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Abstract

A combinatorial optimization problem requires to take discrete decisions
under constraints and optimizing a given objective function, such as
planning, routing and scheduling problems. These problems arise in
many industrial fields and are of economical significance.

The general scope of this thesis is about Local Search (LS), that is
an iterative methodology to solve combinatorial optimization problems.
The principle is to generate a first solution, and to iteratively perform
slight modifications to this solution in order to obtain a good score with
respect to the objective function.

Very Large-Scale Neighborhood (VLSN) is a sophisticated technique
in Local Search to perform many modifications to the solutions at each
iteration. These techniques have a greater visibility at each iteration
and choose the next solution more efficiently. Very Large-Scale Neigh-
borhoods have been successfully applied on many complex real-life prob-
lems. However VLSN are very hard to implement. This prevents the
applicability of these techniques to new problems.

This thesis aims at remedying this limitation and presents a frame-
work that expresses VLSN search algorithms in terms of high-level com-
ponents. VLSN search algorithms expressed by mean of our framework
exhibits several benefits compared to existing approaches: 1) a more nat-
ural design of VLSN search algorithm, 2) a better reusability of existing
components, 3) a greater adaptability to modifications to the problem
to solve, and 4) a faster development of complex VLSN approaches.

As a proof of concept, we implemented this framework. Experi-
mental results show that our approach is comparable in time with re-
spect to existing approaches, and that it allows to obtain state-of-the-
art solutions on two real-life problems exhibiting different structure (one
timetabling and one routing application).

This validates that our approach is a helpful and efficient support to
develop VLSN search algorithms on new and complex problems.
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Chapter 1

Introduction

This thesis is concerned with solving Combinatorial Optimization Prob-
lems using Very Large-Scale Neighborhood (VLSN) search, a class of
local-search algorithms whose neighborhoods contain an exponential
number of neighbors.

A combinatorial optimization problem (COP) requires to as-
sign values from a finite set to variables, such that a set of constraints
are respected and an objective function is minimized. Many real-life
and industrial problems are combinatorial optimization problems such
as planning, routing and scheduling problems. Main combinatorial op-
timization problems are NP-hard; it is strongly believed that there is no
polynomial time algorithm solving them to optimality or, in some cases,
even approximatively. There exist several techniques to find solutions
to this type of problems that perform well in practice. Local Search is
one of these techniques.

Local Search (LS) is an iterative methodology to solve combinatorial
optimization problems. A local search algorithm only considers assign-
ments of the variables that respect the constraints of the problem. These
assignments are called solutions. A Local Search algorithm begins with
a first solution, and then iteratively performs slight modifications, called
moves, to the current solution. By applying such moves, Local Search
algorithms hopefully reach a solution having a good score with respect
to the objective function. The set of solutions that can be reached by
performing a move on a given solution is called the neighborhood of
this solution. In traditional Local Search, the neighborhoods are poly-
nomially sized. Then a search algorithm selects which candidate in the
neighborhood has to be chosen at each iteration. Generally, in local
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2 Chapter 1. Introduction

search approaches, each move is explicitely considered in order to find
the move leading to a solution that minimizes the objective function
among the neighbors.

One important aspect in the design of Local Search algorithms is
how it deals with local optima. A local optimum is a solution such
that no move leads to an improved solution wrt the objective function.
The set of local optima thus depends on the neighborhood used. There
exist several solutions to this problem, but no one universally works,
and dealing with local optima is always problematic. A rule of thumb of
local search is that the bigger the neighborhood used in a Local Search
approach, the better it performs as there are less local optima. Very
Large-Scale Neighborhoods were designed with this rule in mind.

Constraint-Based Local Search is a technology that performs lo-
cal search on high-level models, enabling the implementation of very
efficient and complex LS algorithms for solving complex Combinatorial
Optimization Problems. The main added-value of this approach is the
ability to quickly validate many different ideas. This is crucial to effi-
ciently solve a new problem. Indeed Combinatorial Optimization is a
field such that great ideas have a huge impact on efficiency (far more
than code optimization), but has very few tools to predict how an idea
will speed-up the Local Search algorithm. By enabling fast prototyping,
CBLS helps in finding the best algorithms for solving a problem.

The current stage of development of Constraint-Based Local Search
only provide support for standard neighborhoods, i.e. polynomially sized
neighborhoods. This is one of the main limitations of this technology.

Very Large-Scale Neighborhoods (VLSN) are neighborhoods that
contain an exponential number of neighbors. By considering neighbor-
hoods of exponential size, VLSN search often produces local optima of
higher quality than polynomial-sized neighborhoods. VLSN usually have
a structure such that the best neighbor wrt the objective function can
be computed in polynomial time. They have been used to successfully
solve many combinatorial optimization problems.

Until now, all VLSN approaches that are efficient in practice have
been designed for a given problem, a particular VLSN and a specific
search algorithm. Efficient VLSN approaches usually rely on Improve-
ment Graphs and sophisticated ad-hoc algorithms that are closely re-
lated to (1) the problem, (2) VLSN and (3) search algorithm studied.
Such results raise the following questions: what if we want to slightly
change one of these three components? Could we still reuse the others?
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How should we modify the other components? The implicit answer given
by existing papers was that the problem, the VLSN and the search algo-
rithm have all to be known perfectly in order to design a VLSN approach
that performs well in practice.

Current VLSN theories do not lead to an efficient generic implemen-
tation of a VLSN search algorithm. The state of knowledge about VLSN
is not mature enough to adapt existing VLSN techniques to new prob-
lems. The design of VLSN approaches still requires a lot of knowledge
about the problem in order to achieve good experimental results. The
development time and the amount of theoretical and technical knowledge
are prohibitive to fit the flexibility required by real-life environments.

The objective of this research is to integrate Very Large-Scale
Neighborhoods into Constraint-Based Local Search. These two tech-
nologies may then benefits from the strengths of each other to coun-
terbalance their weaknesses. First CBLS may benefit from VLNS by
supporting larger neighborhoods, enabling to avoid to get trapped in
poor local optima. Second, VLSN search algorithms may be quickly
prototyped by being expressed in terms of reusable components. VLSN
search algorithms may also be reused on different problems by support-
ing the transparent addition of constraints or objective functions to the
model. Finally the power of VLSN may be used with the flexible support
of meta-heuristics in CBLS.

Our approach to fulfill this objective is threefold. The first step
undertaken in this perspective was to identify (1) which problems may
be solved using a VLSN search algorithm, (2) the exact properties of
the structure of the existing VLSN that enables to search them very
efficiently, and (3) how to implement an algorithm that searches a given
VLSN efficiently.

The second step of this research expressed the problem to solve, the
structure of the VLSN and the search algorithm as separated compo-
nents by designing high-level abstractions. This step followed the objec-
tive of clearly identifying the exact properties that are important in the
design of a VLSN search algorithm. This step was motivated by two re-
cent works. The first one is Constraint-Based Local Search (CBLS) that
enables to model the problem and, based on this model, to describe a
local search algorithm. The major theoretical result of this work is the
definition of differential invariants that capture the core properties of
the problem that have to be known by a local search algorithm to solve
it. The research trying to automatically derive the algorithm searching
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the VLSN from its structure also motivated this step although they did
not lead to efficient practical approaches.

The third step was to implement this theoretical architecture and to
validate its efficiency in practice. This step was necessary to show that
the high-level concepts designed previously were capturing the essential
properties required to design an efficient VLSN search algorithm. Three
main problems were considered. The Capacitated Minimum Spanning
Tree allows to precisely assess the efficiency of our implementation com-
pared to state-of-the-art VLSN search algorithms. This first problem
also illustrates how the structure of VLSN may be modified without
affecting the two other components (the problem and the search algo-
rithm). The Capacitated Exam Timetabling Problem illustrates the
inherent adaptability of our abstractions to changes to the problem.
The Vehicle Routing Problem with Time Windows illustrates the ben-
efits of our approach in terms of reuse, flexibility and efficiency when
designing efficient VLSN search algorithms for solving complex real-life
applications.

The contributions of this thesis are meaningful both for the aca-
demic and industrial communities. This thesis introduces several new
concepts or redefines existing ones more abstractly in order to express
VLSN and search algorithms generically.

• The concept of independence states when several moves can be
applied together without interfering with each other

• The concept of MoveGraph enables to describe VLSN indepen-
dently of the problem to solve

• Compositionality states which objective functions and constraints
allow to solve a problem by means of VLSN search algorithms. It
also clearly identifies the properties of the problem required to be
solved efficiently by VLSN approaches

• Improvement graphs can be automatically derived, and incre-
mentally updated, from a MoveGraph and a CBLS model of the
problem to solve, that can be defined independently from each
other

• Input and output variables are defined for a given objective
function or constraint and enable the automatic computation of
compositionality and independence. The input and output vari-
ables are the key components of our framework that allows to
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separate the definition of the problem and the search algorithm;
the search algorithm computing the best candidate in a VLSN can
be defined independently of the problem to solve

• Further developments of VLSN techniques are enabled by
this high-level design of VLSN approaches

These theoretical concepts enable to implement a framework that
raises VLSN techniques to a high-level of expressive abstractions. In our
approach, a VLSN local search algorithm is expressed as three separated
components: the model (describing what is a solution to the problem),
the VLSN (what are the neighbors of a solution) and the search algo-
rithm (efficient algorithm computing the best neighbor). This existing
framework has several contributions:

• VLSN techniques are now modular: each component can be mod-
ified without any need to change the two others. This makes ex-
perimentation easier and faster, which is critical to efficiently solve
NP-hard problems.

