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Abstract

This thesis presents different technique to solve the Boolean

satisfiability problem using parallel and distributed architec-

tures. In order to provide a complete explanation, a careful

presentation of the CDCL algorithm is made, followed by the

state of the art in this domain. Once presented, two proposi-

tions are made. The first one is an improvement on a portfo-

lio algorithm, allowing to exchange more data without loosing

efficiency. The second is a complete library with its API al-

lowing to easily create distributed SAT solver.

Keywords: SAT, parallelism, distributed, solver, logic





Résumé

Cette thèse présente différentes techniques permettant de

résoudre le problème de satisfaction de formule booléenes

utilisant le parallélisme et du calcul distribué. Dans le but

de fournir une explication la plus complète possible, une

présentation détaillée de l’algorithme CDCL est effectuée,

suivi d’un état de l’art. De ce point de départ, deux pistes sont

explorées. La première est une amélioration d’un algorithme

de type portfolio, permettant d’échanger plus d’informations

sans perte d’efficacité. La seconde est une bibliothèque de

fonctions avec son interface de programmation permettant de

créer facilement des solveurs SAT distribués.

Mot-clés: SAT, parallelisme, calcul distributé, solveur, logique
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Foreword

Logic is an old subject studied in phylosophy, mathematics and computer science. The fact

that it was already studied by Aristotle (384–322 BCE) shows that logic is not very new.

Nevertheless, logic is still widely used to this day, and maybe even more than before. Indeed,

it is at the heart of computer science through the boolean logic and its implication: central

processing units, memory chips, . . . .

Nowadays, logic finds yet another usage in computer science through automatic validation

of code, circuitry. Such validations are performed by theorem prover that found their use

way beyond the computer science fields. It is now possible to find such prover in biology,

mathematics, economics, and many more. Those provers usually work by finding an answer to

a given combinatorial problem. One of the specificity of combinatorial problems is, according

to the current state of our knowledge, that different solutions have to be enumerated. And such

enumeration can be quite time consuming. One of those problem is the Boolean satisfaction

problem (or SAT for short). This problem is very interesting for multiple reasons. First, any

combinatorial problem can be expressed as a Boolean satisfaction problem. Second, the problem

by itself can be easily explained and rely on logic operation. And as said earlier, logic is very

well studied, therefore it provides information on how to solve the problem. However, even with

the help of powerful rules, enumeration is still needed. This means that powerful algorithm are

needed in order to reduce the time spent for the computation.

By searching to obtain an answer the fastest way possible, some scientists have focused on the

parallel paradigm. Such paradigm allows to make multiple operations concurrently. This can be

achieve through the use of multiple computers or by multiple ‘cores’ in a single computer. And

luckily, those architectures are now the norm for personal computers and high-end cellphones.

This grants access to such hardware for many scientific groups.

More than hardware, software is also needed for the parallel paradigm. Of course, the

parallel paradigm is not the key to tackle the problem but it may provide new concepts that

could help the research on the subject. Moreover, with the rise of practical problem being

solved through SAT, being able to provide answers faster can be extremely helpful for the users

of SAT technologies.

There are two family of algorithms to solve the SAT problem in parallel. The first one

is the portfolio approach. Different competiting prover are run concurrently. The philosophy

behind this algorithm is that the number of potential solutions is too high. By providing

different provers, those will different enumeration order and therefore, one of them might find

the solution faster. The second approach is the divide and conquer family of algorithms. The

idea for those is that the number of potential solutions is too high. Therefore we can not accept

that the same potential solution is checked twice or more. To do this, the formula is divided

into two sub-formulæ or more, and each sub-formulæ is given to a standalone SAT solver.

The aim of this thesis is to propose two new approaches for solving the SAT problem using

the parallel paradigm. The first one, PeneLoPe, is a member of the portfolio family of algorithms

Through the use and combination of some of state of the art technique, we were able to create an
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award winning parallel SAT solver. The second, dolius, is a platform dedicated to distributed

SAT solving. It aims to facilitate the creation of distributed solvers with a lot of flexibility on

the division of the work.

This manuscript is composed of two groups of chapters. The first one explains the SAT

problem, its origins and unique position in terms of computability (Chapter 1), followed by

some explanations of algorithms to solve it (Chapter 2). The second presents the contributions

of this thesis: an award-winning approach for clause exchange within a portfolio (Chapter 4)

and a framework providing a simple interface to create distributed solvers (Chapter 5). Finally,

a conclusion and some perspective are presented (Chapter 6), followed by a french résumé

(Chapter 7) and the exhaustive list of contribution of this thesis (Chapter 8).
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7.1 Problème SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 Solveurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3 Parallélisme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.4 PeneLoPe: un solveur de type portfolio . . . . . . . . . . . . . . . . . . . . . . . . 104

7.5 Dolius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8 Contributions 127

8.1 International peer-reviewed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2 National peer-reviewed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.3 Technical reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.4 Softwares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

List of Symbols 129

Index 131

Bibliography 133



CHAPTER 1

Introduction

A man provided with paper,

pencil, and rubber, and subject to

strict discipline, is in effect a

universal machine.
—Alan Turing

In this chapter, we introduce some concepts needed to understand this thesis: logic and com-

puter science. Logic is a key element in computer science as electronics are made of transistors

gathered together to make complex logic gates that ultimately define our modern computers.

1.1 Logic

Logic is the science of reasoning and the expression of such. Therefore, by establishing correct

rules of deduction, we can reason about the validity of arguments. Initially a complete philo-

sophical question, knowing the validity of argument became extremely relevant in science as a

proof is an argument. Logic defines proof systems to help validating such arguments.

1.1.1 Boolean algebra

Boolean algebra is an algebra not defined on numbers like most well-known algebra, but on the

values true (hereby represented by the symbol >) and false (hereby represented by the symbol

⊥). Variables will be denoted as lowercase letters: a, b, c and may be indexed for the ease of

some explanations. Their domains is the set of two elements: {>,⊥}.

Functions of degree n in Boolean algebra can be expressed as F(a1, . . . , an) : {>,⊥}n →
{>,⊥} and are also called predicates of degree n. There are exactly 22n

possible predicates

of degree n. When n = 1, those 4 predicates are shown in Table 1.1: identity, >, ⊥ and the

negation ¬.

When n = 2, there are 16 predicates and some of them will be studied further: the disjunc-

tion operator ∨, the conjunction operator ∧, the exclusive-or ⊗, the nand Z, the nor Y, the

equivalence ≡ and the implication ⇒. Those are depicted in Table 1.2.

1



2 1. INTRODUCTION

a a > ⊥ ¬a
> > > ⊥ ⊥
⊥ ⊥ > ⊥ >

Table 1.1: Every possible unary operator

a b a ∨ b a ∧ b a⊗ b a Z b a Y b a ≡ b a⇒ b

> > > > ⊥ ⊥ ⊥ > >
> ⊥ > ⊥ > > ⊥ ⊥ ⊥
⊥ > > ⊥ > > ⊥ ⊥ >
⊥ ⊥ ⊥ ⊥ ⊥ > > > >

Table 1.2: Some common binary Boolean operators

Usually, when n gets higher we define the different predicates by providing the corresponding

formulæ. A formula Σ is a string of symbols respecting the following grammar:

variables: formula ::= a | b | c | . . .

negation: formula ::= ¬ formula

binary operators: bop ::= ∧| ∨ | ⊗ | Z | Y | ≡ | ⇒

concatenation: formula ::= (formula bop formula)

We define Π(Σ) as the set of variables occurring in Σ, Π+(Σ) the set of variables occurring

positively (a, b, c) and Π−(Σ) those occurring negatively (¬a,¬b,¬c) in Σ.

Example 1.1: Formula Let us define the formula Σ using 3 variables a, b, c as

Σ = (a ∨ (b ≡ ¬c)). This is a valid formula as it can be derived from the grammar

as shown with the derivation tree depicted in Figure 1.1

concatenation

binary�operator

a

variable concatenation

∨

≡

binary�operator

b

variable negation

c

variable

Figure 1.1: Derivation tree for the formula defined in Example 1.1

From this formula, we have Π(Σ) = {a, b, c},Π+(Σ) = {a, b} and Π−(Σ) = {c}.

End of Example 1.1

For a given formula, we may associate an assignation function A : π ⊆ Π(Σ) → {>,⊥}
that maps a truth value to each variable of the formula. An assignation function is said to be

complete when π = Π(Σ) and incomplete when π ⊂ Π(Σ).
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Given a complete assignation function A, we can deduce the truth value of a formula Σ by

replacing the variables by their values. If Σ is evaluated to >, A is said to be a model of Σ.

When a model exists for a formula Σ, Σ is said to be consistent (or satisfiable). If no such model

exists Σ is said to be inconsistent (or unsatisfiable). If every possible assignation function A is

a model of Σ, Σ is said to be a tautology. From those definitions, it is easy to see that Σ is a

tautology if and only if ¬Σ is unsatisfiable.

Σ is said to be a logical consequence of Σ′ if every model of Σ′ is also a model of Σ. In this

case, this will be written as Σ′ |= Σ. If Σ′ |= ⊥, Σ′ is unsatisfiable. If |= Σ, Σ is a tautology.

Example 1.2: consistency, tautology and inconsistent formulaes Let Σ1

be the formula ¬a∨ (b∨ c). We can define a complete assignation function A1(a) =

>,A1(b) = ⊥,A1(c) = ⊥. It is easy to see that the assignation function A1 is

not a model of Σ1 as the formula Σ1 becomes ⊥ ∨ (⊥ ∨ ⊥) = ⊥ ∨ ⊥ = ⊥. As

we found one assignation that is not a model, we can safely deduce that Σ1 is not

a tautology. Let us define A2, another complete assignation function for Σ1 as

A2(a) = >,A2(b) = >,A2(c) = >. A2 is clearly a model of Σ1. As a model has

been found, it is possible to deduce that Σ1 is consistent.

Let us define Σ2 as the formula a ∧ ¬a and every possible assignation functions for

Σ2: A3(a) = >, A4(a) = ⊥. As none of them provide a model for Σ2, Σ2 is said to

be unsatisfiable.

Let us define Σ3 as the formula a ∨ ¬a and every possible assignation functions for

Σ3: A3(a) = >, A4(a) = ⊥. Each of the possible assignation functions is a model

for Σ3, therefore Σ3 is a tautology.

End of Example 1.2

Once a variable is assigned, multiple simplifications can be operated. Let us define the

notation Σ|a to represent the formula Σ where the variable a has been assigned to > and Σ|¬a
to represent the formula Σ where the variable a has been assigned to ⊥.

Example 1.3: compute Σ|a Let us define Σ as C1∧C2∧C3∧C4 where C1 = a∨b∨c,
C2 = ¬a∨b, C3 = ¬b∨c∨d, C4 = d∨e∨f . If we assign a to >, we have to compute

Σ|a from Σ. It is possible to remove C1 from Σ as a appears in it. C2 becomes b

as ¬a is evaluated to ⊥ and therefore assign > to b. This implies that we have to

compute Σ|a|b. The final result is (c ∨ d) ∧ (d ∨ e ∨ f).

End of Example 1.3

It is possible to define some functions on assignations. Let us first give an absolute order on

the elements of Π(Σ). Next, we define the function π defined as π : Π(Σ)→ [0..n], the function

that maps each of the n variables of Σ to an integer. Given a complete assignation A, we can

create the Boolean vector vA as the vector containing at position i, the truth value assigned to

variable a such that π(a) = i. Now that assignation can be interpreted as a vector, we can use

some common operations on them, such as the hamming distance. When we have two vectors



4 1. INTRODUCTION

of Boolean variables x = 〈x1, x2, x3〉 and y = 〈y1, y2, y3〉, we can define the Hamming distance

function

H : {>,⊥}n, {>,⊥}n → {x|x ∈ N, x ≤ n} (1.1)

H(x, y) = cardinality({xi 6= yi, 0 ≤ i ≤ n− 1}) (1.2)

Example 1.4: Hamming distance Let Σ = (a ∧ (¬b ⇒ c)). We have that

Π(Σ) = {a, b, c} and let us define π(a) = 0, π(b) = 1, π(c) = 2. Let A1(a) =

>,A1(b) = >,A1(c) = ⊥ and A2(a) = ⊥,A2(b) = >,A2(c) = >.

The Hamming distance between the assignation A1 and A2 is 2 as A1(a) 6= A2(a),

A1(b) = A2(b) and A1(c) 6= A2(c).

End of Example 1.4

1.1.2 Propositionnal calculus

Propositional calculus, as defined by [Encyclopædia Britannica, 2013], is a symbolic system

of treating compound and complex propositions and their logical relationships. In the case

of Boolean logic, propositions are Boolean formulae and their relationships are defined by the

different rules, such as the resolution rule.

Normal forms

In order to have a set of rules on Boolean formulae, it is easier to define a form that every

formula must have. The most well known normal forms are the conjunctive normal form (or

CNF for short) and the disjunctive normal form (or DNF for short).

Both CNF and DNF uses the concept of literal. A literal is a variable (a) or its negation (¬a).

A literal can be negated: the negation of a is ¬a and the negation of ¬a is ¬¬a = a. For ease of

the explanation, we consider that both assignation functions A1(a) = > and A2(a) = ⊥ on the

variable a also defines assignation functions on the literals a and ¬a: A1(a) = >,A1(¬a) = ⊥
and A2(a) = ⊥,A2(¬a) = >.

For the DNF, the main object is a cube: a disjunction of literals (a∧¬b). In this manuscript,

cubes will be written as K with some subscripts to make the distinction between the different

cubes. A cube is said unsatisfied when at least one literal is evaluated to ⊥. Therefore, if a

cube is empty it can only be satisfiable. DNF formulæ are composed of conjunctions of cubes:

K1 ∨ . . . ∨Kn. The DNF formula Σ is unsatisfied if there exists at least one assignation such

that every cube in Σ is unsatisfied.

The main object in a CNF is a clause: a conjunction of literals (a∨¬b). In this manuscript,

clauses will be written as C with some subscripts to make the distinction between the different

clauses. A clause is said satisfied if there exists at least one assignation such that at least one of

the literal can be evaluated to >. Therefore, if the clause is empty it can only be unsatisfiable.

CNF formulæ are composed of disjunction of clauses: C1 ∧ . . . ∧ Cn. The CNF formula Σ is
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satisfied if there exists at least one assignation such that every clause in Σ is satisfied. Therefore,

if Σ does not have any clause, Σ is a tautology.

We can consider that a clause is a set of literals. Therefore, we can also use the operator

of sets on clauses like the cardinality operator #. When #C = 1, C is said to be a unit clause

. If #C = 2, C is said to be a binary clause. In a CNF, a formula is a conjunction of clauses

Σ = C1 ∧ . . . ∧ Cn and can also be considered as a set of clauses.

Now that every notion needed to define the main subject of this thesis, let us define the

SAT problem formally. The problem consisting of determining if a Boolean CNF formula Σ is

satisfiable is called the Boolean satisfaction problem (SAT).

When in a set of clauses a literal appears with only 1 phase (either l or ¬l), it is said to be

a pure literal.

A clause C1 subsumes a clause C2 if Π(C1) ⊂ Π(C2) i.e., if every literal of C1 is also

appearing in C2. When such facts are known, it is quite useful as C2 |= C1. Therefore, if one

searches the satisfiability of C1 and knows that C2 is unsatisfiable, it is possible to conclude

that C1 is also unsatisfiable.

There are some other well known normal forms such as the and-inverter graph (AIG).

They allows representation for circuits and manipulation of those. Another normal form is

decomposable negation normal form (DNNF) [Darwiche, 2001]. Such normal form provides

some interesting properties such as deciding the satisfiability in linear time and counting the

number of models.

Conversion of general Boolean formula to CNF

It is possible to convert any general Boolean formula to a CNF formula Σ. A simple (but

inefficient) way is to take every possible assignation function Ap. Whenever Ap is evaluated to

⊥, it defines a clause Cp = a1 ∨ . . . ∨ an such that ai is positive if Ap(ai) = >, and negative

otherwise. The CNF formula will be obtained by a conjunction of every clause Cp.

Example 1.5: Formula to CNF Let us define Σ = a ⊗ b. The two assignation

that can be evaluated to ⊥ are A1(a) = >,A1(b) = > and A2(a) = ⊥,A2(b) = ⊥.

From those, we can create C1 = a∨ b and C2 = ¬a∨¬b. Therefore we can conclude

that Σ = C1 ∧ C2.

As said previously, such transformation can be quite inefficient. Indeed, let us

consider the unsatisfiable formula Σ = (a ∨ b) ≡ ¬(a ∨ b). As the formula is

unsatisfiable, it will create as many clauses as possible assignations. However, as

Σ |= ⊥, Σ can be simplified to one empty clause.

End of Example 1.5

The transformation of a general boolean formula to a CNF can be done in polynomial time

and space (number of propositional variable). An algorithm is provided in [Siegel, 1987].

Resolution

In order to use a CNF to reason about logic, a propositional proof system is needed. A propo-

sitional proof system is an effective method to verify a proof of unsatisfiability [Cook and
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Reckhow, 1979]. To define a propositional proof system, one or several derivation rules are

needed. From the input formula, applying the given derivation rules and only the given deriva-

tion rules ensure that the result is equi-satisfiable. A proof is a succession of application of

some rules. Once those rules are known, it is possible to automate their use and therefore

automate reasoning about logic. Such rule can be the resolution rule, defined in Equation 1.3.

This equation depicts the two input clauses (above the line), and the result (under the line).

(a0 ∨ . . . ∨ an ∨ l) ∧ (b0 ∨ . . . ∨ bm ∨ ¬l)
a0 ∨ . . . ∨ an ∨ b0 ∨ . . . ∨ bm

(1.3)

Let us define Σ1 `R Σ2 the symbol meaning that it is possible to obtain (to derive) Σ2 from

applying the resolution rule on Σ1. It is possible to prove that the resolution rule is adequate,

that is if Σ `R C, then Σ |= C. However, it is impossible to prove that the resolution rule is

complete. Indeed, p ∧ ¬q |= q but we have not p ∧ ¬q `R q. This could seems problematic

but fortunately, the resolution rule is weak-complete, that is if Σ ∧ ¬C |= ⊥ then Σ ∧C `R ⊥.

As the general case Σ |= C can be proven through Σ ∧ ¬C |= ⊥, this weak-completion of the

resolution rule is indeed, not very problematic.

We define the resolution operator ⊗R as a binary operator providing as result the resolution

of the operands.

Example 1.6: a proof sample Let Σ be (a ∨ b ∨ c) ∧ (¬a ∨ b) ∧ (b ∨ ¬c) and we

want to prove that Σ |= b. The resolution rule being weak-complete, we will try to

prove Σ ∧ ¬b |= ⊥
a ∨ b ∨ c ¬a ∨ b

b ∨ c
b ∨ ¬c

b
¬b

⊥

End of Example 1.6

It is interesting to see that the result of a resolution can be used to further. Indeed, it is

possible that the result of a resolution subsumes one of the operand of the resolution. C1 is

said to self-subsume with C2 if C1 ⊗R C2 subsumes C1

Example 1.7: Self-subsuming clause Let C1 = a∨ b∨ c∨ d and C2 = a∨ b∨¬c.
The resolvent between C1 and C2 is C1 ⊗R C2 = a ∨ b ∨ d.

End of Example 1.7

Thanks to the resolution rule being weak-complete and adequate, it is possible to prove some

well known facts such as the DeMorgan laws, depicted in Equation 1.4 and 1.5. Those laws are

quite helpful as we can clearly see that proving that a CNF Σ is unsatifiable is equivalent to

prove that the DNF ¬Σ is a tautology.

¬(p ∨ q) ≡ (¬p ∧ ¬q) (1.4)

¬(p ∧ q) ≡ (¬p ∨ ¬q) (1.5)
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1.2 Computer science

We define computer science1 as the scientific fields related to automated computing. Such fields

are algorithmic, complexity theory, language design, networking, security and many others. Let

us first formally define automated computing through the Turing machine. From there, we will

wander to complexity notions and finally, artificial intelligence.

1.2.1 Turing machine

The following description of Turing machine is adapted from [Wolper, 2006]. Turing machines,

defined in [Turing, 1936], is the basic representation of computers. They are made from multiple

parts. First, an infinite memory tape that can be written on through the tape head. Each cell

of the tape may contain a symbol from a given alphabet. Secondly, a finite set of states and a

transition function represents the behaviour of the machine. This set includes the initial state

and the accepting states. Finally, it also contains a transition function that for each possible

state of the machine and each possible input on the tape, provides the next state of the machine,

the symbol that will be put on the tape and the direction –to the right (�) or to the left (�)–

the tape head will take.

The execution of Turing machines can be described as following. First, the input word is on

the n first cells of the tape and the blank symbol is on every other cells. The tape head reads

the symbol, and according to the state of the machine it writes another symbol on the cell and

the tape head is moved. The input word is accepted if the machine reaches an accepting state.

A Turing machine is formally defined by:

• the states S this machine can take

• an alphabet Γ

• α the white symbol α ∈ Γ

• the entry symbols Υ ⊂ Γ\α

• s0 the initial state

• F ⊂ S the accepting states

• φ : {S,Γ} → {S,Γ, {�,�}} a transition function and the set of accepting state Ω ⊂ S.

A Turing machine T is said to be universal if every possible Turing machine can be emulated

through T .

1.2.2 Complexity

Once a Turing machineM has been established for a given type of problems, we might want to

quantify the time needed to solve those problems, i.e. the number of transitions made. LetM
halt for each input ~x, n the size of ~x and tM(~x) the number of operations needed to perform

the computation. We can compute the general function t(n) that will provide the number of

1Some argue that computer science is not a right name, as if we would call physics “hammer science”



8 1. INTRODUCTION

operations needed in the worst case scenario. This defines the time complexity of a Turing

machine.

To compare two Turing machines, we can use their time complexity but sometimes, only

the asymptotic value (where n grows infinitely) is considered. To do this, we can use the O-

notation. A function g(n) is said to be O(f(n)) if there exists some constants c and n0 such

that ∀n > n0, g(n) ≤ cf(n). Using this notation provides different operations on it

• O(c1nk + . . .+ ckn+ ck+1) = O(nk)

• O(t(n) + t(n)) = O(t(n))

• O(t1(n) + t2(n)) = O(max(t1(n), t2(n))

• O(t(n)t(n)) = O(t(n)2)

It is possible to characterize algorithms according through the O-notation.

• Constant time O(1): access to an element at a given position in the memory.

• Linear time O(n): sum of two vectors containing n elements.

• Polynomial time O(nx): multiplication of two matrices of size n.

• Exponential time O(xn): generating every subset of a set containing n elements.

1.2.3 NP Completeness

It is also possible to characterize the problem themselves instead of algorithms.

Decision problems that can be solved in polynomial time by a deterministic Turing machine

are members of the P complexity class. Decision problems that can be verified in polynomial

time by a deterministic Turing machine are members of the NP complexity class. Decision

problems P such that any problem from NP can be reduced in polynomial time to P are NP -

complete. Problems P such that any NP -complete problem can be reduced to P in polynomial

time are NP -hard. This definition of NP -hard does not require that the solution can be verified

polynomial time by a deterministic Turing machine.

From those definitions, one of the most interesting questions that have not been resolved

yet is to know whether P = NP or P ⊂ NP .

The first problem that has been proven NP -complete is the satisfiability of Boolean formula.

The proof [Cook, 1971] by Stephen Arthur Cook was done in two steps. First, a polynomial

function that verifies an instantiation is provided and secondly, every NP problem is proven

to be reducible in polynomial time to SAT. The first part is trivial. As for the second part,

it is done by defining a polynomial function that maps every couple w,L to a SAT instance

where w is a input word for the language L. If L ⊂ NP accepts w if and if only there is a non-

deterministic Turing MachineM that accepts w. From such machineM and word w, we create

the corresponding SAT instance, satisfiable if and only ifM accept w. The proof proposes the

creation of such SAT instance in polynomial time, making the problem of knowing whether a

Boolean formula is satisfiable a NP -complete problem. As long as P = NP is unproved, we

can assume that every algorithm capable of solving the SAT problem is in exponential time.



1.3. ARTIFICIAL INTELLIGENCE 9

Thinking Humanly Thinking Rationally

“The exciting new effort to make comput-

ers thinks . . . machines with minds, in the

full and literal sense.” [Haugeland, 1985]

“The study of mental faculties through the

use of computational models.” [Charniak

and McDermott, 1985]

“[The automation of] activities that we

associate with human thinking, activities

such as decision-making, problem solving,

learning ...” [Bellman, 1978]

“The study of the computations that make

it possible to perceive, reason, and act.”

[Winston, 1992]

Acting Humanly Acting Rationally

“The art of creating machines that perform

functions that require intelligence when

performed by people.” [Kurzweil, 1990]

“Computational Intelligence is the study

of the design of intelligent agents.” [Poole

et al., 1998]

“The study of how to make computers do

things at which, at the moment, people are

better.” [Rich and Knight, 1991]

“AI . . . is concerned with intelligent behav-

ior in artifacts.” [Nilsson, 1998]

Table 1.3: AI definitions categories as provided in [Russell and Norvig, 2003]

1.3 Artificial Intelligence

There are a lot of different topics one could learn to achieve artificial intelligence. In [Russell

and Norvig, 2003] the authors provide introduction to different -but not all- areas involved with

this field. Their result is a thousand pages book, giving only a glimpse of different techniques

such as computer vision, reasoning, planification, natural language processing and many others.

Research in artificial intelligence goes way beyond computer science. Indeed, some techniques

have been directly influenced by biology or even philosophy.

In their book, [Russell and Norvig, 2003] provide four different categories of definitions for

artificial intelligence shown in Table 1.3. We can see that their definitions diverge and that

some use the concept of intelligence which is also subject to multiple definitions.

As we can see, there are a lot of different definitions of artificial intelligence. Instead of

defining what artificial intelligence tries to mimic, we can define artificial intelligence by the

kind of problems it tries to solve. A common point between every field labelled as artificial

intelligence is their effort to solve problems which are at least NP -complete. Therefore, in this

thesis, the author defines artificial intelligence as the scientific field of providing algorithms to

solve problems that are at least NP -complete such as the Boolean satisfaction problem.

1.4 Conclusion

In this chapter, we presented briefly some concepts needed for a better understanding of this

thesis. The Boolean satisfaction problem (SAT problem) can be solved using algorithms through

propositional calculus. The next chapter presents some algorithms to solve it.
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CHAPTER 2

SAT solvers

It’s a kind of magic

—Roger Taylor

As seen in previous chapter, given an input Boolean CNF formula Σ, knowing whether Σ has

a model is an NP -complete problem. However, as solving the Boolean satisfiability problem

is helpful in a lot of domains, multiple algorithms have been proposed. Programs that are

composed on such algorithms and having as goal providing a solution for the SAT problem are

called SAT solvers. The content of this chapter is the following: first, we are going through

some methods or algorithms to solve the Boolean satisfiability problem. Second, we take a

closer look at the algorithm which has been studied through this thesis. Each part is described

in order to provide the best comprehension of this kind of solver, called CDCL. Finally, different

implementations are presented.

2.1 Main SAT solving algorithms

In this section, we review some of the most well-known methods that have been proposed

through time to solve the Boolean satisfiability problem.

2.1.1 Truth tables

One of the first method proposed to solve the SAT problem is the generation of truth tables.

The algorithm to generate the truth tables is extremely simple. It creates every possible in-

stantiation and whenever an instantiation provides a model, the formula is proven satisfiable.

If no instantiation provides any model, the formula is proven unsatisfiable. An example of such

table is provided in Figure 2.1 on the formula Σ = (a ∨ b ∨ c) ∧ (a ∨ ¬b ∨ ¬c).

Even though this method is really easy to implement, it has some major drawbacks. It

completely ignores the problem, its structure and its relative information and a complete in-

stantiation is needed to evaluate the truth value of the function. Moreover, the asymptotic

complexity of this problem, O(2n) where n is the number of variables, is reached as soon as the

formula is unsatisfiable.

11
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a b c Σ

⊥ > > ⊥
⊥ > ⊥ >
⊥ ⊥ > >
⊥ ⊥ ⊥ ⊥

a b c Σ

> > > >
> > ⊥ >
> ⊥ > >
> ⊥ ⊥ >

Table 2.1: Truth table for the formula Σ = (a ∨ b ∨ c) ∧ (a ∨ ¬b ∨ ¬c)

Example 2.1: Simple UNSAT formula Let us suppose that we want to know

a b c Σ

⊥ > > ⊥
⊥ > ⊥ ⊥
⊥ ⊥ > ⊥
⊥ ⊥ ⊥ ⊥

a b c Σ

> > > ⊥
> > ⊥ ⊥
> ⊥ > ⊥
> ⊥ ⊥ ⊥

if the formula Σ = (a ∨ c) ∧ (¬a ∨ c) ∧ (¬c ∨ ¬b) ∧ (b ∨ ¬c). We can easily see

that this formula is unsatifiable as the first two clauses implies that c = > (indeed,

(a ∨ c) ⊗R (¬a ∨ c) = c). But the two last clauses implies that c = ⊥ (indeed,

(¬c∨¬b)⊗R(b∨¬c) = ¬c) making the formula unsatisfiable. However, the generation

of the whole table is needed to conclude the unsatifsiability of Σ through the truth-

tables method.

End of Example 2.1

2.1.2 Davis, Logemann, Loveland’s algorithm

One of the first algorithm proposed was proposed by Martin Davis and Hilary Putnam [Davis

and Putnam, 1960]. Their main idea is to use the ⊗R operator in order to remove variables until

no variable can be removed or the empty clause is generated. This method has the drawback

of needing a lot of memory to store all generated clauses.

The Davis, Logemann and Loveland’s procedure (or DLL for short) [Davis et al., 1962] tried

to avoid the generation of the clauses of DP. DLL is a recursive algorithm on the formula,

depicted in Algorithm 2.1. The main idea is as follows: first, we try to simplify the formula

Σ by assigning literals appearing in unit clauses ({lu|Cu = lu, Cu ∈ Σ}) and pure literals

({lp|lp ∈ Σ,¬lp /∈ Σ}). Then, from the simplified formula, different checks are made to see if

the answer has been found or if a recursive call must be made. It is guarantee to end as the

number of non-assigned literals decreases with the recursive calls through the conjunction of

the formula and a unit clause.

It is possible to graphically depict the search made by the algorithm through a tree structure

as in Figure 2.1. Each node of the tree represents the current state of the formula given at the

root, simplified with the assignation given on the path between the node and the root. This

tree is constructed by depth- and left-first.
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Algorithm 2.1: DLL algorithm
Input : Σ a Boolean formula in conjunctive normal form

Output: > if Σ is satisfiable; ⊥ if Σ is unsatisfiable

1 begin

2 foreach l ∈ {lu|Cu = lu, Cu ∈ Σ} ∪ {lp|lp ∈ Σ,¬lp /∈ Σ} do

3 Σ← Σ|l ;

4 done

5 if Σ contains an empty clause then

6 return ⊥;

7 elif Σ = ∅ then

8 return >;

9 fi

10 choose a literal l from Σ ;

11 return DLL(Σ ∧ l) ∨ DLL(Σ ∧ ¬l)
12 end

Σ

a

c ¬c b

⊥ ⊥ ⊤

¬a

Σ|¬a Σ|a

Figure 2.1: DLL algorithm depiction for the formula Σ = (a ∨ c ∨ b) ∧ (a ∨ c ∨ ¬b) ∧ (a ∨ ¬c ∨
b) ∧ (a ∨ ¬c ∨ ¬b) ∧ (¬a ∨ b).



