C):
Moreover, the category ofσ-structures has an initial object (a structure that maps

into every structure via a single homomorphism) as well as a terminal object (the

dual notion; that is, a structure into which every structuremaps via a single ho-

momorphism): namely, the structures 0σ and 1σ defined as follows,j0σj := /0, and for each symbolR in σ, R0σ := /0;j1σj := f0g, and for each symbolR in σ, R1σ := f(0;0; : : : ;0)g:
Hence, together with Corollary 5.2 and Lemma 5.3, this leadsto the following

result (the notion of atoposis defined in Appendix B).

Theorem 5.4 The category ofσ-structures is atopos.
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PROOF.(i) We prove thatSTRUC(σ) has equalizers. LetB andA be two structures and

B
f

A andB
g

A be two homomorphisms. LetD be the substructure ofB

induced by the set: fx2 jBj such thatf (x) = g(x)g
ande be the induced embeddingD e B. By construction, we havef Æe=
gÆe. It remains to show the universality. LetC be a structure andC h B

a homomorphism such thatf Æh= gÆh. It follows directly that the image

of jCj via h is included injDj. So defineC h0 D by h0 := e�1 Æh. Clearly

eÆh0 = h andh0 is unique.

We have also proved that the category ofσ-structures has a terminal object,

and that it has products: it follows by Corollary B.1 thatSTRUC(σ) has

finite limits.(ii) Let 2σ be the disjoint union of two copies of 1σ. For the subobject classifier,

consider the structure 2σ.(iii ) We have products and exponentials so the category ofσ-structures is carte-

sian closed. �
Notice that 0σ and 1σ are cores. Moreover for two coresA andB we set,

B) A := core(AB):
The previous theorem yields the following result.

Corollary 5.5 hCORE(σ);^;_;);0σ;1σi is a Heyting algebra.

Let L be a lattice. Recall that a lattice elementa is said to be(join) prime if,

and only if, for any lattice elementsb andc, if a= b_ c thena= b or a = c. In

the following, we shall simply write prime for join prime. Itcan be checked that

the prime elements in the lattice of cores are exactly theconnected cores.
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5.2 Duality and density

In this section, we shall investigate thecorrespondence between duality and den-

sity. First, we shall defineduality pairsand relate them to some particular prob-

lems; themonochrome forbidden pattern problemsthat are conform. We then de-

rive from the main result of the previous chapter an alternative characterisation of

duality pairs, which together with Tardif and Nešetřil’s own characterisation, pro-

vides a better characterisation of monochrome forbidden pattern problems (as to

whether such a problem is in CSP or not). Next, we shall brieflydiscuss the proof

of their result and contrast their better characterisationin the restricted case of

monochrome forbidden pattern problems with the superiority of our construction

for templates (whenever the problem considered is in CSP) over theirs. Finally,

we generalise their proof of the correspondence between duality pairs and gaps in

the lattice of cores; we prove such a correspondence for any Heyting algebra.

5.2.1 Duality pairs and monochrome forbidden pattern prob-

lems

Let A andB be cores. Notice that the homomorphism problem with template B

corresponds to aprincipal ideal in the lattice of cores: namely, the set,fC2CORE(σ)jC Bg:
Consider now the dual notion forA; that is, the complement of theprincipal filter

generated byA: namely, the set,fC2CORE(σ)jA = Cg:
This remark leads to the following question: for which structuresA and B do

these two notions coincide? This yields the following definition. Let A andB be

σ-structures. We call(A;B) aduality pair if, and only if, the principal ideal gener-

ated bycore(B) coincides with the complement of the principal filter generated by

core(A). Notice that the complement of the principal filter generated by core(A)
corresponds to amonochrome forbidden pattern problem; that is, a problem with



5.2. DUALITY AND DENSITY 153

a single colour and a single forbidden pattern (the structureA coloured uniformly

with this unique colour). For simplicity, we denote this problem byFP(A) (to

be coherent with our notation, we should write(1;f(A;cA
1)g) instead ofA). Such

problems correspond to first-order MMSNP sentences with only one negated con-

junct and are therefore computationally trivial to solve (within the complexity

classL).

Notice that in our settings(A;B) is a duality pair if, and only if,FP(A) =
CSP(B). Therefore, the following follows from Theorem 4.28.

Corollary 5.6 Let A be a structure. There exists a structure B such that(A;B) is

a duality pair if, and only if,Normal(1;f(A;cA
1)g) consists of a single conform

representation whose template is homomorphically equivalent to B.

Another characterisation has been however obtained by Tardif and Nešeťril in [45];

we shall discuss their proof in the next section. In order to state it, we need

the following definition. We say that a structureA is a tree if, and only if, it is

connected and cycle-free (i.e. it has no substructure that is a cycle).

Theorem 5.7 (Tardif, Nešetřil) Let A be a structure. There exists a structure B

such that(A;B) is a duality pair if, and only if,core(A) is a tree.

One can therefore combine these two results together as follows.

Lemma 5.8 Let A be a structure.Normal(1;f(A;cA
1)g) consists of a single con-

form representation if, and only if,core(A) is a tree.

This provides therefore a better characterisation for monochrome forbidden pat-

tern problems.

Corollary 5.9 The problem FP(A) is in CSP if, and only if,core(A) is a tree.

Notice that in case we would want to prove the above lemma without using Tardif

and Nešeťril’s characterisation, the indirect implication is clear; if A is a tree then

the representation(1;f(A;cA
1)g) can be broken down by a sequence of elemen-

tary Feder-Vardi transformations until there are only conform forbidden patterns

remaining (cf. remark in the next subsection). However, the converse implication

does not seem to be quite as trivial.
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In order to discuss the proof of Tardif and Nešetřil’s theorem, we need the fol-

lowing definition. LetA andB be twoσ-structures.(A;B) is said to be agap pair

if, and only if,A B, B = A and for everyσ-structureC, if A C B then ei-

therA�C orC�B. Notice that a gap pair(A;B) simply corresponds to an interval[core(A);core(B)℄ in the lattice of cores that is notdense: that is, there is no coreC

apart fromcore(A) andcore(B) such thatcore(A)�C� core(B). In other words,

core(B) is theupper coverof core(A), which we denote bycore(A)� core(B).
5.2.2 Discussion of Tardif and Nešetřil’s proof

Tardif and Nešetřil used the correspondence between gap pairs and duality pairs:

as a matter of fact, this correspondence exists because the cores form a Heyting

algebra. We shall prove this in the next subsection.

The notion of a duality pair was introduced by Tardif and Nešetřil in an at-

tempt to investigategood characterisationsof homomorphism problems; that is,

to find obstructing sets; e.g. the set of odd cycles is such an obstructing set in the

case of the problem 2-COL. Therefore they looked at the most simple such good

characterisation: the case of an obstructing set reduced toa singleton. Hence, the

notion of duality pair. It is important to note that since they did not really per-

ceive the problem as a forbidden pattern problem, they did not use colours and

did not use a tool like the Feder-Vardi transformation. Their proof relies on the

correspondence mentioned earlier: first, gaps are characterised, and therefore so

are duality pairs. To characterise gaps, there are two parts: the “positive part” in

which they construct what they callthe gap below a treeand the “negative part”

in which they prove that there is no gap below a non-tree.

The first part corresponds, modulo the correspondance, to the construction of

a template from the normal form of a conform representation;and, is rather differ-

ent in its philosophy: Tardif and Nešetřil use a construction calledthe arrow con-

struction. This construction involves the partial order over the subtrees of a given

core treeA and the induced notion ofa-ideal for some elementa of A. For a given

core treeA, the arrow construction yields a structureA# (which is not necessarily

a core) such thatcore(A#) � A. Then, by way of the correspondence between

density and duality (cf. Lemma 5.11 in the next subsection), Tardif and Nešetřil
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prove that(A;(A#)A) is a duality pair. Hence, for a given core treeA, to construct

the templateB of the problemFP(A) with their method seems rather difficult (as

they point out themselves). Indeed, the arrow constructionis already quite intri-

cate andA# has a size that is exponential in the size ofA. Hence, to compose the

arrow construction by taking itsAth exponent is doubly exponential! However,

our method can be adapted in the case of a tree. Indeed, we do not need to take

any homomorphic images ofA: a sequence of elementary Feder-Vardi transfor-

mations decomposesA into its biconnected components (i.e. conform forbidden

patterns sinceA is a tree), and such homomorphic images would be discarded after

the canonical Feder-Vardi transformation as they would notbe properly coloured

according to the new template. Therefore, we obtain a conform representation by

applying the canonical Feder-Vardi transformation. Furthermore, we could leave

the representation in its compact form. Hence we obtain a description of a struc-

ture that is homomorphically equivalent to(A#)A, that would be more manageable

(we get rid of one exponential that way).

The second part of their proof is quite similar to ours and relies on the same

ideas: opening up a non-conform biconnected structure and construct a large

structure with this gadget (they take a suitable graph of large girth and high chro-

matic number, that exists according to a theorem of Erdös, and replace its edges

by the gadget). Since they deal with problems of the formFP(A) (whereA is a

core that is not a tree) they derive a gadget by opening upA (they do not have to

deal with the problem of having different colours). Hence, given someB such that

A = B, they produce a structureC such thatA = C andC = B butC A. Thus,

the structureC+B is strictly in betweenA andB, wheneverB A. So, for any

structureB, (A;B) is not a gap pair.

To conclude on this matter, it seems that combining the two approaches might

be quite enriching: the correspondence between duality anddensity that we extend

in the next subsection is a beautiful and useful result (it provides counter exam-

ples). However, the approach via representations and computations of a normal

form seems to be better when it comes to prove positive results. Indeed, it seems

rather hard to picture the exponential of two structures, and this even in simple

cases: there are very few general internal descriptions of exponential of graphs

known presently ( [51]), not to mention the combination of this construction with
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the intricate arrow construction.

5.2.3 Correspondance between duality and density

In this section we present the correspondence between duality and density that was

investigated by Tardif and Nešetřil in [45]. Since we need the same result later for

representations, we prove this result in the general setting of Heyting algebra. In

the followingH denotes such an algebra. Note that the original proof was done

in the category ofσ-structures rather than in the Heyting algebra of cores (which

tends to simplify things a great deal in the proof).

Lemma 5.10 If (a;b) is a duality pair in H then a is a prime and(a^b;a) is a

gap pair.

PROOF. Assume for contradiction thata is not a prime: that is, there exists some

elementsa1 anda2 such thata = a1_a2 anda 6= a1 anda 6= a2. It follows that

a 6� a1 anda 6� a2. Since(a;b) is a duality pair, the above yields to the following:

a1 � b anda2 � b. It follows therefore thata = a1_a2 � b. Froma� b, since(a;b) is a duality pair, we get the following contradictiona 6� a.

We havea^b� a. Let c be an element ofH such thata^b� c� a. Since(a;b) is a duality pair andc 6� a, it follows thatc� b. Hence, we havec= a^b.

Thus, we have proved thata^b� a. �
Lemma 5.11 If (a;b) is a gap pair in H and b a prime then(b;b) a) is a duality

pair.

PROOF. For any elementc of H, we havea� a_ (b^ c) � b. Sincea� b, we

have two cases to consider.

1. a = a_ (b^ c): It follows thatb^ c� a. Thus, by definition of the expo-

nential it implies thatc� b) a.

2. b = a_ (b^ c): sinceb is prime and by assumptiona 6= b, it follows that

b= b^c and finally thatb� c.
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Thus, we have proved that for anyc of H, eitherc � b) a or b� c: that is,(b;b) a) is a duality pair. �
We now prove that there is a one-to-one correspondence between gap pairs(c;d) whered is a prime and duality pairs.

If we start with a duality pair(a;b) then it follows from Lemma 5.10 that(a^ b;a) is a gap pair anda a prime. Hence, it follows from Lemma 5.11 that(a;a) (a^ b)) is a duality pair. Since(a;b) and (a;a) (a^ b)) are duality

pairs, it follows thatb= a) (a^b).
Conversely, let(c;d) be a gap pair withd a prime. Then, by Lemma 5.11,

it follows that (d;d ) c) is a duality pair. Finally, by Lemma 5.10, it follows

that (d^ (d ) c);d) is a gap pair. We havec^ d = c. So, in particular, we

havec� d ) c and sincec� d it follows that c� d^ (d ) c). We also have

c^d � c henced^ (c^d) � c. The defining property of the exponential implies

that d � (c^ d) ) c. But since(c^ d) ) c = (c) d) ) c, via the defining

property of the exponential we getd^ (c) d)� c. Hence, we get back to the gap

pair (c;d) we started with.

5.3 More on representations

We shall first prove that the category of representations is atopos. This yields that

normal representations (considered up to iso-recolourings) form a Heyting Alge-

bra. Finally, we discuss the containment problem for forbidden patterns problems.