• Reusability of VLSN implementations: existing components can
be reused to quickly implement a VLSN search algorithm

• This work provides a library of such components to solve par-
titioning, permutation and vehicle routing problems that can be
reused on a large set of problems

• The implementation of VLSN algorithms is now more time-efficient:
the complex algorithmic aspects of VLSN approaches are hidden
inside the components and achieving state-of-the-art results does
not require much effort

• Our approach broadens VLSN usage to non-specialists as one
can reason in terms of high-level concepts while not considering
implementation issues

The structure of this thesis is detailled hereafter. Chapter 2 in-
troduces the basic concepts of Local Search and Constraint-Based Local
Search used throughout this work. Chapter 3 describes the Very Large-
Scale Neighborhoods (VLSN) and gives some theoretical insights why
VLSN are so efficient in practice. The state-of-the-art papers about
VLSN are presented at the end of this chapter. Chapter 4 describes our
VLSN theory by defining the high-level concepts abstracting the VLSN.
Chapter 5 describes how a natural extension of the CBLS framework
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implements our VLSN theory and assesses the relevance of our theory.
Chapter 6 presents how the Capacitated Minimum Spanning Tree prob-
lem can be solved using the tools developed in the previous chapter and
validates the efficiency of our implemented approach both in terms of
time and quality of the solutions found. Chapter 7 solves the Capac-
itated Examination Timetabling Problem and illustrates the inherent
adaptability of our abstractions to changes to the problem. Chapter 8
presents the benefits of our approach when developing efficient VLSN
search algorithm on complex real-life applications by successfully solving
the Vehicle Routing Problem with Hard/Soft Time-Windows. Finally
Chapter 9 highlights the findings of this research, their added value for
the academic and industrial communities and identifies the perspectives
opened by this work.



Chapter 2

Preliminaries

2.1 Combinatorial Optimization Problem

A Combinatorial Optimization Problem (COP) is the problem of as-
signing values to a set of variables where constraints specify that some
subsets of values are forbidden. In addition, an objective function quan-
tifies the quality of any assignment. Solving a COP thus requires to
assign values to the variables such that all the constraints are met and
the objective function is minimized. Note that the variables, the con-
straints and the objective function can be defined at a high-level; the
constraints need not be linear or written in SAT clauses for example.

We introduce here after some notations used through this thesis. Let
X = [X1, X2, . . . , Xn] be a set of n variables whose values belong to D,
the domain of the variables. We define an assignment as a function
σ : X → D that assigns a value to each variable. We will denote the set
of all possible assignments as Λ. A constraint is a function C : Λ → N
giving the violation of a given assignment. A solution wrt a constraint
C is an assignment σ such that C(σ) = 0. An objective is a function
f : Λ→ Z giving the evaluation of the quality of a given assignment.

Finally, we define a Combinatorial Optimization Problem (COP) P
as the tuple 〈f, C,X , D〉. Solving a COP requires finding a solution wrt
C minimizing f .

Permutation and partitioning problems are two important classes of
COP.

2.1.1 Permutation Problems

A permutation problem on the variables X = [X1, . . . , Xn] with the
domain D = {1, . . . , n} asks for an assignment σ of the variables X such

7



8 Chapter 2. Preliminaries

that the values of all variables are distinct: σ(Xi) 6= σ(Xj) ⇐⇒ i 6=
j,∀i, j = 1, . . . , n.

Definition 1. A permutation constraint on X is the function Cperm :
Λ→ N such that Cperm(σ) = 0 if and only if σ assigns a permutation of
D to the variables X .

Example 1. The Traveling Salesman Problem (TSP) is perhaps the
best known permutation problem. The TSP calls for a tour of a set of n
sites D = {1, . . . , n}. A tour can be represented by a permutation of the
variables X = [X1, . . . , Xn], where Xi represents which site is visited at
the ith position of the tour. Given a distance matrix (cij), the objective
is to minimize the total distance of the tour

fTSP (σ) =

n−1∑
i=1

cσ(Xi),σ(Xi+1) + cσ(Xn),σ(X1) (2.1)

The TSP can thus be represented by the COP 〈fTSP , Cperm, X,D〉.

2.1.2 Partitioning Problems

In partitioning problems, variables in X = [S0, . . . , SK−1] represent sub-
sets of D = {1, . . . , n}.

Definition 2. A partitioning constraint on X is a function Cpart : Λ→
N such that Cpart(σ) = 0 iff σ represents a partition of D, i.e.

1. σ(Si) ∩ σ(Sj) = ∅ ⇐⇒ i 6= j with i, j = 0, . . . ,K − 1

2.
⋃K−1
i=0 σ(Si) = D

Example 2. The Generalized Assignment Problem (GAP) is a parti-
tioning problem. Given a set of tasks D = {1, . . . , n} to be performed,
the GAP calls for a partition of D into K machines. The variables
X = [S0, . . . , SK−1] represents the partition and Sk represents the set of
tasks assigned to machine k + 1.

Each task i has a demand bi of ressources and the machines have
a ressource capacity of B. For each machine k, the sum of the de-
mands of the task assigned to machine k cannot exceed the capacity B:∑

i∈σ(Sk) bi ≤ B. The violation of this capacity constraint is the follow-
ing

CGAP (σ) =

K−1∑
k=0

max

0,
∑

i∈σ(Sk)

bi −B

 (2.2)
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There is also a cost cki to assign task i to machine k and the objective
function to be minimized is

fGAP (σ) =

K−1∑
k=0

 ∑
i∈σ(Sk)

cki

 (2.3)

The COP 〈fGAP , Cpart+CGAP ,X , 2D〉 represents the Generalized As-
signment Problem.

2.2 Local Search

Local Search is an effective and intuitive technique for solving combi-
natorial optimization problems. This technique is also called Neigh-
borhood Search. Any Local Search algorithm relies on a neighborhood
function N : Λ → 2Λ. This function defines, for each assignment, a set
of neighbouring assignments. A standard Local Search algorithm starts
from an initial solution and improves its quality by iteratively visiting
neighbouring solutions.

In many standard Local Search algorithms, the neighborhood of an
assignment is defined as the set of assignments that can be obtained by
performing slight modifications to it. Such modification of an assignment
is called a move; a move is a function m : Λ→ Λ. The set of all possible
moves is problem dependent and is denotedM. The neighborhood then
becomes N(σ) = {m(σ)|m ∈M}.

The feasible neighborhood of an assignment σ wrt a constraint C
is the subset of the neighborhood satisfying the constraint: NC(σ) =
{m(σ)|m ∈M and C(m(σ)) = 0}. Given an objective function f , a solu-
tion σ is a local optimum if no neighbor improves f : f(σ) ≤ f(σ′), ∀σ′ ∈
NC(σ).

A simple Local Search algorithm is depicted in Algorithm 1. At each
iteration, the algorithm considers the feasible neighborhood of the cur-
rent solution σ and selects the best candidate wrt the objective function.

2.2.1 Permutation Problems

This section illustrates the concept of Local Search on permutation prob-
lems. In the case of the TSP, the move reverse proved to be efficient.

A move reverse(i, j) (with i < j) represents the operation of re-
versing the subsequence from position i to position j in the current
permutation. There are O(n2) such possible moves. The differentiation
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1 explore(〈f, C,X , D〉, N)
2 while True do
3 Let NC(σ) = {σ′ ∈ N(σ)|C(σ′) = 0} ;
4 Let N∗C (σ) = {σ′ ∈ NC(σ)|f(σ′) < f(σ)};
5 if |N∗C (σ)| = 0 then
6 break;
7 else
8 select ( σ′ ∈ N∗C (σ) minimizing f(σ′) ) do
9 Set σ := σ′;

Algorithm 1: Local Search algorithm solving a COP. A best im-
provement strategy is used; at each iteration, the algorithm selects
the neighbor improving the most objective function f . The search
is stopped when there is no improving neighbor.

on the objective function of performing a reverse move reverse(i, j) for
the symmetric TSP is

f(reverse(i, j)(σ))− f(σ) =− c(σ(Xi−1), σ(Xi))− c(σ(Xj), σ(Xj+1))

+ c(σ(Xi−1), σ(Xj)) + c(σ(Xi), σ(Xj+1))

(2.4)

Notice the reverse moves preserve the permutation property of an
assignment. We can thus define a simple Local Search algorithm by
using the following neighborhood

Nreverse(σ) = {reverse(i, j)(σ)|i < j ≤ n}

2.2.2 Partitioning problems

This section illustrates the concept of Local Search on partitioning prob-
lems. Three moves are usually used in LS approaches. The first move
insert(Sk, i) inserts element i in Sk, the move remove(Sk, i) removes
element i from Sk and the move swap(Sk, i, Sm, j) removes i and j re-
spectively from Sk and sm and inserts these two elements respectively
in Sm and Sk.