14 2. SAT SOLVERS

Example 2.2: DLL in action Let us consider following instance; solved with

Algorithm 2.1:

a ∨ b ∨ c, a ∨ ¬b ∨ ¬c, ¬d ∨ e, ¬g,

¬d ∨ f ∨ ¬e, e ∨ ¬f , e ∨ a, ¬e ∨ f ∨ g

At first, there are two pure literals: a and ¬d and a unit clause: ¬g. We set them to

true: a = >, b = ⊥, g = ⊥. We can remove the clauses containing the pure literals

as they are already satisfied, remove those containing ¬g and remove g from clauses

that contain it. Once Σ is fully simplified, the left clauses are: e∨¬f and ¬e∨f . As

there are still clauses left, we must choose one of the variables left, e for instance,

and make a recursive call. The call is made on the formula (e ∨ ¬f) ∧ (¬e ∨ f) ∧ e.
After simplification, Σ = ∅ and therefore > is returned. If we wanted to represent

this search by a tree, it would be only a branch annotated by e since it is the only

chosen literal.

End of Example 2.2

Example 2.3: DLL on an unsatisfiable instance Let us consider following

instance:

a ∨ b ¬a ∨ ¬b

¬a ∨ b a ∨ ¬b

No simplification can be done, therefore a recursive call is made with a as literal.

After the simplification Σ|a, we obtain b ∧ ¬b. As b is a unit clause it is simplified,

leading to an empty clause and therefore the value ⊥ is returned. As the call with

the formula Σ ∧ a failed, we must try Σ ∧ ¬a. However, this leads again to the

formula b ∧ ¬b and returns ⊥. As both branches have been tested and failed, the

main call returns ⊥, stating that this formula is unsatisfiable.

End of Example 2.3

As we can see, choices are needed in order to solve the formula, those can be made using

heuristics. Those heuristics can make a huge difference in term of computation needed to obtain

a solution as shown in the next Example.

Example 2.4: Branching simplification Let us suppose that we want to solve

the formula Σ = (a ∨ Σ′) ∧ (¬a ∨ Σ′), a /∈ var(Σ′). We can easily see that a

has no impact on the satifiability of Σ. However, let us now suppose that Σ =

(a∨Σ′)∧ (¬a∨Σ′′), var(Σ′)∩ var(Σ′′) = ∅, a /∈ var(Σ′), a /∈ var(Σ′′), branching on

a simplifies the formula.

End of Example 2.4
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Different heuristics are possible to select the variable. Static heuristics are one of those.

They create an order on variables that never changes during the search procedure. It can be

based on the occurrence of a given literal on the initial formula, or the size of the clauses in which

the literal appears or any other information. They can be useful if the person coding the order

has a good knowledge of the formula that needs to be solved. However, static heuristics are not

widely used anymore as per definition, they can not evolve during the search and therefore can

not use any information that could have been discovered during the search.

Another class of heuristics is based on look-ahead and is very useful on random formulæ..

This class of heuristic computes the impact of choosing the literal x by computing Σ|x. Through

this computation, some literals l0, . . . , li are propagated. The impact of x needs to be combined

with the impact of ¬x in order to create a well-balanced tree. As both Σ|x and Σ|¬x are

computed, this heuristic provides as side effect the creation of unit clauses. Indeed, if lα is

propagated by both x (Σ ∧ x |= lα) and ¬x (Σ ∧ ¬x |= lα), it is possible to conclude that

Σ |= lα [Le Berre, 2001]. One instantiation of look-ahead heuristic is proposed by the author

of [Freeman, 1995]. The number of reduced free variables is used as impact factor Ix. The

combination of the impact factors Ix and I¬x is done by the formula 1024×Ix×I¬x+Ix+I¬x.

Example 2.5: Look-ahead Let us define Σ by:

a ∨ c ¬a ∨ c

¬a ∨ ¬c ∨ b ¬d ∨ e ∨ g

According to the formulae provided in [Freeman, 1995], Ia is 2 as Σ ∧ a |= c, b, I¬a
is 1 as Σ∧¬a |= c, Id is 0, I¬d is 0. The combination of the impact factor gives 2051

for the variable a and 0 for d. Using such heuristic, between a and d, the algorithm

choose a as branching variable.

End of Example 2.5

A second instantiation of the look-ahead heuristic is proposed by the author of [Li, 1999].

Given a formula Σ, Σ|x will simplify some clauses to binary clauses (for instance (a∨b∨¬x)|x =

a ∨ b). The set of such simplified clauses is Sx. We also define Nn
a as the number of clauses of

the form x1 ∨ . . .∨ xn ∨ a in Σ. The score of a variable is defined by s(x) inspired by [Freeman,

1995], shown in the following equation where C is some constant.

s(x) = 1024× w(x)× w(¬x) + w(x) + w(¬x) + 1

w(x) =
∑

(u∨v)∈Sx

f(¬u) + f(¬v)

f(x) =

 N 2
x if N 2

x > C∑
i

52−rN i
x otherwise

A third instantiation of the look-ahead heuristic is proposed by the authors of [Dubois and

Dequen, 2001]. The score obtained for the variable x is obtained from the following formula:

h(x, i) =


∑

(u∨v)∈Sx

h(¬u, i+ 1)h(¬v, i+ 1) if i < M∑
(u∨v)∈Sx

(2N 1
¬u +N 2

¬u)(2N 1
¬v +N 2

¬v) otherwise
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2.1.3 Local search

Next to complete algorithms exist a great number of incomplete algorithms. Many of those use

the local search schema. The main difference with complete algorithm is that almost every local

search algorithm is not able to prove the unsatisfiability of a formula. During the computation,

the algorithm tries to generate a model for the formula through an instantiation vector.

A schema for local search is provided in [Hentenryck and Michel, 2009] and depicted in

Algorithm 2.2. First, an instantiation vector −→v is generated. Then, as long as −→v does not

provide a model, it is refined by the following instructions. A set N of candidates are generated

by applying a modification on −→v . This set is called the neighbours of −→v . From N , the

algorithm removes some values to obtain the set V of “valid” neighbours. Here, valid designates

assignations vectors that do not break some predefined rules. Finally, from V, a new candidate

is selected. As the completion of the algorithm is not guarantee, a limit m on the number of

tries is usually enforced.

Algorithm 2.2: general local search schema
Input : Σ a Boolean formula in conjunctive normal form

Input : m the maximum number of iteration allowed

Output: −→v a vector of instantiation

1 begin

2 Generate initial instantiation vector −→v ;

3 i← 0 ;

4 while i < m ∧ Σ is not satisfied by −→v do

5 Generate set of instantiation vector N from −→v ;

6 Create V by filtering vectors from N ;

7
−→v ← best candidate from V ;

8 i← 1 + i ;

9 done

10 end

Heuristics have been defined for each of the important step of local search algorithm (initial

generation, neighbours generation, filter and candidate selection). Some of those are well known

even outside the local search community. For instance, the taboo search [Glover, 1989] can be

used as filter heuristic. In order to be valid, a potential candidate is forbidden to have been used

as one of the n previously selected value. The neighbours generation can be done by swapping

the value of some selected variables. Those variables can be selected according to the ‘most

violating’ principle: for each clause C unsatisfied, increase a counter of every variable used in

C. The variable used as candidate are those with the highest value.

More information about local search algorithms can be found in [Kautz et al., 2009].

2.1.4 Conflict driven clause learning

The general idea behind conflict driven clause learning (CDCL for short) is to increase the

power of the DLL procedure by the explicit use of the ⊗R operator. Whenever a conflict rises,

it means that there are two clauses C ∨ x and C ′ ∨¬x that are both unsatisfied. We can apply
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the resolution operator on those clauses to obtain a new clause C ∨ C ′ (we call this clause the

reason) that helps us to avoid the conflict in the future. This conflict is avoided by reverting

decisions that were made and lead to the conflict. We call this reversion of decision backjumping

or non-chronological backtracking .

Moreover, in order to improve the practical efficiency, restarts are made [Gomes et al., 2000].

Finally, the number of generated clause rises and slows down the algorithm. Therefore, those

can be deleted according to a given periodicity.

The DLL procedure was improved by the help of non-chronological backtracking in relsat

[Bayardo and Schrag, 1997]. The grasp solver [Marques-Silva and Sakallah, 1997] introduced

the concept of learnt clauses. Based on those work, the solver chaff introduced the watched

literals. Finally, the MiniSat solver used those technique to obtain the well known and com-

petitive solver widely used.

The main changes comparing to the DLL procedure is the generation of the learnt clauses,

their deletion, backjumping and restarts. As the backjumping are performed because of the

reasons and the reason is a reformulation of elements present in the initial formula, introducing

them does not change the completeness of the algorithm. However, the addition of restarts

and deletion of reasons might lead to an incomplete algorithm, depending on the periodicity of

those actions. If the periodicity of both of those actions is random or constant, the resulting

algorithm is not complete as it might return to its initial state. But if the periodicity of one

of those action is increasing, we keep the completeness of the algorithm as explained in the

following paragraphs.

Let us suppose that the algorithm has its nth restart after xn events, an event being a

conflict, a second or assignation. If the sequence of xi, i ∈ N is crescent, there is a j such that

xj is greater than the number of events needed to solve the formula.

Now, let us suppose that the algorithm has its nth reasons deletion after xn events and rn

being the number of reasons left before the deletion of some reasons. If the sequence ri, i ∈ N
is crescent, there is a value j such that rj is greater than the number of possible reasons. If

every reason is generated, we find either a solution or an empty reason.

2.2 CDCL in-depth

The CDCL algorithm is explained in detail in this section. As the complete algorithm is too big

to be explained at once, each main phase has its own description. As some data structures are

used through the different parts, a glossary explaining each of such data structures is present

at page 44. However, in order to ease the reading, each time a new variable is used, a short

description is made.

The problem that we are trying to solve is to find either a complete instantiation such that

the formula is evaluated to >, or prove that no such instantiation exists. Algorithm 2.3 is the

result from years of research. Let us explain it step by step. The main idea is the following: as

long as no conflict appears, we assign a truth value to a literal (line 11). From this assignation,

values for other variables can be deduced through the unit propagation (line 4). Let us recall

that DLL was already using unit propagation (Alg. 2.1, line 3, page 13). Whenever a conflict is

detected – every literal of a clause has been assigned and the clause is unsatisfied –, an analysis
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of the conflict is performed (line 6). This analysis provides us a new clause representing the

cause of the conflict that is added to the set of new clauses (line 9). This new clause can be

referred to as nogood or learnt clause. However, the analysis algorithm may generate a clause

that can be simplified. Therefore, an attempt is made to simplify the clause. (line 7). Once the

simplification process is made, the algorithm reverts some of its state and modifies it in order

to avoid this last conflict and continues the search (line 8). A clause management mechanism

can be applied as the size of the set of new clauses has an effect on the speed of the algorithm

(line 13). Finally, the evaluation of the restart condition is made (line 14). If the condition is

evaluated to >, the algorithm performs a backjump to the root of the search tree.

There are two possible conditions leading to the termination of the algorithm. The first is

whenever every variable has been assigned and no clause is left unsatisfied, giving a solution to

the given problem. The second is when the clause generated from the conflict analysis is the

empty clause, proving that the given problem is unsatisfiable.

Algorithm 2.3: CDCL scketch algorithm

Input : A CNF formula Σ;

Output: > if Σ is satisfiable; ⊥ if Σ is unsatisfiable

Data: unsatCls: an unsatified clause

Data: confCls: a clause representing a conflict

Data: end: a Boolean, > if a solution has been found, ⊥ otherwise

1 begin

2 end ← ⊥;

3 while ¬end do

4 Propagations (Alg. 2.7, page 28 );

5 if unsatCls 6= nil then

6 Create confCls (Alg. 2.8, page 32);

7 Simplify confCls (Alg. 2.9, page 36);

8 Backtracking (Alg. 2.10, page 37);

9 Process confCls (Alg. 2.11, page 39) ;

10 else

11 Branching (Alg. 2.6, page 25);

12 fi

13 Clause database management;

14 Restart condition evaluation;

15 done

16 end

Now that the general outline of the algorithm has been explained, the details are shown in

the following sections.

2.2.1 Branching

Let us begin our in-depth explanation with the branching algorithm and heuristics. This is

done in two steps. First, we have to select the variable that will be assigned, then we have to

select the value that will be assigned. We have to point out that this element of the solver is
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more important for the satisfiable formulas. Indeed, when a formula is satisfiable, it usually

has more than one model where the value of some of the variables are not important. If the

solver branches on one of those variables, the problem might not be simplified and therefore,

one could argue that this time was wasted (as shown in Example 2.4).

Once a branch is created, a variable is selected and from this selection, different variables can

be assigned. For each of those variable, we define their level. The level of the search process is

the current number of active decision. A decision is said to be active if it has not been reverted

through backtrack. The level of a decision variable is the level of the search process +1. The

level of a propagated variable is the level of the last decision variable. In our algorithms, the

array varLevel stores the level for each variable.

Example 2.6: Variable level Let us suppose that we want to solve the formula

Σ = (a ∨ b) ∧ (a ∨ ¬b) ∧ (¬b ∨ ¬a). The initial level of the search process is 0 as

no choices were made. Let us now suppose that the first decision made is b = >.

The level of b is 1. From this assignment, the value of b can not be deduce as a

conflict appears: a ∨ ¬b and ¬b ∨ ¬a. Therefore, the search process needs to cancel

the decision b = >. If the next decision is b = ⊥, the level of b is set once more to

1. From this assignation, the search process can deduce the value of a to >. a has

now the same level of b, the last decision variable: 1.

End of Example 2.6

Let us now review some heuristics for the variable and value selection.

Variable selection

Different heuristics have been proposed throughout the years. Those can be divided in two

categories: look-ahead based (see 14) and activity based.

Activity based heuristics may use the information from the initial formula, but can also use

the information discovered during the search. Using this, the solver tries to select the most

important variable at the current state of the search.

One of the most well known heuristic for CDCL solver is the Variable State Independent,

Decaying Sum (VSIDS) proposed first in [Moskewicz et al., 2001] and revisited many times

since. This idea is based on the fact that variables appearing often in the last conflicts are

part of a ‘difficult’ search space. By intensifying the search on such space instead of wandering

around, the algorithm can have better performance.

Initially, each variable has a given score. Whenever a conflict is found during the search,

we evaluate which variables are part of the reason of this conflict. For each of those variables,

their related score is incremented as depicted in Algorithm 2.4. In order to favour the most

recent variables, the incrementation value increases after each conflict. In order to avoid prob-

lem with the floating number representation, those are contained under e100. Then, when a

variable selection has to be performed, the algorithm retrieves the variable with the highest

value (Algorithm 2.6, line 11). To have an easy access to the variable with the highest value, a

heap vsidsHeap is used.
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Figure 2.2: Evolution of the VSIDS value for a variable during 38298 conflicts for the instance

manol-pipe-c9
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Figure 2.3: Sorted VSIDS value for the first 500 hundreds variables after 38298 conflicts for the

instance manol-pipe-c9
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Figure 2.2 shows the evolution of the VSIDS value of a variable after the 38298 conflicts

needed by an implementation to solve the instance manol-pipe-c9.1 We can clearly see that

regularly, the value is lowered to keep the values in a manageable range. The stall that can be

observed are due to the fact that the variable did not appeared in the conflict resolution. Figure

2.3 shows the values for 500 variables, sorted according to the VSIDS value. We can clearly

see that out of those 500 variables, only a few have a high score, allowing to discriminate them

easily. Those results are not bounded to the given instance but can be seen in most structured

instances.

A second variable selection heuristic is proposed by the authors of [Goldberg and Novikov,

2007]. They use one counter for each variable. Whenever a conflict rises, the value of the

counter is incremented by 1 for each literal appearing in each clause responsible for the conflict.

Periodically, values are divided by 4. The idea behind this is the same as for the VSIDS: having

a high score for variables that have recently appeared in conflicts. The division allows the

“aging” process. However, they do not select the unassigned variable with the highest counter.

From the set of generated clause, they take the most recent which is not satisfied. From this

clause C, the unassigned variable with the highest counter is selected. If there is no generated

clause or if every generated clause is satisfied, the chosen variable is simply the one with the

highest counter.

A third variable selection algorithm is to randomly select a variable according to a given

frequency (Algorithm 2.6, line 3).2 When no random choice is made, another strategy -

deterministic- is needed. This allows the solver to “wander” with this entropy, hoping that

this is beneficial for the search.

Algorithm 2.4: CDCL:vsids:update
Input : var: the variable whose vsids activity must be updated

Input : activity: the array containing the VSIDS score for each variable

Input : vsidsHeap: a heap containing the variables, sorted according to their VSIDS

score

Input : inc: the increment value for the update

1 begin

2 activity[var] ← activity[var] + inc;

3 if var is in vsidsHeap then

4 update position of var in vsidsHeap;

5 fi

6 if activity[var] > e100 then

7 foreach var of the instance do

8 activity[var] ← activity[var] ×e−100;

9 done

10 fi

11 end

1Information about this instance can be found at http://www.cril.univ-artois.fr/SAT09/results/bench.

php?idev=29&idbench=71771
2It is interesting to note that the latest MiniSat implementation has a default frequency of 0. Therefore

never making random choices

http://www.cril.univ-artois.fr/SAT09/results/bench.php?idev=29&idbench=71771
http://www.cril.univ-artois.fr/SAT09/results/bench.php?idev=29&idbench=71771
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Value selection

Once the variable is selected, different strategies are available for the value selection. A common

heuristic used is the following. We define polarity as an array of Boolean representing for each

variable the next value that should be assigned. Whenever a backtrack is performed, the value

that was assigned to each variable we are reverting is stored in polarity (See Algorithm 2.10,

line 4). That way, when we have to choose a new value for the variable, the last value used is

chosen [Pipatsrisawat and Darwiche, 2007]. The reason behind this, is that we stay as close as

possible from the last partial instantiation after a restart. Otherwise, the search space could

vary a lot, making the learnt clause less relevant. This heuristic is particularly good with

satisfiable formulae, less with unsatisfiable ones.

As for the initialization, there are different possibilities: assign every value to >, ⊥, or

even randomly. A reasonable choice is to assign to ⊥. The reason is that many Boolean

representations of constraints lead to creation of Boolean variable where only one of them must

be true. (See next example)

Example 2.7: Constraint modelling Imagine that we are trying to solve the

map colouring problem. This problem consists in assigning one of four colours to

a country on a map, and no two country sharing a border are allowed to have the

same colour. For each of the country, four values are possible, but only one can be

selected. A common modelling for such constraint where only one value out of n

can be selected is the following. Let V = {v1, . . . , vn} the set of possible values. n

Boolean variables are created, where xi is true if and only if the value vi has been

selected. The clauses needed to represent this constraint are the following:

C = x1 ∨ . . . ∨ xn
∀nj=1∀nk=j+1 C(j,k) = ¬xj ∨ ¬xk

C states that at least one value must be selected. The clauses C(j,k) are needed to

limit to only one variable assigned to >. Therefore, if only one of the variables can

be assigned to >, it means that every other variable has to be assigned to ⊥.

End of Example 2.7

Again, in [Goldberg and Novikov, 2007], the authors proposed another technique. Once

their literal is chosen (see page 21), they assign it to ⊥. This comes from the fail first principle

[Haralick and Elliott, 1980]. If no learnt clause was found, their heuristics uses a function n(x)

where x is a literal. This function is defined as the sum of number of binary clauses using the

literal x, and for each literal y appearing with x in a binary clause, the number of binary clauses

using y. The value selected is the one with the highest value between n(x) and n(¬x).

During the search, the algorithm needs to know the variable that has been assigned and

the order in which they have been assigned. Three kind of operations are needed on this data

structure. First, variables must be added to this structure quite often. Therefore, this operation

should be executed in constant time. The second operation is to look up the content to know

the nth assigned variable. This operation should also be performed in constant time. And

finally, the last operation needed is the removal of variables. As the algorithm removes first the
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last assigned variables, the data structure used is a stack implemented using an array trail as

depicted in Figure 2.4. No dynamic resizeable structure is needed as the number of variables is

known at the start of the search.

This trail is filled during the assignation algorithm (Algorithm 2.5) with literals assigned

to ⊥. Variables corresponding to the literals stored in indexes lower than head are the one that

are already propagated. Those that are stored at position lower than top are the ones that

have been assigned but not yet propagated.

trail

0 head top

literals�propagated literals�to�propagate

nbVar

Figure 2.4: Invariant for the trail

Algorithm 2.5: CDCL:assignation
Input : lit: the literal that must be true

Input : c: the clause that needs lit to be true

Input : varLevel: the level of each variable if the variable is assigned

Input : reason: the array containing for each variable v the clause that forced the

value of v

Data: v: a variable

1 begin

2 trail[top] ← ¬lit;

3 top ← top+1;

4 v ← variable of lit;

5 assign[v] ← sign of lit;

6 if c 6= nil then

7 reason[v] ← c;

8 fi

9 varLevel[v] ← level;

10 end

Later, in the conflict analysis (Algorithm 2.8), the reason of an assignation –the clause

that needed such assignation– is needed. Those reasons are stored in the array reason. If an

arbitrary choice is made, that is if it was made at branching, there is no such reason. To point

out that there is no reason, the value nil is set to the corresponding cell of reason (Algorithm

2.6, line 17).

In order to depict the content of trail, varLevel and reason, the following schema is used:

〈x0@l0C0, x1@l1C1, . . ., xn@lnCn〉. xi represents the i-th literal assigned to ⊥ (trail[i]), li
its level (varLevel[variable of trail[i]]) and Ci its reason (reason[variable of trail[i]]). A

graphical depiction, called implication graph, can also be proposed. The directed graph has

as vertex the literals assigned to >. Edges can have multiple sources but only one destination

and represent a clause C that was used to propagate. The destination is the literal propagated

and the sources are the literals evaluated to ⊥ in C. The level of the variable is represented by

dotted lines that partition the space, with an indication of the level at the bottom.
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Example 2.8: Solver state depiction Let the instance be:

C1 = ¬a ∨ b C2 = ¬b ∨ d,

C3 = ¬c ∨ e ∨ ¬b ∨ ¬d

Let us suppose that a = > was the first decision. This implies through C1 that

b = > which in turns implies through C2 that d = >. The second decision is c = >.

This decision and the previous implication implies through C3 that e = >.

As a = > is the first decision, the level of a is 1. So does also every literal implied

before the next decision. Those are b and d. c = > being the second decision, c has

2 as level. e is here the only literal implied, through C3, therefore it also has 2 as

level.

Now that the information (level, reason and assignations) are known, we can depict

the trail. Let us recall that in the trail appear the literals assigned to ⊥. In our

example, the trail is 〈¬a@1nil, ¬b@1C1, ¬d@1C2, ¬c@2nil, ¬e@2C3〉.

a

1

C1

b

2

C2

d

C3 e

c

Figure 2.5: Implication graph of the instance presented in Example 2.8

The implication graph is shown in Figure 2.5. We can see the partition of space

with the dotted line, representing the different levels. As C3 is of size 4, there are

three sources that leads to e = >. Decision literals present at the top of the graph

(a and c) have no incoming edges.

End of Example 2.8

The complete algorithm used for the variable and value selection is depicted in Algorithm

2.6.

2.2.2 Propagations

The propagation algorithm has the following purpose: from a set of variables that have been

assigned, find every value that needs to be forced in order for clauses to be satisfied. And if a

clause becomes unsatisfied, return it in order to be able to analyse the reason of this conflict.

This unsatisfied clause is called the conflict (or conflicting) clause.

This algorithm needs to be fast as a large amount of the computation happens in this code.

Therefore, careful coding has been made in the different solvers in order to make the program

as fast as possible.

For each newly assigned variable, the algorithm has to check that no clause containing this

literal becomes unsatisfied. It checks also if it can deduce the value of some literals.
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Algorithm 2.6: CDCL:branching
Input : freq: the frequency on which we want a random variable choice

Input : polarity: the array containing the next truth value that needs to be selected

Input : level: the current level of the search

Output: var: the selected variable, if any

1 begin

2 var ← undefined ;

3 if random() < freq ∧ vsidsHeap 6= ∅ then

4 var ← random element from vsidsHeap;

5 remove var from vsidsHeap;

6 fi

7 while ¬ end ∧ (var ≡ undefined ∨ var is assigned) do

8 if vsidsHeap ≡ ∅ then

9 end ← >;

10 else

11 var ← top element from vsidsHeap;

12 remove var from vsidsHeap;

13 fi

14 done

15 if ¬end then

16 level ← level+1;

17 Assign var with polarity[var] as sign and with no reason (Alg. 2.5, page 23) ;

18 fi

19 end
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Occurence list Initially, in classic DLL solvers, this was done by checking every clause con-

taining the opposite of the propagated literal. To do this, each literal has a list containing every

clause using it. To check those clauses, the search process has to through every literal of the

clause to see if there were more than 1 remaining unassigned literal. Therefore, each literal l

needs an occurence list: a list containing every clause using l. This implies that a clause C

containing n literals is present in n occurence lists. An example of occurence list is depicted in

Figure 2.6(a)

Trie data structure The authors of [Zhang and Stickel, 2000] proposed the trie data struc-

ture in order to do this more efficiently. A trie data structure is a data structure that does

not keep the list of every clause using a given literal. The idea is that using trie data struc-

ture, instead of having the full knowledge of a clause (satisfied, unsatisfied, unary, . . . ), the

algorithm accepts to loose the knowledge about the satisfiability of the clause, but not on the

unsatisfiability nor on a clause becoming unary. To do this, only two literals are needed. The

condition on those two literal (h and t) is that they either have to be unassigned or assigned to

>. If one of them is assigned to ⊥, a new one is needed. If no new one is found, the clause is

unary if the other literal is not assigned or the clause is unsatisfied if both are assigned to ⊥.

In their implementation, the authors of [Zhang and Stickel, 2000] are using two indices ih
and it to find the literals h and t. Initialy, h is the first literal of the clause and therefore

ih = 0, and t is the last literal of the clause and therefore it = n − 1. When h is assigned to

⊥, the algorithm increments ih until the ih-th literal is unassigned or assigned to >. When t is

assigned to ⊥, the algorithm decrement it until the it-th literal is unassigned or assigned to >.

If it = ih, the clause is unary and if it > ih, the clause is unassigned.

Watched Literals Lazy data structures are an improvement of trie data structures, by

[Moskewicz et al., 2001], with the watched literals structure. Instead of having two indices

representing the position of the literals h and t, those will be moved around such that h is

the first literal and t is the second. This simple idea has great benefits during backtracking.

Whereas in the implementation of [Zhang and Stickel, 2000] need to modify the value of ih and

it when backtracking, this new structure does not, making the backtrack much faster.

The lazy data structure’s principle provide an invariant for unsatisfied clauses. Let L be the

literals appearing in a clause C, the literals candidates are a subsetW ⊆ L. W contains at least

one unassigned literal or a literal assigned to >. If this invariant does not hold, a conflict has

appeared as the clause is unsatisfied. The question that holds is: regarding the operations the

algorithm has to perform (propagation, backtrack, conflict detection) what would the preferable

size of W be? Whenever a watched literal is assigned to ⊥ and no literal of the clause has been

assigned to >, a new watch needs to be looked up, no matter the size of W. If we use only 1

watched literal, whenever a new watch is needed, the algorithm looks up for a new watch and

also checks that no propagation is needed. But using only 1 watched literal leads to miss some

conflicts (see Example 2.9). If 2 literals are watched in the clause and a new watch is needed,

we might be incapable to find one that has not yet been assigned or assigned to ⊥. In such case,

the second watched literal is the literal to propagate. If we use more than 2 literals, special

cases are needed for binary clauses and it also increases the number of clause being watched

per literal. For those reasons, using 2 literals seems like a reasonable choice.
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Example 2.9: 1 watched literal Let Σ be C1∧C2∧ . . .∧Cn with C1 = a∨ b∨ c,
C2 = ¬a ∨ b ∨ c, and the variables a, b and c do not appear in Ci, 2 ≤ i ≤ n. The

watcher of a clause is its first literal. Thus, we have for each literal a set of clauses

being watched by said literal.

a→ {C1} ¬a→ {C2}
b→ ∅ ¬b→ ∅
c→ ∅ ¬c→ ∅
. . .

If the first decision of the solver is to assign b = ⊥, it does not go through every

clause containing b since it uses lazy data structure. If the second decision is to

assign c = ⊥, we can see that a conflict rises through the clauses C1 and C2.

However, the solver is not able to recognise it since it does not go through those

clauses. Therefore, as long as the conflict is not detected, the solver tries to extend

a partial assignation that can not be part of a model.

End of Example 2.9

For each literal l, a list watch[l] is made referencing every clause watching this literal.

Different structures have been proposed and implemented but there is mainly two different

variations in the literature [Biere, 2008, Eén and Sörensson, 2004] Both provide access to the

clauses watching a given literal l through a vector indexed by said literal. The first one, depicted

in Figure 2.6(b) uses an array containing a reference to clauses using the indexing literal. It

can also contain a second literal for each referenced clauses. This implementation provides fast

iteration as the reference to the clauses are contiguous. The insertion of a clause can be done

in amortized constant time by adding the clause at the end of the vector. However, removing

a clause without changing the order is done in linear time to the number of clauses watching

the literal as they have to be shifted to avoid an “empty” cell.

The second version, depicted in Figure 2.6(c) uses a linked list where the cell elements are

the clause themselves. This means that in order to look at any information of the clause, a

pointer dereference is needed. For this implementation, iterating through the clauses may be

slower as in order to obtain any information to the next clause, we must ‘follow’ a reference.

Adding an element to the end of the list can be done in constant time using a dedicated pointer

to the last element of the list. Finally, the removal of a clause can be done in constant time as we

want to remove a clause when we are iterating through the list, therefore having a pointer to the

previous element. By modifying the ‘next’ pointer of the previous element, we can effectively

remove the clause without changing the order in constant time.

Further information about watchers, or occurrence lists, can be found in [Biere, 2008].