5.3.1 The topos of representations

In the following, we denote byREP(σ) the category ofσ-representations: that

is, the category whose objects areσ-representations; and, whose morphisms are

recolourings. We prove that the category of representations is a topos: indeed, we

proved in the previous chapter that a recolouring is a generalisation of a homomor-

phism; in the same sense, the product, coproduct and exponential of structures can

be generalised to representations.
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Product of representations. Let (µ;M ) and(ν;N ) beσ-representations. De-

fine (µ;M )� (ν;N ) to be the representation with:� coloursµ�ν (the Cartesian product of the colour set); and� forbidden patternsf(F;cF
µ�ν) 2 STRUCµ�ν(σ)j(F;πµÆcF

µ�ν) 2M or(F;πν ÆcF
µ�ν) 2N g;

whereπµ andπν are the left and right projections, respectively.

Notice that the “and” of the definition of a product for structures becomes an “or”

for representations: intuitively, this is due to the fact that a forbidden pattern is a

generalisation of a “no-tuple” in a structure.

Lemma 5.12 The notion defined above truly is the product in the category REP(σ).
PROOF. Let (λ;L) be a representation. Assume that(λ;L) r (µ;M )� (ν;N ):
It follows directly from the above definition and the definition of a recolouring

that: (µ;M )� (ν;N ) πµ (µ;M ) and(µ;M )� (ν;N ) πν (ν;N ):
Hence, by composition, it follows that:(λ;L) πµÆr (µ;M ) and(λ;L) πνÆr (ν;N ):
Conversely, assume that(λ;L) rµ (µ;M ) and(λ;L) rν (ν;N ):
Setr := (rµ; rν). Let (F; r ÆcF

λ ) be a forbidden pattern of(µ;M )�(ν;N ). We may

assume w.l.o.g. that(F;πµÆ r ÆcF
λ ) 2M . Thus, sinceπµÆ r = rµ is a recolouring,

it follows that (F;cF
λ ) is not valid for(λ;L). So, we have proved thatr is a re-

colouring. �
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The following can be easily checked.

representation template(µ;M ) M(ν;N ) N(µ;M )� (ν;N ) M�N

We discussed in Subsection 4.3.3 an alternative definition of representation, the

so-called canonical representation: that is, a representation given as(M;M );
whereM is a σ-structureM (corresponding to the template of a standard rep-

resentation); and, where any forbidden pattern(F;cF
µ ) 2M satisfiesF

cF
µ

M (cF
µ

is acolouring in the same sense as in theH-coloring problem). The following is

straightforward: for a pair of canonical representations(M;M ) and(N;N ), the

product(M;M )� (N;N ) is the canonical representation with:� templateM�N; and� forbidden patternsF cF
M�N, whenever eitherF

πMÆcF

M belongs toM

or F
πNÆcF

N belongs toN .

Notice that, we can identify aσ-structureM with the canonical representation(M; /0). In that sense, the product of representations generalisesthe product of

structures.

Coproduct of representations Define(µ;M )+(ν;N ) to be the representation

with:� coloursµ[̇ν (the disjoint union of the colour sets); and� forbidden patterns

1. for every(χm;χn) in µ�ν, the forbidden pattern(F;cF
µ[̇ν)2STRUCµ[̇ν(σ)

that consists of two distinct elementsx andy and void relations such

thatcF(x) = χm andcF(y) = χn;

2. f(F;cF
µ[̇ν) 2 STRUCµ[̇ν(σ) such that(F;cF

µ[̇ν) 2M g; and

3. f(F;cF
µ[̇ν) 2 STRUCµ[̇ν(σ) such that(F;cF

µ[̇ν) 2N g.



160 CHAPITRE 5. ALGÈBRES DE HEYTING, DENSITÉ ET DUALITÉ

Notice that this time the “or” of the definition of a coproductfor structures be-

comes an “and” for representations.

Lemma 5.13 The notion defined above is really the coproduct in the category

REP(σ).
PROOF. Let (λ;L) be a representation. Assume moreover that(µ;M )+(ν;N ) r (λ;L):
Since by construction,(µ;M ) and(ν;N ) are subrepresentations of the represen-

tation(µ;M )+(ν;N ) via the injectionsιµ andιν, that is(µ;M ) ιµ (µ;M )+(ν;N ) and(ν;N ) ιν (µ;M )+(ν;N );
by composition it follows that(µ;M ) rÆιµ (λ;L) and(ν;N ) rÆιν (λ;L):
Conversely, assume that(µ;M ) rµ (λ;L) and(ν;N ) rν (λ;L):

Setr : µ[̇ν ! λ

χ 7! 8<:rµ(χ); if χ 2 µ; and

rν(χ); otherwise.

We now prove thatr is a recolouring. Let(F; r Æ cF
µ[̇ν) 2 L . There are different

cases to consider.

1. cF
µ[̇ν ranges over bothµ and ν: that is, there exists some vertexx 2 jFj

(respectively,y2 jFj) and some colourχm in µ (respectively,χn in ν) such

thatcF
µ[̇ν(x) = χm (respectively,cF

µ[̇ν(y) = χn ). Hence,(F;cF
µ[̇ν) is not valid

for the coproduct (because of the special forbidden patterns consisting of

two vertices; one coloured inχm; and, the other inχn).
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2. cF
µ[̇ν ranges overµ only: we haver Æ cF

µ[̇ν = rµ Æ cF
µ[̇ν, and rµ being a re-

colouring it follows that(F;cF
µ[̇ν) is not valid for(µ;M ). Hence there exists

some(G;cG
µ ) 2M and some coloured homomorphismg(G;cG

µ ) g (F;cF
µ[̇ν):

By definition of the coproduct, it follows that(G;cG
µ ) is a forbidden pattern

of the coproduct, hence that(F;cF
µ[̇ν) is not valid for the coproduct.

3. cF
µ[̇ν ranges overν only: case similar to the previous one. �

This construction does not exactly generalise the coproduct of σ-structure.

However, if we restrict ourselves to connected and non-sbavate representations

then we could amend our construction as follows. Replace thefirst type of forbid-

den pattern (those that forbid the simultaneous use of a colour of µ and a colour

of ν) by

10: for anyr-ary relation symbolR in σ, for any choice of coloursχ1;χ2; : : : ;χr

such that there exist 1� m;n� r wherem 6= n, χm 2 µ and χn 2 ν, the

forbidden pattern(R(x1;x2; : : : ;xr);cµ[̇ν), where

cµ[̇ν : fx̄g ! µ[̇ν

xi 7! χi

Then, the following can be checked.

representation template(µ;M ) M(ν;N ) N(µ;M )+(ν;N ) M+N

Exponential of representations Define the representation(µ;M )(ν;N ) to be the

representation with



162 CHAPITRE 5. ALGÈBRES DE HEYTING, DENSITÉ ET DUALITÉ� coloursµν (the set of functions ofν to µ); and� forbidden patterns all the(F;cF
µν)2STRUCµν(σ) such that there exists some(F;cF

µ ) 2M and some mappingcF
ν such thatcF

µ = cF
µν 
 cF

ν and(F;cF
ν ) is

valid for (ν;N ), where

cF
µν 
cF

ν : jFj ! µ

x 7! (cF
µν(x))(cF

ν (x))
The colour set of(µ;M )(ν;N ) is µν; hence, the colour(cF

µν(x)) of a vertexx of a

forbidden pattern(F;cF
µν) is some mappingr of ν to µ. Now, if cF

ν is some colour-

ing of F thencF
ν (x) is some colourχn of ν. Thus, it makes sense to consider the

image of this colourχn via the mappingr and(cF
µν(x))(cF

ν (x)) = r(χn) is indeed

some colourχm of µ. It makes therefore sense to write(cF
µν(x))(cF

ν (x)) in the

above definition.

Lemma 5.14 The notion defined above really is the exponential in the category

REP(σ).
PROOF. Let (λ;L) be a representation. Moreover assume that(λ;L)� (ν;N ) r (µ;M ):
Consider the following mapping

r(�;�) : λ ! µν

χl 7!  
r(χl ;�) : ν ! µ

χn 7! r(χl ;χn) !
We shall see that it is a recolouring of(λ;L) to (µ;M )(ν;N ). Let (F; r(�;�) Æ cF

λ )
be a forbidden pattern of(µ;M )(ν;N ). By definition of the exponential, there

exists some(F;cF
ν ) valid with respect to(ν;N ) such that(F;cF

µ ) 2 M , where

cF
µ = (r(�;�) Æ cF

λ )
 cF
ν = r(cF

λ ;cF
ν ). Since(F;cF

ν ) is valid for (ν;N ) andr is a

recolouring, it follows from the definition of the product that (F;cF
λ ) is not valid

for (λ;L).
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Conversely, assume that(λ;L) r 0 (µ;M )(ν;N ): Consider the following map-

ping (r 0 Æπλ)
πν : λ�ν ! µ(χl ;χn) 7! (r 0(χl))(χn)
We want to show thatr = (r 0 Æπλ)
πν is a recolouring. Let(F; r Æ cF

λ�ν) 2M .

We need to show that(F;cF
λ�ν) is not valid for the product representation(λ;L)�(ν;N ). There are two cases to consider

1. (F;πν ÆcF
λ�ν) is not valid for(ν;N ): by definition of the product,(F;cF

λ�ν)
is not valid for(λ;L)� (ν;N ) and we are done.

2. (F;πν Æ cF
λ�ν) is valid for (ν;N ): by definition of the exponential,(F; r 0 Æ

πλÆcF
λ�ν) is a forbidden pattern of(µ;M )(ν;N ). Thus, sincer 0 is a recolour-

ing, it follows that(F;πλÆcF
λ�ν) is not valid for(λ;L). Finally, by definition

of the product, it follows that(F;cF
λ�ν) is not valid for(λ;L)� (ν;N ) and

we are done. �
Notice that this construction generalises the exponentialof a σ-structure. In-

deed, provided that the representation(ν;N ) is simple (or at least canonical), the

following can be proved.

representation template(µ;M ) M(ν;N ) N(µ;M )(ν;N ) MN

We have already seen at the end of Section 4.1.3 that the representation0σ =( /0;f(0σ;c0σ
/0 )g) is an initial object ofREP(σ). Define further the following repre-

sentation1σ := (1; /0). It is a straightforward exercise to check that it is a terminal

object ofREP(σ).
The following result follows.
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Theorem 5.15 The category ofσ-representation is a topos.

PROOF. The proof is essentially the same as that of Theorem 5.4: forthe equalizer

of (µ;M ) f

g
(ν;N ) , consider the subrepresentation of(µ;M ) induced by the

set fx 2 jBj such thatf (x) = g(x)g; and, for the object classifier, consider the

representation(2; /0). �
Define the relation� over REP(σ) as follows:R1 � R2 holds for a pair of

representationsR1 andR2 if, and only if, R1 R2 andR2 R1. Clearly,� defines an equivalence relation overREP(σ). In order to obtain a Heyting

algebra, we factor out the quasi-order given by the existence of a recolouring with

respect to this equivalence relation. Note that as in the case of structures, cores

of representations can be chosen as representatives for each equivalence class: in

other words, the following holds.hREP(σ); i� t hCOREP(σ); i
whereCOREP(σ) denotes the class of cores ofσ-representations. Definê;_
and) for representations as above for structures. It follows that

Corollary 5.16 hCOREP(σ);^;_;);0σ;1σi is a Heyting algebra.

Hence, the results from Section 5.2.3 apply to the case of representations;

namely, there is also a correspondence between duality and density for represen-

tations. However, this result is not fully satisfactory; first, we do not have yet a

characterisation of gap pairs inREP(σ); and, secondly, note that the Heyting alge-

bra of cores of representations is not as meaningful in our context as the Heyting

algebra of cores of structures. Indeed, recall that the converse of Proposition 4.1

does not hold. That is, contrarily to the case of cores of structures where there is

an exact correspondence between CSP and cores of structures, in the case of cores

of representations, various cores of representations define the same forbidden pat-

terns problem. Hence the real question should concern normal representations and

not cores of representations according to the conjecture wemotivate in the next

subsection.
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5.3.2 The containment problem for forbidden patterns prob-

lems

A homomorphism problem is given by its template; hence giventwo homomor-

phism problemsCSP(A) andCSP(B) over the same signature, it is decidable

whetherCSP(A) � CSP(B). As a matter of fact, the containment problem for

homomorphism problems is nothing else than the uniform homomorphism prob-

lem, known to beNP-complete. We would like to extend this result to the more

general containment problem for forbidden patterns problems given by their rep-

resentations. Feder and Vardi proved in [16] that the containment problem for

MMSNP is decidable. Hence by our results from Subsection 4.1.4, it follows that

the containment problem for forbidden patterns problems isdecidable. However,

there is no known result about the complexity of the containment problem for

MMSNP. Furthermore, even if it were the case, the constructions we use to trans-

late a sentence of MMSNP into a forbidden patterns problem are not meaningful

in the context of complexity theory, as the transformation is clearly not polyno-

mial (notice for example, the need for forbidden patterns tobe coloured structures,

whereas negated conjuncts correspond in general topartially coloured structures).