Input Move Result

S1 = {1, 2, 3, 4} insert(S2, 3) S2 = {3, 5, 6, 7, 8, 9}
S2 = {5, 6, 7, 8, 9} remove(S2, 7) S2 = {5, 6, 8, 9}

S3 = {10} swap(S2, 5, S1, 2)
S1 = {1, 3, 4, 5},
S2 = {2, 6, 7, 8, 9}
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Based on these moves, we define two neighborhoods

Ninsert(σ) = {insert(Sk, i) ◦ remove(Sm, i)(σ)

|i ∈ σ(Sm) and 0 ≤ k ≤ K − 1

and 0 ≤ m ≤ K − 1}

Nswap(σ) = {swap(Sk, i, Sm, j)(σ)|i ∈ σ(Sk) and j ∈ σ(Sm)}

Notice that the size of these neighborhoods are O(n.K) and O(n2)
respectively, where n is the number of elements in the partition and K
is the number of subsets of the partition.

2.2.3 Transition Graph

The concept of transition graph is helpful to better understand the be-
havior of LS algorithms.

Definition 3. Given a COP P = 〈f, C,X , D〉 and a neighborhood func-
tion N , the transition graph is the weighted graph TG = 〈V,E,w〉 such
that

(1) V = {σ ∈ Λ|C(σ) = 0},

(2) E = {(σ, σ′) ∈ V × V |σ′ ∈ NC(σ)}, and

(3) wσσ′ = f(σ′)− f(σ)

Local Search algorithms start from a random initial solution σ0 ∈ V
and walk along the edges of the transition graph, hoping to reach a good
solution at some point. The simplest LS algorithm always selects the
most negative edges and restarts the whole process when it reaches a
local optimum.

We define the distance d(σ, σ′) between two solutions σ and σ′ as
the length of the shortest path (considering the number of edges) from
σ to σ′ in the transition graph. The diameter of a transition graph is
the greatest distance among all pairs of nodes.

Two properties of the transition graph are important to characterize
the efficiency of a LS algorithm:

1. when the number of nodes in the transition graph is big; this
allows to walk through the solution space more easily, and
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Figure 2.1: The transition graph. Consider the TSP. In this case, the
nodes of the transition graph would represent all the permutations of
order n. A simple move for this problem is the move swap(Xi, Xj)
swapping the values of the variables Xi and Xj . If considering only
swap moves, there is an edge (σ, σ′) in the transition graph if and only
if σ′ can be obtained from σ by swapping the values of two variables.
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2. when the diameter of the transition graph is small; then any
node can be reached from any other nodes by traversing a small
number of edges

Given the COP 〈f, C,X , D〉, the number of nodes in the transition
graph is function of the constraints C; a stronger constraint induces a
smaller number of nodes in the transition graph. The diameter of the
transition graph is directly function of how much the moves modify the
solutions; if the moves inM only slightly modify a solution, then many
moves have to be performed to reach a very different solution.

2.2.4 Metaheuristics

Metaheuristics guide the search when it is stuck in local optima. Given
a COP and a neighborhood, many assignments are local optima; there
is no neighbor of this assignment that improves the objective function f .
A metaheuristic describes how the transition graph should be traversed
when the current solution is a local optimum.

Multi-restart

One possible metaheuristic is to perform several runs of a local search
algorithm starting from different initial solution.

This metaheuristic can be implemented very easily if the procedure
generating initial solutions can be randomized. The advantage of the
multi-restart metaheuristic is that it allows to depart from very differ-
ent initial solutions and then to explore diversified area of the search
space. We may say that this metaheuristic performs a very good diver-
sification. However, as soon as a local optimum is reached, the search is
restarted. Thus this metaheuristic does not allow to intensify the search
near good solutions. This lack of intensification limits the power of this
metaheuristic.

Tabu Search

Tabu search allows LS algorithms to explore degrading solutions. This
raises the problem of cycling: if the LS algorithm explores a degrading
solution σ′ when it faces a local optimum σ, at the next iteration, it
may well select the local optimum σ again by trying to improve the
objective function. The principle behind Tabu Search (TS) is to set the
last solutions explored as taboo in order not to visit them again. This
prevents cycling.
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Technically, Tabu search does not keep in memory the entire set of
taboo solutions. It only memorizes substructures of taboo solutions.
Any solution having the same substructure is considered as taboo. Be-
cause Tabu search does not memorize entire solutions as taboo, a sub-
structure of solution is set taboo only for a small number of iterations
(called tenure). Indeed, a good solution may well share a substructure
that is set taboo, and setting this substructure as taboo forever would
prevent from visiting this good solution.

Using a Tabu metaheuristic would modify Algorithm 1 by replacing
line 4 by

Let N∗C := {σ′ ∈ NC(σ)|σ′ is not tabu};

Example on the Traveling Salesman Problem Consider the Trav-
eling Salesman Problem. The move reverse(i, j) removes the travels
σ(Xi−1)→ σ(Xi) and σ(Xj−1)→ σ(Xj) and replaces them by the trav-
els σ(X1−1)→ σ(Xj) and σ(Xi)→ σ(Xj+1).

Thus, once a move reverse(i, j) is performed, we may decide to force
the two new travels to remain in the solution for a few iterations. This
may be done by setting the variables Xi−1, Xi, Xj , Xj+1 as taboo for
example. This means the value assigned to these variables is not allowed
to change in the next iterations.

Advantages and drawbacks Tabu Search tries to escape local min-
ima by exploring solutions close to good solutions in the transition graph.
It considers degrading moves and partially prevents the search to cycle
in the transition graph. Its implementation is easy and does not require
much effort. However this metaheuristic still relies on the neighborhoods
structures: if the neighborhoods are inadequate, Tabu Search will per-
form inefficiently. Moreover, if the neighborhoods used are too small,
TS does not diversify the search enough to reach good solutions. Diver-
sification can be added to TS, but requires additional implementation
and parameters tuning.

Simulated Annealing

Simulated Annealing (SA) visits more diversified solutions in the search
space by relying less on the descent criterion. This metaheuristic accepts
to visit degrading neighbors with a probability function of the difference
in the objective function wrt the current solution such as illustrated in
Algorithm 2. The probability function also depends on the temperature
that is a parameter decreasing over time. The greater the temperature,
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the greater the probability to accept degrading solutions. This temper-
ature allows to largely explore the search space in the beginning of the
algorithm, and then to explore more thoroughly promising areas of the
search space at the end.

1 while True do
2 Let NC(σ) = {σ′ ∈ N(σ)|C(σ′) = 0} ;
3 select ( σ′ ∈ NC(σ) ) do
4 ∆ := f(σ′)− f(σ);
5 Let r ∈ [0; 1];

6 if ∆ < 0 or r < e
−∆
t then

7 Set σ := σ′;
8 update t based on a heuristic;

Algorithm 2: Description of a Simulated Annealing algorithm.
A feasible neighbor is selected with a probability function of its
impact on the objective function.

Advantages and drawbacks The Simulated Annealing metaheuris-
tic diversifies the search by allowing to select bad moves at the beginning
of the search. The drawback of this metaheuristic is that the temper-
ature may have to be decreased very slowly in order to reach good so-
lutions. This tuning of the temperature update and the time needed to
cool it down are the main limitations when using such metaheuristic.

Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a metaheuristic that escapes
from local optima by using a collection of neighborhoods [N1, . . . , Nk],
such as depicted in Algorithm 3. First the neighborhood N1 is ex-
plored. If no neighbor σ′ ∈ N1(σ) is found or accepted, then the second
neighborhood N2 is considered, etc. Generally these neighborhoods are
increasingly complex to explore; the first ones are fast to find the best
neighbor, and if no improving neighbor is found, then we consider worth
to explore more complex neighborhoods.

Advantages and drawbacks This metaheuristic allows to escape lo-
cal minima of one neighborhood by using additional neighborhoods.
This metaheuristic is simple to implement, generally because several
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1 while not stopping criterion do
2 for i ∈ 1, . . . , k do
3 Let NC(σ) := {σ′ ∈ Ni(σ)|C(σ′) = 0};
4 select ( σ′ ∈ NC(σ) ) do
5 Set σ := σ′;
6 break;

Algorithm 3: Variable Neighborhood Search

neighborhoods exist for a given problem. This metaheuristic is also ef-
ficient in escaping local minima. However, from empirical experience
[HM03], local optima of the different neighborhhoods are close to each
other (only a fraction of the variables have different values). Empiri-
cally, we also know that the number of variables whose values have to
change to escape from a local optimum depends on the quality of this
optimum. The best the local optimum the more variables have to take
different values to reach a better solution.

These two empirical observations imply that VNS is good at escaping
poor local optima. With the size of the neighborhood explored increas-
ing, this metaheuristic will be able to escape from local optima but it is
observed that the behavior is then similar to a multi-restart strategy.

Example on the Generalized Assignment Problem We present
here a Variable Neighborhood Search metaheuristic for the Generalized
Assignment Problem. The VNS uses the insert and the swap neighbor-
hoods introduced in Section 2.2.2. The insert neighborhood is efficient
to explore as its complexity is O(nK), and K is generally substancially
smaller than n. However, on one instance such that the capacity con-
straint is almost tight, such as illustrated in Figure 2.2, the insert neigh-
borhood Ninsert would perform poorly because there is not much free
space to move elements.