The propagation algorithm is depicted in Algorithm 2.7. Whenever a truth assignment has

been made, we can consider it as a literal l set to >. Therefore, the opposite literal ¬l can not

watch clauses any more, forcing us to find new watches for those clauses. When looking for a

new watch, two different outcomes can appear. First, we find a literal that can be watched. In

this case, the invariant of watched clause stays true (line 15). The second appears if no other

literal can be watched. In that case we either have found a literal that must be propagated
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Algorithm 2.7: CDCL:propagation
Input : trail: the array containing every literal that must be/have been propagated

Input : top: integer representing the position of the last literal in trail +1

Input : head: integer representing the position in trail of the first literal that has not

been propagated yet

Input : watch: array providing access for every literal to the list of clauses being

watched

Input : assign: array providing for each variable its truth value or undefined

Data: lit, lTmp, nl: literals

Data: w: a cell of a linked list containing as data a clause

Data: c: a clause

1 begin

2 while head < top do

3 lit ← trail[head] ;

4 w ← watch[lit];

5 while w 6= nil do

6 c ← w.data;

7 lTmp ← other watch in c ;

8 nl ← find new watch in c ;

9 if nl ≡ undefined ∧ assign[lTmp] ≡ undefined then

10 Assign lTmp because of c (Alg. 2.5, page 23) ;

11 elif nl ≡ undefined ∧ assign[lTmp] ≡ ⊥ then

12 unsatCls ← c ;

13 top ← head;

14 elif nl 6= undefined then

15 remove w from watch[lit];

16 add c in watch[nl];

17 fi

18 w ← w.next ;

19 done

20 head ← head +1;

21 done

22 end
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MiniSat

a

¬a

b

¬b

c

¬c

d

¬d

a b d

a ¬c b

b ¬c

¬b ¬d ¬a ¬c

(c) Watcher structure à la picosat

Figure 2.6: watcher structure for Σ = C1 ∧C2 ∧C3 ∧C4, where C1 = a∨ b∨ d, C2 = a∨¬c∨ b,
C3 = b ∨ ¬c and C4 = ¬b ∨ ¬d ∨ ¬a ∨ ¬c

in order for the clause to be satisfied (line 10). Or, every literal appearing in the clause are

evaluated to ⊥, leaving an unsatisfied conflicting clause (line 12).

The assignation algorithm is quite simple. First, the falsified literal needing propagation is

added to the trail and the value of top is increased correspondingly. After that, the assigned

value of the variable v is set in assign and the reason of the assignation, if any, is put in

reason. Finally, the level at which the variable was assigned is saved in varLevel.

Example 2.10: Propagation example Let a, b, c, d, e, f, g, h, i be variables and

C the following set of clauses:

C1 = ¬a ∨ b C2 = ¬a ∨ d,

C3 = ¬e ∨ g C4 = ¬g ∨ f ∨ ¬b,
C5 = ¬f ∨ i C6 = ¬f ∨ ¬i ∨ ¬d,

C7 = ¬h ∨ c

And the list of watches is the following:
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watch[a] = nil watch[¬a] = C1, C2

watch[b] = C1 watch[¬b] = nil

watch[c] = C7 watch[¬c] = nil

watch[d] = C2 watch[¬d] = nil

watch[e] = nil watch[¬e] = C3

watch[f ] = C4 watch[¬f ] = C5, C6

watch[g] = C3 watch[¬g] = C4

watch[h] = nil watch[¬h] = C7

watch[i] = C5 watch[¬i] = C6

Suppose that the first decision variable chosen is a. ¬a is added to the trail, the level

of variable a is 1 and there is no clause that leads to this choice. These information

are depicted using the following schema 〈x@yr〉, where x is the literal present in

trail, y the level of the variable and r is the clause that leads to the propagation,

or nil if there was none. In our example, we have 〈¬a@1nil〉.

The propagation algorithm examines clauses watched by ¬a at line 3. Those are

C1 and C2. For C1, the other watch obtained at line 7 is b. As both ¬a and b are

watched, no new watch can be found at line 8. b not being assigned, it is assigned at

line 10, obtaining 〈¬a@1nil,¬b@1C1〉. After that, the next clause considered (line

18) is C2. As b for C1, d is assigned because of C2.

As every clause watched by ¬a have been processed, the next literal to propagate

is examined: ¬b. However, no clause is watched by it. Finally, ¬d is processed but

does not watch any clause either.

End of Example 2.10

2.2.3 Conflict analysis

The main idea behind the conflict analysis in CDCL solver is to create a clause C helpful for

the search by providing a way to avoid the same conflict after a backtrack or restart.

Simple implementation

One simple way to create a clause that provides such benefits is to use the negation of the

decision literals. However, this simple method have a few drawbacks. The first one is the fact

that a conflict is not necessary dependent of every choice made since the first decision level.

The second drawback is that the generated clause does not provide useful information for the

backtracking process as the latest decision is the only decision that can be reverted.

Example 2.11: Drawback of the simple implementation Let the set of

variables be xi, 0 ≤ i < 10, set of clauses be C = {C1 =
∨10
i=0 xi, C2 = ¬x4 ∨ ¬x5 ∨

¬x6, C3 = ¬x4∨¬x5∨x6}, and the current interpretation be xj@j, 0 ≤ j < 6. Given

the interpretation, a conflict occurs as C2 implies ¬x6 and C3 implies x6. Using the

simple implementation, a new clause C4 is created of the form
∨6
i=0 ¬xi. However,

the generated clause C4 is too long as ¬x4 ∨ ¬x5 would have been sufficient.
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Now, let the set of variables be x0, x1, x2, x3, the set of clauses be C = {C1 ≡
¬x0∨¬x2∨¬x3, C2 ≡ ¬x2∨x3}, and the current interpretation be x0@0, x1@1, x2@2.

Given the interpretation, a conflict occurs as C1 implies ¬x3 and C2 implies x3.

Using the simple implementation, a new clause C3 ≡ ¬x0 ∨¬x1 ∨¬x2 is generated.

However, if the clause C ′3 = ¬x0∨¬x2 would have been generated, the solving process

could have reverted the decision x3 and x1 as none of those decision variable are

present in C ′3

End of Example 2.11

Unique implication point

Let us first define the concept of dominator. This concept is based on dominator in the im-

plication graph: let xa and xb be two vertices in an implication graph G, the assignation level

of xa being d and xc the vertex representing the decision variable of level d. xa is called the

dominator of xb if every path from xc to xb goes through xa. When a conflict rises, the vertices

x and ¬x appear in the implication graph at level d, we can compute the set D of dominators

on the vertices x and ¬x. Such set can not be empty as it contains at least the last decision

variable. The elements of this set are called unique implication point (or UIP). Those were

used in [Marques-Silva and Sakallah, 1997]. By using the resolution operator on the conflict

vertices and their antecedents, it is possible to obtain a clause containing only one literal, a

unique implication point. As there might be multiple UIP, [Zhang et al., 2001] pointed out

that CDCL solver may stop at the first UIP encountered starting from the conflict. Moreover,

in [Audemard et al., 2008], the authors prove that the first UIP provides the highest level to

backjump to.

Example 2.12: Unique implication point Let a,b,c,d,e,f ,g,h and i be variables

and Σ the following set of clauses:

C1 = ¬a ∨ b C2 = ¬c ∨ d,

C3 = ¬b ∨ ¬d ∨ e C4 = ¬e ∨ g,

C5 = ¬g ∨ f C6 = ¬g ∨ ¬f ∨ ¬h,

C7 = ¬h ∨ i C8 = ¬h ∨ ¬i

and the trail be 〈¬a@1nil, ¬b@1C1, ¬c@2nil, ¬d@2C2, ¬e@2C3, ¬g@2C4, ¬f@2C5,

¬h@2C6, ¬i@2C7〉 and the conflicting clause being C8 on the literal ¬i. The related

implication graph is depicted in Figure 2.7. In this situation, there are multiple

UIP: c, d, e and h. As h is the nearest UIP from the conflict, it is called the first

UIP.

End of Example 2.12

Actual implementation

With the conflict analysis, we want to be able to deduce when was made the affectation leading

to the current conflict. To do this, we generate a clause from the current conflict using the
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Figure 2.7: Implication graph depicting UIP c, d, e and h

Algorithm 2.8: CDCL:conflict:analysis
Input : varLevel: the level of each variable if the variable is assigned

Data: i: the index to the last unvisited of trail

Data: seen: a Boolean array over each variable

Data: n: the number of variables of the current level on which a resolution needs to be

performed

Data: v: a variable

Data: c: a clause

Data: lTmp: a literal

1 begin

2 n ← 0, c ← unsatCls, i ← top ;

3 initialize every element of seen to ⊥;

4 repeat

5 foreach lTmp in c do

6 v ← variable of lTmp;

7 update VSIDS for v (Alg. 2.4, page 21);

8 if ¬ seen[v] ∧ varLevel[v] > 0 then

9 seen[v] ← >;

10 if varLevel[v] ≡ level then

11 n←n+1;

12 else

13 add lTmp in confCls;

14 fi

15 fi

16 done

17 repeat decrement i until seen[variable of trail[i]]≡ >;

18 lTmp ← trail[i], v ← variable of lTmp;

19 c ← reason[v], i ← i−1, n ← n−1;

20 until n ≡ 0 ;

21 add ¬lTmp in confCls;

22 end
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resolution rule (defined in Equation 1.3, page 6) that holds only one variable v of the current

level. Using this, the solver can go back until v was unassigned and avoid the conflict.

The algorithm analysing the conflict is depicted in Algorithm 2.8. The idea behind this

algorithm is the following: from the conflicting clause, we create a new clause using the reso-

lution operator ⊗R. The resolution is applied on literals of the current level as our goal is to

have only one of those literals.

Example 2.13: Conflict clause analysis Let a, b, c, d and e be variables,

C1 = a ∨ d, C2 = b ∨ ¬d, C3 = ¬c ∨ a ∨ ¬b, C4 = ¬e ∨ ¬c ∨ ¬a. Let the assignment

be {e@1nil, c@2nil, ¬a@2C4, d@2C1, ¬b@2C3}. This assignment leads to a conflict

as ¬a implies d and ¬b implies ¬d. Therefore, the conflicting clause is C2. This

conflicting clause is used as starting point for the conflict analysis and resolutions

are performed until there is only one variable left from the current level, equal to 2.

R1 = C2 ⊗R C1 = a ∨ b
R2 = R1 ⊗R C3 = a ∨ ¬c
R3 = R2 ⊗R C3 = ¬e ∨ ¬c

End of Example 2.13

When parsing the clauses used to create our resolvent, two different cases can appear. On

one hand, if the literal is from a previous level, we may add it in our resolvent that we are

constructing. On the other hand, if the literal is from the current level, we have to put it aside

in a set called S. This set must contain only one element. If not, we remove the literal that has

been propagated last in chronological order from the set and continue to analyze by making a

resolution uppon said literal.

During Algorithm 2.8, we have to make sure to treat each variable at most once as we should

not add twice the same literal in the resolvent. To ensure this, we use the Boolean array seen

such that for a given variable v, seen[v] is true when we have processed v. Furthermore, S can

be implicit as we only need a value n from which we can derive its size. The content from S
can be deduced from the content of trail. Finally, the set of literals from previous level that

appears in our resolvent is stored in confCls.

The following invariants hold for the loop at line 4.

• I1: n +1 is the number of literals of current level that should appear in the result of the

resolutions.

• I2: confCls holds the literals of previous level that appear in the result of the resolutions.

• I3: lTmp is a literal of current level.

• I4: If ¬li is present in trail at position pi, pi < i and li is a literal of current level and

seen[variable of li] is >, then li is a literal that should be in the resolvent. There are n

such literals in trail.

• I5: Since there are n +1 missing literals in the resolvent, the last one is the opposite of

lTmp.
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When the condition at line 20 is false, there is only one missing literal since n = 0. The

algorithm is composed of two phases. The first starts with the loop at line 4 and adds to

confCls the literals of previous level. The second is starting at line 21 and adds a literal of the

current level.

Example 2.14: conflict analysis Let a, b, c, d, e, f, g, h, i be variables and C the

following set of clauses:

C1 = ¬a ∨ b C2 = ¬a ∨ d,

C3 = ¬e ∨ g C4 = ¬g ∨ ¬b ∨ f ,

C5 = ¬f ∨ i C6 = ¬d ∨ ¬f ∨ ¬i,
C7 = ¬h ∨ c

Let the trail be 〈¬a@1nil, ¬b@1C1, ¬d@1C2, ¬c@2nil, ¬e@3nil, ¬g@3C3, ¬f@3C4,

¬i@1C5〉 and C6 the unsatisfied clause. The corresponding implication graph is

depicted in Figure 2.8.
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Figure 2.8: Implication graph for the conflict in Example 2.14

c is initialized with C6 and i with the value 8. The first loop goes through the literals

of C6. Both ¬i and ¬f are from the current level. Therefore, n is incremented twice

and seen for those variables is set to >. ¬d is not from the current level, therefore

it is added in confCls. On line 17, i only needs to be decremented once to select

the variable i, and c is C5. At the end of the loop, n now equals 1.

For the second pass through the loop, both variables i and f were already seen and

there are no literal of previous level. No change is made neither to confCls nor

to n. On line 17, i is decremented once and f is selected. As n is decremented,

it is now equals to 0 and therefore, the condition on line 20 is >. The last line of

the algorithm adds the opposite of the last selected literal in c making it the clause

C8 = ¬f ∨ ¬d. As expected, C8 has only one literal of the current level.

End of Example 2.14

Clause simplification

When analysing the source of the conflict, the generated clause might be quite long. Different

techniques have been proposed to reduce the size of such generated clauses e.g. : [Sörensson

and Eén, 2005], [Sörensson and Biere, 2009]. They both use the self-subsuming scheme (see

page 6). Let us recall that a self-subsuming clause is a clause obtained by resolution of two

clauses and the resolvent subsumes one of the initial clauses.
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For each literal of the generated clause, we have to check if it can be safely removed. To

remove l safely, every literal of the reason of l must be contained in the generated clause or it

must be itself safely removed.

Throughout Algorithm 2.9, we consider that if seen[v] is assigned to >, it means that at

some point of the creation of the generated clause, we removed v it through the operator ⊗R.

The recursivity is implemented using a stack s where on top of it is the literal that we are

trying to check if it can be safely removed.

Example 2.15: simplification example Let us consider the following clauses:

C1 = ¬b ∨ d C2 = ¬d ∨ e,
C3 = ¬d ∨ ¬e ∨ i C4 = ¬k ∨ ¬f
C5 = ¬d ∨ ¬e ∨ ¬i ∨ ¬k ∨ f

and the trail 〈¬b@1nil, ¬d@1C1, ¬e@1C2, ¬i@1C3, a@2nil, ¬k@3nil, ¬f@3C5〉.
The corresponding implication graph is depicted in Figure 2.9. The conflicting

clause is C6 and the generated clause is C7 = C6 ⊗R C5 = ¬d ∨ ¬e ∨ ¬i ∨ ¬k. The

simplification algorithm tries to remove each of the literal of C7. First, ¬d was

assigned to ⊥ because of C1. Therefore, the algorithm examines the literals ¬b and

d. As ¬b has no reason, b ← ⊥ and the second literal of C1 is not checked. As a

result, ¬d can not be removed from C7.

b

1

C1

d

2

C2

e

C3 i

a

3

k

C5 f

C4

¬f

Figure 2.9: Implication graph for the conflict in Example 2.15

Next, we consider the second literal of C7, namely ¬e. It was assigned because of

C2. As the variable d has already been seen, we can deduce that ¬e can be removed

safely from C7. We obtain:

C ′7 = C7 ⊗R C2

= ¬d ∨ ¬i ∨ ¬k

The next literal to consider from the generated clause is ¬i, assigned because of C3.

From that clause, every literal has already been seen, stating that ¬i can also be

removed. We obtain:

C ′7 = (C3 ⊗R C2)⊗R C ′7
= (¬d ∨ ¬i)⊗R C ′7
= ¬d ∨ ¬k

Finally, the last literal to consider, ¬k has no reason, therefore can not be removed.
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Algorithm 2.9: CDCL:conflict:simplification
Data: p: The literal to check if it can be safely removed

Data: s: a stack of literals

Data: lit: a literal

Data: lTmp: a literal

Data: v: a variable

Data: c: a clause

Data: b: the Boolean stating that p can be safely removed

1 begin

2 foreach p in confCls do

3 add p in s ;

4 b ← > ;

5 while s is not empty ∧ b ≡ > do

6 lit ← top element of s;

7 remove top element from s;

8 c ← reason[variable of lit];

9 if c 6= nil then

10 foreach lTmp in c do

11 v ← variable of lTmp;

12 if ¬ seen[v] ∧ level of v > 0 ∧ b ≡ > then

13 if reason[v] 6= nil then

14 seen[v] ← >;

15 add lTmp in s;

16 else

17 revert modification on seen;

18 clear s;

19 b ← ⊥ ;

20 fi

21 fi

22 done

23 else

24 b ← ⊥;

25 fi

26 done

27 if b ≡ > then

28 remove p from confCls;

29 fi

30 done

31 end



2.2. CDCL IN-DEPTH 37

As we can see from our example, the simplification mechanism leads to the simpli-

fication of ¬d ∨ ¬e ∨ ¬i ∨ ¬k to ¬d ∨ ¬k.

End of Example 2.15

2.2.4 Non-chronological backtracking

After each conflict, we must revise the previous choices made to take into account the conflict

just discovered. This backjumping (or non-chronological backtracking) has as destination the

moment when the new clause should have been used to propagate a literal, effectively avoiding

the conflict.

Revising previous choices

When reverting previous choices, we need to update the following structures: assign, varLevel,

reason and trail related information. For those structures, we have to modify their value

corresponding to variables at a level higher than the destination level dstLevel. Those variables

are at the top of the trail and therefore, we may traverse it backwards until the variable at the

top of the trail is from the destination level. As for the occurrence list, no change is needed as

the watched literals may only become unassigned and unassigned literals are still valid.

Algorithm 2.10: CDCL:backtracking
Input : varLevel: the level of each variable if the variable is assigned

Input : dstLevel: the level we want to backtrack to

Data: v: a variable

Data: lTmp: a literal

1 begin

2 lTmp ← trail[top−1], v ← variable of lTmp;

3 while varLevel[v] > dstLevel do

4 polarity[v] ← assign[v];

5 assign[v] ← undefined;

6 varLevel[v] ←∞, reason[v] ← nil ;

7 top ← top−1, lTmp ← trail[top−1], v ← variable of lTmp;

8 done

9 end

Example 2.16: backjumping Let Σ be the following set of clauses:

C1 = ¬a ∨ b C2 = ¬c ∨ ¬b ∨ d,

C3 = ¬d ∨ e C4 = ¬f ∨ ¬d ∨ g
C5 = ¬g ∨ ¬e ∨ h C6 = ¬i ∨ j
C7 = ¬j ∨ k C8 = ¬b ∨ ¬e ∨ ¬j ∨ ¬k

the trail be 〈¬a@1nil, ¬b@1C1, ¬c@2nil, ¬d@2C2, ¬e@2C3, ¬f@3nil, ¬g@3C4,

¬h@3C5, ¬i@4nil, ¬j@4C6, ¬k@4C7〉 and the conflicting clause C8. The current
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Figure 2.10: Implication graph for the conflict in Example 2.16

state of the watch arrays is depicted at Table 2.2 and the related implication graph

at Figure 2.10.

watch[a] = nil watch[¬a] = C1

watch[b] = C1 watch[¬b] = nil

watch[c] = nil watch[¬c] = C2

watch[d] = C2 watch[¬d] = C3

watch[e] = C3 watch[¬e] = nil

watch[f ] = nil watch[¬f ] = C4

watch[g] = C4 watch[¬g] = C5

watch[h] = C5 watch[¬h] = nil

watch[i] = nil watch[¬i] = C6

watch[j] = C6 watch[¬j] = C7, C8

watch[k] = C7 watch[¬k] = C8

Table 2.2: Watchers for the Example 2.16

From this state, the solver learns the clause C9 = ¬b ∨ ¬e ∨ ¬j. We can see that

this clause uses only one literal of the current level: ¬j. The level to backjump to is

the second highest level of the clause (the first being the literal of the current level).

For C9, the second highest level is 2: the level of ¬e. The backtracking algorithm

will therefore cancel the decision taken after the second level and their propagated

literals. The trail will become 〈¬a@1nil, ¬b@1C1, ¬c@2nil, ¬d@2C2〉. We can see

that with the generated clause, we were able to ‘jump’ from the level 4 to level 2,

effectively skipping level 3. Concerning the watch, since a watched literal may be

unassigned variable, no change is needed to the structure after the backtrack.

Now, let us imagine that C8 = ¬j∨¬k. As result, the learnt clause is now C9 = ¬j.
As the clause is unary, there is no second highest level and therefore, the backjump

performed has as destination, the level 0.

End of Example 2.16
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Processing of new clause

Once a clause is generated, it is used at least once to revise a previous choice (see Section 2.2.4).

That generated clause must be added in a dedicated data structure, and the watches specified.

The algorithm is depicted in Algorithm 2.11.

Algorithm 2.11: CDCL:conflict:addingClause
Input : c: the clause that needs to be added

Input : generatedDB: the set of generated clauses

Data: lTmp1, lTmp2: literals

1 begin

2 add c to generatedDB;

3 let lTmp1 be the first watched literal ;

4 let lTmp2 be the second watched literal ;

5 add c to watch[lTmp1];

6 add c to watch[lTmp2];

7 end

The main question that must be resolved is the choice of literals as watches. When generating

this clause, we made sure that there was only one variable of the current level to help during

the backtracking. If the generated clause is of size greater or equal than one, a second watch

must also be used. The value used is the second most recent propagated literal.

2.2.5 Restart strategies

During the search, the process can be stuck at a given depth as its current search space does

not provide enough information. Of course, as the algorithm is complete, one could let the

procedure continue. However, restarting from the initial level i.e. performing a backtrack to

level 0, can provide a great boost in performances [Gomes et al., 1998]. However, this idea poses

multiple questions: what should the frequency be? And using which time unit? Concerning

the time unit, the number of conflicts can be used. As for the frequency, multiple approaches

exist as we can see in the following.
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Figure 2.11: Comparison of restart strategies. y coordinates give the number of conflicts be-

tween restart x and x− 1.
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Luby suite

The paper by [Luby et al., 1993a] provides information about restart strategies for Las Vegas

algorithms. Such algorithms are guaranteed to provide a correct answer, but the running time

is unknown. We can clearly see that the CDCL algorithm fits this description.

Let TCDCL(x) be the running time for the CDCL algorithm for any instance x. This

can be seen as a random variable whose distribution is unknown. For such cases, the suite

S = {t0, t1, . . .} shown at Equation 2.1 is proven to provide the best performances up to a

constant factor. The obtained values are shown in Figure 2.11 (a).

ti =

{
2k−1, if i = 2k − 1

ti−2k−1+1, if 2k − 1 ≤ i < 2k − 1
(2.1)

In solvers, the Luby suite is generally multiplied with an constant value to have greater

result value. If the value of the Luby suite was not multiplied, the frequency of restarts would

be too high (30 restarts after only 64 conflicts).

Picosat restarts

Another possible suite is the one implemented in [Biere, 2008], inspired by the Luby suite. It

consists of a succession of exponential curves, each restarted after they outreach a given peak.

The formal equation is provided in Equation 2.2 The suite S = {t0, t1, . . .} needs different

values to be computed: t0, e and h0. The obtained values with t0 = 100, e = 1.1 and h0 = t0

is depicted in Figure 2.11 (b).

〈ti, hi〉 =

{
〈t0, hi−1 × e〉, if ti−1 ≥ hi−1

〈ti−1 × e, hi−1〉, if ti−1 < hi−1

(2.2)

Average literal block distance

The two previous methods are using a fixed restart policy. No matter what is happening during

the search, the restart strategy is fixed across different instances. In the paper [Audemard

and Simon, 2009a], the authors propose a metric, called literal block distance(or lbd) for each

generated clause. The value of this metric is obtained by partitioning literals according to

their assignation level and then computing the number of partitions. Through experiments,

they discovered that clauses with a small lbd value tend to propagate more. Therefore, they

designed a restart policy to promote such clauses.

When the metric is obtained, two averages are computed. The first one L100 is the average

lbd on the last 100 generated clauses. The second L is the average lbd for every generated clause.

Finally, whenever Equation 2.3 evaluates to >, a restart is performed. K is a constant value

that needs to be determined through experimentation but 0.8 seems to provide good results.

Nconf is the number of conflicts since the last restart.

Nconf > 100 ∧ L100 ×K > L (2.3)

The idea behind this system is that whenever L might be increasing too fast, a restart is

performed to return to ”the good search space”. This technique was shown to be very effective
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on unsatisfiable instances but the gain was smaller for satisfiable instances. To improve this,

changes were proposed in [Audemard and Simon, 2012]. Their idea is to delay restarts when

the number of assigned literals is significantly greater than what they usually have. Two new

values are defined: A5000 and R. R is a constant value and A5000 is the average number

of assignations over the last 5000 conflicts. When a conflict rises, if the current number of

assignations is greater than A5000 ×R then Nconf is set to zero.

2.2.6 Clause database management

As we have seen, a new clause is added at each conflict. Those clauses have a direct impact

on the search speed as we may have to check them during the propagation algorithm (page

28). But on the same time, they are useful as they provide new information from the solver

perspective. Therefore, a compromise on their number needs to be found. In an ideal world, we

need to remove the clauses that are subsumed, and those which are not needed any more in the

search process. Unfortunately, those elements need heavy computation and are almost never

explicitly used in the latest CDCL solvers. Therefore, different strategies have been proposed

through heuristic to determine which clauses are “the good ones” and which are not. The next

paragraphs describe some of them as well as the frequency those strategies are applied.

Clause activity

A common technique to remove useless clauses is to compute the activity. Such activity is

computed using the same idea as the VSIDS (see page 19). A score is given for each clause.

Each time a clause C is used in the resolution to generate the learnt clause, the activity of C

is incremented by a given factor. Once the learnt clause is generated the increment factor is

multiplied by a constant. Later, when some clauses need to be removed, we may remove those

with the lowest activity value.

Aggressive deletion

As the amount of clauses has a significant effect on the number of propagations per second,

the authors of [Audemard and Simon, 2009b] proposed to use their newly defined metric lbd to

sort the clauses. Next, over the n clauses they have, they keep only n/2 of the clauses with the

smallest lbd. The frequency of the application of the strategy is given in number of conflicts

using the formula defined at Equation 2.4. The initial value in the glucose 1 implementation

was t0 = 20000.

ti+1 = 500× (i+ 1) + ti (2.4)

Freeze

First described in the paper [Audemard et al., 2011a], this technique relies on the following

idea: removing a clause is somewhat too definitive as a clause might not have been used a lot at

the moment, but could be useful later. From this idea, came the schema shown in Figure 2.12.

Learnt clauses are divided in three sets: the active ones, the inactives ones and the deleted.

Active clauses are present in the watch data-structure in order to guide the search. Inactive

clauses, or frozen clauses, are removed from the watch data-structure, they can not guide the
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search as they can not be used for propagation. Deleted clauses are clauses that were completely

wiped off the memory of the solver. The propagation algorithm uses only active ones.

When generated, clauses are active. Later, they are examinated and their status can change

to inactive or they can be deleted. The inactive ones can be re-activated, stay frozen or be

deleted. Every non-deleted clause is evaluated in this process according to a certain frequency.

Now that the general outline is given, we must determine whenever a clause is a good candidate

for the current search space or not, those are the conditions A, B, C and D in Figure 2.12.

active frozen

deleted

A

B

CD

Figure 2.12: Clauses categories for the freezing mechanism

dt =
H(polarityt, polarityt−1)

V
(2.5)

Let psmP(C) be the number of variables that appear in the clause C with the same polarity

as the one used for the next branching value (see page 22). Let dt be the deviation after t calls

to the clause database management procedure, where the deviation is the normalised Hamming

distance between the values of the array polarity at t and t − 1 (see Equation 2.5 where V

is the number of variables). Let dm be the minimum of d1, d2, . . . , dt. Now, if we multiply

dm by the size |C| of the clause C to obtain the value, we know how many variables present

in the clause may change their sign until the next clause database management. Therefore, if

psmP(C) is greater than dm × |C|, we know that this clause could never be used to generate a

conflict. Indeed, there are too many literals set to >.

With those new metrics, we can define the conditions A, B, C and D:

A psmP(C) < dm × |C|

B psmP(C) ≥ dm × |C|

C a clause has been frozen for the last n clause database management procedures and has never

been activated

D a clause has been active for the last n clause database management procedures and has never

been used or its lbd value is greater than m

ti = ti−1 + inc (2.6)

As for the frequency, the authors of [Audemard et al., 2011a] propose the formula at Equa-

tion 2.6 in number of conflicts, with as initial value t0 = 500, inc = 100.
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2.2.7 Helpful techniques

There are different scenarios concerning SAT solvers. Therefore, different techniques made their

way into the algorithms.

Assumptions

One of the usage scenario for SAT solver is the call to different instances and those instances

share a high amount of clauses. Let us define Σc for the set of common clauses between

Σ1, . . . ,Σn. Those Σ1, . . . ,Σn can be merged into one instance Σm using the following principle

described in Equation 2.7 where li are new variables.

Σm = Σc
n∧
i=1

(li ∧ Σi\Σc) (2.7)

Later, when the user wants to solve Σi, they add the cube defined in Equation 2.8 to their

solver.

¬li
∧

j1≤j≤n,i 6=j

lj (2.8)

Using this technique it is also possible to prefix every clause of an instance, the user can select

which clauses to activate.

Later, when clauses using such literals are used in the conflict analysis, the literal may not

be removed as there is no appearance of ¬li. This makes this trick very useful as one can later

re-use the learnt clause when new sets of clauses are activated. To do this, the user needs an

easy interface to tell the algorithm the assignation for such li. This interface is usually called

assumptions. Assumptions are literals that are supposed to be evaluated to >. When the solver

needs to branch, it first checks if an assumption variable is not yet assigned and if so, it assigns

the corresponding literal. That way, those literals are not assigned at level 0, making them

assumptions instead of facts.

More information about assumptions can be found in [Nadel and Ryvchin, 2012].

Preprocessing

When a user generate its instance, it is sometimes useful to simplify it. Different techniques

have been proposed.

SatElite The SatElite pre-processor [Eén and Biere, 2005] uses variable elimination technique,

self-subsuming clauses and tautological clause found through unit propagation.

Vivification Proposed in [Piette et al., 2008], this technique aims at simplifying clauses using

the following technique. Given a clause C = x1 ∨ . . . ∨ xn, a solver assign progressively every

xi to ⊥ using the formula Σ′ = Σ\{C} Once a xi has been propagated, different interesting

outcomes can appear.

• a conflict is found, meaning that Σ′ `PU x1 ∨ . . . ∨ xi and therefore the solver can drop

the literals xi+1, . . . , xn from C
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• xj , j > i is propagated to ⊥, meaning that Σ′ `PU x1 ∨ . . . ∨ xi ∨ ¬xj and therefore xj
can be dropped from C

• xj , j > i is propagated to >, meaning that Σ′ `PU x1 ∨ . . . ∨ xi ∨ ¬xj and therefore the

literals xi+1, . . . , xj−1, xj+1, . . . , xn can be dropped from C

2.2.8 Variables definitions

Here, we recall variables used through the explanation of the CDCL algorithm.

activity array containing the VSIDS score for each variable. 21

assign array providing for each variable its truth value or undefined. 23, 28, 29, 37

confCls clause representing a conflict. 18, 32–34, 36

end Boolean, > if a solution has been found, ⊥ otherwise. 18, 25

freq frequency on which we want a random variable choice. 25

generatedDB set of generated clauses. 39

head integer representing the position in trail of the first literal that has not been

propagated yet. 23, 28

inc increment value for the update of VSIDS score of variables. 21

level current assignation level. 23, 25, 32

polarity array containing for each variable the next truth value needed for branching.