The major inconvenience of forbidden patterns problems, byopposition with ho-

momorphism problems, is that the inclusion of two problems does not reduce

to the question of the existence of a recolouring: we introduced in Chapter 4

the notion of Feder-Vardi transformation of a representation, which allows one

to transform a representation into another representationthat represents the same

forbidden patterns problem, but that is not necessarily equivalent with respect to

recolouring (cf. example following Corollary 4.22). In the light of this fact, we

could extend our morphisms in the categoryREP(σ). That is, define a morphism

between two representations as a finite sequence of recolourings and Feder-Vardi

transformations. This yields the following question: doesthis new category rep-

resent faithfully the inclusion relation between forbidden patterns problems? As

this question seems still quite hard and because we have at hand a normal form

for representations with “good” properties, we can first concentrate on the case of

connected normal representations. We shall prove in the remainder of this section

some results that support the following conjecture.
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Conjecture 5.17 LetR1 andR2 be two non-trivial connected representations.

FP(R1)� FP(R2) if, and only if,normal(R1) normal(R2).
The converse implication holds: we haveFP(R1) = FP(normal(R1)) and

FP(R2) = FP(normal(R2)), by Theorem 4.23, and by assumption

normal(R1) normal(R2);
hence, by Proposition 4.1, it follows thatFP(normal(R1))� FP(normal(R2)).

We now prove some supportive results with respect to the other implication.

Assume thatFP(R1) � FP(R2) and thatnormal(R1) is conform, and letT1 be

its template. We haveFP(R1) = CSP(T1) 3 T1. Hence,T1 is a yes-instance of

FP(R2): that is, there exists somer such thatT1
r T2 (whereT2 denotes the tem-

plate ofnormal(R2)) such that for any non-conform forbidden patternF cF
T2

of normal(R2), we can not have some homomorphismF
f

T1 and the following

commutative diagram

F
f

cF

T1

r

T2

Hence, the remark following Proposition 4.16 implies that:

normal(R1) r normal(R2):
We have just proved that the above conjecture holds when the first representation

has a conform normal form.

Proposition 5.18 LetR1 andR2 be two connected representation. Furthermore,

assume thatnormal(R1) is conform.

FP(R1)� FP(R2) if, and only if,normal(R1) normal(R2).
We shall need the following lemma.

Lemma 5.19 LetR1 andR2 be two connected representations. IfR1 R2 then

normal(R1) normal(R2).
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PROOF. Note thatnormal(R1) R1 (cf. the remark on the end of Subsec-

tion 4.5.1). Hence, ifR1 R2 thennormal(R1) R2. So we may assume

w.l.o.g. thatR1 is normal and thatR1
r R2. LetR1 = (T;M ) with jTj= µ andR2 = (ν;N ).

It suffices to check that we can construct a recolouring fromr after each elemen-

tary Feder-Vardi transformation (the other transformations involved in the compu-

tation of the normal form yield representations that are equivalent with respect to

recolouring equivalence). For simplicity, we do not consider compact forbidden

patterns. This does not change our result, as a compact forbidden pattern(S;cS
℘(ν))

stands for a set of forbidden patterns

E := f(S;cS
ν)) such that for anyx2 jSj; cS

ν(x) 2 cS
℘(ν)(x)g

and were introduced solely to prove termination: in fact, carrying out an elemen-

tary Feder-Vardi transformation with respect to(S;cS
℘(ν)) corresponds to carrying

out the elementary Feder-Vardi transformations with respect to each forbidden

pattern inE in parallel.

Let (S;cS
ν) 2 N be a non-biconnected forbidden pattern ofR2 that admits a de-

composition(P0;cP0
ν ) ./

x
(P1;cP1

ν ). Let R̃2 be the elementary Feder-Vardi transfor-

mation ofR2 with respect to the decomposition(P0;cP0
ν ) ./

x
(P1;cP1

ν ) of (S;cS
ν) and

let χ := cS
ν(x).

1. (S;cS
ν) is not of the form(S; r ÆcS

µ).
Consider ˜r to be the mapping that agrees withr for any χ0 2 ν such that

r(χ0) 6= χ; and, such that ˜r(χ0) = χ0, otherwise. Clearly, we haveR1
r̃ R̃2.

2. (S;cS
ν) is of the form(S; r ÆcS

µ).
The fact thatr is a recolouring andR1 is normal implies that any inverse

image(P0;cP0
µ ) ./

x
(P1;cP1

µ ) of (P0;cP0
ν ) ./

x
(P1;cP1

ν ) via r is such that either:� for i 2 f0;1g, the colouringcPi
µ is not a homomorphism ofPi to T; or� for i 2 f0;1g, there exists some biconnected conform forbidden pattern(M;cM

µ ) 2M such that(M;cM
µ ) m (Pi ;cPi

µ ).
Let χ0 2 µ. Let Sχ0 be the set of inverse images(P0;cP0

µ ) ./
x
(P1;cP1

µ ) of
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ν ) ./

x
(P1;cP1

ν ) via r such thatcP0
µ (x) = cP1

µ (x) = χ.

The key property that shall allow us to build a recolouring issome kind of

uniformity principle:

Fact 5.20 There exists some i2f0;1g such that for any(P0;cP0
µ ) ./

x
(P1;cP1

µ )2
Sχ0, either:� the colouring cPi

µ is not a homomorphism of Pi to T ; or� there exists some biconnected conform forbidden pattern(M;cM
µ )2M

such that(M;cM
µ ) m (Pi;cPi

µ ).
We call i aninvalid componentof Sχ0.
To see this fact, note that once the inverse image of the colour of x in the

inverse image has been chosen, sayχ0, the choice of the inverse images

for each component is independant. So, if the above did not hold then we

could choose a valid colouring for each component andr would not be a

recolouring.

Let χ be the colour ofx in (P0;cP0
ν ) ./

x
(P1;cP1

ν ). We now construct some ˜r

from r:� for any colourχ0 2 µ such thatr(χ0) 6= χ, r̃ agrees withr; and� otherwise, ˜r(χ0) := χi wherei is the invalid component ofSχ0.
By construction, we haveR1

r̃ R̃2.

This concludes the proof. �
Consider now the case of monochrome forbidden pattern problems. LetA and

B be twoσ-structures. Suppose thatFP(A)� FP(B). SinceB is a no-instance of

FP(B), it follows thatB is a no-instance ofFP(A); in other words that there exists

some homomorphismA h B. Hence, thatid1 is a recolouring of the monochrome

representation(1;(A;cA
1)) of the first problem to the monochrome representation
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of the second problem(1;(B;cB
1)) as quite clearly the following diagram com-

mutes.

1
id1

1

A

cA
1

h
B

cB
1

cB
1

In the light of Lemma 5.19, it follows that:

normal(1;(A;cA
1)) normal(1;(B;cB

1)):
Notice that the above proof extends to the case of monochromeforbidden pat-

terns problems (note the plural). Hence the conjecture holds alsoin the case of

monochrome forbidden patterns problems and we can state thefollowing.

Proposition 5.21 LetR1 andR2 be two monochrome forbidden patterns prob-

lems.

FP(R1)� FP(R2) if, and only if,normal(R1) normal(R2).
I think that one possible approach to the conjecture in the general case would

be to use the exponential of a representation. My intuition comes from the fact

that the exponential of a representation contains somehow some information about

“cleverer” recolourings; these recolourings being adaptive and taking into account

the fact that somewhere “local”, a structure that defines a forbidden pattern occurs

or not.

To conclude this chapter, let us mention the possibility of defining ahierar-

chyof problems. LetT be someσ-representation. The(non-uniform) recolouring

problemwith templateT is the problem that takes as instancesσ-representations;

and, has yes-instances thoseσ-representationsR such thatR T. In the same

way that forbidden patterns problems generalise homomorphism problems, one

can define problems that generalise the recolouring problems: these problems are

given by asecond generation representationthat consists of a representationT
(the template), together with a finite setF of forbidden (T-recoloured) repre-

sentationsF cFT T. This problem takes representations as instances and has yes-

instances those representationsA such that there exists a recolouringA cAT T, such
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that for every forbidden representationF cFT T in F , if F cFA A then the following

does not commute A cAT TFcFT
cFA

We could then define a notion of recolouring of second generation and so on.



Chapitre 6

De la complexité des problèmes de

motifs interdits

Je montre qu’il existe des problèmes de motifs interdits quine sont pas

dans CSP et qui sont complets pour les classes de complexitéNL;P etNP. Je

fais brièvement le tour des restrictions standards applicables aux problèmes

de motifs interdits pour obtenir des problèmes qu’on puisserésoudre effica-

cement.

171
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On a vu aux chapitres précédents que les problèmes de motifs interdits généra-
lisent les problèmes d’homomorphisme ; les premiers correspondent exactement à
la logique MMSNP, logique qui a été introduite par Feder et Vardi dans [16] dans
une tentative de caractérisation des seconds. Depuis environ une dizaine d’années,
on a tenté de caractériser la complexité des problèmes d’homomorphismes, le but
ultime étant de prouver un résultat de dichotomie pour ces derniers. Il existe ainsi
de nombreux résultats qui permettent de savoir si certains problèmes d’homomor-
phisme sont dansP ou bienNP-complets. Il y a par contre à ma connaissance
moins de résultats «fins» de complexité pour les problèmes qu’on sait être dansP ; on sait que certains problèmes d’homomorphisme sont dansNL (cf. [28]) et
on donnera au chapitre suivant les premiers exemples connusde problèmes d’ho-
momorphisme qui sont complets pourL. Dans ce chapitre, je montre qu’il y a des
exemples de problèmes de motifs interdits qui ne sont pas desproblèmes d’homo-
morphisme et qui sont complets pour les classes de complexitéNP, P etNL. Puis
dans une seconde partie, je m’intéresse à des restrictions pouvant être appliquées
aux problèmes de motifs interdits pour faire descendre leurcomplexité jusqu’àP.
Certaines définitions sont rappelées brièvement en Appendice A.
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6.1 Examples of complete problems for each class

In order to give complete problems forNL, P andNP, we use first the fact that

forbidden-patterns problems correspond to the logic MMSNPto read directly

from their defining MMSNP sentence the complexity class to which they belong

by hand of Grädel’s elegant logical characterisations (see[21]). Then, to prove

completeness we simply encode known complete problems using forbidden pat-

terns problems. The present section is by no means an attemptof characterising

the complexity of forbidden patterns problems but rather anillustration of what

kind of problems can be encoded using forbidden patterns problems.

6.1.1 AnNL-complete problem

Let σ2;2 := (E1;E2), whereE1 andE2 are two binary relation symbols. ConsiderS to be the representation with,� colour setf0;1g; and� forbidden patternsWDC1
2, WDC2

2 and BDC2
2 (as depicted in Figure 6.1):

here the top index denotes the type of edges involved in a forbidden pattern

(on the figure, edges of typeE1 are drawn as solid lines and edges of type

E2 as dotted lines). };�
WDC1

2 } }
WDC2

2 } }
BDC2

2 � �
Figure 6.1: The representationS
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Fact 6.1 FP(S) is inNL.

PROOF. Let W be a monadic predicate (standing for white) andx;y;z be some

variables.WDC1
2 corresponds to the following negated conjunct:(E1(x;y)^E1(y;x)^W(x)^W(y))

WDC2
2 corresponds to the following negated conjunct:(E2(x;y)^E2(y;x)^W(x)^W(y))

andBDC2
2 corresponds to:(E2(x;y)^E2(y;x)^:W(x)^:W(y)):

Hence the following sentence of MMSNP expresses exactly theproblemFP(S).9W8x8y8z :(E1(x;y)^E1(y;x)^W(x)^W(y))^:(E2(x;y)^E2(y;x)^W(x)^W(y))^:(E2(x;y)^E2(y;x)^:W(x)^:W(y))
Notice that this sentence has at most two occurences of the monadic predicateW

in each negated conjunct, that is, it is in the fragment of second order logic known

as ESO-Krom. By a result of Grädel, this logic is known to capture the complexity

classNL. Hence the result follows. �
Fact 6.2 FP(S) is hard forNL.

PROOF. The restriction of SAT to formulas with at most two literals per conjunct,

namely 2-SAT, is known to be complete forNL. We reduce 2-SAT to FP(S).
For each variabley that occurs in some instanceϕ of 2-SAT, we put two elements

vy andvỹ, one for each literal. Moreover we setE2(vy;vỹ) andE2(vỹ;vy) to hold.