On the other side, it is more likely for the swap neighborhood Nswap

to behave very well. Indeed the swap moves do not need much free space
to move elements as both elements are first removed and additionnal free
space is made. And only then the elements are reinserted. However the
complexity of searching the swap neighborhood is O(n2).

In a VNS metaheuristic, we would thus first search the insert neigh-
borhood and, only if we do not find any improving neighbor, we would
search the swap neighborhood.



2.2. Local Search 17

Figure 2.2: Instance of the GAP such that the capacity constraint is
tight. The columns represent the machines and the items represent the
tasks. The upper line represents the capacity of all machines. In this
example, there is not many tasks that can be moved to another machine
without violating the capacity constraint.

Accepting unfeasible solutions

Removing a constraint from a COP and adding a violation function
of this constraint into the objective is another metaheuristic. When
the constraint of the COP to be solved are hard, there are not many
feasible neighbors at each iteration of the LS algorithm. One possible
solution to overcome this problem is to define a violation function for
a constraint C1 of the COP 〈f, C = C1 + C2,X , D〉. Then we can solve
the COP 〈αC1 +f, C2,X , D〉 with α being a high value to favor solutions
respecting the constraint C1. By using such metaheuristic, there exists
many more feasible solutions to the new COP, and the traversal of the
transition graph is easier. In other words, the transition graph becomes
denser, and its traversal is facilitated. The coefficient α can be dynamic
in order to explore solutions respecting or not the constraint.

Example on the Generalized Assignment Problem For the GAP
〈f, Ccapa + Cpart,X , D〉, if the capacity constraint is tight, we could not
traverse the transition graph efficiently by using the insert neighbor-
hood. However, by considering this constraint as a violation function,
the traversal of the transition graph is facilitated. The violation of the
capacity constraint is defined as
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Ccapa(σ) =
K−1∑
k=0

max

0,
∑

i∈σ(Sk)

bi −B


We can use the insert neighborhood to solve the COP 〈f + α.Ccapa,

Cpart,X , D〉. This COP allows solutions not to respect the capacity
constraint, and the transition graph will contains more paths to reach a
solution from another.

Advantages and drawbacks This metaheuristic enables to easily
accept solutions not respecting a hard constraint and thus to explore the
search space more efficiently. However the efficiency of this metaheuristic
strongly depends on how the parameter α is updated.

If the parameter α changes too quickly, when the search is driven
towards feasible solution, the cost of the solutions explored wrt the ob-
jective function becomes poor.

2.2.5 Variable-Depth Neighborhood Search

Variable-Depth Neighborhood Search (VDNS) is a metaheuristic that
performs several moves per iteration. Given a set of moves M, we
define the set Mk(σ) as the set of solutions that can be obtained from
σ by performing at most k moves fromM : Mk(σ) = {σ′ ∈ Λ|d(σ, σ′) =
k and C(σ′) = 0}. Variable-Depth Neighborhood Search methods heuris-
tically explore Mk(σ) as illustrated in Algorithm 4. This metaheuristic
can be considered as heuristically exploring paths of length k from σ in
the transition graph. This exploration of Mk is partial because line 2
only selects one move instead of trying all of them.

Advantages and drawbacks The limitation of this metaheuristic is
that m(σ′) has to be simulated each time a move m is selected, in order
to compute C(m(σ′)) and f(m(σ′)) when selecting the next move. This
simulation is time-consuming and prevent this metaheuristic to explore
many paths. VDNS selects several moves but must simulate each of
them in order to be able to compute the effect of the next move to
select.

The efficiency of this metaheuristic can be greatly improved if there
is an efficient procedure to compute the effect of applying a sequence of
moves on a constraint or an objective function. This thesis proposes such
procedure. Based on a restriction on the sequence of moves that can be
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1 Let σbest := σ;
2 for iter = 1, . . . , nbTries do
3 Let σ′ := σ;
4 k := 1;
5 while stopping criterion not met or k = K do
6 Heuristically select m ∈M|C(m(σ′)) = 0 according to

f(m(σ′))
7 Set σ′ := m(σ′);
8 k := k + 1;

9 if f(σ′) < f(σbest) then Set σbest := σ′;

Algorithm 4: VDNS algorithm. This algorithm applies a se-
quence of up to K moves. These moves are heuristically selected
one at a time.

considered, this procedure is able to compute the effect of a sequence of
move on a constraint or an objective function.

2.3 Constraint-Based Local Search

The idea of Constraint-based local search [HM05a] is to perform lo-
cal search on high-level models, enabling the implementation of very
efficient and complex LS algorithms for solving complex Combinatorial
Optimization Problems. The main added-value of this approach is the
ability to quickly validate many different ideas. This is crucial to effi-
ciently solve a new problem. Indeed Combinatorial Optimization is a
field such that great ideas have a huge impact on efficiency (far more
than code optimization), but has very few tools to predict how an idea
will speed-up the Local Search algorithm. By enabling fast prototyping,
CBLS helps in finding the best algorithms for solving a problem.

Constraint-Based Local Search (CBLS) expresses Local Search al-
gorithm as two separated components: the model and the search. The
model defines the combinatorial optimization problem to solve, i.e. the
variables of the problem, the constraints that have to be fulfilled by any
solution and the objective function specifying the quality of each solu-
tion. The search defines the neighborhood structure (N(σ)) and how to
select a candidate in N(σ).

Differentiation is the computation of the impact a move has on the
objective function and the constraints. Differentiation is a crucial in-
formation to design efficient Local Search heuristics. This has been
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illustrated in the metaheuristics presented previously. Moreover Local
Search approaches are useful only if a lot of solutions can be explored
in short periods of time. Thus the computation of the impact of a move
on the objective and constraints has to be very efficient. To do this,
state-of-the-art LS implementations use internal data-structures that
are maintained incrementally. This leads to implementation requiring
complex design, especially when the constraints and the objective func-
tions are not trivial. Constraint-Based Local Search (CBLS) aims at
remedying this limitation.

Differential invariants is the key-concept that enables the separa-
tion of the model and the search. Differential invariants represent an
objective function or a constraint. It provides two main functionalities.
First it allows to efficiently differentiate the function they represent wrt
different moves, i.e. they enable to compute very efficiently the values

∆C(m,σ) = C(m(σ))− C(σ)

∆f (m,σ) = f(m(σ))− f(σ)

Second, they store and incrementally maintain internal data-structures
that allows to compute this differentiation very efficiently. Indeed, these
data-structures are crucial to achieve state-of-the-art Local Search algo-
rithms. When a variable is being modified, the differential invariant is
woken up with the request to update its data-structures accordingly.

The model is defined by using combinations of elementary differen-
tial invariants (Figure 2.3). Once a library of elementary differential
invariants is available, the objective function and the constraints can be
expressed as sums, products, minimum, . . . of these invariants. This al-
lows to very quickly modify a model, by adding a constraint as a penalty
cost in the objective function for example. The values of one differential
invariant can thus depend on the value of another one. This makes very
difficult to design Local Search algorithms that updates data-structures
and differentiates the model (objective function and consraints). CBLS
makes full usage of the model to free the programmer from these diffi-
culties.

All the data-structures of the different invariants can be updated
efficiently once the model is defined. Notice that the graph induced by
the dependencies between invariants (Figure 2.3) is a directed acyclic
graph (DAG). Indeed a cycle in the dependency graph would indicate
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? swap(S1, i, Sn, j)? swap(S1, i, Sn, j)

Figure 2.3: Representation of the CBLS model for the GAP. The top
level represents all the set variables. The bottom level represents all the
differential invariants stating the objective function and the constraints.
The sums directly depends on the variables, while the differential in-
variants representing the global objective function and the constraints
depends on other invariants. The thick edges represents the part of the
model that has to be updated when the variable S2 is modified. All
differential invariants can be queried to compute their differentiation
wrt the move swapping the elements i and j from variables S1 and Sn
for example. This allows to the search procedure to differentiate the
model to select the best move to apply eventhough it has no knowledge
about the model. This allows the model to be separated from the search
procedure, as illustrated by the dashed line.

that the values of the invariants cannot be computed. The model rep-
resents a knowledge about the structure of the problem that enable to
build the dependency graph. CBLS can then automatically traverse
the dependency graph from the modified variable so that it updates
an invariant only if all the invariants it depends on have been already
updated. This ensures that the values and the data-structures of all
differential invariants are consistent.

Constraint-Based Local Search can also efficiently differentiate the
objective function and the constraints of a model. Indeed the differenti-
ation of a combination of several differential invariants can be computed
from the separated differentiations of these invariants. The differen-
tial invariant representing the objective function can thus query all the



22 Chapter 2. Preliminaries

invariants it depends on to differentiate them and return the global dif-
ferentiation.

The model thus offers the possibility to be updated wrt modifications
to the variables and to be differentiated wrt single moves.

The search of CBLS describes the neighborhood structure and how
the neighbors are selected to be visited. The search takes as input the
variables, the objective function and the constraints of the model. It
has absolutely no knowledge about the structure of the objective func-
tion and the constraints. The principle of the search component is to
iteratevely apply single move on the solutions. At each iteration, the
search component queries the model to get the differentiation of the ob-
jective function and the constraints for all the considered moves. It then
selects one move based on some metaheuristic and apply it. Once it is
applied, the model is auto-updated and the internal data-structures are
consistent to differentiate the invariants given the new current solution.