22, 25, 37, 42

reason array containing for each variable v the clause that forced the value of v. 23,

29, 32, 36, 37

seen Boolean array over each variable. 32–36

top integer representing the position of the last literal in trail +1. 23, 28, 29, 32,

37

trail array containing every literal that must be/have been propagated. 23, 24, 28–30,

32, 33, 37

unsatCls unsatisfied clause. 18, 28, 32

varLevel array providing the value of the level for each variable. 19, 23, 29, 32, 37

vsidsHeap heap containing the variables, sorted according to their VSIDS score. 19, 21, 25

watch array providing access for every literal to the list of clauses being watched. 27,

28, 30, 38, 39, 41

2.3 Solver example

Since SAT solving is studied from quite some time, many different solvers have been proposed.

We present a few of the CDCL solvers.

MiniSat Developed by Niklas Eén and Niklas Sörensson, MiniSat [Eén and Sörensson, 2004]

is probably the most used CDCL SAT solver. It won 3 medals in the SAT competition

2005, 6 in the SAT competition 2007 and has not been developed further since. It was

developed to be as concise as possible in order to be easily extendible. Therefore, its code

is used by many teams by extending the solver’s capabilities or tweaking the heuristics.
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lingeling Developed by Armin Biere, lingeling [Biere, 2014] is the result of years of SAT

solver design. It won 4 medals in SAT competition 2011, 5 in the SAT competition 2013

and 9 in the SAT competition 2014.

sat4j Developed by Daniel Le Berre and Anne Parrain, sat4j [Le Berre and Parrain, 2010]

was initially a re-implementation of MiniSat using the java programming language. It is

used in many practical application including the Eclipse IDE.

glucose Developed by Gilles Audemard and Laurent Simon on top of MiniSat, glucose

was proposed in order to implement and evaluate the techniques described in the paper

[Audemard and Simon, 2009b]. It won 2 medals in the SAT competition 2009, 3 medals

in the SAT competition 2011, 4 medals in the SAT competition 2013 and 2 medals in

the SAT competition 2014 glucose uses the aggressive clause deletion strategy (page 41)

combined with the average lbd restart policy (see page 40).

saturnin Developed by the author of this thesis with educational purpose, saturnin imple-

ments watcher structure à-la MiniSat, the average lbd restart policy and uses the freeze

(page 41) as clause database management technique. Binary clauses uses their own oc-

currence list in order to keep memory tight.

Since 2002, researchers from the SAT community have organised competitions and shared

results on http://www.satcompetition.org. Initially, the aim of those competitions was to

provide a comparison of the different solving algorithms under the same environment. Pro-

gressively, those competitions evolved to provide different tracks: random generated instances,

instances generated to be as hard as possible for the algorithms, and the instances provided by

industrials. Later, other categories were added such as parallel solving and categories in which

a file containing the unsatisfiable proof is needed. As some solvers have heuristics that perform

better on some given problem, the selection of the instances is a very sensitive subject for those

competitions.

In order to present their respective results, the last version was taken for each of the pre-

sented solvers (MiniSat 2.2, glucose 3.0, sat4j 2.3.5.v20130525, lingeling ayv, saturnin 09f9c00)

and tested on the SAT 2011 Competition benchmark, industrial instances, using the CPU time

limit of 900 seconds, as in the SAT 2011 Competition. This evaluation can be found at Figure

2.13.

The second benchmark used is the SAT 2014 Competition, industrial instances, using the

time limit of 5000 seconds, as in the SAT 2014 Competition. This second evaluation can be

found at Figure2.14 The hardware used for this are DELL PowerEdge 6220 using Intel Xeon

E5-2643 @ 3,3GHz with at most 64 Gb of RAM.

We can see that the selection of the benchmark plays an important role in the result of

the competitions. Those competitions are pictures taken at a given time, on a given set of

instances and on a given hardware, and should not be taken for anything more. However,

through competitions, we are able to see trends and it can also show techniques that have a

real impact on the resolution of the SAT problem.

http://www.satcompetition.org
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(a) Cactus plot between different state-of-the art solvers

Solver #SAT #UNSAT total

glucose 83 100 183

lingeling 83 91 174

saturnin 79 82 161

MiniSat 71 75 146

sat4j 67 56 123
(b) Detailed results for some state-of-the art solvers

Figure 2.13: Evaluation of some solvers on the instances of the SAT 2011 Competition, with a

CPU time limit of 900 seconds
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(a) Cactus plot between different state-of-the art solvers

Solver #SAT #UNSAT total

lingeling 92 138 230

glucose 101 125 226

saturnin 98 92 190

MiniSat 76 71 147

sat4j 79 55 134
(b) Detailed results for some state-of-the art solvers

Figure 2.14: Evaluation of some solvers on the instances of the SAT 2014 Competition, with a

CPU time limit of 5000 seconds
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2.4 Conclusion

In this part, different methods to solve the SAT problem. Among them, the CDCL algorithm

was carefully explained. This algorithm is used in many real world application and is able to

provide answers very quickly. However, the time needed to provide an answer is sometimes too

long for their users. To have answers faster, different possibilities are offered to them. Among

those choices, there is the possibility to use the parallel paradigm. The next chapter will provide

explanation on how this paradigm can be used to solve the SAT problem.
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CHAPTER 3

Parallelism

Great things are done by a series

of small things brought together.

— Vincent Van Gogh

3.1 Introduction

In 1965, at the beginnings of the semiconductor industry, Gordon Moore tried to predict the

evolution of this industry over the deceny. This prediction was published [Moore, 1965] and

lead to what we usually refer as Moore’s Law.

This ‘law’ states that the number of components per integrated circuit is doubling every

two years. The Figure 3.1 shows that the number of transistors on a CPU seems to follow an

exponential increase, thus validating Moore’s Law.

This increase of number of transistors on a CPU, combined with the increase of the clock

frequency (see Figure 3.2) allowed programs to run faster and faster over the years. However,

since 2005, clock frequency is almost constant. This stability of the clock frequency over the

last decade can be explained by different economical factors. First, designing new chips is

extreamly expensive. Second, with a higher clock frequency, more heat must be dissipated,

therefore requiring more investment on the user-side of the CPU. Therefore, a lot of the extra

transistors are dedicated to multitasking. This means that if we want to harvest this power,

multitasking must be considered.

If we wish to consider multitasking, different theoretical notions are needed. First, we need

to ask ourselves whether multitasking is fundamentally different or more powerful than the

regular Turing machine. Unfortunately, parallel Turing machine does not offer more computing

capabilities. They can neither solve problems that not solved by regular Turing machine, nor

can they solve problems with a lower asymptotic complexity.

However, parallel Turing machine can provide an acceleration factor to a sequential system.

In [Amdahl, 1967] the author has provided a base to the formulae’s 3.1 and 3.2 that are known

as Amdahl’s law. Those provide a simple way to compute the efficiency S of an acceleration

49
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for a parallel system. Let T be the execution time of a system, Tp be the execution time of

the parallel system, s the fraction of T concerned by the parallelism, and A the acceleration

obtained by the parallelism.

Tp = (1− s)× T +
s× T
A

(3.1)

S =
T

Tp
=

1
(1− s) + s

A

(3.2)

3.2 Architectures

In order to implement parallel methods, we must choose what kind of parallelism we want,

study the different opportunities with their respective advantages and drawbacks.

3.2.1 Multi-core

In order to increase the efficiency of their CPU, chip makers have proposed various methods

among which simultaneous multi-threading. This technique uses its superscalar CPU to dis-

patch the different instructions from independent threads during the idle time of the processor.

Its most widely known implementation is done by Intel under the name hyperthreading.

Another way to improve the capabilities of CPU is by providing them multiple core. On a

single chip, multiple cores are embedded and there is a dedicated part of the chip to control

which instruction will be performed by which process/thread. This technique allows chip makers

to provide an easy and cheap way to have a better hardware support of multi-threading.

3.2.2 GPGPU

With the increasing demand from the gaming industry for 3D graphics and effects, the graphic

processing unit (GPU ) maker provided more and more flexibility to control the output of those

chips. One of this was the introduction of the shader programs, allowing programmers to create

dedicated effects for their games. Those programs take as input some geometry objects with

their optional parameters (such as the colour of each vertex, some images as a texture, . . . ) and

modify those. The GPU makers had their system optimized already multi-threaded by using the

single instruction multiple data(simd) paradigm. Soon, scientists and hobbyists realized that

they could use the shader capabilities to perform their algorithms in parallel given that their

datas could be arranged in an acceptable way for shaders. Later, GPU makers noted this trend

and offered a complete and dedicated toolchain with their dedicated language extension. Of

those languages, the most well known are the NVidia CUDA [Nvidia, 2007] and OpenCL [Stone

et al., 2010].

3.2.3 Distributed

Finally, another way to have different instructions used at the same time is through the uses of

distinct machines. Communication between them can be achieved using TCP/IP [RFC, 1981a,

RFC, 1981b], OpenMPI [Gabriel et al., 2004] or any other communication protocol. Whilst

being the most common communication form, distributed computing suffers from the fact that
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Figure 3.1: Evolution of the number of transistor on a CPU (each point represents a commercial

CPU) where the abscissa is the year of introduction of the CPU and the ordinate (in logarithmic

scale) represents the number of transistors. The line represent a function of type f(x) = ab∗x−c
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Figure 3.2: Evolution of the clock frequency (in MHz) in the CPU (each point represents a

commercial CPU)
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hosts are physically further apart than multi-core or GPGPU. Therefore, the communication

cost is the highest in term of time between the moment when data is sent and the moment

when the data is ready to be part of the computing process.

3.3 Strategies

In order to solve a problem using parallelism, different well known techniques can be applied.

And for each of those techniques, they can be found outside the computing world where us,

humans, try to solve a given problem.

3.3.1 Competition

The competition strategy is very well known outside the computing world, but is not very used

in practice within algorithms. This method implies that the exact same task is given to different

work units, each work unit having its own characteristics. By asking each of those work units

to solve the problem, those are competing, as only one answer is needed. Therefore, as soon as

one computing unit founds the answer, every other work unit can stop its task.

This strategy is very useful if the computing time is quite important and is very versatile.

It is also possible to increase this methodology if the work units are able to communicate some

intermediate results.

wu2wu1 wun...

Work�avoided

Work�performed

Figure 3.3: Competiting strategies between wui, 1 ≤ i ≤ n, the different work units. As soon

as the first work unit finds an answer, the system stops.

On a more formal description, let us assume that t is the task to be done, and fi(t) the

time needed by the i-th work unit. Using the competition strategy, the time needed to solve t

is min(f0(t), . . . , fn(t)). The acceleration would be between 1 and max(f0(t),...,fn(t))
min(f0(t),...,fn(t)) .

Outside the computing world, this strategy is applied by scientific communities. When a

problem needs to be solved, different groups are working on it and share their intermediate

results through the publication system.

3.3.2 Pipelining

The pipelining strategy relies on the fact that we can often divide a task into sub-tasks that

must be done sequentially. Each work unit is specialized for one of those sub-tasks. When a
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task has to be accomplished, it is given to the first work unit. Upon completion the first work

unit pushes the task to the second work unit who will perfom the second sub-task, and so on.

A depiction of such strategy is available in Figure 3.4.

This strategy is very useful whenever the number of tasks that need to be performed is

greater than the number of work units.

Using this strategy, no acceleration can be obtained using Amdahl’s law. However, if we

consider the set of tasks instead of a single task, an acceleration can be observed. Let us assume

that we have n tasks to perform. Each task consists in applying m distinct functions: f1, . . . , fm,

m < n. Let t(f) the time needed for the function f . The time needed for a sequential execution

is defined by Equation 3.3.

n× (t(f1) + . . .+ t(fm)) (3.3)

The time needed for a pipelined execution is defined by Equation 3.4. This equation can be

divided in three parts:

a) initialization of the work units: first, f1 is applied on the first task. The time needed is

t(f1). Next, f2 is applied on the first task while f1 is applied on the second task. The time

needed for this max(t(f1), t(f2)) as the system needs that both functions have ended before

going further. Next, f3 is applied on the first task while f2 is applied on the second task and

f1 on the third. The time needed is max(t(f1), t(f2), t(f3)) for the same reason as before.

This will goes on until fm−1 is applied on the first task. Therefore, we can compute the

time needed for this operation as
∑m−1
i=1 max(t(f1), . . . , t(fi))

b) every work unit has some work: f1 has been performed on the m− 1 first tasks. Therefore,

f1 has to be applied to the n− (m− 1) other tasks. For each of those time, the system has

to wait for the slowest fi, therefore max(t(f1), . . . , t(fm)).

c) treatment of the last tasks: since f1 has been performed on every task, we must process the

last tasks the same way as we treated the first ones in a)

m−1∑
i=1

max(t(f1), . . . , t(fi))︸ ︷︷ ︸
a

+

(n− (m− 1))×max(t(f1), . . . , t(fm))︸ ︷︷ ︸
b

+

m−1∑
i=1

max(t(fm−i), . . . , t(fm))︸ ︷︷ ︸
c

(3.4)

The possible acceleration that can be obtained depends on the number of tasks to treat and

the difference between t(f1), . . . , t(fm).

This strategy is used in CPU design [Mano and Kime, 2008] in order to load data and

instructions. Outside the computing world, this strategy is used in production chains.
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sequential�execution pipelined�execution

Figure 3.4: Treatment of 3 tasks where the treatment consists in applying f1 and f2. Both f1
and f2 require each 1 time unit. On the left, a sequential execution requires 6 steps. On the

right, only 4 steps are required.

3.3.3 Work division

The work division strategy relies on the fact that a task can be seen as a combination of smaller

tasks of the same nature. Work division requires some computing before and after the work

unit have fulfilled their tasks. Before as the problem needs to be divided, and after as the

results needs to be merged. Usually, those two tasks are not parallelised and from their cost

depends the possible acceleration. Moreover, when the task is divided, the sub-tasks might not

be solved using the same time. This is due to the different complexity of the sub-tasks or from

the different computing power. Therefore, the system may have to wait for the completion of

the last sub-task in order to conclude, see Figure 3.5.

wu1 wu2 wu3 ... wun

Work�performed

Waiting

Figure 3.5: Work division strategy across different work units. The system has to wait that

every work unit has finished to be able to stop

To limit the problem of uneven work division, multiple strategies can be applied. One can

use load balancing schemes to divide the work of a work unit to provide some to a waiting one.

Another way to limit the uneven work division is by dividing the work into n sub-tasks for the

m work units, with n >> m. Such approach has been used in [Posypkin et al., 2012, Régin
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et al., 2013].

Outside the computing world, we often see this strategy of splitting the work and respon-

sibilities. In a baseball game, the batter hits the ball and the opposite team must catch it as

fast as they can. As the field is somewhat large and seven people are present to catch the ball,

they are scattered to divide the field they are responsible for.

3.4 SAT solving

As many subjects in computer science, scientists are investigating the possibility to effectively

use multitasking to speed up the resolution of the SAT problem. In this section, we provide

information about different techniques used by the community.

3.4.1 Portfolio’s

The portfolio schema is based on the competitive strategy.

The obtained results can be quite impressive as can be observed from the 2011 SAT Com-

petition. Those can be explained by two factors: the orthogonality of the solvers and their

communication scheme. Let a, b be solvers, S a set of instances, Sa the set of instances solved

by solver a with limit l and Sb the set of instances solved by solver b with limit l. This limit can

be the number of conflicts, the time in second, the number of operations, . . . The orthogonality

of a and b can be defined as:

orth(a, b) = #{x ∈ S|x ∈ Sa, x /∈ Sb}+ #{x ∈ S|x ∈ Sb, x /∈ Sa} (3.5)

Orthogonality of solvers have an impact on the resolution of a set of instances as “there

is no free lunch” [Wolpert and Macready, 1997]. This expression states the fact that for any

heuristic, an instance can always be forged to obtain the worst case scenario. Therefore, by

combining different heuristics in parallel, one can hope that the number of pathological cases

is reduced.

The communication scheme of a portfolio solver is the information that can be sent from one

solver to another. We can divide portfolio solver into two categories. Those who concentrate

their effort on the orthogonality and those who concentrate their effort on communication.

Independent solvers

Independent portfolio are dedicated to the maximisation of the orthogonality.

ppfolio [Roussel, 2011] which describes itself as “equivalent to typing the following com-

mand line: solver1 & solver2 & solver3 & solver4 & solver5 &”, takes as input a SAT

instance and feeds it underlying solver (list available shown in Figure 3.6). Even tough ppfolio

does not provide any communication between the underlying solvers, good results were obtained

at the SAT 2011 Competition1. One of the reasons for this is the high orthogonality of the

underlying solvers, using completely different solving techniques through some state of the art

solvers.
1http://www.satcompetition.org/

http://www.satcompetition.org/
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• cryptominisat [Soos, 2010]

• lingeling [Biere, 2013]

• clasp [Gebser et al., 2007]

• TNM [Wei and Li, 2009]

• march hi [Heule and van Maaren, 2009a].

Figure 3.6: List of solvers included in ppfolio

Communicating solvers

When using multithreading, it is possible for the threads/solvers to easily communicate to each

other. Such message can be the clauses generated after each conflict. Current communicating

portfolio have less orthogonality as they use the same core solver, replicated with variance in

their heuristics or by changing constant values in them.

Let n be the number of threads, each thread will send its clause to every other thread. As

a result, after each thread has reached its first conflict, the number of clauses/messages sent

is O(n). Different studies have been done in order to reduce this effect with a high number of

workers.

ManySat In [Hamadi et al., 2009a], the authors of ManySat studied the rate at which clauses

are exchanged. They discovered that the number of clauses that fit their initial transfer condi-

tion (clauses with less than 8 literals) diminish over time. If the number of clauses get lower,

the communication also diminishes with a static transfer condition. Therefore, they adapted

the TCP congestion avoidance algorithm to have a dynamic length condition for the trans-

fer. Whenever the rate at which clauses of size s are exported becomes too low (high), s is

incremented (decremented).

plingeling In [Biere, 2013], the author of Plingeling has evolved his communicating scheme

from unit clauses to clauses with a lbd value lower than 8 and a size lower than 40.

syrup In [Audemard and Simon, 2014], the authors uses a slightly more complex and dynamic

exchange rule. Instead of taking arbitrary constant for the lbd value for exported clauses, the

maximum value is the median one. As for the size criterion, clauses must have a size lower

than the average size to be exported. Finally, their last export criterion is that in order to be

exported, a clause must have been used in the conflict analysis procedure at least twice.

For imported clauses, those are set in special occurrence lists using only 1 watcher (see page

27). This avoids missing an unsatisfied clause but still limits the impact of those imported

clauses. Once a clause becomes unsatisfied, it is incorporated in the two watched scheme.

SArTagnan In [Kottler and Kaufmann, 2011], the authors propose a portfolio solver using

distinct solving mechanism per thread, and each of this thread may communicate learnt clauses

to each other. Those techniques are CDCL solver with changes in heuristics, Decision Making
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with Reference Points [Goldberg, 2006, Goldberg, 2008], clause subsumption, blocked clause

elimination [Järvisalo et al., 2010] and variable elimination [Eén and Biere, 2005]. Variable

elimination is implemented in only one thread in order to avoid problems such as having the

same variable removed twice.

Bandit ensemble One of such work is [Jabbour et al., 2012], it uses bandit ensemble for

parallel SAT solving, BESS. BESS attaches a multi-armed bandit (MAB) to each thread t,

where each arm represents an emitting thread to t. In each time period, the individual MAB

computes the reward for each emitting thread. From this reward, an aliveness threshold is

computed to check whether the considered emitting thread should be turned into a sleeping

thread. Such sleeping thread is a thread that will not send clause to the thread t. For each

alive thread set to sleep, the system will awake the one that has been sleeping for the longest

time.

Community branching Based on [Audemard et al., 2012b], the work presented in Chapter

4, the authors of [Sonobe et al., 2014] try to increase the orthogonality of the threads. To do

this, they first try to identify community structures in an instance [Ansótegui et al., 2012]. A

community is a set of variables which share a high number of clauses between the different

variables of the community, and almost none with variables outside the community. Once com-

munities are found, each thread is assigned one particular community to increase orthogonality

based on search space. In practice, the value for the variable selection heuristic (see Section

2.2.1) is increased before each restart. Using this method, variables of the selected communities

will be selected first.

3.4.2 Divide and conquer

Divide an conquer solvers are based on the work division strategy. Different approaches have

already been used. Some of them are exposed in the following section.

Guiding path

They are all based on the concept of search space division. Those subspaces are assigned to

different SAT worker as a form of guiding path [Zhang et al., 1996].

Σ1

Φ2 Φ3

Φ4 Φ5

Σ2 Σ3

Σ5Σ4

Figure 3.7: Guiding tree for the instance Σ

A guiding path is a formula added to the instance Σ in order to divide the search space.

This guiding path is created by recursion. First, we define Σ1 as the undivided instance we want

to solve Σ, and therefore Σ1 = Σ. For the ease of the explanation we want to define Σi as a
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conjunction of some formulae φ and Σ. Thus, we define Σ1 as Σ = Σ∧Φ1 and therefore Φ1 ≡ >.

Second, we divide Σ1 in two sub-spaces to obtain Σ2 and Σ3 by using respectively the formula

Φ2 and Φ3. Later, when a Σi needs to be divided into Σi×2 and Σi×2+1, its respective division

formula, or guiding path, will be Φi×2 ∧Φi ∧Φi/2 ∧ . . .∧Φ1 and Φi×2+1 ∧Φi ∧Φi/2 ∧ . . .∧Φ1.

The conjunction of those guiding path can be represented as a tree, called the guiding tree. An

example of such depiction is shown at Figure 3.7, applied on the instance Σ. From the figure,

we can deduce Σ2 = Φ2 ∧ Σ, Σ3 = Φ3 ∧ Σ, Σ4 = Φ4 ∧ Φ2 ∧ Σ, Σ5 = Φ5 ∧ Φ2 ∧ Σ.

sat@home

The sat@home [Posypkin et al., 2012] team research aims at solving instances representing

a cryptographic problem. Their operating mode is as follow: first they choose 32 variables

v0, . . . , v31 from the initial instance Σ. From those, they create 232 instances of the form ~v ∧Σ

where ~v is one of the 232 possible assignation vectors for the variables v0, . . . , v31. Finally, those

instances are solved using a SAT solver on a cluster of computers available through volunteer

computing . In this process, the selection of the variable is an extremely important phase, as

the work balance between the different computing units depends on it. The sat@home team

proposed in [Semenov and Zaikin, 2013] an algorithm based on a Monte-Carlo approach to select

them. Their aim was to minimize the running time of each of the 232 jobs. To do this, they

generate a set of variables and for this set, they generate a small subset of possible assignations.

Those subsets are solved and their running time kept in order to compute a possible average

running time for all possible assignations. When those average running times are known, they

keep the set of variables that seems the most promising.

Part-Tree Learning

Σ0

Σ1

Σ3 Σ4 Σ5

Σ2

Σ6

v0 ¬v0

v1 ¬v1 v2 ¬v2

v3 ¬v3 v4 ¬v4 v5 ¬v5 v6 ¬v6

Figure 3.8: A partitioning tree

Another implementation of the work division strategy has been done in the solver ptl by

the authors of [Hyvärinen et al., 2011]. ptl creates a partition tree as depicted in Figure 3.8. In

that figure, Σi is a partition of the instance and the partition is done through the instantiation

of the variables between Σ0 and Σi. Initially, the n work units solve the n first partitions:

Σ0, . . . ,Σn−1. When a work unit finishes its task, it provides the answer to a master. The

master processes this answer as it might lead to stopping other work units. Indeed, if both

Σ2×i and Σ(2×i)+1 are solved, Σi has been solved and can be stopped. On the other hand,

when Σi is solved, any of its sub-partitions can be considered as solved. Finally, the idling work

unit solves the next unsolved partition that has not been assigned yet.

During the search, the work units of ptl generate different clauses as it is based on a

CDCL solver. As ptl uses the assumption mechanism (see 2.2.7), those can be kept in memory
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whenever a work unit changes the partition it is working on.

pcasso

In the solver pcasso, the authors of [Irfan et al., 2013] take as base solver ptl and have modified

the partition function to use the scattering rule proposed in [Hyvärinen et al., 2006] depicted

in Equation 3.6 in which vi are variables.

Σi =


Σ, if i = 0

Σ ∧ v1, if i = 1

Σ ∧ ¬v1 ∧ . . . ∧ vi−1 ∧ vi, if 1 < i < n

Σ ∧ ¬v1 ∧ . . . ∧ vi−1 ∧ ¬vn−1, if 1 = n

(3.6)

Σ3

v2 ¬v2

Σ5Σ4

v3 ¬v3

Σ7Σ6

v1 ¬v1

Σ2

Σ1

Figure 3.9: The partition tree used by pcasso for 7 work units

As for every divide and conquer strategy, a key element is their dividing scheme. In pcasso,

the different Ti used in Equation 3.6 are variables selected using look-ahead technique. The

selected metric is the mixdiff [Heule and van Maaren, 2009b] which is based on the number of

propagated literals and the number of binary clauses created.

cube and conquer

The cube and conquer method [Heule et al., 2012] uses cubes (Section 1.1.2) as partition

methodology. The main idea is that in order to solve hard industrial instances, they partition

the search space using cubes. In order to create those cubes, a look-ahead procedure is used

at the start of the program. One of the key element is that this look-ahead procedure requires

dedicated heuristics: one for the cut-off, that is the length of the cube, and the second is the

heuristics around the splitting, that is the variable and the value selection.

As cut-off heuristics, the authors of [Heule et al., 2012] use as threshold a combination of

the depth of the current branch and the number of implied literals. This combination has to

be higher than an evolving percentage of the number of variables. As splitting heuristics, they

use the number of variables propagated by assigning a truth value to a variable.

When the different cubes are created they can be used with incremental SAT techniques

(assumptions) as solving the conjunction of the instance and a cube can be seen as one job. The

authors have asked themselves how to solve those jobs in a parallel environment. One possibility

is to use a portfolio strategy on each job. Using this idea, if we dispose of n computing units

then each works on the same job, and the next job is considered only when the current job is
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solved. Another possibility is to give to each of the computing unit a different job to solve. It

is the latter one that was implemented in the solver iLingeling.

This idea was later improved in [van der Tak et al., 2012]. Their motivation was to improve

the heuristic to avoid the generation of too many or too few cubes. This improvement is done

by running a CDCL solver along the cube phase to determine whether the current cube can be

easily solved or not.

3.4.3 Pipelined

MTSS

conflict

Unexplored�node

Explored�node

Node�with�partial
knowledge

Explored�path

Unexplored�path

Figure 3.10: The search tree of MTSS

In [Dequen et al., 2009,Vander-Swalmen et al., 2011], the authors present algorithms capable

of solving any SAT formula by parallelizing a DLL search on multicore architectures called

Multi-Threaded SAT Solver (MTSS). In a DLL search multiple nodes are explored and for

each node, a variable is assigned. The selection of this variable can be quite time consuming.

Therefore, the authors define the following framework to make use of the parallelism. A rich

thread explores the search tree. At each node, a look-ahead technique is used to select the

next variable to branch on. Next to this rich thread exists poor threads whose job is to pre-

process the different parts of the search tree. These pre-processes can have different forms and

produce different information such as the state of the given node, the variable to branch on, the

value (SAT/UNSAT) of the node, . . . When the rich thread wants to explore a new node, three

different situations can appear. First, no partial knowledge is present. In such a case, the rich

continues its search. Second, partial knowledge is present. The knowledge is processed. Finally,

a poor thread is busy on that particular node. In such case, the poor thread is promoted to a

rich thread and the rich thread is demoted to a poor thread and starts processing an unexplored

node. This makes a parallel solver based on the pipelined strategy (poor threads make some

pretreatment for the rich thread) that aims at solving an instance using the divide and conquer

paradigm.

Using GPGPU

As presented in section 3.2.2, modern computers have access to a co-processor, the general

purpose graphical processing unit (GPGPU). This co-processor can be used in a pipelined

strategy where it would compute a value for some heuristic during the search of the main CPU.
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Solver Reducer

learnt�clauses

reduced�clauses

Figure 3.11: The solver/reducer architecture

In [Gulati and Khatri, 2010], the authors propose a methodology based on survey propagation

as variable heuristic. Each time a given percentage of the variables is assigned, a call to a

survey propagation algorithm implemented on the GPGPU is made. The result of this call is a

set of literals that can be used for the branching as they should have a high probability to be

assigned to >.

Clause strengthening

Pipelining is also used in [Wieringa and Heljanko, 2013]. In this paper, the authors present

the following schema. The system consists of two key elements: the solver and the reducer,

as depicted in Figure 3.11. The solver fills a heap with its learnt clauses. Those are sorted

according their lbd value. In order to limit the size of that heap, a maximum size is set. When

the solver tries to add a clause to a filled up heap, the oldest clause is removed to free up some

place. When the reducer requests a clause, the heap provides the one with the best lbd value.

This choice provide the reducer both “fresh” and “good” clauses.

As for the reducer, different techniques can be applied such as vivification [Piette et al.,

2008]. Once the clauses are reduced, they can be added back to the solver. To incorporate the

reduced clauses, the solver can check whether a backtrack is needed (the clause is unsatisfied

by the current partial interpretation) or if it just has to be added to the occurrence list.

3.5 Conclusion

As we have seen, there are many different ways to implement parallel/distributed search for

SAT using the CDCL algorithm. However, many implementations either relies on the physical

architecture or divide their work using literals or conjunctions of it. This has as side effect to

prohibit using clauses to divide the work.
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CHAPTER 4

Penelope: a portfolio based solver

A system is more than the sum of

its parts; it is an indivisible

whole. It loses its essential

properties when it is taken apart.

The elements of a system may

themselves be systems, and every

system may be part of a larger

system.

— Russel L. Ackoff

This chapter presents the work that lead to the publications [Audemard et al., 2012b,

Audemard et al., 2012c] and some technical reports [Audemard et al., 2012a,Audemard et al.,

2013a,Audemard et al., 2014a]

4.1 Introduction

The problem of predicting the usefulness of a given learnt clause is known in the sequential

SAT solving. Some even claim that “90% of the time spent by a CDCL is useless” [Simon,

2014]. As the time needed by propagation depends on the number of learnt clauses, having an

effective learnt clauses management strategy is crucial to performances. In a portfolio, each

thread generates new clauses and shares them with the other threads. This increase even more

the need for an effective clause management strategy if we want a scalable solver.

The psm measure ( [Audemard et al., 2011a] and page 41) has been proposed to dynamically

manage learnt clauses. Roughly, it consists in comparing the current (partial) interpretation

to the set of literals of each learnt clause. The main idea is the following: if the set-theoretical

intersection of the current interpretation and the clause is large, then the clause is unlikely

useful in the current part of the search space. On the contrary, if this intersection is small,

then the clause has a lot of chance to be useful for unit-propagation, reducing the search space.