For each clauseC of ϕ involving two literals`1 and`2, we setE1(v`1;v`2) and

E1(v`2;v`1) to hold. Denote byGϕ this σ2;2-structure. We claim thatϕ 2 2-SAT

if, and only if, Gϕ 2 FP(S). See white as false and black as true. A colouring
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of Gϕ valid w.r.t. WDC2
2 andBDC2

2 corresponds exactly to an assignment of the

variables of the formulaϕ, since these two forbidden patterns enforce that the

vertices corresponding to opposite literals have oppositecolours. If a colouring is

also valid w.r.t. the forbidden patternWDC1
2 then the corresponding assignment

for ϕ is valid; indeed, the forbidden patternWDC2
2 enforces that at least one of

two verticesv`1 andv`2, that corresponds to the literals of a clauseC, is coloured

black. Clearly, the converse also holds. It can be checked that this transformation

can be achieved via a quantifier-free first-order reduction. �
Hence we obtain the following corollary using the theorem ofSubsection 4.7.1.

Corollary 6.3 FP(S) isNL-complete and is a forbidden patterns problem that is

not a homomorphism problem.

Notice that it is probably not true that all forbidden patterns problems that

are inNL have a defining MMSNP sentence that is also in ESO-Krom. Indeed

the important mechanism of being able to use the full power ofsecond order

logic is missing if we restrict ourselves to MMSNP where we use only monadic

predicates. Here we used Grädel’s result only to provide a quick proof of the

complexity of our example.

6.1.2 AP-complete problem

The following example is an adaptation of an example of aP-complete problem

from [21]. Consider the following signatureσc = (E1;E2;S+;S�;A) where the

symbols are of respective arities 2;2;1;1 and 1. Define CVP to be the problem

captured by the following sentence of MMSNP.9T9F8x8y8z :(S+(x)^:T(x))^:(S�(x)^:F(x))^:(E1(x;z)^E2(z;x)^F(x)^:T(z))^:(NAND(x;y;z)^T(x)^T(y)^:F(z))^:(T(x)^F(x))^:(A(x)^:T(x))
where:NAND(x;y;z) = E1(x;z)^E2(z;x)^E1(y;z)^E2(z;y)^E2(x;y)^E2(y;x):
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Note that this sentence is in ESO-Horn. It follows that the problem CVP is in

the classP. Moreover it is complete for this class, as it encodes thecircuit value

problem. The predicateS+ corresponds to the positive inputs of the circuit; the

predicateS� to the negative inputs; and, the predicateA to the output of the circuit.

Using the relationsE1 andE2, we can encode Nand gates (Sheffer’s stroke); put

an edge of the first type between the inputx of a gate and the output of a gate

z and an edge of the second type fromz to x; and, put edges of the second type

between the inputx andy of a gate. The monadic predicateT stands for true and

the monadic predicateF for false. The first negated conjunct ensures that positive

inputs are set to true. The second one that negative inputs are set to false. The

third negated conjunct enforces that if one of the inputs of aNAND gate is false

then its output is true. The fourth negated conjunct ensuresthat if both inputs of

a gate are true then the output is false. The fifth negated conjunct enforces that

we can not have a vertex set simultaneously to true and false.The last negated

conjunct states that the output is set to true. Note that we donot need the negated

conjunct:(:T(x)^:F(x)), as this can not occur in aσc-structure that encodes a

circuit because of the first four negated conjuncts (this is the trick that allows us

to have a sentence in ESO-Horn).

We complete the colouring and simplify the above sentence and get the following

good sentence that is logically equivalent (cf. Proposition 3.3):9T9F8x8y8z :(S+(x)^:T(x)^F(x))^:(S+(x)^:T(x)^:F(x))^:(S�(x)^T(x)^:F(x))^:(S�(x)^:T(x)^:F(x))^:(E1(x;z)^E2(z;x)^:T(x)^F(x)^:T(z)^F(z))^:(E1(x;z)^E2(z;x)^:T(x)^F(x)^:T(z)^:F(z))^:(NAND(x;y;z)^T(x)^:F(x)^T(y)^:F(y)^:T(z)^:F(z))^:(NAND(x;y;z)^T(x)^:F(x)^T(y)^:F(y)^T(z)^:F(z))^:(T(x)^F(x))^:(A(x)^:T(x)^F(x))^:(A(x)^:T(x)^:F(x))
We shall now build the representation that corresponds to this sentence; however,

since the colour(T(x)^F(x)) is not allowed, we directly remove it from the set

of colours. We get a representation with three colours:
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1. } for (:F(x)^T(x));
2. � for (F(x)^:T(x)); and

3. ~ for (:F(x)^:T(x)).
We writeS+(}) to depict:(S+(x)^:T(x)^F(x)) and proceed similarly for the

other monadic predicates fromσc. Let C be the representation hence obtained.C is depicted in Figure 6.2. Showing that the corresponding forbidden patterns}, �,~
S+(})
S+(~)
S�(�)
S�(~)}}}~� ��� �~
A(})
A(~)

Figure 6.2: The representationC
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problem is not in CSP requires to compute the normal form of the above. This is

rather tedious as the fifth forbidden pattern has a homomorphic image that is not

biconnected:}
The seventh has two such homomorphic images:�� and �
The eighth has one such homomorphic image:�~
However, after a Feder-Vardi transformation they do not yield any conform for-

bidden patterns. Hence, the normal form of the representation C is not conform

and we have the following.

Corollary 6.4 CVP is P-complete and is a forbidden patterns problem that is not

a homomorphism problem.

6.1.3 AnNP-complete problem

The problem NO-MONO-TRI was already considered in [16] as an example of

anNP-complete problem in MMSNP but not in CSP, but they referred to [20]

for completeness; as a matter of fact the problem consideredin [20] involves

colouring of the edges.

Proposition 6.5 The problemNO-MONO-TRI is computationally equivalent to

the problemNAE-SAT:� NO-MONO-TRI �q: f :FO NAE-SAT ; and� NO-MONO-TRI �FO NAE-SAT .

PROOF. First, we reduce an instanceG of NO-MONO-TRI to NAE-SAT, that is a

setU of variables and a collectionC of clauses overU such that each clausec2C
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has length 3. (Recall that NAE-SAT asks the following question: is there a truth

assignment forU such that each clause inC has at least one true literal and at least

one false literal?). The traditional encoding for NAE-SAT involves a signature

σn = (C0;C1;C2;C3), where theCi are ternary predicates. Hence aσn-structureU

can be seen as an encoding of an instance of NAE-SAT; its universe is a set of

variables, and ifCi(x;y;z) holds, it means that there is a clause involvingx;y andz,

where thei first variable(s) appear as negative literal(s) and the other(s) positively.

Let

Π = (ϕ0;ϕ1;ϕ2;ϕ3);
where:

ϕ0(x;y;z) = (E(x;y)_E(y;x))^ (E(y;z)_E(z;y))^ (E(z;x)_E(x;z))
ϕ1 = false

ϕ2 = false

ϕ3 = false

Π is an interpretation ofσn in σ2 of width one; and, clearly,U 2 NO-MONO-TRI

if, and only if,Π(U) 2 NAE-SAT . Thus, NO-MONO-TRI �q: f :FO NAE-SAT .

ȳ

y2y3

x
x̄

x1

x2x3

x4

y?x?y
y4 y1

Figure 6.3: example of the reduction of one clausefỹ;y;xg.
Now, we shall reduce NAE-SAT to NO-MONO-TRI via aFO-interpretation.

We, first introduce the idea of the reduction in more traditional terms, and in a

second time show that this reduction can be implemented viaFO-interpretation.
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First, we need to define a graph, used as a gadget in the reduction. Let G5 be

the graph with verticesfx>;x0;x1;x2;x3;x4;x?g, and whose edges consist of the

union of the following sets:� f(x0;x1);(x1;x2);(x2;x3);(x3;x4);(x4;x0)g;� f(x>;xi)ji = 0;4g;� f(x?;xi)ji = 0;4g[f(x>;x?)g.
Note that there are only two possible 2-colourings ofG5 such thatG5 has no

monochromatic triangle and, further, that these colourings setx> andx? with the

same colour, whereas thexi ’s are set the other colour.

For every instance(U;C) of NAE-SAT, we construct the graphG as follows.� G has a vertexx and a vertex ¯x for each variablex in G; and,� we add a copy of the gadgetG5 between any two such verticesx and x̄,

identifyingx with x> andx̄ with x0; and,� for every clausec2C involving three literals̀ 1; `2; `3, we add three special

vertices̀ c
1; `c

2; `c
3 and three copies ofG5 that enforce that thèc

i ’s and thè i ’s

have opposite colours.� Finally, the constraint given by the clausec between the literals̀1; `2; `3 is

enforced by adding a triangle between the three special vertices1 `c
1; `c

2; `c
3.

Suppose that the original instance is satisfiable: then colour in white one node

corresponding to a literal assigned to false and in black a node corresponding to

a literal assigned to true. Now, colour the gadget as follows, assign tox? the

same colour as the one assigned tox, and assign the opposite colour tox1; : : : ;x4.

Clearly, this colouring does not introduce any monochromatic triangle and the

graph belongs to NO-MONO-TRI. On the other hand, if the graph belongs to NO-

MONO-TRI, the nodes added enforce that nodesx andx̄ have an opposite colour

and because every triangle corresponding to a clause is non-monochromatic, at

1We can not add directly a triangle between`1; `2; `3, otherwise the interaction of such triangles
may well lead to a triangle that does not correspond to a clause of the instance(U;C) of NAE-SAT.
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least one literal per clause must have been assigned a value different from the

other literals.

This reduction can be implemented via aFO-interpretation. We leave this as

an exercise for the reader. �
We have proved in Section 2.4 that NO-MONO-TRI was not in CSP. We get

the following.

Corollary 6.6 NO-MONO-TRI isNP-complete and is a forbidden patterns prob-

lem that is not a homomorphism problem.

6.2 Some restrictions ensuring tractability

There are well-known restrictions over instances of difficult graph problems which

tend to give rise to tractable problems; restrict the girth of the instances, restrict the

problem over trees, over planar graphs or over graphs of somesuitable bounded

degree. We briefly discuss these approaches in this section.

6.2.1 High girth

The first kind of obvious restriction for forbidden patternsproblems whose normal

form has no conform forbidden patterns like NO-MONO-TRI consists in restrict-

ing the instance to have sufficiently high girth such that none of the forbidden

patterns can occur in any colouring. Hence clearly we have the following.

Fact 6.7 Everyσ2 structure that encodes a graph with girth greater or equal to4

belongs toNO-MONO-TRI.

This can be generalised as follows.

Corollary 6.8 Let (T;M ) be some normal connected representation. Let g be the

largest cycle that embeds in a forbidden pattern fromM . If CSP(T) is tractable

then the problem FP(T;M ) restricted to instances of girth strictly greater than g

is tractable.
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PROOF. Let A be some instance of girth greater thang. If A = T then A =2
FP(T;M ); otherwise, anyA h T is a valid colouring w.r.t.(T;M ). In other

words, the problem reduces toCSP(T). �
6.2.2 Bounded tree width

The approach restricting the instances of some difficult graph problems to trees

(thus avoiding back-track) can be generalised to instancesof bounded tree-width

(thus avoiding back-track once it has been checked that an instance is locally

satisfiable). For the constraints satisfaction problem, this has been investigated

among others by Freuder [18,19] and Dechteret al.[8,10]. Recently, the latter has

proposed a unifying framework based on the algorithmic aspect of this method:

bucket elimination[9]. A more formal generalisation is also known for problems

in monadic second order logic. This general result was proved by Courcelle [5].

This leads to the following.

Corollary 6.9 Let k be some fixed positive integer. When restricted to instances

of tree-width at most k, a forbidden pattern problem is tractable2.

6.2.3 Bounded degree

A further way of restricting graph problems is well-known; it consists in consid-

ering only graphs of a certain bounded degree. We investigate here the case of

NO-MONO-TRI.

Lemma 6.10 Everyσ2-structure that encodes a graph of degree at most two is a

yes-instance ofNO-MONO-TRI.

PROOF. There is an obvious algorithm to build valid colourings of such instances.

Every connected component can be dealt with independently.So assume w.l.o.g.

that the instance is connected. Pick up some vertex and colour it in white. Pick

2More precisely, in linear time: the problem is decidable in time linear in the structure size but
also the solutions are computable in time linear in the structure size plus the size of the output by
a recent generalisation of Courcelle’s result [17].
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up the vertices it is adjacent to (there are at most two) and colour them black and

so on. We have levels that correspond to each stage of the algorithm. There can

not be any edges between two vertices that are at least two levels apart. Moreover

there are at most two vertices per level. Hence the result clearly follows. �
6.2.4 Planar instances

Another way of restricting a forbidden patterns problem to obtain tractability

would probably involve some concept near the concept of planarity for graphs. We

shall use here the four colour theorem to prove that our main example NO-MONO-

TRI becomes tractable (as a matter of fact it becomes trivial) when restricted to

planar graphs.