Because the search procedures do not rely on the internal structure
of the model, they can be implemented generically. Once a search proce-
dure is implemented, it can be reused on any model. This allows to reuse
many complex algorithms and to prototype Local Search algorithms very
quickly.

The language Comet implements Constraint-Based Local Search
[HM05a]. It enables to very quickly synthetize efficient Local Search
algorithms to solve complex Combinatorial Optimization Problems. We
here illustrate how the Generalized Assignment Problem can be solved
using Comet. The model is depicted in Listing 2.1. It is a strict en-
coding of the model represented in Figure 2.3. The search procedure is
depicted in Listing 2.2. It iteratevely selects the swap move respecting
the capacity constraint such it improves the most the objective function.
This search procedure does not know anything about the structure of
the model. It only has access to the variables and the two differential
invariants representing the objective function and the constraints. This
illustrates the true separation of the model and the search procedure.
This has two main advantages. First it enables to modify the model
without the requirement to adapt the search procedure. The model has
a great impact on the efficiency of the algorithm. It thus has to be
improved very often and the separation of both components allows to
prototype these improvement very quickly. Second the separation of
components allows to design generic search procedures. This speeds up
the initial prototyping phase as existing complex search procedures can
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be directly reused.
Comet offers many other tools to help designing complex Local Search

or Constraint Progromming algorithms. However they are not required
to fully understand the following. They are not covered here. Details
can be found in [HM05a].

1 Solver <LS > m();

var{set{int}} S[k in 1..K](m);

ConstraintSystem <LS> C(m);

forall(k in 1..K)

C.post( sumOver(S[k],b) <= B );

6 Function <LS > f =

sum(k in 1..K) sumOver(S[k],all(i in 1..n) c[k,i])

;

Listing 2.1: Comet implementation of the model of the GAP illustrated
in Figure 2.3.

while( true ){

selectMin(k in 1..n, l in k+1..n, i in S[k], j in S[l]

3 : C.getSwapDelta(S[k],i,S[l],j)==0,

d = f.getSwapDelta(S[k],i,S[l],j))

(d){

if (d >= 0) break;

swap(S[k],i,S[l],j);

8 }

}

Listing 2.2: Comet implementation of a best improvement search
procedure to solve partitioning problems. The call C.getSwapDelta

returns the value ∆C(m,σ), which is the impact of applying the
corresponding move on the violations of the constraints. The same holds
for the call f.getSwapDelta. This procedure thus select the swap moves
that respects the constraints and that minimizes the objective function.
The call swap(S[k],i,S[l],j) applies the move.
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Chapter 3

State-of-the-art of VLSN

This chapter presents the existing works on VLSN. First it defines what
is a VLSN, then illustrates how VLSN can be defined as the compound
of several atomic moves. Finally this chapter presents VLSN that are
defined by relaxations of the problem to solve. Because these ideas
have been used to solve several applications in many cases, the following
sections first describe an approach, then enumerate the related papers.

3.1 Very Large-Scale Neighborhoods

A Very Large-Scale Neighborhood (VLSN) is a neighborhood containing
a huge numbers of neighbouring assignments.

Definition 4. Given a COP 〈f, C,X , D〉, a Very Large-Scale Neigh-
borhood is a neighborhood N : Λ → 2Λ respecting the two following
properties:

1. the number of neighbors to any solution σ of the problem is very
high, generally exponential (|N(σ)| ≥ O(2n)) or polynomial with a
high degree (|N(σ)| ≥ O(n3)), where n is the size of the problem.

2. there exists a very efficient algorithm to compute a good, or the
best neighbor σ′ ∈ N(σ) wrt the objective function f .

So the main idea behind VLSN is to create an algorithmic leverage
between the size of the neighborhood and the time-complexity required
to identify the next neighbor to consider. For example, an algorithm in
O(n2 log n) could return the best neighbor from a neighborhood whose
size is in O(2n). Examples will be given in the following sections.

There exist two main approaches to design exponential-size VLSN.
In the first one, a VLSN is defined as the set of solutions that can be

25
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obtained by applying several atomic moves. In the second, the current
solution is relaxed and then reoptimized. These two approaches are
reviewed in the two following sections.

3.2 Compounding Moves

In many standard local search algorithms, only one move m ∈ M is
selected at each iteration: given a COP P, if LS(P, σ) denotes the
neighborhood used in standard local search approaches, |LS(P, σ)| =
O(|M|). In such approaches, a single move cannot violate the constraints
of the problem. Then in the case of problems much constrained, few
moves are feasible and the size of the feasible neighborhood NC(σ) is
very small. This is a limitation of standard local search approaches.

The aim in designing VLSN by compounding moves [EOSF02] is to
remedy this limitation by applying several moves per iteration:

V LSN(P, σ) =

{m1 ◦ · · · ◦mk(σ)|[m1, . . . ,mk] is a sequence of moves in M}

The size of the neighborhood is exponential (O(2|M|)). Moreover a sin-
gle move can be represented by a sequence containing only this move,
thus the neighborhoods used in VLSN approaches are supersets of the
neighborhoods used in standard local search approaches (LS(P, σ) ⊆
V LSN(P, σ)).

This type of VLSN has two great advantages compared to standard local
search. First, the diameter of the transition graph is reduced (Section
3.2.1); by applying several moves, many variables are modified per it-
eration, and less iterations are thus needed to go from one solution to
another.

Second, the transition graph is often densified (Section 3.2.2); be-
cause we apply several moves, we may consider atomic moves violating
some constraints, the challenge being to select moves such that the over-
all effect of applying them does not lead to the violation of any constaint.

3.2.1 Decreasing the diameter of the transition graph

One effect of using VLSN by compounding moves is the reduction of the
diameter of the transition graph, compared to standard local search
neighborhoods. We illustrate it here by describing the DynaSearch
VLSN on the Traveling Salesman Problem [PvdV95].
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A VLSN has been proposed in [PvdV95] for solving the TSP, where a
neighbouring solution is obtained by applying the conjunction of several
indenpendent reverse moves.

A move reverse(i, j) (with i < j) represents the operation of re-
versing the subsequence from position i to position j in the current
permutation. There are O(n2) such possible moves. The differentiation
on the objective function of performing a reverse move reverse(i, j) for
the symmetric TSP is

∆fTSP (reverse(i, j), σ) =− c(σ(Xi−1), σ(Xi))− c(σ(Xj), σ(Xj+1))

+ c(σ(Xi−1), σ(Xj)) + c(σ(Xi), σ(Xj+1))

(3.1)

In the context of the TSP, two moves reverse(k, l) and reverse(i, j)
are independent iff l < i− 1 or j < k − 1. Let two independent reverse
moves m1 and m2. From (3.1), the variation on the objective function
of applying m2 is independent whether m1 is applied or not:

∆fTSP ([m1,m2], σ) = ∆fTSP (m1, σ) + ∆fTSP (m2, σ)

This allows to compute the cost of a reverse move a priori, then to
select several independent moves and apply them. The total variation
on the objective function of applying these moves is exactly the sum of
the single variations of the moves considered separately.

To compute the best neighbor of this VLSN, we use an improve-
ment graph that is a directed graph G(σ) = (V,E,w), where V =
{1, 2, . . . , n, 1′, 2′, . . . , n′}; there are two nodes i and i′ per position in
the tour and E = {(i, j′) : i < j} ∪ {(j′, k) : k > j + 1}}. An
edge (i, j′) represents the move reverse(i, j) with the associated cost
∆fTSP (reverse(i, j), σ) and an edge (j′, k) does not represent any move
(its cost is 0). We also add an edge from a dummy source node S to any
node i and an edge from any node j′ to a dummy sink node T . We look
for a path from S to T (Figure 3.1). The effect on the permutation and
the cost of each edge selected is depicted in Figure 3.2.

The improvement graph is acyclic. The shortest path can thus be
computed in linear time wrt the number of edges (i.e. wrt the number
of reverse moves). Searching the DynaSearch neighborhood has thus
the same time complexity as searching the simple reverse neighborhood,
even if the size of the DynaSearch is much larger.

Because many reverse moves are applied at each iteration, the tran-
sition graph is traversed more quickly. Indeed, we need less iterations
to pass from a given solution to another. The diameter of the transition
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Figure 3.1: The improvement graph for the independent reverse move.
Any downward edge represents a reverse move. Any upward edge does
not represent any specific move. Any path from S to T represents a set
of independent reverse moves: applying them yields a variation on the
TSP objective function that is equal to the sum of the cost of the edges
of the path. This improvement graph is thus specific to the Traveling
Salesman Problem.

graph of a VLSN is thus reduced wrt standard local search neighbor-
hoods. The same reasoning can be done when using other simple moves
such as swap or insert moves, in place of reverse moves.

Bibliography The Dynasearch methodology has been applied to sev-
eral permutation problems. For all these works, the atomic moves are
feasible wrt all the constraints of the problem. Dynasearch has been
applied to the TSP in [PvdV95, Con00], to the single-machine total
weighted tardiness scheduling problem in [CPvdV02, EO06b, GCT04],
to the one-batching machine problem in [Hur99], and to the linear or-
dering problem in [Con00].