This measure has been used in a strategy to manage the learnt clauses database which enables

to freeze a clause, namely to remove it from the set of learnt clauses on a temporary basis,

63
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when it is considered ”useless”. Periodically all clauses are re-evaluated in order to be frozen

or activated. This technique proves very efficient in an empirical point of view, and succeeds

to select relevant learnt clauses.

4.2 A premiliminary experimentation

To illustrate the current behavior of portfolio solvers with respect to clause exchanges, we first

have conducted preliminaries experiments on a state-of-the-art solver. For a sequential solver, a

”good” learnt clause is a clause that is used during the unit propagation process and the conflict

analysis. For portfolio solvers, one can quite safely state the same idea: a ”good” shared clause

is a clause that helps at least one other thread reducing its search space, namely propagating.

Accordingly, we wanted to know how useful are the clauses shared in a portfolio-based solver.

To this end, we ran some experiments on a dual socket Intel XEON X5550 quad-core 2.66 GHz

with 8 MB of cache and a RAM limit of 32GB, under Linux CentOS 6 (kernel 2.6.32). All

solvers use 8 threads. The timeout was set to 1200 seconds WC for each instance. If no answer

was delivered within this amount of time, the instance was considered unsolved. We used the

application instances (300) of the SAT competition 2011. Those experiments were using a state-

of-the-art portfolio-based SAT solver. We choose the solver ManySat 2.0 (based on Minisat

2.2), because in this solver, the only difference between the working threads are caused by

the first decision variables which are selected randomly. Except this initial interpretation, each

CDCL worker exhibits the exact same behaviour (in terms of restart strategy, branching variable

heuristics, etc.), which allows us to make a fair comparison about clause exchange without any

side effect. Hence, it represents a good framework to deal with parallel SAT solvers and clauses

sharing. By default all clauses of size less than 8 are shared. Moreover, ManySat provides a

deterministic mode [Hamadi et al., 2011]. Let us emphasize that we have activated this option

to make the obtained results fully reproducible and we report the detailed results online1.
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(b) aggressive ManySat

Figure 4.1: Comparison between useful share clauses and unused deleted clauses. Each dot

corresponds to an instance. x-axis gives the rate of useful shared clauses #used(SC)/#SC,
whereas the y-axis gives the rate of unused deleted shared clauses #unused(SC)/#SC.

1http://www.cril.fr/~hoessen/penelope.html

http://www.cril.fr/~hoessen/penelope.html
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Let SC be the set of shared clauses, namely the set-theoretical union of each clause exported

by a given thread to all the other ones. In this experiment, for each thread, we have considered

two particular kinds of shared clauses. First, the shared clauses that are actually used (at least

once) by a working thread to propagate. We denote this set used(SC). Second, we have also

focused on the set of shared clauses that are deleted without having been from any help during

the search. This set is denoted unused(SC). Clearly, SC\(used(SC) ∪ unused(SC)) represents

the set of clauses that have neither been used nor been deleted, yet.

The Figure 4.1 synthetizes the results obtained during this first experiment. The results are

reported in the following way: each point of Figure 4.1 is associated with an instance, and the

x-axys corresponds to the rate #used(SC)/#SC, whereas the y-axys corresponds to the rate

#unused(SC)/#SC, and we report the average rate over the different threads. Figure 4.1(a)

gives the results for ManySat. First of all, we can remark that the rate of useful shared clauses

differs greatly over different instances. We can also note, that in a lot of cases, ManySat keeps

shared clauses during the entire search (dots near the x-axys). This is due to the non-aggressive

cleaning strategy of MiniSat where in many instances no cleaning is performed. Threads can

keep useless clauses a long time and have to support an over cost without any benefit.

We have conducted the same experiment with a much more agressive cleaning strategy. We

have choosed the one presented in [Audemard et al., 2011a] (see page 41) and we report the

result in Figure 4.1(b). Here, in many cases, shared clauses are deleted without any usage and

the percentage of shared clauses that are used at least one time decreases with respect to the

basic version of ManySat. These results can be explained quite easily. If only few cleanings are

done, the threads have to manage a lot of useful and useless shared clauses. In one hand, it

owns a lot of information about the problem to solve, and propagates many units clauses. On

the other hand, such a solver has to maintain a large number of clauses uselessly, which greatly

slows down its exploration.

Conversely, when many cleanings are achieved, another problem occurs. Indeed, if a given

clause is not used in conflict analysis and/or unit propagation very often, it has then a lot of

chances to be quickly removed. Therefore, threads using an agressive strategy spend a lot of

time importing clauses that are never used. We can also notice that only using the lbd measure

for clause usefulness seems not efficient. Indeed, shared clauses are here small clauses, so they

have small lbd values. Even if we can try to tune the cleaning strategy to obtain a stronger

solver, we think that the classical strategy used to manage learnt clauses is not appropriate in

the case of clauses sharing and multicore architectures. We propose a new scheme in the next

section.

4.3 Selection, sharing and activation of good clauses

Managing learnt clauses is known to be difficult in the sequential case. Furthermore, dealing

with imported clauses from other threads leads to additional problems:

• Imported clauses can be subsumed by clauses already present in the database. Since

subsumption computation is time consuming, it is necessary to give the possibility to

remove periodically learnt clauses.

• Imported clauses may be useless during a long time, and suddenly become useful.
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• Each thread has to manage many more clauses.

• Characterizing good imported clauses is a real challenge.

For all of these reasons, we propose to use the dynamic management policy of learnt clauses

proposed in [Audemard et al., 2011a] inside each thread. This recent technique enables to ac-

tivate or freeze some learnt clauses, imported or locally generated. The advantage is twofold.

The overhead caused by imported clauses is greatly reduced since clauses can be frozen. Nev-

ertheless, clauses estimated useful in the next future of the search are activated. Let us present

more precisely this method in the next Section.

Given the psm and lbd measures, we now define different policies for clause exchange. In

a typical CDCL procedure, a nogood clause is learnt after each conflict. It appears that all

clauses cannot be shared, especially because some of them are not useful in a long term. So,

when collaboration is achieved, this is limited through some criterion. To the best of our

knowledge, in all current portfolio solvers, this criterion is only based on the information from

the sender of the clause, the receiver having to accept any clause judged locally relevant by

another worker.

We present in the next Section a technique where both the sender and the receiver of a

clause have a strategy. Obviously, any sender (export strategy) tries to find in its own learnt

clause database the most relevant information to help the other workers. However, the receiver

(import strategy) here does not accept the shared clauses in a blind way. We have called our

case study solver PeneLoPe2 (Parallel Lbd Psm solver).

Importing clause policy

When a clause is imported, we can consider different cases, depending on the moment the clause

is attached for participating to the search.

• no-freeze: each imported clause is actually stored with the current learnt database of the

thread, and will be evaluated (and possibly frozen) during the next call to updateDB .

• freeze-all : each imported clause is frozen by default, and is only used later by the solver

if it is evaluated relevant w.r.t. unfreezing conditions.

• freeze: each imported clause is evaluated as it would have been if locally generated. If

the clause is considered relevant, it is added to the learnt clauses, otherwise it is frozen.

Exporting clause policy

Since PeneLoPe can freeze clauses, each thread can import more clauses than it would with a

classical management of clauses, where all of them are attached. Then, we propose different

strategies, more or less restrictive, to select which clauses have to be shared:

• unlimited : any generated clause is exported towards the different threads.

• size limit : only clauses whose size is less than a given value are exported [Hamadi et al.,

2009a] (8 in the article and our experiments) .
2in reference to Odysseus’s faithful wife who wove a burial shroud, linking many threads together
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• lbd limit : a given clause c is exported to other threads if its lbd value lbd(c) is less than a

given limit value d. In our experiments, we used the same value as the one in the size limit

strategies. Let us also note that the lbd value can vary over time, since it is computed

with respect to the current interpretation. Therefore, as soon as lbd(c) is less than d, the

clause is exported.

Restarts policy

Beside exchange policies, we define two restart strategies.

• Luby : Let li be the ith term of the Luby serie [Luby et al., 1993b]. The ith restart is

achieved after li × α conflicts (α is set to 100 by default).

• LBD [Audemard and Simon, 2009a]: Let LBDg be the average value of the LBD of

each learnt clause since the beginning. Let LBD100 be the same value computed only

for the last 100 generated learnt clause. With this policy, a restart is achieved as soon

as LBD100 × α > LBDg (α is set to 0.7 by default). In addition, the VSIDS score of

variables that are unit-propagated thank for a learnt clause whose lbd is equal to 2 are

increased, as detailled in [Audemard and Simon, 2009a].

We have conducted experiments to compare these different import, export and restart strate-

gies. We ran these different versions and Table 4.1 presents a sample of the obtained results

This table reports for each strategy the number of SAT instances solved (#SAT), together with

the number of UNSAT instances solved (#UNSAT) and total (#SAT + #UNSAT).

Let us take a first look at the export strategy. Unsurprisingly, the “unlimited” policy ob-

tained the worst results. Indeed, none of these versions have been able to solve more than 190

instances, regardless all other policies (export, restart). Here, every generated clause is ex-

ported, and we reach the maximum level of communication. As expected, with the multiplicity

of the workers, the solvers are soon overwhelmed by clauses and their performances drop.

This was the reason why a size-based limit was introduced with the idea that the smallest

clauses produce the best syntactic filtering, and therefore are preferable. Indeed, in Table 4.1,

it appears clearly that “size limit” (clauses containing less than 8 literals) policy outperforms

the “unlimited” one. This simple limit shows its usefulness, but a main drawback is that it has

been shown [Beame et al., 2004] that longer clauses may greatly reduce the size of the proof.

Using the lbd value lbd(c) of a clause c can improve the situation as lbd(c) ≤ size(c). Hence,

if the same value v is used for both the size and the lbd limits, more clauses are exported with

the lbd policy. So, specifying a limit on the lbd allows us to import larger clauses if those ones

are heuristically considered as promising. This could represent a problem for a parallel solver

without the ability to freeze some clauses. Nevertheless, as PeneLoPe contains such mechanism,

the impact is greatly reduced. From an empirical point of view, Table 4.1 shows that the ”lbd

limit” obtains the best results among all exporting strategies. We have also tried to limit the

export to unary clauses (line size=1 ) like most current portfolio solvers do, but this does not

lead to good performance, since only 177 instances are solved.

Let us now focus on the restart strategy. Even tough the luby technique performs better

on SAT instances, it obtains overall worst results than the ”lbd ” one. This clearly shows the
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(b) lbd limit + lbd + freeze (LLF)

Figure 4.2: Comparison between usefull share clauses and useless deleted clauses. Each dot

corresponds to an instances. x-axis gives the rate of useful shared clauses #used(SC)
#SC , whereas

the y-axis gives the rate of unused deleted shared clauses #unused(SC)
#SC .

particular interest of this lbd concept introduced in the solver described in [Audemard and

Simon, 2009a]. About import strategy, no clear winner appears when looking at the results in

Table 4.1. Indeed, the best results in term of number of solved SAT instances is obtained with

no freeze (97) when associated with the ”luby” restart and the ”size limit” export strategy,

whereas the best number of solved UNSAT instances is obtained with the ”freeze” strategy

(113). Furthermore, no freeze enables to obtain the best overall result solving 205 instances

out of the 300 used ones. Hence, it would be audacious to plead for one of the 3 suggested

techniques. However, a large number of our suggested policies performs in practice better than

”classical” clause exchange techniques, represented in Table 4.1 by ManySat.

In a second experiment, we wanted to assess the behavior of the solver when using some of

our suggested policies. To this end, we have conducted the exact same experiments than the

ones presented in Section 4.2; the obtained results are reported in the Figure 4.2. First, we

have tried with size limit, luby, and no freeze policies (denoted SLN, see Figure 4.2(a)). Clearly,

this version behaves very well, since most of the dots are located under the diagonal. Moreover,

for most instances, #used(SC)+#unused(SC)
#SC is close to 1 (dots near the second diagonal), which

indicates that the solver does not carry useless clauses without deleting them. Most of them

proves useful, and the other ones are deleted.

Then, the experimentation was conducted with the lbd limit, lbd and freeze combo (denoted

LLF, see Figure 4.2(b)). At first sight, the behavior is here less satisfying than the SLN version,

since for most instances at least half of imported clauses are deleted without being of any help.

Actually, in this version, a much larger number of clauses are exported due to the ”lbd limit”

export policy, which leads to a lower rate of useful clauses. Fine-tuning parameters (lbd limit

values, number of time a clause has to be frozen before being permanently deleted, etc.) might

improve this behavior as observed on solvers of the Configurable SAT Solver Challenge (CSSC)

2014.3

3http://aclib.net/cssc2014/index.html
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Looking at some detailled statistics provided in Table 4.2, it indeed appears that the LLF

version shares a lot more clauses than the SLN one (column nbu). Note that this Table con-

tains some other very interesting information. For instance, it allows to see that for some

benchmarks (e.g. AProVE07-21), about 90% of imported clauses are actually frozen and do

not immediately participate to the search, whereas for other instances, we face the opposite

situation (hwmcc10...) with only 10% of clauses that are frozen when imported. This reveals

the high adaptability of the psm measure. Let us focus now on the number of imported clauses,

compared to the number of conflicts needed to solve the instance. The SLN version very often

produces more conflict clauses than it imports from other working threads (nbc/nbi < 1), even

though this is not true with some benchmarks (e.g. AProVE07-21, hwmcc10...). Note that the

nbc/nbi rate of the LLF version exhibits a very high variability, from 0.58 for the smallest value

in Table 4.2 (velev-pipe-o-uns...) to more than 4, meaning that in such cases, each time

the solver produces a conflict (and consequently a clause), it imports more than 4 clauses on

average. Let us also emphasize that the computational cost of the psm measure is not major

(see ”psm time” column). During all our experiments, PeneLoPe have spent at most 5% of the

solving time to compute psm.

On a more general view, even if the no-freeze policy seems to be the best in terms of

efficiency in communication between threads of the solver, it has the disadvantage of adding

every imported clause in the set of active clauses. This leads to a lower number of propagation

per second until the next re-examination of the whole clause database. This might be a problem

if we want to increase the number of threads of the solver. On the other hand, the freeze-all

policy does not slow down the solver. Yet, such solver is not able to use the imported clauses

as soon as they are available, and therefore explores subspaces that would have been pruned

with the no-freeze policy.

4.4 Comparison with state of the art solvers

In this Section, we propose a comparison of two of our proposed prototypes against state-of-

the-art parallel SAT solvers. We have selected solvers that prove the most effective during the

last competitive events: ppfolio, cryptominisat, plingeling and ManySat.

For PeneLoPe, we choose for both versions the lbd restart strategy and the lbd limit for the

export policy. These two versions only differ from their import policies: freeze and no freeze.

Let us precise that contrary to previous experiments, we do not use the deterministic mode in

these experiments, in order to obtain the best possible performance.

Figure 4.3 shows the obtained results through different representations; Table 4.3(a) provides

the number of solved instances for the different solvers, Figure 4.3(b) details the comparison

of PeneLoPe and Plingeling through a scatter plot, and a cactus plot in Figure 4.3(c) gives

the number of solved instances w.r.t. the time (in seconds) needed to solve them. PeneLoPe

outperforms all other parallel solvers; indeed, it succeeds in solving 216 instances while no other

solver is able to exceed 200 (Table 4.3(a)). Note that when only considering SAT instances, the

best results come from plingeling which solves 99 instances. This is particularly noticeable

in Figure 4.3(b) where PeneLoPe and plingeling are more precisely compared; indeed, most

of ”SAT dots” are located above the diagonal, illustrating the strength of plingeling on these

instances. However, results for SAT instances are closer from each other (97 for PeneLoPe
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Solver #SAT #UNSAT total

PeneLoPe freeze 97 119 216

PeneLoPe no freeze 96 119 215

plingeling [Biere, 2013] 99 97 196

ppfolio [Roussel, 2011] 91 103 194

cryptominisat [Soos, 2010] 89 104 193

ManySat [Hamadi et al., 2009b] 95 92 187
(a) PeneLoPe VS state-of-the-art parallel solvers
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Figure 4.3: Comparison on 8 cores
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freeze, 95 for ManySat, etc.), the gap being more important for UNSAT problems.

Solver #SAT #UNSAT total

PeneLoPe freeze 104 127 231

PeneLoPe no freeze 99 131 230

ManySat [Hamadi et al., 2009b] 105 111 216

ppfolio [Roussel, 2011] 107 97 204

cryptominisat [Soos, 2010] 96 105 201

Plingeling [Biere, 2013] 100 95 195
(a) PeneLoPe VS state-of-the-art parallel solvers
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Figure 4.4: Comparison on 32 cores

In addition, we have compared the same solvers on a 32 cores architecture. More precisely,

the considered hardware configuration is now Intel Xeon CPU X7550 (4 processors, 32 cores)

2.00GHz with 18 MB of cache and a RAM limit of 256GB. The software framework is the same

as with previous experiments. Each solver is run using 32 threads, and the obtained results

are displayed in Figure 4.4 in a similar way than previously. First, let us remark that except

for plingeling, all solvers improve their results when they are run with a larger number of

threads. The benefit is limited for certain solvers, however. For example, cryptominisat solves

193 instances with 8 threads, and 201 instances with 32 threads. The improvement is stronger

with PeneLoPe whose both versions solve 15 extra instances when 32 threads are used, and

especially for ManySat with a gain of 29 instances. The gap can be more remarkable looking

at the cactus plot in Figure 4.4(c), since our 3 competitors solve about the same number

of instances within the same time (curves very close to each other), whereas the curves of

PeneLoPe and ManySat clearly show their ability to solve a larger number of instances within

a more restricted time. Besides, it is worth noting that PeneLoPe solves the same number of

instances as Plingeling, ppfolio and cryptominisat with a (virtual) time limit of only 400

seconds. Finally, we can also notice than PeneLoPe can be improved on SAT instances. Indeed,

it appears that Luby restarts are more efficient for SAT than for UNSAT, whereas the exact

opposite phenomenon happens for UNSAT instances with the lbd restart strategy.

Adding computing units has different impacts. For instance, for ppfolio and plingeling
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the gain is not major, since augmenting the number of working threads ”just” improves the

number of CDCL sequential solvers that explore the search space; each worker does not benefit

from the exploration of the other ones, since with these solvers, little (if any) collaboration is

done. PeneLoPe benefits more from more computing units because the number of exchanged

clauses coming from different search subspaces is greater. This leads to a wider knowledge for

each thread without being slowed down too much, thanks to the freezing mechanism.

Finally, let us emphasize that during all our experiments with PeneLoPe, all working threads

share the exact same parameters and strategies, just like in our preliminary experimentation in

Section 4.2. Improving diversification in the different sequential CDCL searches should probably

boost even more our case study solver.

4.5 Scalability

Now, let us describe the scalability of the proposed portfolio. With a portfolio that does not

communicate, the acceleration might be null. Let us suppose that we have the following set

of configurations C1, . . . , Cn and given i threads, the configurations C1, . . . , Ci are selected. If

the portfolio does not communicate and the configurations C1 and C2 are the best in 99% of

the cases, adding more configurations might be beneficial for only 1% of the instances. This

means that for the vast majority of the cases, adding more resources will not provide any speed-

up. On the other hand, if the portfolio allows communication of the learnt clauses between the

different threads, a speed-up can still be observed. This can be seen in figure 4.5. This figure was

obtained by running two versions of PeneLoPe, using the same default provided configuration

file. Therefore, no new configuration is added by adding more cores. The set of instances is

the instances used in the SAT competition 2011 and the hardware used are Intel XEON X7550

with 4 octo-core @ 2GHz, 32 Gb of RAM. To have a point of comparison with a sequential

solver, we include the result of the solver glucose (see page 44).

We can clearly see that most of the instances are solved faster using 32 threads compared

to 8 threads. Moreover, the gain from communication is clearly seen on the UNSAT instances

as most of the gains in terms of instances comes from the UNSAT ones. The reason for this is

that we can consider that with communication, we are able to produce much more clauses per

seconds and conceptually allowing to close by resolution the set of clauses faster.

4.6 Diversification

In order to increase the orthogonality of the different threads, different parameters can be tuned

for each thread. This configuration can be done through a configuration file which allows the

following parameters.

exportPolicy the choice of export policy. Possible values lbd, unlimited, legacy

maxLBDExchange if we export according to the lbd value, the maximum value allowed to

be exported

importPolicy the choice of import policy. Possible values freeze, no-freeze, freeze-all
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(a) Scatter plot comparing wallclock time

Solver SAT UNSAT total

PeneLoPe 32 102 121 223

PeneLoPe 8 101 109 210

glucose 83 100 183
(b) Detailed results

Figure 4.5: Comparison of penelope using 8 and 32 cores on the benchmark from the SAT 2011

competition
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rejectAtImport allow to reject clauses at import according to their lbd value. Possible values

true/false

rejectLBD if clauses can be rejected according to their lbd, the maximum lbd value allowed

initPhasePolicy the initial value for the phase of variables (see ). Possible values: true, false

and random

usePsm allow the use of the freezing of clauses (see page 41). Possible values: true/false

maxFreeze the maximum number of times a clause can be frozen if psm is used

initialNbConflictBeforeReduce the initial value of the frequency of psm clause database

reduction (t0 in Equation 2.6, see page 42)

nbConflictBeforeReduceIncrement the increment value of the frequency of psm clause

database reduction (the inc value in Equation 2.6)

maxLBD the maximum lbd value allowed if psm is used for the clause database manangement

restartPolicy select the restart strategy between avgLBD (see page 40), luby (see page 40),

picosat (see 40)

restartFactor when using average lbd restart, the value of K in Equation 2.3 (see page 40)

historicLength when using average lbd restart, the number of lenght of the short average (Lx
in Equation 2.3).

lubyFactor the factor used to multiply the values of the luby suite in the case of the luby

restart policy

picobase the initial base for the picosat restart policy

picolimit the initial limit for the picosat restart policy

picolimitFactor the initial limit update factor for the picosat restart policy

lexicographicalFirstPropagation propagate using the lexicographical order of the variables

or a random variable for the first variable choice. Possible values true/false

4.7 Independent evaluation

PeneLoPe entered the different SAT Challenge/Competitions since it was created in order to

have an independent evaluation. The results of the competitions should not be taken as an

absolute value of the different solvers. Indeed, the results depend highly on parameters such

as the time limit, the selected instances (see page 45),. . . Moreover, the parallel track in those

competitions evolved from single thread competition and compare only the number of instances

solved and the average time. This completely ignores the question of the acceleration pro-

vided by multi-core. The results are presented in Figure 4.6, 4.7 and 4.8. For each of those

competitions, the results shown are those from the solvers reaching the top 3.
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4.7.1 SAT Challenge 2012

The SAT Challenge 2012 used 600 instances. Out of the 576 instances solved at least once, 264

are SAT and 312 are UNSAT. The solvers had the possibility to use 8 cores, 12 GB of RAM

and a wallclock time limit of 900 seconds. 19 solvers entered the challenge.

PeneLoPe solved 530 instances, making the second place at 1 instance from the first position.

It is also interesting to note that in the top 3, PeneLoPe was the only solver using a single core

engine. Indeed, both ppfolio [Roussel, 2012] and pfolioUZK [Wotzlaw et al., 2012] were using

different SAT engines (plingeling, sparrow, . . . )
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PeneLoPe

ppfolio2012

(a) Cactus plot

Solver SAT UNSAT total

pfolioUZK 254 277 531

PeneLoPe 240 290 530

ppfolio2012 241 268 525
(b) Detailed results

Figure 4.6: SAT Challenge 2012

4.7.2 SAT Competition 2013

The SAT Competition 2013 used 300 instances. Out of the 290 instances solved at least once,

148 are SAT and 142 are UNSAT. From those instances, 90 represented cryptographic problems.

12 solvers entered the competition. The solvers had the possibility to use 8 cores, 15 GB of RAM

and a wallclock time limit of 5000 seconds. Multi SAT engines portfolio had their dedicated

track.

PeneLoPe solved 247 instances, making the third place of the competition. It is interesting

to see that Plingeling was able to solve 11 instances more than Treengeling, witch itself solved

13 instances more than PeneLoPe.
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Figure 4.7: SAT Competition 2013

4.7.3 SAT Competition 2014

The SAT Competition 2014 used 300 instances. Out of the 278 instances solved at least once,

128 are SAT and 150 are UNSAT. The solvers had the possibility to use 12 cores, 22 GB of

RAM and a wallclock time limit of 5000 seconds. 15 solvers entered the competition.

PeneLoPe solved as many instances as Treengeling but with an average running time lower,

PeneLoPe obtained the second place.

4.8 Conclusion

In this chapter, we proposed the lbd metric as a way of evaluating of the quality of a clause

for clause exchange. Moreover, by adding the freezing mechanism [Audemard et al., 2011b],

we were able to handle more information per thread. The solution proposed is scalable on a

multiprocessor machine. However, the number of core/processors on a machine is limited com-

pared to the ‘cloud’ and grid architectures. Therefore, using such architectures could potentially

improve the results.
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CHAPTER 5

Dolius: a distributed framework

Strength through Unity

— Belgian Motto

This chapter presents the contribution that leads to the following publications [Audemard

et al., 2014c,Audemard et al., 2014e,Audemard et al., 2013b]

5.1 Introduction

Cloud computing can change the landscape of computer science: it is now possible to request

a virtually unlimited number of computing units that can be allocated within a few seconds.

In the case of SAT solving, this fact means that larger formulas, much more difficult to solve

could be considered, assuming that we dispose of a parallel SAT solver that scales well across

different computing units.

Unfortunately, such a scalable solver does not actually exist. Worst, a recent study about

parallelization of SAT [Katsirelos et al., 2013] shows that it appears to be very difficult to

benefit from portfolio parallelization for modern CDCL solvers. Yet, since the emergence of

multi-core CPUs, numerous parallel SAT solvers have been proposed by the community. From

the simple script that runs in parallel the best known sequential solvers (see page 55) to complex

engines that are able to share knowledge (see page 55 and Chapter 4), most of the (empirically)

best attempts are based on the portfolio schema which exhibits per se limitations in term of

scalability.

The goal of this contribution is twofold: first, propose a framework allowing to facilitate

the creation of distributed divide and conquer (D&C) solvers. Those are alternatives to the

parallel paradigm that behaves the best in practice for SAT solving: portfolio solvers. Indeed,

portfolio techniques monopolize the prizes of each SAT competition, since the parallel track has

appeared. By reducing the cost of creating a new distributed solver with our framework, D&C

can possibly challenge this position. The second goal is to contribute to improve scalability in

parallel solutions for SAT. The chapter is organized as follows: in the next Section, we present

the differences between the main schemes to parallelize SAT solvers and their implications. In

81
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Section 5.3 we present the main features of our framework called dolius. Its API, presented in

Section 5.5, enables any SAT solver to be easily plugged to it. Next, we evaluate in Section 5.6

the efficiency of our framework when instanced with one of the best current sequential solvers,

and we finally conclude with some perspectives.

5.2 Pathological Cases of D&C

Let φ be a CNF formula. Σ = ((a∨ b)∧φ)∧ ((a∨¬b)∧φ) is also a CNF formula. Dividing the

search on either a or b causes some problems.

5.2.1 The Ping Pong Effect

If the search on Σ is divided using a, one of the subsequent task is very light, since it is easy to

prove that Σ � a. Hence, just using unit propagation, it is possible to show that Σ∧ (¬a) � ⊥.

The slave that receives such (sub)-formula can prove it inconsistent without any exploration

at all, and asks again for work very quickly. This is a problem, since work division has a cost,

particularly because of network communication.

If bad choices are successively made when dividing the CNF, then one of the worker repeti-

tively receives a trivial subproblem, and spends more time asking for work than actually solving

the problem. This phenomenon is called Ping-Pong effect in earlier work [Jurkowiak et al.,

2001].

5.2.2 Useless Division

Back to our example. If the search is divided on b, then each slave actually works on the same

formula: a ∧ φ. This is clearly not ideal, since redundant work has to be avoided as much as

possible.

Hence, in such a situation, it would be desirable to divide the search with respect to a

variable from V ar(φ) rather than either a or b. Those results pled for a careful analysis of the

division strategy.

5.2.3 Towards Scalability

Portfolio strategies are efficient on multicore architectures, but find their limits when they are

used with a large number of computing resources. Indeed, adding more and more resources is

not helpful for this kind of approach. This just leads to a large amount of redundant work,

since in practice, the same parts of the search space are very often explored by several workers

simultaneously. Moreover, a recent study shows that portfolio is a resolution schema that

exhibits per se clear efficiency limitations [Katsirelos et al., 2013].

On the contrary, adding more resources benefits better to the D&C framework, providing

that useless divisions are not regularly achieved. In the next Section, we formally present our

divide and conquer SAT solver, called dolius.
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5.3 dolius

Since our goal is to contribute to improve scalability in parallel solutions and to deploy such

solution on distributed architectures, it appears better suited to propose a novel approach based

on the divide and conquer paradigm. This is the main objective of our framework dolius. As

presented in the next section, our framework can easily plug any available SAT solver using

a simple API and can be extended as a portfolio SAT solver. Let us start with the main

architecture of dolius.

dolius uses one master and many slaves. This architecture was chosen for different reasons:

first of all, it allows a much easier development. Such an architecture is used by webservers,

which can handle ten thousands of concurrent connections. As depicted later, the work of

the master in dolius is very light, and only consists in putting in touch hungry slaves with

active ones. Therefore, as our master’s task is lighter than one of those webservers, such an

architecture appears appropriate.

Even so, in contrast to full-decentralized techniques, this approach can clearly lead to bot-

tlenecks. If this case would occurs, a tree structure could be implemented (a slave could be

composed of a dolius master that uses its own sub-slaves), as the one provided with the Domain

Name Server (DNS) system.

Each slave is a SAT solver, whereas the master is a process that does not participate actively

to the search, and is only used as the cornerstone for communication between the slaves. The

master knows all its active slaves (the latter ones contact the former one in order to register) but

slaves do not know each other. Moreover, the master is designed to be flexible, and workers can

be added on the fly during the search. To divide the work, dolius allows a divide and conquer

approach through guiding-paths. Such guiding paths are not reduced to a single variable but

can also split the formula with two sets of clauses. However, in that case, one needs to be

careful on some properties that the sets of clauses must verify.

5.3.1 Communications

Work request

Let us review the different communication phases that occur within dolius. First, a worker wi
needs to request some work to the master. From the master’s perspective, two possibilities can

appear: either the worker is the first one to request some work or there are some active slaves.

If wi is the first one, the master will send a message to let wi know that he must work on the

initial problem. This message exchange is depicted in Figure 5.1(a).