Lemma 6.11 Everyσ2-structure that encodes a planar graph is a yes-instance of

NO-MONO-TRI.

PROOF.This short and elegant argument has been proposed by Regis Barbanchon.

Let A be aσ2-structure that encodes a planar graphG. By the four-colour theorem,

G is 4-colourable (in the restricted sense: adjacent edges have different colour).

Consider some valid 4-colouringcG of the vertices ofG with f0;1;2;3g. Colour

in 0 those vertices that have been coloured in 0 and 2 and in 1 otherwise. This

colouring ofG has no monochromatic triangle, otherwisecG would not be a valid

colouring. �
Hence we obtain the following.

Corollary 6.12 NO-MONO-TRI is tractable (trivial) when restricted to instances

encoding planar graphs.

Recall that planar graphs can be defined in terms of forbiddenminors. So, it

would be interesting to investigate how sets of graphs defined in terms of forbid-

den minors compare with forbidden patterns problems.
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Chapitre 7

Le problème d’homomorphisme

pour des algèbres unaires

Nous montrons que le problème d’homomorphisme uniforme (c’est-à-dire

que la donnée consiste en une paire de structures) restreintaux paires d’al-

gèbres unaires avec un seul symbole peut être résolu enL (espace logarith-

mique). Nous prouvons également une dichotomie pour la classe des pro-

blèmes analogues non uniformes : ces derniers sont triviaux, si le patron (la

structure cible fixée) a un point fixe etL-complets, sinon. Il y a un saut si-

gnificatif de complexité lorsque deux symboles unaires sontconsidérés : le

problème uniforme est alors trivialement dansNP ; et, nous montrons par l’in-

termédiaire d’un codage assez naturel des problèmes d’homomorphisme pour

des graphes non orientés qu’il existe des problèmes analogues non uniformes

qui sontNP-complets. Pour information, ce chapitre est le résultat d’un travail

commun avec Iain Stewart (cf. [42]). Ces résultats ont étés unifiés avec des

résultats récents de Feder dans [15].

185
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Deux résultats exceptionnels illustrent bien la tentativede classification de la
complexité des problèmes d’homomorphisme non uniformes. Le premier a été
établi par Schaefer [52] qui a complètement caractérisé la complexité des pro-
blèmes dont le patron est une structure booléenne. Il montreque si le patron ap-
partient a une classe parmi six classes spécifiques, alors leproblème correspondant
appartient à la classe de complexitéP, sinon il estNP-complet. Notez ladicho-
tomie(rappellons qu’en général ce n’est pas le cas puisque, d’après le théorème
de Ladner, siP 6= NP, alors il existe une collection infinie de classes distinctes de
problèmes qui sont calculatoirement équivalents entreP etNP). Le second résul-
tat est dû à Hell et Nešetřil [23], qui ont montré que lorsque l’on se place dans
le cas des graphes non orientés sans boucles, les problèmes d’homomorphisme
non uniformes sont dansP, si le patron est un graphe biparti etNP-complet sinon.
Notez également la dichotomie dans ce cas. Pour plus de détails sur ces résultats,
reportez vous à la section 2.2. Dans le présent chapitre, nous nous intéressons à la
complexité du problème d’homomorphisme dans le cas d’algèbres unaires. Tout
d’abord, nous étudions le cas d’algèbres ayant seulement unsymbole unaire, puis
celui d’algèbres ayant deux symboles unaires. Dans le premier cas, nous mon-
trons que le problème uniforme appartient àL et que des problèmes analogues
non uniformes qui sontL-complets existent. En effet, nous obtenons en fait une
dichotomieplutôt drastique : un tel problème est toujoursL-complet, à moins que
son patron n’ait un point fixe, auquel cas toute fonction unaire est acceptée (et
donc le problème est trivial). Dans le second cas, le problème non uniforme étant
facilement vu comme membre de la classe de complexitéNP, nous montrons qu’il
existe des problèmes analogues non uniformes qui sontNP-complets. Nos résul-
tats apportent ainsi quelques éléments à la classification en cours des problèmes
d’homomorphisme, et à notre connaissance, nous donnons le premier exemple
connu de problème d’homomorphisme qui soitL-complet (la plus petite classe
non triviale pour laquelle on avait un exemple de problème complet, à savoir 2-
SAT étaitNL).
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7.1 Basic definitions

A signatureconsists of a finite collection of constant symbols, function symbols

and relation symbols, and each function and relation symbolhas an associated

arity. A finite structure Aover the signatureσ, or σ-structure, consists of a finite

set jAj, thedomainor universe, together with a constantCA (resp. functionFA,

relationRA) for every constant symbolC (resp. function symbolF, relation sym-

bol R) of σ, with functions and relations being of the appropriate arity (we usually

only include superscripts in the names of our constants, functions and relations

when it may be unclear as to which structure we are dealing with). Thesizeof a

structureA is the size of the domain and is denotedjAj also. Ahomomorphism

ϕ : A! B of a σ-structureA to aσ-structureB is a mapϕ : jAj ! jBj such that:� any constant ofA is mapped to the corresponding constant ofB;� if F is a function symbol of aritya then

FA(u1;u2; : : : ;ua) = v) FB(ϕ(u1);ϕ(u2); : : : ;ϕ(ua)) = ϕ(v);
for all u1;u2; : : : ;ua;v2 jAj;� if R is a relation symbol of arityb then

RA(u1;u2; : : : ;ub) holds )RB(ϕ(u1);ϕ(u2); : : : ;ϕ(ub)) holds,

for all u1;u2; : : : ;ub 2 jAj:
If there exists a homomorphism ofA to B then we writeA! B.

Let C be a class of finite structures. Theuniform constraint satisfaction prob-

lem CSPC has: as its instances pairs(A;B) of structures fromC over the same

signature; and as its yes-instances those instances(A;B) for which there exists

a homomorphism ofA to B. If all structures inC are over the same signature

andT 2 C then thenon-uniform constraint satisfaction problemCSPC (T) has:

as its instances structuresA 2 C ; and as its yes-instances those instancesA for

which there exists a homomorphism ofA to T. We should add that the individual

tractability, for example, of an infinite collection of non-uniform constraint satis-
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faction problemsfCSPC (T) : T 2 Cg does not automatically yield the tractability

of the uniform constraint satisfaction problem CSPC ; for it may be the case that

the size of the template, whilst a constant in a non-uniform problem, might play

an exponential role in some time bound (see [35] for an examination of this issue).

We shall be involved with problems solvable inL and complete for this com-

plexity class. As regards completeness, the notion of reduction we work with

comes from finite model theory and is the quantifier-free projection. Before giving

a definition of a quantifier-free projection, we present an example of a quantifier-

free projection from one problem to another. As it turns out,we will need this

actual reduction later on. The reader is referred to, for example, [26, 27, 54] for

more on quantifier-free projections and other logical reductions, and their rele-

vance as low-resource reductions: we only sketch the issueshere.

Let the signatureσ2++ consist of the binary relation symbolE and the two

constant symbolsC andD. We can think of aσ2++-structure as a digraph, pos-

sibly with self-loops, with two designated vertices (whichmay be identical). The

problem DTC0;1 has: as its instances the class ofσ2++-structures which, when

considered as digraphs with self-loops, have the property that every vertex has de-

greeat most1; and as its yes-instances those instances with the property that there

is a path in the digraph from the vertexC to the vertexD. The problem DTC1 has:

as its instances the class ofσ2++-structures which, when considered as digraphs

with self-loops, have the property that every vertex has degreeexactly1; and as its

yes-instances those instances with the property that thereis a path in the digraph

from the vertexC to the vertexD.

We shall derive four quantifier-free formulae over the signatureσ2++ and we

shall use our formulae to describe, given an instanceA of DTC0;1, an instance

ρ(A) of DTC1: the first formula will define the vertex set ofρ(A); the second

formula will describe the edge relation of our instance; andthe third and fourth

formulae will describe the source and target vertices.

The domain ofρ(A) is jAj2. We assume that, regardless of the signature, we

always have a binary relationsuccat our disposal that is always interpreted as a

successor relationon the domain of any structure,i.e., as a relation of the formf(i j ; i j+1) : j = 0;1; : : : ;n�1g;
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when the domain of a structure of sizen is fi0; i1; : : : ; in�1g, and also two constant

symbols, 0 andmax, that are always interpreted as the least and greatest elements,

respectively, of the successor relationsucc(more of this successor relation later).

Let us suppose for simplicity that the elements ofjAj are f0;1; : : : ;n� 1g and

abbreviate ‘succ(u;v)’ by ‘ v= u+1’. The vertices off(u;v) : v= 0;1; : : : ;n�1g
will form a path(u;0);(u;1); : : :;(u;n�1) in ρ(A), with a self-loop at(u;n�1),
except that:� if (u;v) is an edge ofEA, whereu 6= v, then there is no edge((u;v);(u;

v+1)) in ρ(A) nor self-loop((u;n�1);(u;n�1)), if v= n�1, but there is

an edge((u;v);(v;0)) in ρ(A); and� if (u;u) is an edge ofEA then there is no edge((u;u);(u;u+1)) in ρ(A) but

there is a self-loop((u;u);(u;u)).
The source vertex ofρ(A) is the vertex(CA;0) and the target vertex is(DA;0).
It is easy to see that an instanceA of DTC0;1 is a yes-instance if, and only if, the

instanceρ(A) is a yes-instance of DTC1 (as wheneveru 6= v, there is an edge(u;v)
in EA if, and only if, there is a path from vertex(u;0) to vertex(v;0) in ρ(A)).

The formulaψ0, ψE, ψC and ψD describing the above construction are as

follows.

ψ0(x1;x2) � x1 = x1

ψE(x1;x2;y1;y2) � (x1 = y1^y2 = x2+1^:E(x1;x2))_(x1 = y1^x2 = y2 = max̂ :E(x1;max))_(x1 6= x2^y1 = x2^y2 = 0^E(x1;x2))_(x1 = x2^x1 = y1^x2 = y2^E(x1;x2))
ψC(x1;x2) � x1 =C^x2 = 0

ψD(x1;x2) � x1 = D^x2 = 0

The formulaψ0(x1;x2) tells us that the vertex set ofρ(A) is the whole ofjAj2 (it

might have restricted the vertex set to be some appropriately defined subset ofjAj2
but in this case didn’t); andψE, ψC andψD describe the edge relation, the source

vertex and the target vertex ofρ(A), respectively.
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So, we can say that DTC1 is aquantifier-free first-order reductionof DTC0;1
(as the defining formulae are quantifier-free first-order); but we can actually say

more. Note that the above formulaψE is of the following form._f(αi ^βi) : i = 1;2; : : : ;kg;
for somek� 1, where:� eachαi is a conjunction of atoms and negated atoms not involving anyrela-

tion or function symbols of the underlying signature (σ2++ in the illustration

above);� theαi ’s aremutually exclusive, i.e., for any valuation on the variables (and

constants) of anyαi andα j , wherei 6= j, it is not the case that bothαi and

α j hold;� eachβi is an atom or a negated atom (over the underlying signature).

Indeed, the formulaeψC andψD are trivially of this form too; and, furthermore,

ψ0 is a quantifier-free first-order formula not involving any relation or function

symbols of the underlying signature. Hence, there is aquantifier-free projection

from the problem DTC0;1 to the problem DTC1 (see A). It was proven in [54] that

DTC0;1 is complete forL via quantifier-free projections; and consequently DTC1

is also complete forL via quantifier-free projections.

Quantifier-free projections are so called because the defining formulae are

quantifier-free first-order and any ‘bit’ of a target instance, e.g., edge ofρ(A),
above, depends only upon at most one ‘bit’ of the source structure,e.g., edge of

A, above. They are extremely restricted reductions between problems and can

easily be translated into other restricted circuit-based or model-based reductions,

e.g., logtime-uniform NC1-reductions, used in complexity theory (see [27]). The

(built-in) successor relation and the two associated constants give us an ordering

of our data which often enables us to model machine-based computations where

all data (such as input strings and instantaneous descriptions) is ordered.

We have one final remark: in our example above, we used quantifier-free first-

order formulae to describe an edge relation and two constants. We can equally
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well use such formulae to describe functions by treating anm-ary functionF as an(m+1)-ary relationRF where for any elementsu1;u2; : : : ;um, there exists exactly

one v such thatRF(u1;u2; : : : ;um;v) holds (constants,i.e., 0-ary functions, are

described above in this way).

7.2 One unary function

Let λ1 be the signature consisting of one unary function symbolf . The decision

problemHom-Alg1 has as its instances pairs(A;B) of λ1-structures; and as its

yes-instances instances(A;B) for whichA! B (and so Hom-Alg1 is the problem

CSPC , whereC is the class of allλ1-structures). The size of an instance is the

maximum of the sizes ofA andB. We assume that a unary functionf is encoded

for input to some Turing machine as a list of pairs of the form(u; f (u)).
Let A be aλ1-structure. Thegraphof A is theσ2-structureȦ= hjAj;Ei, where

E(u;v) holds if, and only if, f (u) = v (note that it may be the case thatE(u;u)
holds inȦ). The proof of the following lemma is trivial.