3.2.2 Densifying the Transition Graph

The second effect of using VLSN is the densification of the transition
graph, compared to standard Local Search. Indeed, standard local
search approaches only consider moves that respect all the constraints of
the problem. VLSN densifies the transition graph by considering atomic
moves that separetely violate some of the constraints. However, the set
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Figure 3.2: Illustration of the effect of the different independent reverse
moves represented by the path in Figure 3.1. The general formula of
the cost of the edges is represented on the left. The specific cost of the
edges of this path is given on the right.
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M ⊆M of atomic moves to apply is selected such that these constraints
are respected after the application of all the moves in M .

Cyclic exchanges for partitioning problems

We illustrate such VLSN here on Generalized Assignment Problem de-
scribed in Section 2.

The swap move is a standard move for partitioning problems. Such
moves preserve the partitioning structure of an assignment. The move
swap(Sk, i, Sl, j) consists in swapping the elements i and j among the
two subsets Sk and Sl. For example if σ(S1) = {1, 2, 3, 4}, σ(S2) =
{5, 6, 7} then applying the move swap(S1, 1, S2, 5) leads to the assign-
ment σ′(S1) = {2, 3, 4, 5}, σ′(S2) = {1, 6, 7}. A local search algorithm
only considering swap moves only visits solutions that respects the par-
titioning structure.

Using exchange moves allows to consider more solutions and thus
densifies the transition graph. Indeed the exchange move violates the
partitioning structure of the assignments. The move exchange(Sσj , i, j)
inserts i in Sσj

1 and removes j from this same subset. For exam-
ple if σ(S1) = {1, 2, 3, 4}, σ(S2) = {5, 6, 7} then applying the move
exchange(S2, 1, 5) leads to the assignment σ′(S1) = {1, 2, 3, 4}, σ′(S2) =
{1, 6, 7}. Clearly exchange moves do not respect the partitioning struc-
ture of an assignment, and we can consider more assignments than an
when using swap moves. Indeed the swap move swap(Sσi , i, Sσj , j) is
equivalent to the moves exchange(Sσj , i, j) and exchange(Sσi , j, i).

Several exchange moves are selected and applied in order to respect
the partitioning constraint. A cyclic exchange [e1, e2, . . . , em] is equiv-
alent to the moves {exchange(Sσe2 , e1, e2), . . . , exchange(Sσe1 , em, e1)}
(Figure 3.3). The exchange moves separately violate the partitioning
constraint but applying a cyclic exchange preserves the partitioning
structure of an assignment.

Cyclic exchanges do not allow to change the cardinality of the sub-
sets of the partition. A path exchange [e1, e2, . . . , em] is equivalent to the
moves {remove(Sσe1 , e1), exchange(Sσe2 , e1e2), . . . , insert(Sσem , em−1)}.

The cyclic neighborhood of an assignment σ is the set of assign-
ments that can be obtained from σ by applying path or cyclic exchanges.
Whereas there are O(n2) 2-exchanges, there exists an exponential num-
ber O(nK) of cyclic-exchanges. The cyclic neighborhood is thus a VLSN.

1Given a solution σ, the index of the variable containing the element i is denoted
σi: σi = k if and only if i ∈ σ(Sk).
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Figure 3.3: Cyclic exchanges for partitioning problem. The first picture
represents a solution to the partitioning problem, a cyclic exchange,
and the associated improvement graph.The second picture illustrates
the partition after the application of the cyclic exchange corresponding
to the color-disjoint cycle [10, 9, 12, 6].
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A dedicated improvement graph is used to compute a cyclic or path
exchange respecting the constraint (Figure 3.3). The improvement graph
of an assignment σ is a weighted graph IG(σ) = (V,E,w) where V =
V1 ∪ V2, V1 = {1, . . . , n}, V2 = {S1, . . . , SK} and E ⊆ V1 × V1 ∪ V1 ×
V2 ∪ V2 × V1. An edge e = (i, j) ∈ V1 × V1 represents the move
exchange(Sσj , i, j). The difference in cost of performing this opera-
tion is associated to the edge (i, j): we = ∆f (exchange(Sσj , i, j), σ) =
−ci,σi + ci,σj . Such edge e ∈ E if and only if the operation of ex-
changing j by i in the current solution does not violate the capacity
constraint: (i, j) ∈ E ⇐⇒ ∆CGAP (exchange(Sσj , i, j), σ) = 0 ⇐⇒∑

e∈Sσj
be − bj + bi ≤ B. An edge e = (i, Sk) ∈ V1 × V2 represents the

move insert(Sk, i), has an associated cost we = ci,k and e ∈ E if and only
if inserting the element i in Sk does not violate the capacity constraint.
An edge e = (Sk, i) ∈ V2 × V1 represents the move remove(Sσi , i), has
an associated cost we = −ci,σi and is always in E, because removing an
element always respect the capacity constraint.

The costs and the presence of the edges in the improvement graph
were computed by considering the corresponding moves separately. We
now look at what happens to the objective function and the constraints
when we apply all the moves corresponding to a cycle in the improvement
graph.

The costs assigned to the edges reflect the variation of the objec-
tive function when performing the corresponding moves. Because the
objective function is a sum of independent terms, the variation on the
objective function of performing several moves is exactly the sum of the
costs assigned to the edges of the cycle.

Clearly there is a one-to-one correspondence between cycles in the
improvement graph and cyclic or path exchanges. Thus applying the
moves assigned to a cycle in the improvement graph will respect the
partitioning constraint.

However this is not true for the capacity constraint. When we check
whether a move respects the capacity constraint (modifying the subset
Sk), we compute the total demand of the elements in Sk:

∑
r∈Sσj

−bj +

bi ≤ B. This implicitely assume that no other move will modify the
variable Sk. We must then find cycles containing moves that do not
modify common set variables. This is done by assigning a different
color to the K subsets and coloring the edges of the improvement graph
according to the variable modified by the corresponding move. Then
we search for color-disjoint cycles [TO89] (Figure 3.3). This problem is
NP-Hard, but efficient polynomial heuristics exist.
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Bibliography These cyclic exchange VLSN for partitioning problems
and their associated improvement graph were first introduced in [Tho88,
TO89, TP93]. This technique has been used on a wide range of prob-
lems from combinatorial optimization and is similar to the one described
above for the GAP. They present a heuristic to find subset-disjoint cycle
with negative cost. Their algorithm will be presented later in Section
4.3. Here below we list several applications solved by considering cyclic
exchanges.

Transportation Problems The Vehicle Routing has been solved sev-
eral times by means of this VLSN, see [FW90, GGPS06, IIK+05, TP93,
CFS+04, CDS08]. The Combined Through And Fleet Assignment Prob-
lem has been tackled in [AGM+01]. A real-life locomotive scheduling
problem has been solved in [ALO+02]. The Single Source Transportation
Problem is solved with the Covering Assignment Problem in [ÖKNP08]
by a two stage improvement procedure. First, for each subset of the
partition, they select a subset of elements to exchange. Then they use a
matching algorithm to cyclicaly exchange these subsets among the sub-
sets of the partition. Their neighborhood captures the cyclic neighbor-
hood, however they must first select the element to cyclically exchange.
This increases the heuristic aspect of the search algorithm.

Distribution Problems The Single Source Capacitated Facility Lo-
cation Problem is treated in [AOP+02]. The authors in [AOS01, AOS03]
obtained the best known solution for the capacitated minimum spanning
tree problem, having interest in telecommunication network design. The
K -Constraint Multiple Knapsack Problem [AC05], the weapon target
assignment problem [AKJO03] have also been tackled by VLSN.

Scheduling Problems This technique has also been applied to ex-
amination timetabling problem [AABD04, AABD07, ADSV06, MO07],
the Generalised Assignment Problem is solved by VLSN in [Dus02,
YIIG04]. The minimum makespan machine scheduling problem is tack-
led by VLSN in [FNS00]. VLSN have also been used on the one-machine
batching problem [Hur99], Integrated Clustering and Machine Setup
Model for PCB Manufacturing [MPS02].

Graph Colouring Problem A different approach is presented in
[GPB05] for solving the Graph Colouring Problem. They partition the
nodes in two subsets and perform pairwise permutations of colors into
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one of these sets. The best neighbor is computed by solving a matching
problem.

Cyclic exchanges for permutation problems

The cyclic-exchange is defined quite similarly for permutations and par-
titions [AJOS02]. An exchange move exchange(i, j) is defined as remov-
ing the value j from its current position in the permutation and replac-
ing it with the value i. A cyclic-exchange [x1, x2, . . . , xk] is defined as the
conjunction of k exchange moves exchange(x1, x2), . . . , exchange(xk, x1).
Clearly one single exchange move does not preserve permutations, how-
ever cyclic-exchanges do.

In order to compute the best neighbor of this cyclic-exchange neigh-
borhood, we build an improvement graph G(σ) = (V,E,w) similarly
as for partition problems. V is the set of values in the sequence to be
permuted and an edge (i, j) ∈ E represents the move exchange(i, j).
The variation of this move on the objective function is associated to
the edge. In order to be able to compute these costs a priori we re-
strict cyclic-exchanges to only contain independent moves. This notion
of independance is problem specific. We illustrate it on the TSP.