If wi is not the first slave, the master needs to choose an active slave wa to ask him to

divide its load. Different criteria can be considered to choose wa. We propose the following

work-stealing scheduling strategy: the master node stores a FIFO data structure of currently

working nodes, proposes the first node to balance its load and puts this node at the end of the

list. One execution of this strategy is depicted at Figure 5.2. This system allows to ensure that

work request is sent fairly between active workers. In addition, this choice has been made to

avoid contacting the same active slave several times in a row in case of simultaneous requests

for work to the master. A work request can be denied by the active worker if the underlying

solver has not worked enough.
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Master Worker�S1

����������������������������
������work�request�(1)

����������������������������work�initial�problem�(2)

(a) 1st worker

Master Worker�S1Worker�S2

work�request�(1)

divide�(2)

gp+learnt�(3)

OK�(4)

Ready�(5a)

Ready�(5b)

Start�(6a)

Start�(6b)

(b) other workers

Figure 5.1: Communications to initialize workers

MasterS1

S2 S3

S4

(a) Slave S4 finishes its load, so it

contacts the master

MasterS1

S2 S3

S4

(b) Master asks to the slave S2 if

it accepts to divide it load. S2 is

choosen as it is on top of the mas-

ter’s FIFO containing every active

slaves.

MasterS1

S2 S3

S4

(c) If S2 accepts, it sends a part of

its load to S4

MasterS1

S2 S3

S4

(d) All slave are now active. S2 and

S4 are now at the bottom of the fifo

containing the slaves

Figure 5.2: Load Balance through work stealing procedure of dolius
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In order to be as opportunistic as possible with respect to available resources, a load bal-

ancing technique must then be implemented. Indeed, in practice, certain slaves finish their

task before the others and become idle. There exists two main schemas to achieve this load

balance. With the first one, each busy worker regularly looks up in some defined ”neighbour-

hood” of workers to (possibly) find an idle worker and push some work towards it. The second

schema makes responsible idle workers to contact an active worker in order to steal a part of

its workload.

When a worker has to divide its workload, it is also possible to send the learnt clauses or

a selected subset. The choice of sending the clauses, and which clauses to send is somewhat

important as some clauses will not be used during the next search, but others might be. More-

over, as communication is not done through shared memory, the cost is not negligible. The

communication is made through TCP/IP, minimizing the need for external API. This choice

was mainly made for portability and reliability of communications.

In between information exchange

Master ...Worker�S1

clause�C1�(1)

clause�C1�(2)

Worker�SnWorker�S2

clause�C1

clause�C1�(n)

Figure 5.3: Clause multicast

In order to achieve good performances and reduce the effect of an eventual bad division

[Audemard et al., 2014e], solvers can choose to send to each other (through the master) some

clauses learnt during the search. This induces that the solver can also find which part of its

guiding path is responsible for the UNSAT answer and send it to the other workers. If there

is no guilty part in the guiding path, an empty clause can be sent to stop all other workers.

This is extremely useful as it can balance a bad division. To understand the opportunity of

this mechanism, let us suppose that a worker W has the guiding path G = l1 ∧ ... ∧ ln. It is

possible that W generates the clause C = ¬l1 ∨ ¬l2 during its search. This clause can be very

useful as it leads to the termination of every active node using l1 ∧ l2 as part of their guiding

path. Furthermore, if a worker is able to generate an UNSAT proof without using its guiding

path, an empty clause can be sent in order to stop every other worker.

When solving an UNSAT instance with a portfolio approach, the process stops after the

first thread has stopped. In classical divide and conquer, the answer can be given only when

every sub-problems have been found UNSAT. Therefore, sending the responsible part of the

guiding path can bring us back to the portfolio situation, since any worker can possibly prove

the original CNF unsatisfiable.
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Master Worker�S1

SAT�+�solution�(1)

ack�(2)

(a) SAT answer

Master Worker�S2

UNSAT�(1)

ack�(+continue)(2)

(b) UNSAT answer

Figure 5.4: Communication when a worker has ended its search

End of search

When a worker has ended its search, the master must be notified of it. If the answer found for

the sub-space is SAT, the solution must be provided as shown in Figure 5.4(b). This will lead

the master to send a stop message to all of its active slaves.

If the answer found in UNSAT, the master can not deduce anything for other workers. Only

if the worker providing the answer is the last working slave, can the master stop as the instance

has been proven UNSAT.

5.4 Incremental guiding path

As a solver is needed to test the platform, we have modified glucose. The work division

strategy implemented in createGP is based on unit clauses where the chosen literal is one of

the literal with the highest VSIDS value when the work is divided and must also provide a

good balance value between the two branches. The balance value is obtained by using look-

ahead techniques. As we are using unit clauses for the guiding path, we incorporated them

in the assumption vector (see page 43) of the solver, as presented done in [Hyvärinen et al.,

2011]. This provides us with more information whenever we find UNSAT. Indeed, through the

analyzeFinal function that was designed in MiniSat, we are able to find the responsible part

of the guiding path, if any. Once found, this information can be sent to other solver (through

the master) to avoid exploring redundant search spaces. An example is provided at Figure

5.5. Let us suppose that there are 4 active workers working on the following part of the search

space: Σ∧Φ3, Σ∧Φ2 ∧Φ5, Σ∧Φ2 ∧Φ4 ∧Φ6 and Σ∧Φ2 ∧Φ4 ∧Φ7. If one of the slave working

on a subspace of Σ ∧ Phi2 finds UNSAT and Φ2 as reason, the negation (¬Φ2) can be sent to

every active slave. This message will not provide any more information to the slave working on

Σ ∧ Φ3. However, it will effectively stop the other slaves, allowing the system to concentrate

the effort on another search space.

Such technique can reduce the effect of a bad division as the resources involved with an easy

search space will be stopped and will automatically use another one. Using assumption also

allows us to keep clauses whenever the guiding path is changed, allowing us to keep clauses that

were generated.
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Figure 5.5: Before and after ¬Φ2 has been sent to every worker

Master Worker DSolver
TCP/IP function�call
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-�Solution

-�Solution�found

-�...

-�sendClause

-�requireSolutionSending

-�solutionFound

-�addClause

-�addToGuidingPath
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Figure 5.6: Communication between the master, the worker and the solver

5.5 Application Programming Interface

dolius has a clear separation between the main platform (master, slaves, communication. . . )

and the SAT solver as shown in Figure 5.6. This offers multiple advantages. The main one

is that each worker does not need to use the same SAT solver (MiniSat [Eén and Sörensson,

2004], PeneLoPe [Audemard et al., 2012b], ...) allowing to easily introduce a portfolio approach

inside the divide and conquer paradigm. This clear separation is possible with the following

API.

This API has actually been designed to be as complete as possible, but all functions are not

needed, some of them are optional. First, we provide the minimal set of functionalities that

have to be implemented to make use of dolius.

To make a solver distributed with dolius, only a few functions have to be fully implemented.

Those functions are summarized in Table 5.1 that considers the life of a SAT search as 3 main

phases: its start/initialization, the actual search period, and its end of the search.

The implementation of some of those functions should not be hard. For instance, the

functions dedicated to retrieve information about the status of the search are easy to implement:

solutionFound() is a simple state function that is used to know whether the search is still

active, or if a solution has been already obtained. isSolutionFoundSAT() is used to know the

nature of the delivered answer (SAT / UNSAT), whereas the function getSolutionLiteral()

is called to get the model, when a SAT answer has been obtained.
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// i n i t i a l i z a t i o n

void setCNFFile ( const char∗ i n p u t F i l e ) ;

void i n i t i a l i z e ( int nbVar , int nbClauses ) ;

// thread r e l a t e d f u n c t i o n s

void run ( ) ;

void stop ( ) ;

// c l a u s e database m o d i f i c a t i o n

void addLearntClause ( const std : : vector<int>& c l a u s e ) ;

void addClause ( const std : : vector<int>& c l a u s e ) ;

// i t e r a t o r s

void l e a r n t C l a u s e I t e r a t o r R e s t a r t ( ) ;

void l e a r n t C l a u s e I t e r a t o r Ne x t ( std : : vector<int>& c l a u s e ) ;

void gu id ingPath I t e ra to rRes ta r t ( ) ;

void gu id ingPathI te ratorNext ( std : : vector<int>& c l a u s e ) ;

int getGuidingPathSize ( ) const ;

// g u i d i n g path m o d i f i c a t o r s

bool createGuidingPath ( std : : vector<std : : vector<int> >& gpA ,

std : : vector<std : : vector<int> >& gpB ) ;

void addToGuidingPath ( const std : : vector<int>& c l a u s e s ) ;

// s a t r e l a t e d in format ion

bool so lut ionFound ( ) const ;

bool isSolutionFoundSAT ( ) const ;

int getNbVar ( ) const ;

int g e t S o l u t i o n L i t e r a l ( int var ) const ;

int getNbLearntClauses ( ) const ;

Figure 5.7: functions to implement in order to incorporate a solver in dolius
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start search end

initialization run(), stop() sat related info

mandatory set GP create GP

optional addLearntClause() addClause()

iterators

Table 5.1: Summary of functionalities used by the dolius API

In the start phase, initialize() serves to allocate memory, and the input CNF file can

be read through setCNFFile(), preparing the solver to be runned. In the ”search” phase, the

function run() is called to actually start the search process in its dedicated thread, whereas

stop() is on the contrary used to interrupt this process.

Only 2 functions need more code to distribute a solver: addToGuidingPath() is used to

restrain the search space of a worker, with respect to a guiding path given in parameter. As the

guiding path is provided as a set of clauses, it allows developers to create new heuristics to divide

the work. The other one, createGuidingPath(), represents the heart of load balancing, since

it is called when an idle worker makes a work-steal to an active one. Thus, the active solver has

to divide its own task to give a part of it to the active solver. In our current implementation, the

division is made using a unit clause selected through a look-ahead procedure (see [Audemard

et al., 2014e]), but other division strategies can be implemented in this createGuidingPath()

function.

Iterators on learnt clauses are also used to send those on work division. By tweaking which

clauses are iterated on, a heuristic can be implemented to choose how many clauses are sent

when the work is divided. Those will be added by the idle worker through addLearntClause().

In addition, the API proposes numerous optional functions (e.g. iterators on the guiding

path, getGuidingPathSize() , etc.) that can be implemented for statistical and debug pur-

poses. Hence, our API has been designed to be both complete and easy-to-implement. As an

example, the code needed to plug glucose [Audemard and Simon, 2009a] with dolius consists

of less than 300 lines of code.

Let us also note that a solver integrated in dolius has also access to functionalities of our

framework (log files, etc.). And in order to ease the integration of solvers, several tools have

been developed such as a graphical depiction of the resulting guiding tree that can be animated

and colouration of the log files.1

5.6 Evaluation

Two sets of evaluations were made, one focused on the scalability of the approach, and the

second using some standard SAT evaluation technique.

1The results of those tools are presented at http://www.cril.fr/~hoessen/dolius.html

http://www.cril.fr/~hoessen/dolius.html
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5.6.1 First evaluation

We have experimentally tested dolius, wherein each slave uses a modified version of the well

known CDCL solver MiniSat [Eén and Sörensson, 2003]. The guiding path is added as a set

of initial clauses. Therefore, when a new request is being made, the solver has to remove all

its data and reinitialize itself. As guiding path selection, we take as literal one of those with

the highest VSIDS value. Once we obtain the set of literal with high VSIDS, the distinction is

being made by using a look-ahead technique to obtain one with a balanced search space. As

for the clauses sent from one node to another, every learnt clause is sent.

The experimentations of this first evaluation have been conducted on different computing

units that exhibit the exact same features: dual socket Intel XEON X5550 quad-core 2.66 GHz

with 8 MB of cache and a RAM limit of 32GB, under Linux CentOS 6 (kernel 2.6.32). All

machines are linked through a HP ProCurve 4108gl switch using a gigabit connection, allowing

each node to communicate with any other node with a maximum speed of 1Gbps.

The timeout is set to 1200 seconds wall clock (WC) for each instance. If no answer is

delivered within this amount of time, the instance is considered unsolved. We use the instances

from the application track of the 2011 SAT Competition. The measured time comes from the

moment the master was started up to the moment that the last node receives a stop signal.

Each test is performed five times.

First of all, over the 300 instances, 141 were solved at least one time. Table 5.2 provides

some general information. It shows for each number of worker, how many instances are solved

0, 1, 2, 3, 4 or 5 times. The most significant evolution is the number of instance unsolved.

Using only 1 worker, there are 48 of such instances. However, using 16 workers there are only

nine instances of the 141 that are unsolved. This result shows clearly that dividing the instance

is really beneficial as we were able to solve instances that are not solved using only one worker.

nb workers 0 time 1 time 2 times 3 times 4 times 5 times

1 48 1 4 1 0 87

2 35 5 4 5 8 84

4 26 8 6 5 7 89

8 22 9 6 6 8 90

16 9 6 12 8 20 86

Table 5.2: The number of instances that were resolved a given time by a given number of

workers.

More precisely, the results can be divided in three categories. The first, about 54% (39 SAT,

38 UNSAT), consist of instances where a speedup can be observed. Out of this categories are

the instance depicted at Figure 5.8 and 5.9.

As we can see, the speedup for instance depicted at Figure 5.8 is 1.94 for two workers

compared to one, 1.67 for four workers compared to one and continues to decrease as the

number of workers increases. As for the network, there are no exponential use of it. With four

workers, we use 2.29 times more network than with two workers. With eight workers, we use

1.77 times more than with four workers and the factor continue to decrease as the number of

workers increases.
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Figure 5.8: Instance: AProVE07-21. Number of variables: 3189, number of clauses: 11039,
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The first element that we have to point out for instance depicted at Figure 5.9 is that

using less than 4 workers, no answer is found under 1200 seconds. The speedup for eight

workers compared to four is 1.47, and 1.39 using sixteen workers compared to eigth. As for the

network, with eight workers, we use 5.26 times more network than with four workers. With

sixteen workers, we use 1.68 times more than with eight workers.

The second category consists of about 31% (29 SAT, 15 UNSAT). For those instance, gen-

erally solved quite fast, our approach does not provide any speedup. This can be explained by

the fact that time is needed in order to activate every node, read the instance file, splitting the

work, etc. However, as we are trying to provide a new framework to solve difficult instances,

this category is not the most important to us.

The last category is where the problems are. They are about 14% (9 SAT, 11 UNSAT).

Instances in this category tend to take more time as the number of resources increase. This is

partially due to the fact that on this set of instances ping pong effects are still observed.

Finally, Table 5.3 provides some details for representing instances. For different number of

workers it gives the average running time (or ”—” if timeout is reached for all 5 runs) and the

average number of work divisions. The first four instances come from the category where a

speedup is observed. Note for example that vmpc instance can be solved only using 16 workers.

In such instances, using only 2 workers leads to too few work divisions, here the divide and

conquer approach seems to be the good choice. The instance rand net60-30-1.shuffled is a

typical too easy instance: there are no division. The last instance provides an example where

increasing the number of workers leads to increase the running time. Note that with only 1

worker the instance is solved in 37 seconds and (of course) without divisions and adding workers

increases (obviously) the number of divisions but decreases the running time. We suppose that

this is a typical ping-pong effect.

5.6.2 Second evaluation

In the following, the hardware used is 2 Dell R910 with 4 Intel Xeon X7550 providing each

8 cores making 32 cores available per node. Each node has a gigabit ethernet controller and

256GB of RAM. The installed operating system is CentOS 6. For each experiment, given an

instance and a number of workers, we choose a time limit of 20 minutes. Let us also note that

we consider wall clock time, instead of CPU time, in this Section. We only made one run for a

given instance and a given number of workers, because of limited resources. Indeed, one run,

for a given number of workers, can make use of 17 hours in the worst case (20 minutes × 51

instances). As we consider 7 numbers of workers, with and without clause sharing, one entire

run lasts more than one week. Running 10 times each instance would have been computationally

very expensive.

In order to evaluate our platform, two elements are needed: instances and a solver that will

be plugged in. Concerning instances, as the resources needed to make tests with many slaves

may be quite important, a subset of the instances from the SAT Competition 2013 (application

track) [Balint et al., 2013] are used. To be used, an instance needs to be solved by at least one of

the five first parallel solver form the SAT Competition 2013 and may not be solved by everyone

of them. Those criteria insure us to evaluate ourselves against reachable instances. From that

set, we skim large instance families. We reduced that set to have a manageable number of
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Figure 5.10: Scalability of the dolius + glucose implementation

instances: 51. In the final set, there are more unsatisfiable instances (33) than satisfiable ones

(18).2

As solver, two flavors of the modified glucose with incremental guiding path (see Section

5.4) were tested. In the first one the learnt clause iterator send the learnt clauses under the

condition that their literal block distance (LBD) value needs to be lower than 4 and the maxi-

mum number of clauses sent must be lower than 10% of the total amount of learnt clauses. The

results of this version of dolius +glucose are shown in Figure 5.10 (a). As we can see, the

cactus plot that represents 1 worker is higher than other curves showing that the work division

helps in reducing the overall solving time. However, the curve for 16 workers is lower than the

one using 32 workers, for a equivalent number of solved instances.3 The main reason for this is

the communication cost.

The second flavor is obtained by simply deactivate the communication of learnt clauses at

division through a different implementation of the learnt clause iterator. The results of this

version are shown in Figure 5.10 (b). As we can see, in this version, the 32 workers curve is

lower than the 16 workers curve. This motivated us to try this flavor using 64 workers. The gain

obtained is quite significant, the curve being always lower than any other curve and providing

answer for 5 more instances for a grand total of 37 solved instances.

Both flavors have their limitation, communication providing better results with a low number

of resources and no communication with a higher number of resources. This should mean that

in order to develop a good heuristic concerning the communication of learnt clause, the number

of workers should be taken into account, in order to avoid the case where the learnt clause

communication is completely disabled. This appears essential to keep an effective scalable

communication when a large number of workers is involved. The experiments underlines that

new heuristics that are able to take into consideration this increase of computing units have to

be designed.

In order to understand those results and compare those with the current state-of-the-art, let

us compare to 3 shared memory solvers among the best ones proposed in the SAT Competition

2The exhaustive list can be found at http://www.cril.fr/~hoessen/dolius.html
3Using 32 workers, we were able to solve 2 instances more but due to the non determinism, solving 2 instances

more is not really significant.

http://www.cril.fr/~hoessen/dolius.html
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Solver #threads SAT UNSAT Total

PCASSO 32 9 21 30

plingeling 32 14 23 37

PeneLoPe 32 16 26 42

dolius + glucose 32 9 23 32

dolius + glucose 64 13 24 37

Table 5.4: Results for some of the parallel SAT solvers submitted to the SAT Competition 2013

and dolius + glucose

2013: plingeling [Biere, 2013], PCASSO [Irfan et al., 2013] and PeneLoPe [Audemard et al.,

2013a]. They were choosen for the following reasons: plingeling was the 2013 winner, PCASSO

uses a division strategy and the authors wanted to compare against themselves with our previous

solver, PeneLoPe. Each solver is launched using 32 threads as it is the highest number of cores

available on a single machine. Results are shown in Table 5.4. First, we have to recall that

those solvers use shared memory for communication making their communication de facto

faster than the one proposed in dolius. Nevertheless, shared memory are a lot less scalable

than distributed ones. Moreover, PeneLoPe and plingeling are portfolio: they use different

configurations in each thread, allowing to increase the orthogonality of the search. And with

a greater orthogonality comes a more robust solver against different families of benchmarks.

With those details in mind, we can see that using twice the resources of plingeling –the solver

who won the SAT Competition 2013–, we are able to obtain the same number of instances

solved. Finally, PCASSO is partitioning the search space iteratively, an approach similar to

the one described here. We can see that we achieve similar results with the same amount of

threads/workers.

5.7 Evolutions

As the API was proposed to be somewhat flexible, we discuss some possibilities to re-implement

some techniques using our framework. Solvers could send an empty guiding path to obtain a

portfolio. As the API provide a way to send a clause to every other known worker, it is possible

that the portfolio communicates its learnt clauses. Moreover, if different solvers are used, it

allows to create a portfolio à-la ppfolio but with communication.

A second way to use the dolius platform would be by using using an approach as described

in [Hyvärinen et al., 2011] (see page 58). In this approach, when creating the guiding tree,

workers are not only working on the leaves of the tree, but on every node. This system can

be done using the following mechanism, depicted at Figure 5.11 When a worker w receive a

work division request, the worker send the guiding path Gw ∧ l, where Gw is its current guiding

path. w keeps Gw as guiding path. When w receive a second work division request, it send the

guiding path Gw ∧¬l and keeps Gw as guiding path and denies any further division until G ∧Σ

is solved. This resolution of G ∧ Σ can be done through the resolution of Gw ∧ l and Gw ∧ ¬l,
or by the worker w directly.

A third way to use the dolius platform would be by using pre-computed guiding path as
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Figure 5.11: Steps to divide the work in dolius as described in [Hyvärinen et al., 2011]. Left is

the initial guiding tree, with each node related to a given worker wi. The centre figure represent

the tree after w3 divided a part of its work to w7. Right represent the guiding tree after w3

divided for a second time its work, towards w8 this time.

described in [Semenov and Zaikin, 2013]. At the i-th division, the requesting worker would

receive the i-th pre-computed guiding path. However, in order to implement this, an additional

service would be needed to known the value of i as the current implementation of dolius does

not provide such information.

Finally, as last example of how dolius can be used, is by using as worker a parallel solver

such as PeneLoPe or syrup [Audemard and Simon, 2014]. This way, network communication

would be handled by dolius whereas communication on the same host would be handled by

those solver using a more efficient communication channel.

5.8 Conclusion

In this contribution, we provided a simple interface to create distributed and parallel solvers.

As the requirement are as low as possible, it can be used to create portfolio as well as divide

and conquer solvers. The framework can be easily extended and offer multiple possibilities

to the scientific community. Moreover, we implemented two different versions that provided

some promising results. Indeed, those are shown to be scalable in more than half of the solved

instances and competitive compared to some state of the art techniques.



CHAPTER 6

Conclusion

The end has no end.

—Julian Casablancas

In this thesis, we depicted different ways to solve the Boolean satisfiability problem using the

parallel paradigm. Different points can be taken from this study. First and foremost, we saw

that some techniques such as the portfolio seem simple, or might even been seen as simplistic.

Those work really well, adding even more credit to the saying “keep it simple stupid”. However,

we saw that it is not as “stupid” as it seems, as we can provide explanation of such results: the

principle that “there is no free launch” is playing in favour of portfolio. Moreover, portfolio are

able to gain directly from the performances of their underlying solver core.

Second, we were able to produce two different scalable methods. The first one, portfolio

have been studied for over five years and are able to produce descent work thanks through

shared memory. Those, combined with communication are able to scale without having to

introduce different configurations. The second, divide and conquer has been studied for several

decades. However, most of the proposed approaches were not generic enough. Either too much

dependency on the hardware, or not enough freedom in methodology for the division. This was

addressed with our second contribution.

6.1 Perspectives

Doing a thesis is only the beginning in term of scientific research, it is only a step in a long

journey. Once a step is done, we must look towards the destination of the next steps. Different

possibilities are available after the work presented here. There are still plenty of research that

could be done in the divide and conquer part. Trying to find better heuristics, studying the

gain of diversification and trying to define an acceptable work load. Other techniques could

be studied such as the possibility to restart the search without loosing information. We did

concentrate our efforts on the solving part but usually, the instances are pre-processed. Those

pre-processors, could also use the parallel paradigm.

The different techniques that were considered in this thesis use the resolution rule to solve

the instances. However, other techniques could be used to solve the Boolean satisfiability
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problem where some of those might be more suitable for the parallel paradigm. Trying to find

a new technique could reach better results than those presented here. But, there are different

challenges that should be addressed in order to be competitive. First, modern CDCL solvers

are the results of years of improvement. A new method should be either powerful enough to

compensate those years of research, or it should be very well implemented (in terms of cache

access, memory layout, . . . ). The second drawback of looking in another direction is that the

gain might be higher, but the risks are also higher. Therefore, before entering such unknown

realms, one must be ready to take those risks in our modern scientific world.

Finally, let us quote the movie Jurassic Park: “your scientists were so preoccupied with

whether or not they could that they didn’t stop to think if they should”. Indeed, we may not

be separated from the consequences of our work and in our world where the power comes at a

price, it is interesting to take a step back and think about the ecological consequence of this

thesis. The cumulated CPU time for the multiple tests lay beyond a decency. However, the

propositions made can improve the efficiency of the users. By providing results faster, it can

also lead to a better integration of verification techniques and spread its usage. This can later

have many implication such as:

• less security update needed for software, leading to less power consume for the propagation

and installation of those updates

• improved security in the software and hardware of transportation (cars, planes, buses,

. . . ), leading to avoiding deaths due to those

• providing better solutions and more energy efficient solutions to problems

• . . .

Therefore, the author of this thesis is convinced that those tests were worth it.



CHAPTER 7

French resumé

En peu de temps parfois on fait

bien du chemin.
—Jean-Baptiste Poquelin

La logique est définie comme étant l’art du raisonnement de son expression. Il est très

intéressant de noter que la logique est au carrefour des mathématiques, de la philosophie ainsi

que de l’informatique. L’impact de la logique sur l’informatique est énorme au travers de

la logique booléenne. Tout les circuits imprimés actuels utilisent la logique pour décrire les

différentes opérations qui doivent être effectuées.

De nos jours, la logique se trouve un nouvel usage en informatique au travers de la vali-

dation automatique de code, de circuits électroniques, . . . Ces validations sont effectuées par

des logiciels automatisant le raisonnement appelés solveurs ou prouveurs, et trouvent leur

utilité bien au delà de l’informatique. Il est possible de trouver ces prouveurs en biologie,

mathématique, économie et bien d’autres. Ces solveurs fonctionnent habituellement par la

recherche systématique d’une réponse à un problème combinatoire. Une des spécificité des

problèmes combinatoire est, selon l’état de l’art de nos connaissances, qu’une réponse ne peut

être trouvée qu’en énumérant l’ensemble des solutions potentielles. Et une telle énumération

peut être très couteuse en temps. Le problème de satisfaction de formules booléenne sous

forme de CNF (SAT) est un de ces problèmes. Celui-ci est très intéressant pour de multiples

raisons. Premièrement, n’importe quel problème combinatoire peut être exprimé au travers

du problème SAT. Deuxièmement, le problème peut être facilement décrit et repose sur des

opérations logiques. Et comme dit précédemment, la logique est fortement étudiée et propose

de ce fait moult études sur la résolution de ce problème. Cependant, même à l’aide de ces tech-

niques, une énumération est toujours nécessaire. Il est donc nécessaire de proposer de nouveaux

algorithmes pour réduire le temps nécessaire au calcul.

En cherchant de nouveaux algorithmes permettant d’obtenir une solution le plus rapide-

ment possible, certains scientifiques se sont tournés vers le calcul parallèle. Ce paradigme

permet l’exécution de plusieurs opérations en même temps. Ceci peut-être obtenu au travers

de l’utilisation de plusieurs ordinateurs ou d’ordinateurs multi-cœurs. Heureusement, de telles

architectures deviennent la norme pour les ordinateurs personnels jusqu’au téléphones portables
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haut de gamme. Cela permet donc un accès plus facile au matériel nécessaire.

En plus du matériel, des logiciels sont également nécessaires. Bien évidemment, la program-

mation parallèle n’est pas la panacée, mais celle-ci peut fournir de nouveaux concepts utile

à la recherche. De plus, avec l’augmentation du nombre de problèmes pratiques résolus au

travers SAT, fournir des résultats plus rapidement peut être avantageux pour les utilisateurs

des prouveurs SAT.

Il existe deux grandes familles d’algorithmes pour résoudre SAT en parallèle partant du

problème que le nombre de solutions potentielles est trop élevé. La première est l’approche

de type portfolio dans laquelle différents solveurs sont lancés en même temps. De ce fait, en

utilisant de mutliples solveurs sur le même problème, ceux-ci n’énumereront pas dans le même

ordre et permettront ainsi d’obtenir une réponse plus rapidement.

La seconde approche est la famille d’algorithmes du type diviser pour régner. Pour ceux-ci,

le nombre de solutions potentielles est trop élevé pour accepter qu’une solution soit explorée

plus d’une fois. Pour ce faire, la formule est divisée en deux sous formules et chacune est donnée

à un solveur SAT.

Le but de cette thèse est de proposer deux approches pour résoudre SAT en utilisant la

programmation parallèle. La première, PeneLoPe utilise l’approche de type portfolio. Par

l’utilisation et la combinaison de techniques provenant de l’état de l’art, nous avons proposé un

solveur SAT ayant obtenu de bons résultats. La seconde, dolius est une plateforme dédiée à la

résolution distribuée du problème SAT. Son but est de faciliter la création de solveurs distribués

tout en offrant une grande flexibilité sur les critères de division du travail.

Ce chapitre est composé comme suit: la première section décrit brièvement le problème

SAT. La seconde section présente les méthodes utilisées pour paralléliser la résolution de SAT.

La troisième section présente la première contribution de cette thèse: PeneLoPe. La quatrième

section présente la seconde contribution de cette thèse: dolius. Finalement, la dernière section

présente différente perspectives.

7.1 Problème SAT

Nous commençons ce résumé par l’introduction des définitions. Soit une formule booléenne Σ

composée des variables booléennes a, b, c. Il est possible de ré-écrire cette formule Σ de manière

à ce qu’elle respecte la forme normale conjonctive. Une formule en forme normale conjonctive

est composée de conjonction de clauses: C1 ∧ C2 ∧ . . . ∧ Cn. Une clause est une disjonction de

littéraux l1 ∨ l2 ∨ . . . ∨ ln. Le littéral positif de variable a est a. Le littéral négatif de variable

a est ¬a.

Soit deux clauses C1 = l1∨. . .∨ln∨a et C2 = ln+1∨. . .∨ln+m∨¬a. La résolvante de la clause

C1 et C2, que l’on désignera en utilisant l’opérateur ⊗R, vaut l1 ∨ . . . ∨ ln ∨ ln+1 ∨ . . . ∨ ln+m.

Chaque variable étant booléenne, elle peut donc avoir la valeur > (vrai) ou ⊥ (faux).

Lorsqu’une valeur est associé à une variable, celle-ci est dite assignée. Pour plus de facilité,

nous définissons également un littéral assigné. Soit a = >, alors son littéral positif (a) est

considéré comme assigné à >, tandis que son littéral négatif (¬a) est assigné à ⊥. Par contre,

si a = ⊥ alors son littéral positif (a) est considéré comme assigné à ⊥, tandis que son littéral

négatif (¬a) est assigné à >.



7.2. SOLVEURS 101

Soit la clause l1 ∨ l2 ∨ . . .∨ ln, celle-ci est dite satisfaite si au moins un de ses littéraux li est

assigné à vrai. La formule en forme conjonctive C1 ∧ C2 ∧ . . . ∧ Cn est dite satisfaite si chaque

clause Ci est satisfaite. Si une formule est satisfaite, l’assignation la satisfiant est dite modèle

de Σ et celle-ci est dite consistante. Si aucune assignation ne permet de satisfaire Σ, celle-ci est

dite inconsistante ou insatisfaisable.

Le problème SAT est le problème consistant à déterminer si une formule booléenne sous

forme CNF est consistante (satisfaisable) ou inconsistante (insatisfaisable).

Le problème SAT est un problème important en informatique car celui-ci est le premier

problème à avoir été prouvé NP-complet [Cook, 1971]. Un problème NP-complet est un

problème dont la solution peut être vérifié polynomialement par une machine de Turing [Turing,

1936] déterministe. De plus, pour tout problème NP-complet il existe une réduction polynomiale

en un autre problème NP-complet.