Lemma 7.1 Let A andB beλ1-structures. ThenA! B if, and only if, Ȧ! Ḃ.

Proposition 7.2 The problem Hom-Alg1 is in L.

PROOF.By Lemma 7.1, we can assume that we are given pairs of graphs of unary

functions as instances rather than pairs of unary functions.

Let Ȧ be the graph of some unary functionA. Then in general̇A consists of a

collection of connected components where each component isan directed cycle,

which may have any length greater than 0 (and so may be a self-loop), some of

whose vertices are roots of in-trees. These components can be visualised as in

Figure 7.2. We call these components cycles with pendant in-trees. We define the

length of a cycle with pendant in-trees as the length of the directed cycle.

Let (Ȧ; Ḃ) be a pair of graphs of unary functions where maxfjȦj; jḂjg is n.

Suppose that there is a homomorphism taking some connected componentC of

Ȧ to a connected componentD of Ḃ. If C is a cycle with pendant in-trees of
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directed cycle

pendant in−trees

an in−tree a directed cycle with pendant in−trees

Figure 7.1: The components of the graph of a unary function.

lengthc thenD must be a cycle with pendant in-trees of lengthd whered divides

c. Furthermore, ifC andD are cycles with pendant in-trees of lengthsc andd,

respectively, andd dividesc then there is a homomorphism ofC to D. Hence, the

following is a necessary and sufficient condition for a homomorphism ofȦ to Ḃ

to exist.� For every cycle with pendant in-trees of lengthc in Ȧ, there must exist a

cycle with pendant in-trees of lengthd in Ḃ whered dividesc.

This condition can easily be verified usingO(logn) space (inn). For example,

we can ascertain whether a vertexu lies on the cycle of a cycle with pendant in-

trees inȦ by walking along the path emanating fromu and stopping aftern moves

(whenu doesn’t lie on a cycle) or after we have returned tou (whenu does lie on

a cycle). By counting as we walk, we obtain the length of the cycle (if u lies on a

cycle). We can then work through the vertices ofḂ checking to see whether they

lie on the cycle of a cycle with pendant in-trees inḂ; and if a vertex does lie on

the cycle of a cycle with pendant in-trees then we can check whether the length of

this cycle dividesc. Hence, the problem Hom-Alg1 2 L. �
Proposition 7.3 The problem Hom-Alg1 is L-hard (via quantifier-free projec-

tions).

PROOF. Let A be an instance of DTC1. Define the unary functionfA as follows.
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The domain offA is jAj2�f0;1g and:� if C= D then:

– f ((u;v;b)) = (C;C;0), for all (u;v;b) 2 jAj2�f0;1g;� if C 6= D then:

– if (u;v) 2 E whereu 6= D, v 6=C andu 6= v then fA((u;u;0)) = (u;v;0)
and fA((u;v;0)) = (v;v;0)

– if (u;u)2E whereu 6=D then fA((u;u;0))= (u;u;1)and fA((u;u;1))=(u;u;0)
– fA((D;D;0)) = (C;C;0)
– for any element(u;v;b)2 jAj2�f0;1gnf(D;C;0)g for which fA((u;v;b))

is still undefined, definefA((u;v;b))= (D;C;0), and definefA((D;C;0))=(D;C;1).
Essentially, apart from the trivial case whereC = D, the graph offA is obtained

from the digraph whose edge relation isE as follows:� take a copy of the digraph (with self-loops) whose edge relation is E, and

replace any edge emanating from vertexD with the edge(D;C); and� replace every edge(u;v), apart from the edge(D;C), by a pair of edges(u;eu;v) and(eu;v;v), whereeu;v is a new vertex.

Other vertices are actually introduced in the formal constructive process (defined

above), with two of these vertices being(D;C;0) and (D;C;1). The construc-

tion is completed by introducing edges from all vertices, apart from (D;C;0), to(D;C;0); and also an edge from(D;C;0) to (D;C;1). Now definegA to have do-

mainf0;1g and to be such thatgA(0) = 1 andgA(1) = 0. We claim thatA2DTC1

if, and only if, ( fA;gA) 62 Hom-Alg1.

The trivial case is straightforward (note that if the graph of fA has a self-loop

then there is not a homomorphism offA to gA): so suppose henceforth thatC 6= D.

Suppose that there is a path in the digraph whose edge relation is E from vertex
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C to vertexD. Then in the graph offA, there is a odd length cycle with pendant

in-trees of length greater than 1. Hence, there is no homomorphism of fA to gA.

Suppose that there is not a path in the digraph whose edge relation is E from

vertexC to vertexD. Then all components of the graph offA are even length

cycles with pendant in-trees. Hence, there is a homomorphism of fA to gA.

The construction of the unary functionsfA andgA from A can easily be de-

scribed by quantifier-free projections (see,e.g., [54] for concrete illustrations of

logical formulae describing reductions between problems)and so the result fol-

lows as DTC1 is complete forL via quantifier-free projections (note that there are

quantifier-free projections describing both theλ1-structuresfA andgA). �
The following is now immediate from Propositions 7.2 and 7.3.

Theorem 7.4 The problem Hom-Alg1 is L-complete(via quantifier-free projec-

tions).

The problem Hom-Alg1 is uniform in the sense that any unary function can

appear as either the first or second component of an instance.We obtain non-

uniform versions of Hom-Alg1 by fixing the second component. The problem

Hom-Alg1(T), for someλ1-structureT, consists of all thoseλ1-structuresA for

which A! T (and so Hom-Alg1(T) is the problem CSPC(T), whereC is the

class of allλ1-structures).

The following is immediate from Propositions 7.2 and 7.3.

Theorem 7.5 Let T be theλ1-structure corresponding to the unary functiong

whose domain isf0;1g andg(0) = 1 andg(1) = 0. The problem Hom-Alg1(T)
is L-complete(via quantifier-free projections).

Hence, not only is the uniform problem Hom-Alg1 L-complete, there are also

non-uniform problems Hom-Alg1(T) that areL-complete (moreover, even when

T has only two elements).

Actually, we can say more about non-uniform problems of the form Hom-

Alg1(T). Whilst the proof of Proposition 7.3 is such that the template has a graph

that is a cycle of length 2, we can actually replace this template with anyλ1-

structureT so long as the graph ofT has a cycle of pendant in-trees of length
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at least 2 as follows. Suppose thatṪ has cycles of pendant in-trees of lengths

d1;d2; : : : ;dk, for somek > 0. Adopting the terminology of the proof of Propo-

sition 7.3 and with reference to this proof, in our construction process when we

replace an edge of the graph offA with a path of 2 edges, instead we replace the

edge with a path ofd1d2 : : :dk edges. So, if there is a path in the digraph whose

edge relation isE from vertexC to vertexD then the graph offA has a cycle with

pendant in-trees of lengthc:d1d2 : : :dk + 1, for somec� 1, and all other cycles

with pendant in-trees have length divisible byd1d2 : : :dk (if there are any); and

if there is no such path then the graph offA is such that every cycle with pen-

dant in-trees has length divisible byd1d2 : : :dk. Hence, we obtain the following

corollary.

Corollary 7.6 LetT be anyλ1-structure without a fixed point. Then Hom-Alg1(T)
is L-complete(via quantifier-free projections).

Trivially, if the λ1-structureT has a fixed point then Hom-Alg1(T) consists of

everyλ1-structure and is identical to the problem Hom-Alg1(F0), whereF0 is the

function whose domain has one element. Note that whereas the‘trivial’ cases of

Hom-Alg1(T) are identical to Hom-Alg1(F0), so there is an analogous remark to

be made about Hell and Nešetřil’s dichotomy: the ‘trivial’ cases, here the cases

where the problem is solvable in polynomial-time, are identical to the case where

the template graph consists of a solitary edge.

7.3 Two unary functions

Let λ2 be the signature consisting of the two unary function symbols f andg. The

decision problemHom-Alg2 has as its instances pairs(A;B) of λ2-structures; and

as its yes-instances instances(A;B) for which A! B. As before, the size of an

instance is the maximum of the sizes ofA andB.

Let σ2 = hEi, whereE is a binary relation symbol. We shall begin by ex-

plaining how we can transform anyσ2-structureG, which we regard as a simple

undirected graph via ‘there is an edge(u;v), for u 6= v, if, and only if, eitherE(u;v)
or E(v;u) holds’, into aλ2-structure. Theλ2-structureλ2(G) is defined as follows.
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holds andu 6= vg:

Furthermore, we call the elements offu : u 2 jGjg straight elements, the

elements offu0 : u 2 jGjg prime elementsand the elements offeu;v;ev;u :

E(u;v) or E(v;u) holds andu 6= vg edge elements.� For any straight elementu, f (u) = u andg(u) = u0; for any prime element

u0, f (u0) = u andg(u0) = u0; and for any edge elementeu;v, f (eu;v) = v0 and

g(eu;v) = u.

The above construction can be visualized in Figure 7.2.

the function f

the function g

v

eu v,

v’
ev u,

u’

u

Figure 7.2: The construction ofλ2(G) from G.

Lemma 7.7 Let G and H be undirected graphs. ThenG! H if, and only if,

λ2(G)! λ2(H).
PROOF. Suppose thatψ : G ! H is a homomorphism. Define the mapϕ :jλ2(G)j ! jλ2(H)j as follows:� if u is a straight vertex ofλ2(G) thenϕ(u) is the straight vertexψ(u) of

λ2(H);� if u0 is a prime vertex ofλ2(G) thenϕ(u0) is the prime vertexψ(u)0 of λ2(H);
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λ2(H).
Thatϕ is a homomorphism is straightforward: for example,f (eu;v) = v0 in λ2(G)
and f (ϕ(eu;v)) = f (eψ(u);ψ(v)) = ψ(v)0 = ϕ(v)0 in H.

Suppose thatϕ : λ2(G)! λ2(H) is a homomorphism. It is immediate that for

any straight or prime vertexu, ϕ(u) cannot be an edge vertex (asf maps every

straight or prime vertex to itself but not so an edge vertex).Hence, define the map

ψ : jGj ! jHj as follows:

ψ(u) = v if, and only if, ϕ maps the straight vertexu of λ2(G) to

either the straight vertexv or the prime vertexλ2(v)0
of λ2(H):

Suppose that(u;v) is an edge ofG. Theneu;v andev;u are vertices ofλ2(G)
andψ(eu;v) = ea;b, for some vertexea;b of λ2(H) where(a;b) is an edge ofG. In

λ2(G), u= g(eu;v) and so:

ϕ(u) = ϕ(g(eu;v)) = g(ϕ(eu;v)) = g(ea;b) = b:
Also, v0 = f (eu;v) in λ2(G), and so:

ϕ(v0) = ϕ( f (eu;v)) = f (ϕ(eu;v)) = f (ea;b) = b0;
with f (ϕ(v0)) = f (b0), i.e., f (ϕ(v)) = f (b), i.e., ψ(v) = b. Hence,ψ is a homo-

morphism. �
Theorem 7.8 The problem Hom-Alg2 isNP-complete.

PROOF. Let 3COL be the problem, overσ2, whose instances are undirected graphs

and whose yes-instances are instances that can be properly 3-coloured (this prob-

lem has long been known to beNP-complete [20]). The problem 3COL can be
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reformulated as those undirected graphs for which there is ahomomorphism to

the complete graph on 3 vertices. The result follows by Lemma7.7. �
As before, we obtain non-uniform versions of Hom-Alg2 by fixing the second

component. The problemHom-Alg2(T), for someλ2-structureT, consists of all

thoseλ2-structuresA for which A! T.

Theorem 7.9 Let T be theλ2-structure of the formλ2(G), whereG is the com-

plete undirected graph on 3 vertices. The problem Hom-Alg2(T) isNP-complete.

Hence, not only is the uniform problem Hom-Alg2 NP-complete, there are

also non-uniform problems Hom-Alg2(T) that areNP-complete. However, we

have as yet been unable to obtain a classification of the non-uniform constraint

satisfaction problems of the form Hom-Alg2(T). Our only comment is that we

could have taken anyNP-complete graph-problem that can be formulated as a

non-uniform constraint satisfaction problem, and not just3COL, to obtain anNP-complete problem of the form Hom-Alg2(T). Unfortunately, there are many

λ2-structures which are not the images of undirected graphs (under the mapλ2,

above).

We have recently extended these results in a joint work with Tòmas Feder and

Iain Stewart: the former had contemporary and independent related results for

tractability of some related digraphs homomorphisms problems (cf. [14]).