For the TSP, the cost of the move exchange(i, j) is equal to

wij = −cj−,j − cj,j+ + cj−,i + ci,j+

where j− refers to the city visited just before city j and j+ the city
visited right after j. This is illustrated in Figure 3.4. Clearly this cost
calculation assumes that the cities j− and j+ will remain at the same
position. So two exchange moves exchange(k, l) and exchange(i, j) are
independent iff j 6= l−, j 6= l+, l 6= j−, l 6= j+.

Once these cost have been calculated, any cycle containing only in-
dependent moves represents a cyclic-exchange move and the cost of this
cycle is exactly the difference in cost of the permutation observed by
performing this move.

Bibliography The quadratic assignment problem has been solved by
this approach in [AJOS02]. In [BS01], the TSP is solved with cyclic
exchange with the permutation being represented by the successor vari-
ables. In this work, the best candidate is computed by a dynamic pro-
gram.

The pyramidal neighborhood defined in [CV90] can also be conceived
as the compound of several atomic moves that break the permutation
constraint. Here the set of moves to apply in order to respect the
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Figure 3.4: The exchange move for the TSP. The move exchange(3, 6)
replaces 6 by 3 in the current permutation. This move implies that city
j won’t be visited between cities j− and j+; instead i will be visited
in this position. Thus the cost associated to this move is due to the
removal of arcs (j−, j) and (j, j+) and the insertion of arcs (j−, i) and
(i, j+). The cost of this move is wij = −cj−,j − cj,j+ + cj−,i + ci,j+ .

permutation constraint is computed by means of a shortest path al-
gorithm. This is also the case for the neighborhoods proposed in [BS01]
and [BD95].

Matching-based VLSN

The ASSIGN neighborhood defined in [SD81] for solving the TSP is also
a nice example of VLSN that can be searched exactly. The algorithm
considers the current tour and eject k pairwise non-adjacent cities. The
neighborhood is formed from all tours that can be obtained from the
current tour by permuting these k cities, i.e. reinserting them in the
positions left free. To find the best neighbor, a bipartite graph G(σ) =
(V1, V2, E) is built with V1 representing the k cities removed and V2

the k positions of these k cities. An edge (i, j) represents the move of
reinserting the city i to the position j and the associated change in the
objective function is associated to the edge. Then clearly we need to
find a set of edges E′ ⊆ E such that exactly one edge in E′ is adjacent
to each city in V1 and to each position in V2. In order to find the best
improving neighbor we can thus solve a maximum matching problem on
G(σ).

Bibliography This neighborhood has been first presented in [SD81].
Then several variants of this neighborhood were published. In [Pun01]
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subtours are permuted instead of single cities. Other low complexity
algorithms for solving similar neighborhoods are given in [Gut99] and
some theoretical results on these neighborhoods are presented in [GY99].
Other variants are given in [DW00].

Larger neighborhoods based on the ASSIGN neighborhood and that
are not exactly searchable in polynomial time are illustrated in [Kar79,
GGYZ01, PK02]. The Inventory Routing Problem is discussed in [DL86].
A neighborhood similar to the ASSIGN neighborhood is used for solving
the Car Sequencing Problem in [EGN06]. They use an IP solver to find
an assignment meeting additional side-constraints.

Some other papers [DL86, Tai03, Tai93] discuss a neighborhood for
the Vehicle Routing Problem where subsets of a partition are merged two
by two. A matching algorithm is used to find the best pairwise-merges
to perform in order to decrease the objective value.

3.2.3 Searching the neighborhood heuristically

In some algorithms, the subset M ′ of moves to be performed at once
is built by adding one move from a set M at a time. This approach is
generally called Variable Depth Neighborhood Search (VDNS).

The k-distance neighborhood of the assignment σ is defined as {σ′ ∈
Λ : d(σ, σ′) ≤ k}. The main idea behind VDNS is to partially explore the
k-distance neighborhood obtained by performing a sequence of atomic
moves on the current solution σ. If δ is the maximum degree of the nodes
in the transition graph, then the size of the k-distance neighborhood
is O(δk). Searching this neighborhood entirely is generaly too time-
consuming for values of k greater than 3. Searching this neighborhood
can be seen as exploring a search tree T whose set of nodes is the k-
distance neighborhood, whose root is the current solution σ and where an
edge is in T if its endpoints are two adjacent solutions in the transition
graph. The goal is to find a path from σ to any other node σ′ in T ,
hopefully with a lower objective value.

In order not to explore all the nodes in T , the user defines a stochas-
tic function MoveV DNS : Λ → N(σ). Then T is explored by using
MoveV DNS to generate several paths from σ to another solution σ′ in
the k-exchange neighborhood. The solution σ′ of lowest cost is selected
as the next solution visited by the algorithm.

The most well-known VDNS is the Lin-Kernighan heuristic [LK73]
for the Traveling Salesman Problem(TSP).

One large part of the VDNS algorithms can be considered as ejection
chains algorithms [GR06]. In this kind of algorithm, we alternate by first
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Figure 3.5: Variable-depth Neighborhood Search. Here the procedure
MoveV DNS is used three times at each nodes, to generate three neigh-
bors. The size of the tree is thus 3k.

removing one element from the current solution and then reinserting it
differently. The Lin-Kernighan heuristic can be considered as an ejection
chains based algorithm. In [GR06], a Filter and Fan methodology is
presented. This approach can also be considered as a VDNS algorithm.

See [AOEOP02] for a comprehensive list of papers using VDNS to
solve optimization problems.

3.2.4 Abstracting Compound VLSN

Some work towards unification of these exponential neighborhoods has
been performed. They mainly try to derive the search algorithm from the
structure of the VLSN. Unfortunately, none of them lead to experimental
results comparable to the dedicated algorithms described previously.

In [BDW98, DW00], the authors use permutation trees to represent a
set containing an exponential number of permutations at each iteration
of the local search algorithm. The best improving permutation in this
set can be identified in polynomial time when the permutation tree has
a special structure by means of a dynamic programming approach.

Theoretical work about VLSN and the TSP such as the analysis
of the diameter of the transition graph can be found in [GG05, GP02,
GYZ04].

In [EO06a] a methodology is presented in the same spirit of deriving
dynamic programming algorithms for searching exponential neighbor-
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hoods for the TSP. The authors consider the generic Held and Karp
formulation of the TSP [HK61] and restrict this DP to a polynomial
number of states only. Solving this DP can be done in polynomial time
depending on the states chosen for the restriction. Their approach uni-
fies the VLSN presented in [BS01, CV90, PvdV95]. Following this work,
a methodology using grammars to define a VLSN has been presented in
[BO05]. The neighborhood is defined as the set of permutation gener-
ated by a grammar given by the user and a generic DP can find the best
improving permutation in polynomial time depending on the grammar
size. This generic DP achieves the same theoretical time complexity as
dedicated algorithms for the most well-known VLSN on the TSP. No ex-
perimental results were given. These approaches allow to quickly define
a VLSN for permutation problems and use a generic algorithm to search
it. However, they operate at a low level of abstraction and the VLSN has
to be cleverly designed in order to ensure that all the neighbors satisfy
the constraint and have the expected cost; the VLSN defined with such
approach cannot self-adapt in function of the model.

Recent work relies on the variables to select moves that may be ap-
plied together [Ben10] with the ASSIGN neighborhood. They model
combinatorial problems with boolean variables. Constraints are ex-
pressed as equality between sums of such variables. They consider
moves flipping the values of several boolean variables. This approach
has two main limitations. First, they allow to select two moves together
only if they do not modify variables that are in the scope of a common
constraint. This disallows the use of global constraints, a cornerstone
of constraint-based approaches, because the scope of such constraint is
generally a large subset of the decision variables. Second, they assume
that a given move always modifies the same variables. This restricts
their approach to moves that always modify a small fixed subset of vari-
ables. The moves presented in Section 3.2.2 do not satisfy these severe
restrictions.

3.3 Solvable special cases of the application

This section reviews some VLSN designed from special cases of the orig-
inal problem to solve. Typically these cases are built by restricting the
topology or by adding additional constraints to the original problem.
In local search algorithm, the neighborhood considered can be the set
of solutions to these special cases. We usually consider special cases
having an exponential number of solutions. The special cases can either
be solved by a dedicated polynomial-time algorithm or by Branch-and-
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Bound algorithms (dedicated or based on Constraint Programming (CP)
or Integer Programming (IP)).

This section is here for information only. Because our work does not
extend any appraoch presented in the following, this section does not
aim at being exhaustive.

3.3.1 Neighborhoods created by relaxing the current so-
lution

In this section we present neighborhoods obtained by considering the
current solution, relaxing it, either by relaxing the values of some vari-
ables, or by relaxing some constraints, and then using a complete search
algorithm to find the best solution of this relaxation, optimizing the ob-
jective function. Usually these search algorithm are called Large Neigh-
borhood Search and a CP or IP solver is used to find the best solution.

This approach is generally useful when one wants to define a neigh-
borhood respecting many side constraints.

Large Neighborhood Search is introduced in [Sha98] for solving the
Vehicle Routing Problem. Given a solution, some visits are removed
from the current route and a CP solver is used to reinsert them opti-
mally. Further work used the same approach to consider additional side
constraints to the vehicle routing problem: time windows [BH04] and
pickup and delivery [BH06]. The reallocation can also be optimized by
Integer Programming [FFT05].