Des avancées récente sur les algorithmes permettant de résoudre ce problème on permis son

utilisation pratique dans de multiple cadres. Les programmes ayant pour but de résoudre ce

problème sont appelés solveurs SAT.

7.2 Solveurs

Différents algorithmes ont été proposés au cours du temps pour résoudre le problème SAT.

Parmi ceux-ci, il est intéressant de noter [Davis et al., 1962]. La procédure DLL est une

recherche arborescente où les nœuds de l’arbre sont des variables et les deux branches partant

de ce nœud sont les deux assignations possibles pour cette variable. Lorsque la recherche atteint

un état inconsistant, un retour en arrière est effectué et l’algorithme essaye la prochaine branche

non explorée. Ce retour en arrière consiste à annuler le dernier choix effectué ainsi que toute

modification qui en résultait. Lorsqu’une variable est assignée, il est parfois possible de déduire

la valeur pour d’autres variables. En effet, comme la procédure cherche un modèle, dès qu’une

clause ne possède plus qu’un seul littéral non-affecté, ce dernier doit être assigné à > pour que

la clause soit satisfaite. Ensuite, par effet de cascade, il est possible que la procédure puisse

déduire la valeur d’autres littéraux. Ce procédé de déduction de valeur de littéraux est appelé

propagation unitaire.

7.2.1 CDCL

Par la suite, différentes améliorations ont été proposées. Tout d’abord, une forme d’appren-

tissage fut proposée par [Marques-Silva and Sakallah, 1997]. Pour ce faire, un graphe d’impli-

cation est réalisé dans lequel les sommets représentent les littéraux assignés. À cela sont ajoutés

des hyper-arcs représentant les clauses utilisées pour propager un littéral. Le littéral propagé

à > est la destination de l’hyper-arc, tandis que les autres littéraux de la clause sont la source

de cet hyper-arc. Lorsqu’un conflit apparait durant le cours de la recherche, deux hyper-arcs

ont pour même destination la même variable, mais utilisant deux polarités différentes. À partir

de ces deux clauses, l’une contenant l, l’autre ¬l, il est possible d’effectuer une résolution sur

ces deux clauses. La clause obtenue est de type l1 ∨ l2 ∨ . . . ∨ ln. Il est possible de continuer

d’appliquer l’opérateur ⊗R entre la résolvante obtenue précédemment et la raison des littéraux

du même niveau que le littéral conflictuel jusqu’à obtenir un seul littéral du niveau courant.
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On appelle généralement le dernier littéral du niveau courant ainsi obtenu le premier point

implicant unique.

Lors de la propagation unitaire, l’algorithme de recherche doit retrouver les clauses étant

devenues unitaires ou falsifiées. Pour se faire, il existe plusieurs structures de données. Ini-

tialement, il existait pour chaque littéral une liste de clause utilisant ce littéral, appelés listes

d’occurences. Cependant, deux améliorations ont été proposées: les structures de données

paresseuses [Zhang and Stickel, 2000] et les littéraux surveillés [Moskewicz et al., 2001].

En plus de ces structures de données, est apparut le principe de redémarrage. Après une

certaine période donnée – exprimée la plupart du temps en nombre de conflits – l’algorithme

annule l’ensemble des choix effectués. L’idée latente au concept de redémarrage est qu’ainsi,

cela permet de diminuer l’impact de mauvaises premières décisions.

La dernière idée principale lié aux évolution d’un solveur DLL est la suppression d’un sous-

ensemble des clauses apprises.

Lorsqu’un solveur DLL implémente ces différentes techniques: apprentissage, redémarrage,

littéraux surveillés et oubli de clauses, on parle de solveur CDCL pour conflict driven clause

learning.

7.2.2 Heuristiques

En plus de ces différents éléments, des heuristiques sont nécessaires.

Choix de variable

L’heuristique du choix de variable en cas de décision la plus connue et certainement la plus

utilisé est celle du Variable State Independent, Decaying Sum (VSIDS). Celle-ci fut proposée

par [Moskewicz et al., 2001] et améliorée par la suite. L’idée de base de cette heuristique

est de valoriser les variables ayant été utilisées récemment. Un compteur d’activité est lié

à chaque variable. Ensuite, lorsqu’une variable est utilisée dans la résolution de conflit, son

activité est augmentée d’une valeur x. Régulièrement, cette valeur x augmente, permettant

ainsi d’augmenter plus fortement les dernière variable actives et rattraper ainsi d’éventuels

retards.

Suppression de clauses apprises

Le temps relatif à la propagation unitaire est directement lié au nombres de clauses que celle-ci

doit envisager. De ce fait, garder un ensemble de clauses apprises le plus petit possible, tout

en restant le plus utile possible est sujet à de nombreux travaux.

Parmi ceux-ci, on peut citer [Audemard and Simon, 2009a]. L’approche proposée est la

suivante: soit C le nombre d’appel à la procédure permettant de réduire la base de clauses

apprises. Alors, cette procédure aura lieu tout les 20000 + 500C conflits. En ce qui concerne le

choix des clauses à supprimer, celui-ci se fait sur base de l’heuristique lbd. Celle ci fonctionne

de la manière suivante: lorsqu’une clause est générée, l’algorithme calcule le nombre de niveaux

de variables différents participent à cette clause. Ce niveau est appelé lbd d’une clause. Il a été

observé expérimentalement que sur des instances dites industrielles, des clauses ayant un lbd

équivalent à deux (appelées clause glues) étaient fortement utilisées dans la propagation. Lors
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d’un appel à la fonction relatif à la gestion des clauses apprises, seules les clauses ayant un lbd

inférieur à la médianne des lbd des clauses apprises ou un lbd égal à 2 seront conservées.

Une autre méthode fut proposée dans [Audemard et al., 2011b]. À nouveau, soit C le

nombre d’appel à la procédure permettant de réduire la base de clauses apprises alors la

procédure se déroule tous les 500 + 100 × C. En ce qui concerne le choix des clauses, celui-ci

se déroule en plusieurs étapes. Lorsqu’une réduction du nombre de clauses apprises est requis,

la procédure évalue chaque clause. Pour chacune, la procédure calcule conceptuellement l’écart

entre l’interprétation courante et cette dernière. Si la procédure voit que la clause ne devrait

pas être falsifiée avant le prochain appel à la procédure, alors cette clause est retirée des struc-

tures de données nécessaires à la propagation. Cette clause est dite gelée. Cependant, si une

clause gelée est suffisamment proche de l’interprétation courante, alors celle-ci est ré-activée.

Lorsqu’une clause est gelée plus de sept fois de suite, alors celle-ci est considérée comme inutile

et complètement supprimée de la mémoire.

Redémarrage

Différentes heuristiques permettant de savoir s’il faut redémarrer ont été proposées au fil des

années. Récemment, l’heuristique lbd (pour literal block distance) [Audemard and Simon, 2009a]

a obtenu un certain succès. L’heuristique de redémarrage à été conçue de manière à privilégier

les clauses ayant une petite valeur de lbd. Pour ce faire, la moyenne glissante des n dernières

valeurs de lbd est comparée à la moyenne de toutes les valeurs de lbd. Lorsque cette première

devient trop importante vis-à-vis de cette seconde, un redémarrage est effectué.

7.3 Parallélisme

Depuis quelques années, l’horloge des différents processeurs accessibles sur le marché a stagné.

Or, ces processeurs continuent d’être améliorés grâce notamment au parallélisme qui leur est

apporté. Celui-ci peut se manifester par l’ajout d’unité arithmétique ou par des techniques

de pipelining. Au delà de ce parallélisme qui apparait même sur nos téléphones portables, il

est également possible de mettre en réseau différentes unités de calcul afin de distribuer des

processus.

Cette augmentation de puissance de calcul en terme d’opération par seconde est regardée

avec envie par presque toutes les communautés en informatique, y compris celle travaillant

sur SAT. Pour utiliser cette puissance de calcul, il est nécessaire de changer ou d’augmenter

l’algorithme séquentiel. Deux grande familles d’algorithmes existent en SAT parallèle: les

méthodes portfolio et les méthodes diviser pour régner.

7.3.1 Portfolio

L’idée de base d’un portfolio est de réunir différents algorithmes traitant un même problème

et de les lancer simultanément. Cela veut donc dire qu’un solveur portfolio utilisant n threads

utilisera donc n solveur séquentiels. Un exemple d’un tel solveur est ppfolio [Roussel, 2012].

Celui-ci lance en parallèle de multiples solveur [Soos, 2010, Biere, 2013, Gebser et al., 2007,

Wei and Li, 2009, Heule and van Maaren, 2009a] et les arrête tous dès qu’une réponse a été
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trouvée. Grâce à cette architecture, il est possible d’obtenir plus de résultat en un temps donné.

Cependant, aucune réelle accélération ne peut être observée en doublant le nombre de threads.

Une deuxième approche du portfolio consiste à utiliser un même algorithme sur les différents

threads, mais avec des constantes différentes pour les heuristiques. Et étant donné qu’un seul

algorithme est exécuté simultanément, il lui est facile de partager différentes informations telles

que les clauses apprises. Cependant, la quantité d’information échangée augmente fortement en

fonction du nombre de threads. De ce fait, une politique de sélection des clauses à partager est

primordiale pour obtenir de bons résultats. Un exemple d’un tel solveur est ManySat, proposé

par [Hamadi et al., 2009b].

7.3.2 Diviser pour régner

La stratégie diviser pour régner réparti l’espace de recherche sur différents nœuds de calcul.

Supposons que la formule initiale soit Σ. Si l’on fournit Σ ∧ Φi au iième noeud de calcul, alors

celui-ci verra son espace de recherche restreint par Φi. Toute la difficulté du principe de division

pour régner dans le cadre de SAT est de déterminer une façon de générer ces Φi. En effet, cette

formule permet de diviser l’espace de recherche, mais il est bien souvent impossible d’assurer

l’aspect ‘règne’.

Différents heuristiques ont été proposées. L’une d’elle définit le concept de guiding path

[Zhang et al., 1996], tandis que d’autres ont proposé une approche basée sur des conjonction

de littéraux [Posypkin et al., 2012,Heule et al., 2012].

7.4 PeneLoPe: un solveur de type portfolio

Cette première contribution à fait l’objet de publications [Audemard et al., 2012b, Audemard

et al., 2012c] et de rapports techniques [Audemard et al., 2012a,Audemard et al., 2013a,Aude-

mard et al., 2014a]. De plus, le solveur obtenu s’est classé deuxième durant le SAT Challenge

2012, troisième durant la SAT Competition 2013 et deuxième durant la SAT Competition 2014.

Dans un premier temps, nous avons conduit des expérimentations préliminaires afin d’étudier

le comportement des solveurs portfolio vis-à-vis des clauses échangées. Pour un solveur séquentiel,

une bonne clause apprise est une clause utilisée dans le processus de propagation unitaire et

l’analyse de conflits. Pour les solveurs portfolio, on peut se baser naturellement sur la même

idée : une bonne clause partagée est une clause qui aidera au moins un autre thread à réduire

son espace de recherche, c’est à dire, qui participera à la propagation. Nous avons donc voulu

connâıtre l’utilité des clauses partagées dans les solveurs portfolio.

Pour cela, nous avons mené des expérimentations réalisées sur des bi-processeurs Intel

XEON X5550 4 cœurs à 2.66 GHz avec 8Mo de cache et 32Go de RAM, sous Linux CentOS

6 (kernel 2.6.32). Chaque solveur utilise 8 threads. Le temps limite alloué pour résoudre une

instance est de 1200 secondes WC. Nous avons utilisé les 300 instances de la catégorie application

de la compétition SAT 2011. Le solveur utilisé est ManySat 2.0 (basé sur MiniSat 2.2), l’un des

solveurs portfolio les plus efficaces, et au sein duquel une vraie collaboration est réalisée. Ce

solveur ne différencie les threads que sur les premières variables de décision, qui sont choisies

au hasard. Ainsi, exceptée l’interprétation initiale, chaque thread associé à un solveur CDCL

possède exactement le même comportement (en terme de redémarrages, heuristique de choix
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(b) ManySat aggressif

Figure 7.1: Comparaison entre les clauses partagées utilisées et les clauses partagées non

utilisées et supprimées. Chaque point correspond à une instance. L’axe des x donne le taux

d’utilisation des clauses partagées #used(SC)
#SC , alors que l’axe des y donne celui des clauses

partagées non utilisées et supprimées #unused(SC)
#SC .
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de variable, etc.), ce qui permet de faire une comparaison plus juste, limitant les effets de bord

liés aux autres paramètres. Par défaut, toutes les clauses apprises de taille inférieure à 8 sont

partagées entre les threads. De plus, ManySat possède un mode déterministe [Hamadi et al.,

2011] que nous avons utilisé afin de rendre reproductibles les différents résultats proposés dans

cette contribution1.

Soit SC l’ensemble des clauses partagées, c’est-à-dire l’union de toutes les clauses exportées

par un thread vers les autres. Nous avons considéré deux types de clauses partagées. Tout

d’abord, les clauses qui ont été utilisées (au moins une fois) par un thread dans le processus de

propagation unitaire. Nous notons cet ensemble de clauses used(SC). L’autre type de clauses

considéré est celui des clauses qui ont été supprimées sans avoir du tout participé à la recherche.

Nous le notons unused(SC). Clairement, l’ensemble SC\(used(SC) ∪ unused(SC)) représente

les clauses qui, à la fois, n’ont pas encore été utilisées ni supprimées.

La Figure 7.1 illustre les résultats obtenus sur les différentes instances. Ils y sont reportés

de la manière suivante : chaque point de la figure correspond à une instance, l’axe des x

représentant le taux d’utilisation des clauses partagées (#used(SC)/#SC) tandis que l’axe des

y représente celui des clauses inutiles et supprimées (#unused(SC)/#SC) et nous reportons

la moyenne sur les différents threads. La Figure 7.1(a) donne les résultats pour ManySat.

Nous pouvons tout d’abord remarquer que le taux d’utilisation des clauses partagées diffère

fortement d’une instance à l’autre. Nous pouvons également remarquer que dans de nombreux

cas, ManySat conserve des clauses pendant toute la recherche (points proches de l’axe des

x). Ceci est dû à la politique non agressive du nettoyage des clauses apprises de MiniSat où

dans de nombreux cas, très peu de nettoyages de clauses sont effectués. Les différents threads

peuvent donc conserver les clauses inutiles durant une longue période, causant un sur-coût sans

engendrer de bénéfice.

Nous avons réalisé les mêmes expérimentations en utilisant une politique de nettoyage des

clauses beaucoup plus agressive, a savoir celle utilisée dans [Audemard et al., 2011b] (voir la

section 4.3) et nous reportons les résultats dans la Figure 7.1(b). Ici, pour de nombreuses

instances, les clauses sont supprimées avant d’avoir été utilisées et le taux de clauses utiles

décroit fortement par rapport à la version basique de ManySat.

Ces résultats s’expliquent facilement. Si peu de nettoyages sont effectués, les différents

solveurs doivent supporter de nombreuses clauses, qu’elles se révèlent utiles ou non. Cela

fournit donc beaucoup d’informations et permet donc de propager plus de littéraux. Mais

en contrepartie, les différents threads doivent alors maintenir les structures de données sur de

nombreuses clauses inutiles, ralentissant ainsi le processus de recherche. Dans le cas contraire,

si beaucoup de nettoyages sont réalisés, un autre problème survient. Si une clause partagée ne

participe pas directement au processus de propagation et d’analyse de conflit, il y a de fortes

chances qu’elle soit rapidement supprimée. Ainsi, les threads perdent beaucoup de temps à

importer ces clauses, puis à les supprimer peu après.

Nous pouvons également noter que l’utilisation du lbd pour mesurer la qualité des clauses

apprises ne semble pas non plus adéquate. En effet, les clauses partagées sont de petites clauses

et ont donc une petite valeur de lbd . Les clauses importées ont alors plus de chance d’être

préférées aux clauses générées par le thread lui-même. Ainsi, même s’il semble possible de

1Toutes les traces obtenues, ainsi que différentes statistiques, sont disponibles à http://www.cril.fr/

~hoessen/penelope.html

http://www.cril.fr/~hoessen/penelope.html
http://www.cril.fr/~hoessen/penelope.html
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paramétrer plus précisément la stratégie de nettoyage afin d’obtenir un solveur plus robuste,

nous pensons que la gestion actuelle des clauses apprises n’est pas appropriée dans le cas du

partage de clauses des solveurs portfolio. Nous proposons donc une nouvelle stratégie dans la

prochaine partie.

7.4.1 Sélectionner, partager et activer les bonnes clauses

La gestion des clauses apprises est connue pour être un problème difficile dans le cas séquentiel.

Gérer celles provenant d’autres fils d’exécution conduit nécessairement à de nouvelles difficultés :

• Les clauses importées peuvent être sous-sommées par des clauses déjà présentes. La sous-

sommation étant une opération gourmande en temps, il est nécessaire d’offrir la possibilité

de supprimer périodiquement certaines clauses apprises.

• Une clause importée peut être inutile durant une longue période avant d’être utilisée dans

la propagation.

• Chaque fil d’exécution doit gérer un plus grand nombre de clauses.

• Il est très difficile de caractériser ce qu’est une bonne clause importée.

Pour chacune de ces raisons, nous proposons d’utiliser la politique de gestion dynamique des

clauses apprises proposée par [Audemard et al., 2011b] au sein de chaque fil d’exécution. Cette

technique récente permet d’activer ou de geler certaines clauses apprises, importées ou générées

localement. L’avantage de cette technique est double. Étant donné qu’elles peuvent être gelées,

la surcharge calculatoire occasionnée par les clauses importées est grandement réduite. De plus,

les clauses importées, qui peuvent se révéler utiles dans un futur plus ou moins proche de la

recherche, sont activées au moment adéquat. La prochaine section présente de manière plus

précise cette méthode.

Geler certaines clauses

La stratégie proposée dans [Audemard et al., 2011b] est très différente de celles proposées par

le passé (voir page 41). Elle est en effet basée sur le gel et l’activation dynamique des clauses

apprises. À un certain point de la recherche, les clauses les plus prometteuses sont activées

tandis que les autres sont gelées. De cette façon, les clauses apprises peuvent être écartées

pour les prochaines propagations, mais peuvent par la suite être réactivées. Cette stratégie ne

peut être utilisée avec les mesures d’activité basées sur le VSIDS ou le lbd . En effet, la mesure

d’activité (inspirée par VSIDS) est dynamique mais ne peut être utilisée que pour mettre à jour

l’activité des clauses actives -c’est-à-dire participant effectivement à la recherche- , tandis que

lbd est soit statique (et ne change donc pas durant la recherche), soit dynamique auquel cas

on rencontre le même problème que la mesure basée sur VSIDS. De ce fait, cette stratégie est

associée avec une autre mesure afin de mesurer l’utilité d’une clause apprise [Audemard et al.,

2011b].

Soient c une clause apprise par le solveur et ω l’interprétation courante résultant de la

dernière polarité des variables de décisions [Pipatsrisawat and Darwiche, 2007]. La valeur psm

de la clause c par rapport à ω, notée psmω(c), est égale à psmω(c) = |ω ∩ c|.
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Basée sur l’interprétation courante, psm se révèle être une mesure hautement dynamique.

Son but est de sélectionner le contexte approprié à l’état courant de la recherche. Dans cette

optique, les clauses ayant une petite valeur de psm sont considérées comme utiles. En effet, de

telles clauses ont plus de chance de participer à la recherche, par le mécanisme de propagation

unitaire ou en étant falsifiées. Au contraire, les clauses avec une grande valeur de psm, ont une

plus grande probabilité d’être satisfaites par deux littéraux ou plus, les rendant inutiles pour

la recherche en cours.

Ansi, seules les clauses ayant une petite valeur de psm sont sélectionnées et utilisées par

le solveur dans le but d’éviter un surcoût calculatoire lié à la maintenance des structures de

données pour ces clauses inutiles. Néanmoins, une clause gelée n’est pas supprimée, mais est

gardée en mémoire, puisqu’elle peut se révéler utile par la suite. Au fur et à mesure que

l’interprétation courante évolue, l’ensemble de clauses utilisées évolue également. Dans cette

optique, la mesure psm est calculée périodiquement et les ensembles de clauses gelées et actives

sont ainsi mis à jour.

Soit Pk une suite où P0 = 500 et Pi+1 = Pi + 500 + 100 × i. Une procédure nommée

”updateDB” est appelée chaque fois que le nombre de conflit atteint Pi (où i ∈ [0..∞]. Cette

procédure calcule la nouvelle valeur psm de chaque clause apprise (gelée ou active). Une clause

avec une valeur psm inférieure à une limite l est activée, dans le cas contraire, elle est gelée. De

plus, une clause qui n’est pas activée après k itérations (par défaut, k = 7) est définitivement

supprimée. De façon similaire, une clause qui reste active plus de k étapes sans participer à la

recherche est également supprimée.

Grâce aux mesures psm et lbd , il est désormais possible de définir une politique pour

l’échange de clauses. Dans un solveur CDCL typique, un nogood est appris après chaque

conflit. Il est donc clair que toutes les clauses ne peuvent être partagées. De ce fait, lorsqu’il

y a collaboration, ces clauses doivent être filtrées selon un critère. À notre connaissance, dans

tous les solveurs portfolio, ce critère est uniquement basé sur les informations de l’expéditeur

de la clause, le destinataire n’ayant pas d’autres choix que d’accepter une clause jugée utile par

un autre solveur.

Nous présentons donc une technique où l’expéditeur et le destinataire peuvent avoir leur

propres stratégies. Chaque expéditeur (stratégie d’export) essaie de trouver dans sa base de

clauses apprises les informations les plus pertinentes pour aider les autres threads. De plus,

le destinataire (stratégie d’import) peut ne pas accepter aveuglément les clauses qui lui sont

envoyées. Nous avons nommé ce solveur prototype PeneLoPe2 (Parallel Lbd Psm solver).

Politique d’import de clauses Quand une clause est importée, différents cas peuvent être

considérés en fonction du moment où la clause sera attachée pour que celle-ci participe à la

recherche.

• no-freeze: chaque clause importée est directement activée, et sera évaluée (et potentielle-

ment gelée) durant le prochain appel à updateDB .

• freeze-all : chaque clause importée est gelée par défaut, et ne sera utilisée par la suite que

si elle remplit les conditions pour être activée.

2En référence à la femme fidèle d’Ulysse, qui réalisait une tapisserie en liant de nombreux fils (threads)
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• freeze: chaque clause est évaluée au moment de l’import. Elle est activée si elle est

considérée comme prometteuse, selon les mêmes critères que si elle avait été générée

localement.

Politique d’export de clause Puisque PeneLoPe est capable de geler certaines clauses, il

semble possible d’en importer un plus grand nombre que dans le cas d’une gestion classique des

clauses, où chacune d’elle est attachée jusqu’à sa possible suppression. De ce fait, nous pro-

posons différentes stratégies, plus ou moins restrictives, pour sélectionner les clauses partagées

:

• unlimited : chaque clause générée est exportée aux différents fils d’exécution.

• size limit : seules les clauses dont la taille est inférieure à une valeur donnée (8 dans nos

expérimentations) sont exportées [Hamadi et al., 2009b].

• lbd limit : une clause est exportée aux autres fils d’exécution si son lbd est inférieur à

une limite donnée d (8 par défaut). Il est important de remarquer que la valeur du lbd

peut être réduite au cours du temps. Ainsi, dès que lbd(c) est inférieur à d, la clause est

exportée.

Politique de redémarrage En plus des politiques d’échange, PeneLoPe permet également

de choisir entre deux politiques de redémarrage.

• Luby : Soit ln le n-ième terme de la série Luby [Luby et al., 1993b]. Le n-ième redémarrage

est effectué après ln × α conflits (α vaut 100 par défaut).

• lbd : Soit LBDg la moyenne des valeurs de lbd de chaque clause apprise depuis le com-

mencement de la recherche. Soit LBD100 la moyenne des 100 dernières clauses apprises.

Cette politique induit qu’un redémarrage est effectué dès que LBD100 × α > LBDg (α

vaut 0.7 par défaut) [Audemard and Simon, 2009a].

Différentes expérimentations ont été réalisées dans le but de comparer ces politiques d’import,

d’export et de redémarrage. Différentes versions ont été exécutées et la table 7.1 présente une

partie des résultats obtenus. Cette table rapporte pour chaque stratégie le nombre d’instances

SAT (#SAT), UNSAT (#UNSAT) et total (#SAT + #UNSAT) résolues.

Comparons d’abord la stratégie d’import. Sans surprise, la politique unlimited obtient

les plus mauvais résultats. En effet, aucune version utilisant cette stratégie n’est capable de

résoudre plus de 190 instances. Chaque clause générée est exportée, et nous obtenons ainsi le

niveau maximum de communication. Comme attendu, avec la multiplicité des fils d’exécution,

les solveurs sont vite submergés par les clauses et leurs performances chutent.

C’est la raison pour laquelle des limites basées sur la taille ont été introduites avec l’idée que

de petites clauses permettent de mieux filtrer l’espace de recherche et sont donc préférables.

En effet, on constate dans la table 7.1 que la politique size limit surpasse unlimited. De plus, il

est également possible de constater que l’échange des seules clauses unitaires n’offre pas d’aussi

bonnes performances (size = 1 ), tout comme cela avait été annoncé préalablement. Il est

également important de signaler que les clauses de grande taille peuvent grandement réduire la

taille de la preuve [Beame et al., 2004].
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Figure 7.2: Comparaison entre les clauses importées révélées utiles et les clauses importées

n’ayant pas été utilisées dans la propagation et supprimées. Chaque point représente une

instance. L’axe x représente le taux de clauses utiles #used(SC)
#SC , tandis que l’axe y représente

le taux de clauses non utilisées et supprimées #unused(SC)
#SC .
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L’utilisation de la valeur lbd d’une clause (lbd(c)) peut donc s’avérer bénéfique étant donné

que lbd(c) ≤ taille(c). De ce fait, une politique utilisant lbd exporte plus de clauses que celle

utilisant la taille (avec la même borne).

Ceci pourrait représenter un problème pour un solveur parallèle n’ayant pas la possibilité

de geler certaines clauses. Cependant, puisque PeneLoPe contient un tel mécanisme, l’impact

est grandement réduit. D’un point de vue empirique, la table 7.1 montre que lbd limit obtient

les meilleurs résultats entre les différentes politiques.

Concentrons nous maintenant sur la politique de redémarrage. De façon évidente, la poli-

tique luby obtient globalement de moins bons résultats que celle utilisant lbd . Cela montre

clairement l’intérêt de cette mesure introduite dans [Audemard and Simon, 2009a]. À propos

de la stratégie d’import, aucune stratégie ne se révèle être clairement meilleure que les autres.

En effet, le meilleur résultat relatif au nombre d’instances SAT est obtenu par no freeze (97)

lorsqu’il est associée à la politique de redémarrage luby et size limit comme politique d’export,

tandis que le meilleur résultat en nombre d’instance UNSAT est obtenu en utilisant la stratégie

freeze (113). De plus, no freeze permet d’obtenir les meilleurs résultats globaux en résolvant

205 instances parmi les 300 utilisées. Il serait ainsi audacieux de plaider envers l’une des 3

techniques proposées. Cependant, un grand nombre des politiques proposées obtiennent de

meilleurs résultats que les techniques ”classiques” d’échange de clauses, représentées dans la

table 7.1 par ManySat.

Dans une seconde expérimentation, nous avons voulu évaluer le comportement de PeneLoPe

avec certaines des politiques proposées. Dans ce but, nous avons reconduit le même type

d’expérimentations que celle présentée dans la section 4.2; les résultats obtenus sont reportés

dans la Figure 7.2. Dans un premier temps, nous avons essayé avec les politiques size limit,

luby, et no freeze (dénoté SLN, voir Figure 7.2(a)).

Il est clairement visible que cette version se comporte bien, étant donné que la plupart de ces

points sont situés sous la diagonale. De plus, pour la plupart des instances, #usedSC+#unused(SC)
#SC

est proche de 1 (nombreux points situés près de la seconde diagonale), ce qui indique que le

solveur ne comporte que peu de clauses qui ne sont pas utilisées sans les avoir supprimées. La

plupart d’entre elles sont donc utiles, tandis que les autres sont supprimées.

Ensuite, l’expérimentation fut reconduite en utilisant les politiques lbd limit, lbd , et freeze

(dénoté LLF, voir Figure 7.2(b)). Au premier abord, le comportement de cette version est moins

satisfaisant que la version SLN, du fait que pour la plupart des instances, plus de la moitié des

clauses importées sont supprimées sans avoir été utiles dans la propagation. En réalité, dans

cette version, un nombre bien plus important de clauses sont exportées du fait de la politique

d’export lbd limit, ce qui conduit à un taux d’utilisation plus faible. Un réglage plus fin des

paramètres (limite d’export pour les valeurs lbd , nombre de fois qu’une clause peut être gelée

avant d’être supprimée, etc.) pourrait améliorer cela.

Si l’on regarde les statistiques détaillées de quelques instances, présentées dans la table 7.2,

il apparâıt que la version LLF partage en effet beaucoup plus de clauses que la version SLN

(colonne nbu). Notons aussi que cette table contient d’autres informations très intéressantes.

Par exemple, il est possible de voir que pour certaines instances (par exemple AProVE07-21),

quasiment 90% des clauses importées sont en fait gelées et ne participent pas immédiatement à

la recherche, alors que pour d’autres instances la situation inverse se produit (hwmcc...). Ceci

révèle la grande adaptabilité de la mesure psm.
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D’un point de vue plus général, même si la politique no-freeze semble être meilleure en

terme d’efficacité des communications entre fils d’exécution, elle possède l’inconvénient d’ajouter

chaque clause importée à l’ensemble des clauses actives. Ceci implique que le nombre de prop-

agation par seconde sera ralenti jusqu’au prochain ré-examen de la base de clauses apprises.

Ceci peut être un problème si l’on augmente le nombre de fils d’exécution. D’un autre coté, la

politique freeze-all ne ralentit pas le solveur, mais dans ce cas, il est possible que le solveur soit

en train d’explorer un espace de recherche qui aurait pu être évité avec la politique no-freeze.

7.4.2 Evaluation

Solver #SAT #UNSAT total

PeneLoPe freeze 97 119 216

PeneLoPe no freeze 96 119 215

Plingeling [Biere, 2013] 99 97 196

ppfolio [Roussel, 2011] 91 103 194

cryptominisat [Soos, 2010] 89 104 193

ManySat [Hamadi et al., 2009b] 95 92 187
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Figure 7.3: Comparaison sur 8 cœurs

Dans cette section, nous proposons une comparaison de deux de nos prototypes avec les

meilleurs solveurs SAT parallèles connus à ce jour. Nous avons ainsi sélectionné les solveurs

qui se sont montrés les plus efficaces lors des dernières compétitions : ppfolio [Roussel, 2011],

cryptominisat [Soos, 2010], Plingeling [Biere, 2013] et ManySat [Hamadi et al., 2009b].