Chapitre 8

Conclusion

Le résultat principal de cette thèse est un théorème de séparation entre deux

classes de problèmes combinatoires : les problèmes de satisfaction de contraintes

(CSP) et les problèmes de motifs interdits (FP). Les secondsétant exactement les

problèmes définissables par les formules de la logique MMSNPdéfinie par Fe-

der et Vardi, qui ont prouvé dans [16] l’équivalence calculatoire entre MMSNP et

CSP. Cependant, il est important de noter que cette équivalence calculatoire uti-

lise des réductions probabilistes polynomiales et qu’il reste ouvert si ces dernières

peuvent être déterminisées. Ces auteurs avaient par ailleurs montré que CSP était

strictement incluse dans MMSNP ; leur preuve reposant sur des arguments de dé-

nombrement, nous avions reprouvé dans [43] ce résultat de manière constructive

et prouvé quelques exemples supplémentaires. J’ai reproduit ces résultats dans la

fin du chapitre 2. Désirant initialement prouver qu’il n’était pas possible de déter-

miniser les réductions probabilistes mentionnées ci-dessus (ou plus exactement,

qu’il n’existait pas de telles réductions déterministes «fines», issues de la com-

plexité descriptive, comme lesFO-reductionsdont on a rappelé la définition en

Appendice A) je me suis fixé comme but intermédiaire de caractériser exactement

les problèmes définissables par des formules de MMSNP qui ne sont pas des pro-

blèmes de satisfaction de contraintes. Le coeur de cette thèse est en fait consacré

à la preuve de ce résultat et la question initiale reste ouverte. J’ose espérer avoir

convaincu le lecteur que mon résultat est en fait un peu plus qu’un simple résultat

intermédiaire.
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D’une part, la preuve de ce résultat présente un intérêt : en effet, cette der-

nière met en évidence une généralisation des structures et des homomorphismes,

les représentations et les recoloriages qui me semble pertinante ; mais aussi une

adaptation des techniques utilisées par Feder et Vardi ce qui conduit à une forme

normale que l’on peut calculer. Ainsi, à partir de la forme normale d’un problème

donné, on peut décider facilement si ce problème est dans CSP, et finalement si ce

n’est pas le cas, la preuve permet de donner une constructiongénérique de famille

de témoins, démontrant que le problème n’est pas un problèmede satisfaction de

contraintes puisque aucune structure ne peut en être le patron.

D’autre part, le résultat lui même généralise un résultat deTardif et Nešeťril

(cf. [45]). Leur résultat utilise une élégante correspondance entre dualité et den-

sité pour caractériser les paires duales, qui correspondent dans notre cas à des

problèmes de motifs interdits très particuliers : les problèmes monochromes à un

seul motif interdit. La généralisation des structures et des homomorphismes par

les représentations et les recoloriages, me semble alors d’autant plus pertinente

que, j’ai pu prouver que la même structure algébrique qui garantissait la corres-

pondance entre dualité et densité dans le cas des structures, à savoir celle d’une

algèbre de Heyting, était présente dans ce cas plus général.

Dans [42], nous nous sommes également intéressés à un sujet quelque peu dif-

férent : nous avons en effet noté que, bien qu’il existe de nombreux résultats quant

à la complexité de problèmes dans CSP pour des structures, ilne semblait pas en

exister pour le cas d’algèbres. Nous nous sommes concentréssur un cas extrême-

ment restreint : celui d’algèbres unaires. Nous avons pu montrer que dans le cas

de seulement deux symboles unaires, le problème uniforme étaitNP-complet (ici,

«uniforme» signifie qu’une instance consiste en une paire d’algèbre ; et, que la

question est de décider si il existe un homomorphisme depuisla première algèbre

vers la seconde). De plus, dans le cas d’un unique symbole unaire, nous avons

obtenu un résultat intéressant de dichotomie : les problèmes non uniformes sont

soit triviaux soitL-complets (par opposition, «non-uniforme» signifie qu’un ins-

tance consiste en une seule algèbre ; et, que la question est de décider si il existe

un homomorphisme depuis celle-ci dans une algèbre fixé, lepatrondu problème).

Notez que ce résultat donne les premiers exemples connus de problèmes de sa-

tisfaction de contraintes qui sontL-complets. Nous avons par ailleurs prouvé plus
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récemment dans [15] qu’il est au moins aussi difficile d’obtenir un résultat de

dichotomie dans ce cas que dans le cas classique.

Le travail effectué dans cette thèse m’a inspiré quelques idées et quelques

problèmes sur lesquels j’espère pouvoir me pencher dans un futur proche.

Premièrement, je n’ai pas complètement renoncé à prouver qu’on ne pouvait

pas, dans une certaine mesure, déterminiser les réductionsprobabilistes du théo-

rème de Feder et Vardi. Pour ce faire, il faut à mon avis se retreindre à des réduc-

tions susceptibles de conserver les propriétés permettantde construire des familles

de témoins tout en se plaçant dans le microcosme des problèmes à caractère mono-

tone ; je pense en particulier considérer tout d’abord des réductions correspondant

à des interprétations via des fragments monotones de FO.

Deuxièmement, un exercice théorique intéressant consisterait à tenter d’extra-

poler les propriétés de CSP pour construire une hiérarchie «à la CSP» au dessus de

la classeNP. Le mécanisme auquel je pense a été brièvement esquissé en conclu-

sion du chapitre 5 : il s’agit de considérer au premier niveaude la hiérarchie,

les problèmes de satisfaction de contraintes, puis les problèmes de motifs inter-

dits, puis au second niveau de la hiérarchie (à condition d’accepter les représen-

tations comme des structures de données «raisonnables») onpeut considérer les

problèmes de recoloriage non uniformes et leurs versions «motifs interdits». Les

premiers correspondent à la version non uniforme du problème de l’inclusion de

deux problèmes de motifs interdits, sous couvert de certaines restrictions quant au

type de représentations considérées et sous couvert de la conjecture 5.17 page 165.

Les seconds sont à ces problèmes ce que les problèmes de motifs interdits sont aux

problèmes de satisfaction de contraintes, et sont peut-être plus difficiles à motiver.

Par ailleurs, j’ai l’intuition que la notion d’exponentielde représentation intro-

duite au chapitre 5 peut servir à prouver la conjecture précédente. En effet, on

peut imaginer desrecoloriages contextuelsqui transformeraient la couleur d’un

élément selon une certaine information locale. Notez alorsque l’exponentielRR1
2

a pour couleurs l’ensemble des fonctions des couleurs deR1 dans celles deR2

et des motifs interdits qui ont pour support des structures qui sont des supports

de motifs interdits deR2. En observant attentivement la définition de l’exponen-

tiel, on peut alors voir les motifs interdits, comme la donnée d’un motif dans le

contexte duquel le recoloriage donné par les fonctions couleurs de chaque élément
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ne fonctionne pas.

Troisièmement, je pense que certaines techniques que j’ai adaptées de la preuve

de Feder et Vardi et que j’ai utilisées pour construire la forme normale pour-

raient être utiles pour caractériser des CSP qui appartiennent àP. En effet, on

peut considérer des familles de motifs interdits dont on sait que d’une part ils

correspondent à des problèmes de satisfaction de contraintes et d’autre part qu’ils

sont dansP. Par exemple, considérons pour le cas des graphes orientés (signa-

tureσ2), la famille de problèmes de motifs interdits «pas de cheminde longueur

n». Dans le casn = 1, le problème est un CSP et il a clairement pour patron le

graphe orienté à un élément et pas d’ arc. Pourn> 1, on peut utiliser une trans-

formation de Feder-Vardi, «coupant» au niveau du second sommet du chemin.

On obtient alors une représentation à deux couleurs~ et � et deux motifs in-

terdits compacts, l’un consiste en un seul arc, l’autre en unchemin de longueur

n�1, c’est-à-dire :f~;�g ~ et � f~;�g : : : f~;�g . Le

premier correspond donc aux deux motifs :~ ~ et � ~ . Ce dernier

motif permet alors de simplifier l’expression du second motif compact pour igno-

rer la couleur~. On obtient ainsi la représentation avec les trois motifs interdits

suivants :~ ~ , � ~ et � � : : : � .

Ce petit «calcul chromatique» permet donc de voir que le patron du problème

d’indicen consiste en celui du problème d’indicen�1 (ce qui correspond au che-

min bleu) auquel on aurait ajouté un sommet supplémentaire (qui correspond à la

couleur jaune) avec un arc depuis ce dernier vers chaque autre sommet (puisque

il n’y a pas de boucle autour de ce nouveau sommet en vertu du premier motif

interdit et pas d’arc depuis le patron vers ce sommet en vertudu second). Ceci

permet donc de construire par induction les patrons correspondants puisque l’on

a vu plus haut que pourn= 1 le patron était tout simplement le graphe :�
Ainsi, par le petit raisonnement effectué ci-dessus, on voit que pourn = 2, le

patron est le graphe :� �
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Puis pourn= 3 on a le graphe :� � �
Et pourn= 4 :� � � �
On obtient les graphes orientés correspondant à des ordres linéaires. Ceci nous

permet de caractériser de manière «fine» (quant à leur complexité) les problèmes

de satisfaction de contraintes correspondantes. En effet,si on exprime les requêtes

correspondants aux problèmes de motifs interdits dont on est parti dans MMSNP,

il est clair qu’on obtient des formules du premier ordre. Ainsi ces problèmes sont

dans la classe de complexitéL. La littérature concernant ce sujet étant abondante

et éclatée entre plusieurs communautés, il n’est pas très probable que cette classe

soit vraiment nouvelle. Cependant, il se peut que par des techniques similaires, on

puisse caractériser des classes polynomiales de CSP ; l’approche par les couleurs

permettant de donner des «bonnes caractérisation» (au sensde [45]).
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Lexique

construction šíp arrow construction.

calculatoirement équivalent computationally equivalent.

coeur core.

paires duales duality pairs.

tartouilleur duplicator.

problème de motifs interdits forbidden patterns problem.

paires couvrantes gap pairs.

cyclicité girth (minimum des tailles des cycles d’un graphe).

conjonction interdite negated conjunct.

réduction polynomiale (probabiliste) (randomized) polynomial-time reduction.

censeur spoiler.

patron template.

205



206 CHAPITRE 8. CONCLUSION



Abréviations

CSP . . . . . . . . . . . class of the constraint satisfaction problems (aka non-uniform
homomorphism problems).

ESO . . . . . . . . . . . Existential Second-Order logic.

FO . . . . . . . . . . . . First-Order logic.

FP . . . . . . . . . . . . . class of the Forbidden Patterns problems.L . . . . . . . . . . . . . . Logarithmic SPACE.

MMSNP . . . . . . . Monotone Monadic Syntactic NP without inequalities.NL . . . . . . . . . . . . . Non-deterministic Logarithmic space.NP . . . . . . . . . . . . Non-deterministic Polynomial-time.P . . . . . . . . . . . . . . Polynomial-time.

QFP. . . . . . . . . . . . Quantifier-Free Projection.
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Annexe A

Complexité (descriptive)

Further definition and examples can be found in the followingcomplexity theory

textbooks [25], [39] or [46]. We refer further to [20] forNP-completeness and

to [12] or [39] for descriptive complexity theory.

Complexity classes

The model of a computation used to define complexity classes relevant to this

work is that of a (non-)deterministic Turing machine and throughout this work:� L denotes the class of problem decidable in logarithmic spaceon a deter-

ministic Turing machine;� NL denotes the class of problem decidable in logarithmic spaceon a non-

deterministic Turing machine;� P denotes the class of problem decidable in polynomial time ona determin-

istic Turing machine; and� NP the class of problem decidable in polynomial time on a non-deterministic

Turing machine.

Problem

A problemis a class of structures that is closed under isomorphism.
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Logics� FO denotes first order logic.� ESO denotes existential second order logic.

The definition of the above logics can be found in [12].� ESO-Krom denotes a fragment of ESO.� ESO-Horn denotes another fragment of ESO.

The above are defined in [21].

Reductions

Let P andQ be two problems and letr be a function of the set of instances ofP to

the set of instances ofQ.

We say thatr is apolynomial-time reductionfrom P to Q whenever:� r can be computed in polynomial time; and� for every instanceA of P,

A2 P () r(A) 2Q:
We say thatr is arandomized polynomial-time reductionfrom P to Q whenever:� r can be computed in polynomial time; and� for every instanceA of P, the probability that

A2 P () r(A) 2Q

is high (say strictly greater than12).
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Interpretations and logical reductions

In the followingL denotes some logic (typically some fragment of first-order

logic). Let σ and τ be two relational signatures whereτ consists ofn relation

symbolsRi of respective arityr i (1 � i � n). Let k be a positive integer. Let

ϕ1; : : : ;ϕn be formulae fromL(σ), where the free variables ofϕi are a subset offx1; : : : ;xk:r ig.
Π = (ϕ1;ϕ2; : : : ;ϕn) induces a mapping ofSTRUC(σ) to STRUC(τ) as follows.

Let A2 STRUC(σ). Then, the structureΠ(A) = B is theτ-structure with:� universejBj := jAjk; and� for every 1� i � n and any(t1; t2; : : : ; tr i) 2 jBjr i , where:

t1 = (u1;u2; : : : ;uk); t2 = (uk+1;uk+2; : : : ;u2k); : : : ; tr i = (ukri�k+1; : : : ;ukri)
RB

i (t1; t2; : : : ; tr i) holds if, and only if,A j= ϕi(x̄=ū).
Π is called aL-interpretation ofσ in τ of width k.

Let P� STRUC(σ) andQ� STRUC(τ) be two problems. We say that the prob-

lemP isL-reducibleto Q (P�L Q, for short) whenever:� there exists aL-interpretationΠ of σ in τ; and� for anyσ-structuresA,

A2 P () Π(A) 2Q:
If L = FO then we speak of aFO-reduction. Note that these reductions can be

achieved in logspace. When the FO-interpretationΠ satisfies the followingpro-

jection condition, we speak ofFO-projectionor fop for short. Every formula is of

the form:

α1_ (α2^ `2)_ : : :_ (αe^ `e)
where:� everyαi is free of any occurrence of relational symbols from the signature

σ;
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If, moreover, the formulas are quantifier-free, that is every αi is quantifier-free,

then we say thatΠ is a quantifier-free projectionor qfp for short. Moreover, as

usual with qfps, except if otherwise stated, we allow a built-in successor function

Succ and two constants0 andmax.



Annexe B

Théorie des catégories

For more detail and examples, we refer to [38].

Categories

A diagram schemeconsists of a setO of objectsand a setA of arrows together

with two functions:

A
dom

cod
O

Fora;b2O and f 2 A such that domf = a and codf = b, we write:

a
f

b

In this graph, the set of composable pairs of arrows is the set:

A�O A= f< g; f > jg; f 2 A and domg= cod fg
A categoryis a diagram scheme with two additional functions

id : O �! A

c 7! idc

Æ : A�O A �! A< g; f > 7! gÆ f

calledidentityandcomposition, such that:
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214 ANNEXE B. THÉORIE DES CATÉGORIES� for all objectsa2O and all composable pairs of arrows< g; f >2 A�O A,

dom(id (a)) = cod(id (a));dom(gÆ f ) = dom f ;cod(gÆ f ) = codg

and;� the composition is associative and the identity law holds; that is, for all

objectsa;b;c;d and arrowsf ;g;h, if a
f

b
g

c h d then:

f Æ (gÆh) = ( f Æg)Æh

idb Æ f = f andgÆ idb = g

From now on, we write simplya2C for “a an object inC” and f 2C for “ f an

arrow inC”. We may also saymorphisminstead of “arrows”.

EXAMPLE.

1. Set is the category whose objects are sets, and whose arrows are functions.

2. STRUC(σ) is the category whose objects areσ-structures, and whose arrows are

homomorphisms.

3. A partial order is a category (with the property that thereis exactly one arrow

between any two objects; and, that there is no cycle apart from self-loops when

viewed as a directed graph). N
Let C be a category.

Duality

A very important feature of category theory is that ofduality: given some notion,

the dual notion is obtained by reversing all arrows. Indeed,a statement holds if,

and only if, its dual holds.
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Isomorphisms

An arrowa e b is invertiblein C if there is an arrowb e0 a in C with eÆe0 = ida

ande0 Æe= idb . If such ane0 exists, it is unique, and is writtene0 = e�1. Two

objectsa andb in the categoryC areisomorphicif there is an invertible arrow (an

isomorphism) a e b; we writeat b. The relation of isomorphism of objects is

an equivalence relation.

Monomorphism

An arrowa i b is monic(or left cancelable) if for any two parallel arrowsd
f1 a

andd
f2 a, the equalityi Æ f1 = i Æ f2 implies f1 = f2. We also saymonomorphism

for “monic arrow” and writea i b.

Epimorphism

An arrowa s b is epi (or right cancelable) if for any two parallel arrowsb
g1 c

andb
g2 c, the equalityg1Æs= g2Æs impliesg1 = g2. We also sayepimorphism

for “epi arrow” and writea s b. Note that this is the dual notion of the above.

EXAMPLE.

1. In Set, the above three notions correspond respectively to the notion of a bijective,

an injective and a surjective function.

2. In STRUC(σ), these notions correspond respectively to a (structure) isomorphism,

an embedding and a surjective homomorphism.

3. In a partial order, the only isomorphisms are the identityarrows (equality) and the

fact that there exists a unique arrow between any two objectsimplies that every

arrow is mono and every arrow is epi. N
Retraction

For an arrowa h b, a left inverseis an arrowa l b with l Æ h = ida . A left

inverse (which is usually not unique) is also called aretractionof h. Note that it
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follows thath is monic. Moreover any left inverse ofh is epi.

EXAMPLE. Consider the categorySTRUC(σ). Let a l b be a retraction ofa h b.

Sinceh is an embedding, we can seea as a (not necessarily induced) substructure ofb

such thatb can be mapped homomorphically ontoa via l , leaving the vertices ofa fixed.N
Terminal object

An object 1 isterminal in C if from each objecta2C there is exactly one arrow

a 1. If 1 is terminal, the only arrow 1 1 is the identity id1 , and any two

terminal objects ofC are isomorphic inC.

Initial object

It is the dual of a terminal object. An object 0 isinitial in C if to each object

a2C there is exactly one arrow 0 a. If 0 is initial, the only arrow 0 0 is the

identity id1 , and any two initial objects ofC are isomorphic inC.

Equalizer

d e b forms anequalizerof b
f

g
c if f Æe= gÆeand for anyc h b such that

f Æh= gÆh there exists a uniqueh0 such thateÆh0 = h.

EXAMPLE. In Set, taked := fx 2 c such thatf (x) = g(x)g and take fore the function

that sendsx2 d to x2 b. N
Product

Let a;b2C. An objecta�b together with arrowsa�b
πa a anda�b

πb b forms

a product if for any objectc, and any arrowsc
f

a and c
g

b, there exists a
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unique arrowh such that the following diagram commutes:

c
f g

h

a a�bπa πb
b

a�b is called theproduct (object)and the arrowsπa andπb theprojections. Note

that the product of two objects is unique up to isomorphism.

EXAMPLE.

1. In Set, it corresponds to the Cartesian product.

2. In a partial order, it corresponds to the least upper bound. N
Coproduct

It is the dual of the above notion. An objecta+b together with arrowsa
ιa a+b

andb
ιb a+b forms acoproductif for any objectc, and any arrowsa

f
c and

b
g

c, there exists a unique arrowh such that the following diagram commutes:

c

a ιa

f

a+b

h

bιb

g

a+ b is called thecoproduct (object)and the arrowsιa and ιb the injections

(though they are not required to be injective functions). Note again that the co-

product of two objects is unique up to isomorphism.
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EXAMPLE.

1. In Set, it corresponds to the disjoint union of two sets.

2. In a partial order, it corresponds to the greatest lower bound. N
Adjoint functors

A functor is a morphism of categories: that is, a function that preserves objects,

arrows, identity and composition. In detail, for categoriesC andB a functorT :

C B with domainC and codomainB consists of two suitably related functions:

theobject function T, which assigns to each objectc2C an objectTcof B and the

arrow function(also written T) which assigns to each arrowc
f

c0 of C an arrow

Tc
T f

Tc0 of B in such a way that:

T(idc ) = idT(c) ; T(gÆ f ) = idT(g)ÆT( f )
the latter whenever the compositegÆ f is defined inC. When the codomain and

domain are the same, we speak of anendofunctor.

Given two objectsa andb in C, we write hom(a;b) for theset of arrows from

a to b.

LetC be a category. LetF andG be two endofunctors ofC. Letϕ be a function

which assigns to each pair of objectsa andc of C a bijection

ϕa;c : hom(F(a);c) �! hom(a;G(c))
which is natural ina andc: that is, for allc k c0 and alla h a0 both the diagrams:

hom(Fa;c) ϕa;c
k? hom(a;Gc)(Gk)?

hom(Fa;c0) ϕa;c0
hom(a;Gc0) hom(Fa;c) ϕa;c(Fh)? hom(a;Gc)

h?
hom(Fa0;c) ϕa0;c

hom(a0;Gc)
will commute. Herek? is short for hom(F(a);k) the operation of composition
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with k, andh? = hom(h;Gc). Then, we say thatF andG are adjoint functor.

We call G the right adjointof F (as a right adjoint ofG is unique up to natural

isomorphism).

EXAMPLE. If C and B are lattices then the pair of adjoint functorsF andG are the

operators of a Galois connection between those lattices. N
Cartesian closed categories

Let C be a category with products. Consider the following endofunctor ofC:

_�b : C �! C

a 7�! a�b

If _�b has a right adjoint _b:

_b : C �! C

c 7�! cb

then we call the objectcb theexponentialof c by b and we say that the categoryC

is cartesian closed.

EXAMPLE. Set is a cartesian closed category; the exponentialcb is the set of functions

of b to c. N
Pullback

Given inC a pairb
f

a;d g
a of arrows with a comon codomaina, a pullback

squareof < f ;g> is a commutative square,

p k

h

d
g

b
f

a
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such that for every other commutative square built onf ;g,

c
q

p

d
g

b f
a

there is a uniquec t p such that:

c q

p

t

p k

h

d
g

b f
a

Subobject classifier

A subobject classifierfor a categoryC with a terminal object 1 is defined to be

a monomorphism 1 t Ω such that for every monomorphismS m X in C, there

exists a uniqueX
ψ

Ω such that the following is a pullback square:

S

m

1

t

X
ψ

Ω

In this pullback square, the top horizontal arrow is the unique map to the terminal

object 1, the lower horizontal arrowψ acts as the “characteristic function” of the

given subobjectS, while the “universal” monomorphism 1t Ω may be called

“truth”.

EXAMPLE. In Set, the terminal object is a singleton 1= f0g, Ω = f0;1g and t is the

injection such thatt(0) = 0. N
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Limit

We refer the reader to [38] for the definition of a limit as we shall never directly

check for limits, but use the following corollary (cf. [38, corollary 1, page 113]).

Corollary B.1 (Saunders Mac Lane)

If a category C has a terminal object, equalizers of all pair of arrows, and prod-

ucts of all pair of objects, then C has all finite limits.

Topos

An (elementary)toposis defined to be a categoryE with the following properties:(i) E has all finite limits;(ii) E has a subobject classifier; and(iii ) E is cartesian closed.
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dichotomy of CSP, 25

gap pair, 154

Heyting Algebra, 147

homomorphic image, 20

homomorphism, 19

colour-preserving, 71

isomorphism, 20

colour-preserving, 72

lattice

(join) prime, 151

MMSNP, 26, 38

α-part, 27

β-part, 27

(bi)connected, 59

collapsed, 57

complete colourings, 42

conform, 50

good sentence, 43

negated conjunct, 26

induced structure, 47

simplified sentence, 39

special form, 62

problem

H-colouring, 22

2-COL, 22

2-SAT, 174

3-COL, 22

CVP, 175

GENERALISED-SAT, 23

NAE-SAT, 179

NO-MONO-TRI, 29

NO-WALK -5, 30

TRI-FREE-TRI, 29

TRI-FREE, 28

containment, 165

CSP,seehomomorphism problem

forbidden patterns problem, 79

monochrome, 152

Hom-Alg1, 191

Hom-Alg2, 195

homomorphism problem

non-uniform, 20

uniform, 187

quantifier-free first-order reduction, 189

recolouring, 79
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mono-,epi-,iso-, 83

representation, 77MDC2
n;MC2

n;ADC2
2p�ME, 77

(bi)connected, 106

(induced) sub-, 83

canonical, 104

conform, 97

coproduct, 159

exponential, 161

Feder-Vardi transformation

canonical, 116

elementary, 108

forbidden patterns, 77

image via a recolouring, 86

normal, 118

product, 157

retract(ion), core, automorphic, 94

second generation, 169

set of normal representations, 141

simple, 83

trivial, 82

witness family, 131

signature, 19

structure, 19

Cn, 73

DCn, 73

(bi)connected, 48

(co)product, 148

antireflexive, 48

coloured, 71

BCn;WCn;ACn, 75

BDCn;WDCn;ADCn, 75

(bi)connected, 71

antireflexive, 97

monotuple, 97

non-sbavate, 97

retract(ion), core, automorphic,

92

valid, 77

cycle, 49

exponential, 149

girth, 49

monotuple, 48

path, 47

retract(ion), core, automorphic, 90

tree, 153

substructure, 20

template

of a CSP, 20

of a representation, 100

theorem

Feder and Vardi, 27, 67

Hell and Nešeťril, 22

Ladner, 21

Louison, 140

Shaeffer, 23

Tardif and Nešetřil, 153
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