Pour PeneLoPe, nous avons choisi pour les deux versions la stratégie de redémarrage basée sur

lbd, ainsi que la politique d’exportation lbd limit. Ces versions ne diffèrent donc que par leur

politique d’importation de clauses, dont l’une est freeze, l’autre no freeze. Précisons également

que contrairement à tous les résultats présentés précédemment, nous n’avons pas utilisé le mode

déterministe dans cette partie, dans le but d’obtenir les meilleures performances possibles.

La Figure 7.3 donne les résultats selon différentes représentations. PeneLoPe dépasse en

pratique tous les autres solveurs paralèlles. En effet, il parvient à résoudre 216 instances tandis

qu’aucun autre solveur ne dépasse les 200 (Figure 7.3(a)). Notons cependant que si on ne
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considère que les instances satisfaisables, les meilleurs résultats sont obtenus par Plingeling qui

en résout 99. Ceci est particulièrement visible dans la Figure 7.3(b) où PeneLoPe et Plingeling

sont plus précisément comparés. Dans cette Figure, la plupart des points représentant des

instances SAT sont assurément au dessus de la diagonale, illustrant la force de Plingeling sur

ce type de problèmes. Toutefois, les résultats relatifs aux instances SAT sont assez proches les

uns des autres (97 pour PeneLoPe freeze, 95 pour ManySat, etc.), l’écart étant plus important

pour les problèmes UNSAT.

Solver #SAT #UNSAT total

PeneLoPe freeze 104 127 231

PeneLoPe no freeze 99 131 230

ManySat [Hamadi et al., 2009b] 105 111 216

ppfolio [Roussel, 2011] 107 97 204

cryptominisat [Soos, 2010] 96 105 201

Plingeling [Biere, 2013] 100 95 195
(a) PeneLoPe VS l’état de l’art
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Figure 7.4: Comparaison sur 32 cœurs

En outre, nous avons également comparé ces solveurs sur une architecture composée de

32 cœurs. Plus précisément, la configuration matérielle est maintenant la suivante : Intel

Xeon CPU X7550 (4 processeurs, 32 cœurs) 2.00GHz avec 18 Mo de mémoire cache et 256Go

de mémoire vive.

Chaque solveur est exécuté avec 32 threads, et les résultats obtenus sont présentés dans la

Figure 7.4 de manière similaire.

Tout d’abord, notons qu’à l’exception de Plingeling, tous les solveurs améliorent leurs

performances quand ils sont exécutés avec un nombre supérieur de threads. Le profit est cepen-

dant limité pour certains d’entre eux. Par exemple, cryptominisat résout 193 instances avec

8 threads, et 201 instances avec 32 threads. L’amélioration est bien supérieure avec PeneLoPe,

dont les deux versions résolvent 15 instances supplémentaires, et plus spectaculaire encore pour

ManySat avec un gain de 29 instances. L’écart est tout particulièrement visible sur la Figure

7.4(c), puisque nos 3 compétiteurs résolvent le même nombre d’instances sur (environ) le même

temps (les courbes de ppfolio, Plingeling et cryptominisat sont très proches les unes des
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autres), tandis que la courbe de PeneLoPe et celle de ManySat montrent clairement leur ca-

pacité à résoudre un plus grand nombre de problèmes en un temps restreint. Il est d’ailleurs

bon de noter que PeneLoPe résout le même nombre de problèmes que Plingeling, ppfolio

et cryptominisat avec une limite (virtuelle) de temps de seulement 400 secondes. Enfin, il

semble que le comportement de PeneLoPe puisse être amélioré sur les instances SAT. En effet, il

apparâıt que les redémarrages luby sont plus efficaces pour les problèmes possédant une solution

que pour ceux qui en sont dépourvus, alors que le contraire se produit pour le redémarrage lbd .

L’ajout d’unités de calcul, et par conséquent de fils d’exécution parallèles, a différents im-

pacts. Par exemple, pour ppfolio et Plingeling, le gain n’est pas énorme, puisque l’augmentation

du nombre de threads ne fait qu’accrôıtre le nombre de solveurs séquentiels explorant l’espace

de recherche ; chaque thread ne profite pas ici du travail des autres, puisqu’au sein de ces

solveurs, aucune collaboration (ou une collaboration très faible) n’est effectuée. PeneLoPe

bénéficie mieux de l’augmentation de ressources, car le nombre de clauses échangées provenant

de différents sous-espaces de recherche est supérieur. Ceci conduit à une connaissance plus

grande pour chaque thread, sans ralentir le processus de recherche général, grâce au mécanisme

de gel des clauses.

Pour finir, insistons sur le fait que durant nos expérimentation avec PeneLoPe, tous les

threads possèdent exactement les mêmes paramètres et les mêmes stratégies, comme dans nos

expérimentations préliminaires présentées dans la section 4.2. Offrir de la diversification aux

différentes recherches CDCL concurrentes devrait accrôıtre plus encore l’efficacité pratique de

notre prototype.

7.4.3 Conclusion

Dans cette contribution, nous avons proposé différentes stratégies permettant une meilleure

gestion de l’échange de clauses apprises au sein de solveurs SAT parallèles de type portfolio. En

se basant sur les concepts de psm et de lbd récemment proposés dans le cadre séquentiel, l’idée

générale est d’adopter différentes stratégies pour l’importation et l’exportation de clauses. Nous

avons étudié avec soin divers aspects empiriques des idées proposées, et comparé notre prototype

aux meilleures implantations disponibles, montrant que notre solveur se révèle compétitif.

Assez clairement, diversifier le comportement exploratoire des threads devrait encore améliorer

les performances de notre solveur, dans la mesure où cette diversification semble être la pierre

angulaire de l’efficacité de certains solveurs comme ppfolio. Nous prévoyons d’étudier plus

précisément cela dans un futur proche.

7.5 Dolius

Cette seconde contribution à été l’objet des publications suivantes: [Audemard et al., 2014c,

Audemard et al., 2014e,Audemard et al., 2013b].

Le but de cette contribution est de fournir une plateforme capable de résoudre une instance

du problème SAT en distribué. Pour cela, cette plateforme est destinée à diviser le travail par

l’approche diviser pour régner. De plus, il est également possible de transmettre une partie des

connaissances accumulées dans l’espoir de limiter au maximum le travail redondant.
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7.5.1 Architecture

Structure générale / Initialisation

La structure générale de dolius est de type mâıtre/esclave. Les esclaves sont des solveurs de

type CDCL ; dans la pratique nous utilisons PeneLoPe [Audemard et al., 2012b], ce qui nous

permet d’obtenir un solveur distribué dont les esclaves peuvent être des solveurs séquentiels

”classiques”, ou des portofolios de solveurs, permettant d’exploiter au mieux les architectures

multi-cœurs; tandis que le mâıtre est un processus dont la tâche est de mettre en relation les

esclaves, quand l’un d’eux a terminé sa tâche (voir plus bas).

L’initiation de dolius consiste simplement à démarrer le mâıtre. Celui-ci est alors en attente

d’un ou plusieurs esclaves, qui entameront alors la résolution du problème. Il est à noter que

l’implémentation dolius autorise l’ajout de ressources (esclaves) en cours de résolution. Ainsi,

il est possible à n’importe quel moment de la recherche d’augmenter le nombre d’esclaves, ceux-

ci n’ayant qu’à contacter le mâıtre. Au travers de notre stratégie, une formule est prouvée

satisfiable (SAT) si l’un des esclaves trouve un modèle. En effet, chaque esclave travaille avec la

formule initiale simplifiée par la division du travail (voir section 4.3). Une formule est prouvée

insatisfaisable (UNSAT) si tous les esclaves ont prouvé que la sous-formule dont ils s’occupent

est UNSAT.

Rééquilibrage de charge

Il semble impossible en pratique de partitionner l’espace de recherche de manière à la fois

statique et optimale au début de l’algorithme. Idéalement, les esclaves doivent avoir une charge

de travail équivalente, mais il est en effet très difficile de prédire à l’avance la difficulté d’une

(sous-)formule.

mâıtreE1

E2 E3

E4

(a) L’esclave Ei a terminé sa tâche,

il le signale au mâıtre

mâıtreE1

E2 E3

E4

(b) Le mâıtre prend contact avec

un esclave actif, et lui demande s’il

accepte de diviser sa charge

mâıtreE1

E2 E3

E4

(c) S’il accepte, l’esclave actif Ej

(sélectionné par le mâıtre) envoie

une partie de sa charge à l’esclave

actif Ei

mâıtreE1

E2 E3

E4

(d) Tous les esclaves sont main-

tenant actifs

Figure 7.5: Illustration de l’équilibrage de charge via le vol de travail

Un mécanisme de rééquilibrage de charge de travail doit donc être mis en place, afin d’être
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opportuniste vis-à-vis des ressources disponibles. En effet, certains esclaves termine en pra-

tique leur tâche bien avant certains autres, dans la large majorité des cas. Nous avons ainsi

implanté au sein de notre plate-forme un mécanisme qui permet de répartir les tâches sur les

différentes unités de calcul, ceci à l’aide d’un processus de plus en plus répandu : le vol de

travail. L’avantage de cette technique est qu’un esclave cherchant une solution ne doit pas se

soucier d’autre esclaves qui seraient affamés. Ceux-ci viendront d’eux même demander du tra-

vail. Les différentes étapes de ce processus sont illustrées en Figure 7.5. Lorsqu’un esclave (noté

Ei) termine la tâche qui lui est confiée, il contacte le mâıtre (M) pour signaler qu’il n’a pas

plus de travail (étape 7.5(a)). Le mâıtre demande à l’un des esclaves encore actifs (noté Ej) s’il

accepte de diviser sa tâche (étape 7.5(b)). Si Ej accepte, il contacte alors Ei pour se délester

d’une partie de sa charge de travail (étape 7.5(c)). Les esclaves entrent donc directement en

communication l’un avec l’autre sans passer par le mâıtre, qui n’est contacté que pour fournir

à un esclave nouvellement inactif les coordonnées d’un autre esclave acceptant de diviser sa

tâche.

Dans notre plate-forme, un esclave ne peut refuser de diviser son travail que lorsqu’un des

trois cas suivants se présentent :

1. l’esclave vient de trouver un modèle à la formule, la recherche d’une solution devient donc

inutile

2. il n’œuvre sur sa tâche que depuis peu de temps (en pratique ¡ x secondes, où x peut être

spécifié par l’utilisateur. Par défaut, x = 2, 5)

3. il est déjà en cours de division de sa charge avec un autre esclave inactif

En outre, au sein de dolius, le mâıtre conserve l’ensemble des esclaves actifs dans une

file. Lorsqu’un esclave demande du travail, il sélectionne le premier esclave actif de sa file afin

de le contacter. Ce choix a été fait pour éviter, en cas de demandes de travail simultanées

par plusieurs esclaves inactifs, qu’un même esclave soit contacté pour plusieurs demandes de

division de travail, ce qui serait très inefficace.

Dans la section suivante, nous détaillons les stratégies de division du travail offertes par

dolius.

Division du travail

Lorsqu’il en reçoit la requête, la manière dont un esclave divise sa charge de travail pour en

céder une partie est un facteur important de l’efficacité d’un algorithme de type diviser pour

régner. La division sera considérée comme parfaite si les temps de résolution des sous-formules

sont égaux entre eux, et inférieur au temps nécessaire pour résoudre la formule complète ϕ. Si la

division est mal effectuée, deux problèmes de nature différente peuvent survenir. Premièrement,

il est possible que les sous-formules ϕi aient un même temps de résolution que la formule

complète. De ce fait, le temps nécessaire pour résoudre l’instance augmentera en fonction du

nombre de ressources: le temps nécessaire pour résoudre l’instance auquel il faut ajouter le

temps nécessaire pour la division du travail. Le deuxième problème lié à une mauvaise division

se produit si le temps de résolution de ϕi est négligeable ou bien moindre que celui pour ϕj . Cela

implique pour le système d’être capable de mettre en place une politique de ré-équilibrage de
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travail. Si cette politique souffre de mauvaise division, des cas pathologiques peuvent apparaitre,

comme le cas dit ping-pong [Jurkowiak et al., 2001].

Exemple 1 Soit φ une formule CNF. La formule Σ = ((a∨b)∧φ)∧((a∨¬b)∧φ) est également

une CNF. Les divisions sur les variables a et b posent toutes les deux problème.

(a) si la division du travail de Σ est réalisée sur la variable a, l’une des deux charges de

calculs est alors très faible, car il est très facile de prouver que Σ � a. Ainsi, par simple

propagation unitaire, il est possible de montrer que Σ ∧ (¬a) � ⊥. L’esclave ayant reçu

cette partie du problème va donc la prouver incohérente sans la moindre exploration (la

propagation unitaire étant suffisante), et redemander du travail très rapidement. Ceci est

problèmatique, car la division du travail a un coût, notamment en transfert réseau. Le

phénomène ping-pong est le fait de multiplier de tels mauvais choix pour la division du

travail, menant à des sous-problèmes d’une trivialité telle que certains esclaves passent

plus de temps à demander du travail qu’à véritablement participer à la résolution de la

formule.

(b) si la division est réalisée sur b, alors chacun des deux esclaves travaille sur la même

formule : a ∧ φ. En outre, si φ est UNSAT, c’est seulement lorsque le moins efficace des

deux (i.e. celui répondant en dernier) transmet sa solution que l’incohérence de Σ peut

être établie.

Ainsi, dans une telle situation, il est largement préférable de diviser selon l’une des variables

de φ plutôt que sur a ou b.

Dans l’idéal, la tâche doit être divisée en deux sous-tâches différentes de difficulté similaire,

afin de répartir au mieux la charge de travail, tout en s’assurant que les sous-tâches soient de

difficulté moindre que la tâche avant division. Malheureusement, comme précisé plus haut,

il semble difficile sinon impossible de déterminer à l’avance la difficulté d’une formule. Les

algorithmes diviser pour régner basent donc leur division sur des concepts heuristiques.

Les algorithmes de ce type utilisent généralement la notion de guiding path pour la division

du travail. La plupart du temps le guiding path est réduit à la simple séparation d’une variable,

et affecte (pour lui même) l’une des variables de la formule tandis qu’il transmet à l’esclave

inactif l’opposé de cette même variable [Martins et al., 2010,Hyvärinen et al., 2011].

Notre plate-forme permet ce genre de division, mais se veut plus générique. En effet, dolius

permet de diviser sa charge de travail selon une formule booléenne φ quelconque, l’un des

esclaves considérant cette formule φ vraie, tandis que l’autre fait l’hypothèse que sa négation

¬φ est vraie. La division du travail a donc pour effet d’obtenir un arbre de résolution dont la

racine est la formule initiale Σ et les feuilles les formules simplifiées par les guiding paths φi

successifs. Un exemple d’un tel arbre est montré dans la Figure 7.6

Formellement, l’ensemble des guiding paths doit vérifier les conditions suivantes :

Propriété 1 Soit Σ la formule propositionnelle à résoudre et φ1, φ2, . . . φn les guidings paths

successifs utilisés pour diviser Σ. La condition suivante doit alors être vérifiée : Σ ∧
∧n
i=1 φi

est SAT.
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Σ

ϕ1¬ϕ1

¬ϕ2 ϕ2

Σ�∧ ¬ϕ1 ∧ ¬ϕ2 Σ�∧ ¬ϕ1 ∧ ϕ2

Σ�∧ ϕ1

Figure 7.6: Un exemple de division de travail

Triviale dans le cas d’une division simple, cette propriété ne l’est plus dans le cas de divisions

en utilisant des formules plus complexes. Nous étudions en ce moment des guiding paths dont la

structure même nous assurent qu’ils sont mutuellement consistants. Clairement, qu’il s’agisse

d’une simple variable ou d’une formule booléenne, le choix du guiding path est un élément

déterminant pour l’efficacité de la procédure en général. Dans la première version de notre plate

forme, nous avons fait le choix de conserver une division simple. Ainsi, l’esclave recevant une

requête de division de travail sélectionne la variable ayant le VSIDS le plus important [Martins

et al., 2010]. Cette valeur heuristique, utilisée au sein des solveurs CDCL comme choix de

variable, est connue pour désigner les variables centrales de la formule [Simon and Katsirelos,

2012]. Ainsi, diviser sur la variable présentant le score le plus important a pour but de scinder

la formule sur une variable jugée pertinente.

En pratique, chaque esclave est une instance de PeneLoPe travaillant sur plusieurs cœurs.

Une difficulté supplémentaire apparait donc quand au choix de la variable de séparation.

Pour l’instant, nous sélectionnons le cœur ayant généré le plus de conflits et sélectionnons sa

”meilleure” variable. Il est clair que ce choix heuristique doit être amélioré et des expérimentations

sont actuellement réalisées afin de déterminer un meilleur critère de sélection. Mais, à terme,

nous souhaitons vivement déterminer une stratégie de séparation utilisant des formules plus

complexes qu’une simple clause unitaire.

Transfert d’informations

Il est connu que la gestion des clauses apprises est un composant très important des solveurs

CDCL [Audemard and Simon, 2009a] et des approches coopératives comme ManySat ou PeneLoPe

[Hamadi et al., 2009b, Audemard et al., 2012b]. Dans le cas de notre approche distribuée ce

problème perdure. Comme nous le montrerons dans la partie expérimentale, les performances de

dolius s’écroulent si l’esclave en manque de travail ne reçoit pas de clauses apprises en plus du

guiding path. En effet, l’esclave nouvellement créé doit alors recommencer la recherche depuis

le début et ne profite d’aucun effort fait précédemment. Dès lors, il faut déterminer quelles

clauses apprises les esclaves partagent. Dans cette première version de dolius + PeneLoPe,

nous avons décider de partager toutes les clauses ayant un LBD [Audemard and Simon, 2009a]

inférieur à 15. Les critères de sélection des nogoods à partager peuvent influer grandement, et

des études plus approfondies sont encore nécessaires pour optimiser ce composant de dolius.

Un autre type d’information que nous n’avons malheureusement pas eu le temps de mettre

en œuvre concerne l’initialisation de l’heuristique : il semble en effet intéressant d’initialiser

la recherche dans le même état que l’esclave qui partage son travail. La structure de dolius
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nécessaire

à
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// i n i t i a l i z a t i o n

void setCNFFile ( const char∗ i n p u t F i l e ) ;

void i n i t i a l i z e ( int nbVar , int nbClauses ) ;

// thread r e l a t e d f u n c t i o n s

void run ( ) ;

void stop ( ) ;

// c l a u s e database m o d i f i c a t i o n

void addLearntClause ( const std : : vector<int>& c l a u s e ) ;

void addClause ( const std : : vector<int>& c l a u s e ) ;

// i t e r a t o r s

void l e a r n t C l a u s e I t e r a t o r R e s t a r t ( ) ;

void l e a r n t C la u s e I t e r a t o r Ne x t ( std : : vector<int>& c l a u s e ) ;

void gu id ingPath I t e ra to rRes ta r t ( ) ;

void gu id ingPathI te ratorNext ( std : : vector<int>& c l a u s e ) ;

int getGuidingPathSize ( ) const ;

// g u i d i n g path m o d i f i c a t o r s

bool createGuidingPath ( std : : vector<std : : vector<int> >& gpA ,

std : : vector<std : : vector<int> >& gpB ) ;

void addToGuidingPath ( const std : : vector<int>& c l a u s e s ) ;

// s a t r e l a t e d in format ion

bool so lut ionFound ( ) const ;

bool isSolutionFoundSAT ( ) const ;

int getNbVar ( ) const ;

int g e t S o l u t i o n L i t e r a l ( int var ) const ;

int getNbLearntClauses ( ) const ;

Figure 7.7: Fonctions à implémenter pour s’intégrer à dolius

permet de telles approches, que nous prévoyons de tester dans de futurs travaux. C’est une des

nombreuses perspectives offertes par dolius.

7.5.2 Interface de programmation

Afin de faciliter l’intégration de solveurs au sein de dolius, une interface de programmation est

proposée à la Figure 7.7. Il existe différents groupes de fonctions: l’initialisation, la gestion des

processus, la gestion des bases de clauses, les itérateurs, la modification des chemins de guidage

et les informations relatives à la recherche.

7.5.3 Évaluation expérimentale

Les expérimentations conduites dans cette contribution sont réalisées sur des bi-processeurs

Intel XEON X5550 4 cœurs à 2.66 GHz avec 8Mo de cache et 32 Go de RAM, sous Linux

CentOS 6 (kernel 2.6.32). Chaque esclave utilise 8 threads. Le temps limite alloué pour résoudre

une instance est de 1200 secondes WC (Wall Clock) (Les temps seront toujours donnés en

secondes). Nous considérons ici le temps réel (WC) plutôt que le temps CPU car ce dernier
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n’intègre que le temps d’activité des unités de calcul, et occulte donc certains aspects, comme

les temps d’attente des processus lors des communications réseau. Nous avons choisi un pool

de 12 instances de difficulté variable issues de la compétition SAT 2011. Chaque instance a été

testée avec 5, 10 et 20 esclaves.

Précisons qu’il est délicat d’évaluer expérimentalement une plate-forme de cette nature.

C’est probablement l’une des raisons pour lesquelles depuis des années, aucun solveur de type

diviser pour régner n’est soumis aux compétitions SAT. En effet, ce type d’approche n’est pas

déterministe par nature, ni en temps d’exécution, ni dans la solution (preuve de réfutation

ou modèle) reportée. Plusieurs exécutions de dolius + PeneLoPe sur un même ensemble de

machines peuvent amener à des résultats disparates, dont la variance peut être plus ou moins

grande. Ceci est inhérent à la plupart des processus distribués en informatique. Afin d’obtenir

des résultats viables, nous avons donc lancé chaque instance à 5 reprises.

La table 7.3 donne une vue globale de l’ensemble des résultats obtenus. Nous avons

également mis les résultats obtenus par PeneLoPe (correspondant à dolius avec un seul es-

clave).

Attente

E Temps MB req dernière somme moyenne médiane

5 - - 56 19.77 66.70 13.34 13.70

5 - - 46 14.18 50.75 10.15 11.02

5 - - 46 14.30 51.13 10.23 11.00

5 576 2 47 15.32 63.90 12.78 12.79

5 1019 1 48 14.10 50.23 10.05 10.92

10 - - 141 27.30 143.47 14.35 14.93

10 - - 160 32.97 162.61 16.26 16.79

10 - - 211 31.40 201.61 20.16 20.86

10 383 4 164 42.26 175.99 17.60 18.17

10 185 2 182 24.37 161.81 16.18 16.49

20 - - 472 35.15 376.62 18.83 19.16

20 - - 466 37.34 352.25 17.61 18.80

20 637 8 415 30.82 344.25 17.21 17.21

20 376 7 438 49.17 330.61 16.53 16.95

20 398 5 479 21.05 325.88 16.29 17.58

Table 7.4: Détail des résultats pour l’instance partial-10-13-s. Chaque ligne correspond à

un lancement. On y reporte le nombre d’esclaves (E), Le temps nécessaire à la résolution,

le nombre de demandes de travail (req), la quantité totale transférée sur le réseau (MB), La

dernière demande de travail par un esclave, la somme, moyenne, et médiane des temps d’attente

de chaque esclave.

Jetons tout d’abord un œil aux 5 premières instances de ce tableau. Elles sont (relativement)

faciles pour PeneLoPe et il semble que l’approche distribuée ne soit pas adaptée à ce type de

formules simples. Pour de tels problèmes, notre implémentation fournit même de moins bons

résultats qu’une approche centralisée, et dans certains cas, l’approche distribuée est d’ailleurs

incapable de répondre à chaque exécution. Les 2 instances qui suivent (SAT dat.k80 et sortnet-



124 7. FRENCH RESUMÉ

8-ipc5-h19-sat) présentent plus de difficultés pour PeneLoPe. Ici, dolius obtient des résultats

décevants, puisque dans les deux cas, l’approche contenant 20 esclaves ne parvient jamais à

résoudre l’instance. Les versions contenant moins d’esclaves réussissent quant à eux une seule

fois.

Les dernières instances listées dans la table 7.3 sont en revanche des instances difficiles,

pour lesquels PeneLoPe ne réussit pas à déterminer la cohérence en moins de 1200 secondes.

On commence à voir ici l’intérêt d’une approche distribuée puisque sur de telles instances,

l’utilisation d’un certain nombre d’esclaves (chacun d’eux étant basés sur PeneLoPe) permet de

trouver une solution là où l’approche portofolio seule montre ses limites. En effet, l’utilisation

de ces ressources supplémentaires permet l’obtention d’une réponse lors de certaines exécutions

(d’autres terminent en échec), en des temps de calcul très raisonnables pour des problèmes de

cette difficulté.

Encore une fois, dolius est un projet de longue haleine, dont nous ne présentons ici qu’un

travail préliminaire. Il est clair que dolius peut être plus finement paramétré afin d’accrôıtre

son efficacité pratique, toutefois les résultats obtenus par sa première version sont très promet-

teurs.

La table 7.4 donne des détails sur l’ensemble des runs de l’instance partial-10-13-s. Mal-

heureusement, lorsque les instances ne sont pas résolues en 1200 secondes (-) nous n’avons pas

la possibilité d’afficher les transferts réseaux réalisés. Comparons tout d’abord les lancements

avec des nombres d’esclaves différents. Il est clair que le nombre de demandes de travail et la

quantité transférée sur le réseau augmente avec le nombre de travailleurs. Il est par contre diffi-

cile de mettre en relation le temps d’exécution avec le nombre de travailleurs : nous ne sommes

actuellement pas en mesure de proposer une méthode assurant une diminution du temps de

calcul en augmentant le nombre de travailleurs.

La table 7.4 donne par contre des indications très intéressantes sur la division du travail. En

effet, pour un nombre de travailleurs donné, le nombre de requêtes demandées et le temps où

tous les esclaves travaillent jusqu’à la fin sont relativement proches y compris lorsque le solveur

échoue à trouver une solution après 1200 secondes. Dans ce cas, la division de travail échoue

quelque peu : Aucun espace de recherche n’est prouvé insatisfiable et l’affectation de certaines

variables n’aide pas à la détection d’un modèle ; d’où l’importance du choix du guiding path.

7.5.4 Conclusion

Dans cette contribution, nous avons proposé un cadre permettant de résoudre le problème SAT

de manière parallèle. Cette première version est capable de résoudre des instances très difficiles

pour les solveurs centralisés. Il est de toute façon clair qu’une approche distribuée n’est utile que

pour des instances très difficiles, le surcoût dû aux différents demandes de travail, transfert, etc.

s’avérant rédhibitoires sur des instances dont le temps de résolution séquentiel est relativement

court.

Clairement, le choix du guiding path est un élément important pour un tel algorithme.

La séparation sur une seule variable (celle avec le VSIDS le plus élevé) permet d’obtenir des

premiers résultats relativement satisfaisants. Il est toutefois clair qu’il est possible d’améliorer

l’efficacité de la procédure en divisant avec soin le travail à accomplir. L’utilisation de formules

plus générales que de simples clauses unitaires constitue également un point qu’il est important



7.6. PERSPECTIVES 125

d’étudier.

De manière plus générale, ce travail offre de nombreuses perspectives de travail. Le choix

de l’information à transférer entre esclaves, le temps avant qu’un esclave accepte de partager

son travail, l’étude des cas pathologiques comme le cas du ping-pong sont autant de pistes de

recherches que nous allons étudier dans les prochains mois.

Enfin, en mettant en place une API qui permettra à tout un chacun d’utiliser la plateforme

dolius, nous espérons contribuer à l’étude des solveurs SAT sur les environnements distribués.

7.6 Perspectives

Au sein de cette thèse, il a été montré différents moyens de résoudre le problème SAT au

travers de la programmation parallèle et distribuée. Différents points peuvent être retenus de

cette expérience. En premier lieu, nous avons pu remarquer que des techniques qui semblent

simple comme le portfolio sont capable de battre des méthodes plus complexes. Cependant,

ces techniques ne sont pas aussi “stupides” qu’il apparait en premier lieu. Leur succès vient

du principe “there is no free launch” et joue fortement en leur faveur et selon la méthode

d’évaluation proposée par les compétitions. De plus, les portfolio sont capable de profiter

directement des avancées scientifiques obtenues sur les solveurs séquentiels.

Deuxièmement, nous avons proposé deux méthodes capable de s’étendre en fonction des

ressources proposées. La première, un portfolio est basé sur des travaux au sein de différents

laboratoires et prennent pleinement avantage des mémoires partagées. La seconde, une plate-

forme permettant d’utiliser le concept de diviser pour régner. Cette nouvelle plateforme réduit

le cout d’entrée pour les chercheurs souhaitant distribuer leurs calculs en étant moins dépendant

du matériel sous-jacent. De plus, la grande flexibilité offerte pour la méthodologie des divisions

pourra être d’une grande utilité pour de futures recherches.

La thèse n’est qu’un point de départ pour une carrière de recherche scientifique. Une fois

ce premier pas établi, il est nécessaire de prendre du recul pour se lancer vers les prochains

pas. Différentes possibilités sont offertes après le travail fourni dans cette thèse. En ce qui

concerne la recherche utilisant le principe de division pour régner, de nombreuses heuristiques

sont manquantes que ce soit concernant la division du travail, les communications. D’autre part,

il est également envisageable de tester à intégrer des méthodes qui ont fait leur succès pour les

solveurs séquentiels, tel que le redémarrage sans perte d’informations. Finalement, l’essentiel

des efforts de cette thèse se sont porté sur la partie recherche de solution. Cependant, un

solveur SAT est utilisé la plupart du temps dans une ‘chaine’ avec entre autres, d’éventuels

préprocesseurs. Il serait intéressant de scruter chacun des élément de cette chaine pour voir s’il

serait judicieux d’utiliser le parallélisme sur ceux-ci.

Les différentes techniques considérées durant cette thèse utilisaient la résolution pour résoudre

les instances. Cependant, d’autres techniques devraient être considérées car celles-ci pourraient

se révéler plus judicieuses dans le cadre de programmation parallèle. Il est envisageable que

de telles techniques soient plus efficaces que celles présentées dans cet ouvrage. Cependant, de

nombreux obstacles devront être relevés pour que celles-ci soient compétitives. En effet, les

solveurs CDCL modernes résultent de plusieurs années d’optimisation, certains allant jusqu’à

jouer avec des bits d’adresses mémoire pour économiser de l’espace et donc améliorer l’utilisation
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des caches CPU. De ce fait, de nouvelles méthodes devraient être suffisamment puissantes pour

surpasser les solveurs SAT actuels.
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List of Symbols

# The cardinality operator

Z The nand operator

⊥ The minimal unsatisfiable core

≡ The equivalence operator

∧ The conjunction operator

∨ The disjunction operator

H(x, y) Hamming distance between two vectors

O Big-O notation

|= is logical consequence

⊗ The exclusive or operator

⊗R The resolution operator

Π(Σ) the set of variables occurring in Σ

Π+(Σ) the set of variables occurring positively in Σ

Π−(Σ) the set of variables occurring negatively in Σ

⇒ The implication operator

> The minimal tautology

Y The nor operator

Σ|l The formula Σ simplified by assigning the literal l to >
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