In [ALO+02], a similar approach is proposed for solving the Loco-
motive Scheduling Problem: assign a set of locomotives to each train in
a pre-planned train schedule. At each iteration, the algorithm relaxes
the trains assigned to only one locomotive type and reassigns all the
locomotives of this type using a IP solver.

3.3.2 Neighborhoods created from a special case of the
application

For all problems in combinatorial optimization, if there exists a special
restriction solvable in polynomial time, one can derive a VLSN by de-
signing an algorithm that given a solution σ to the problem generate a
restriction of the original problem such that σ is a solution of this spe-
cial case. The polynomial-time algorithm is then used to find the best
improving neighbor.

One such example for the TSP is given in [CNP83]. At each iteration,
they add edges to the current tour in order to create a Halin graph (a
tree plus edges to form a cycle around all the leaves). They optimize
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the TSP in polynomial time on this graph to find the best improving
neighbor.

More special cases of the TSP were presented in [Yeo97, BD95,
GP97].

Many special such examples exist for the TSP and other problems
and each of them could lead to a new exponential neighborhood.



Part II

Contributions

41





Chapter 4

Constraint-Based Very
Large-Scale Neighborhood
Search

This chapter presents some theoretical abstractions of the VLSN pre-
sented in the previous chapter. These abstractions will be useful to im-
plement Constraint-Based Very Large-Scale Neighborhood (CBVLSN)
Search that is a framework for building efficient VLSN search algorithms
in the next chapter.

4.1 A Theory of Constraint-Based VLSN Search

The last section illustrated how selecting several moves at each iteration
enables to consider moves violating some constraints, and thus densify-
ing the transition graph. The VLSN presented are the most successful
in the literature, in terms of applicability on hard real-life problems.
However, such VLSN are dedicated to a particular problem, from the
definition of the moves to the definition of the improvement graph. One
goal of this thesis is to abstract the concepts presented here in order to
create modular and reusable VLSN components.

In VLSN search, neighbors of a solution are reached by applying a
sequence of moves and the size of the neighborhood is exponential in
the length of the sequence. In general, the moves considered violate a
given global constraint. However the sequence of moves is selected such
that this global constraint is respected after the application of all the
moves in the sequence. This approach raises two fundamental problems:
(1) how to select a sequence of moves such that a global constraint is not
violated, and (2) how to compute efficiently the variation of a sequence

43
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of moves on the objective function and the constraints
These problems are solved by considering only sequences of moves

respecting some properties. These properties are stated by the concept
of MoveGraph to deal with the first problem, and by the concepts of
independence and compositionality for the second.

4.1.1 Applying several moves

This research is about designing tools to efficiently compute the effect
of applying a sequence of moves on an assignment. To achieve this goal,
it is important to know exactly how a single move of this sequence will
modify the current assignment. We thus define the sequential applica-
tion of several moves on an assignment. Intuitivelly, in the sequential
application of moves m1 and m2 of an assignation σ, both moves m1

and m2 are applied on the initial assignation σ. If the resulting two
assignations diverges on the value of a variable, the value resulting from
move m1 is chosen for this variable.

Definition 5. Given an assignment σ and two moves m1 and m2 the
sequential application m1|m2 of these two moves wrt σ is such that

m1|m2(σ)(Xi) =

{
m1(σ)(Xi) if m1(σ)(Xi) 6= σ(Xi)

m2(σ)(Xi) otherwise

Example 3. Consider assignments on variables X1 and X2. We define
two moves m1 and m2 such that m1(σ)(X1) = σ(X1) + 1, m1(σ)(X2) =
σ(X2), m2(σ)(X1) = σ(X1) and m2(σ)(X2) = σ(X1).

Let us take σ = (2, 1). We have m1(σ) = (3, 1), m2(σ) = (2, 2) and
m1|m2(σ) = (3, 2). Note that we also have m2|m1(σ) = (3, 2).

Proposition 1. The sequential application is associative.

Proof. Given any assignment σ, we prove that (m1|m2)|m3(σ)(Xi) =
m1|(m2|m3)(σ)(Xi) for all variable Xi.

Let σ be any assignment, Xi be any variable and m1,m2,m3 be any
three moves. We have

(m1|m2)|m3(σ)(Xi) =

{
m1|m2(σ)(Xi) if m1|m2(σ)(Xi) 6= σ(Xi)

m3(σ)Xi otherwise

=


m1(σ)(Xi) if m1(σ)(Xi) 6= σ(Xi)

m2(σ)(Xi) else if m2(σ)(Xi) 6= σ(Xi)

m3(σ)Xi otherwise
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On the other hand, we have

m1|(m2)|m3)(σ)(Xi) =

{
m1(σ)(Xi) if m1(σ)(Xi) 6= σ(Xi)

m2|m3(σ)Xi otherwise

=


m1(σ)(Xi) if m1(σ)(Xi) 6= σ(Xi)

m2(σ)(Xi) else if m2(σ)(Xi) 6= σ(Xi)

m3(σ)Xi otherwise

This proves that the sequential application of any two moves is as-
sociative. �

We can then define how a sequence of moves is applied on an assign-
ment.

Definition 6. Given a sequence of moves M = [m1, . . . ,mk] and an
assigment σ, we let the sequential application of M on σ be

M(σ) = m1|m2| . . . |mk(σ)

4.1.2 Independence

When applying a move, we generally want the assignment to be modified
as predicted. Independent moves do not modify common variables. It
is thus natural to consider independent moves when selecting several
moves.

Definition 7. Two moves m1 and m2 are independent wrt σ iff ∀Xi ∈
X : m1(σ)(Xi) 6= σ(Xi) ⇒ m2(σ)(Xi) = σ(Xi). A set or sequence of
moves M is independent wrt σ if every pairs of moves is independent.

Independence among moves also implies commutativity, because the or-
der of application of independent moves has no effect on the resulting
assignment as it is showed in the following proposition.

Proposition 2. If two moves m1 and m2 are independent, then m1|m2(σ) =
m2|m1(σ) for any assignments σ.

Proof. We prove that if two moves m1 and m2 are independent, then
m1|m2(σ) = m2|m1(σ) for any assignments σ.
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Let σ ∈ Λ, Xi ∈ X ,

m1|m2(σ)(Xi) =

{
m1(σ)(Xi) if m1(σ)(Xi) 6= σ(Xi)

m2(σ)(Xi) otherwise

=


m1(σ)(Xi) if m1(σ)(Xi) 6= σ(Xi)

m2(σ)(Xi) if m1(σ)(Xi) = σ(Xi)

and m2(σ)(Xi) 6= σ(Xi)

σ(Xi) otherwise

By independence we have

m2(σ)(Xi) 6= σ(Xi)⇒ m1(σ)(Xi) = σ(Xi)

we obtain

m1|m2(σ)(Xi) =


m1(σ)(Xi) if m1(σ)(Xi) 6= σ(Xi)

m2(σ)(Xi) if m2(σ)(Xi) 6= σ(Xi)

σ(Xi) otherwise

By a similar reasoning, we obtain the same result for m2|m1(σ)(Xi).
This proves that for all variables Xi, m1|m2(σ)(Xi) = m2|m1(σ)(Xi) for
all assignments σ. And thus for all assignments σ,

m1|m2(σ) = m2|m1(σ)

�

The above proposition shows that given a sequence of independent
moves M = [m1, . . . ,mk], the moves m1, . . . ,mk can be applied in any
order. A sequence of independent moves can thus be represented by a
set of independent moves. If M is a set of independent moves and σ is an
assignment, we denote M(σ) the assignment obtained by the successive
application of the moves in M on σ. Thus a VLSN can be defined as
follows

V LSN(P, σ) = {M(σ)|M ⊆M is an independent set of moves wrt σ}.

Example 4. Consider the TSP (Section 2.1.1). The move assign(Xi, j)
assigns the value j to the variable Xi, so it only modifies the value as-
signed to the variable Xi. So this move is independent with another move
assign(Xk,m) if and only if i 6= k. If such moves are independent, the
resulting assignment is independent from the order of the moves.
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Example 5. Consider the GAP (Section 2.1.2). The exchange moves
exchange(Sk, i, j) and exchange(Sm, j, i) are independent if and only if
k 6= m. If so, when applying both of these moves, the order they are
applied in is not important.

For this same problem, suppose 8 /∈ S1 and consider the moves
insert(S1, 8) and remove(S1, 8). These moves are not independent.

4.1.3 Maintaining Partial Feasibility

We here address the first difficulty of selecting moves such that a struc-
tural constraint is not violated. We partition the constraints C of an
COP into C1 + C2, where C1 is a global constraint capturing a core
substructure of the COP and C2 are the remaining constraints. Typ-
ical examples of core constraints arising in VLSNs are permutation and
partition constraints and moves are generally designed with these con-
straints in mind.

Move Graphs

Our approach considers more atomic moves than standard local search
approaches. In standard local search approaches, only the moves re-
specting all the constraints C = C1 + C2 are considered in order to main-
tain the feasibility of the constraints. Here we deal with the feasibility of
the constraints C1 and C2 differently. First we allow ourself to consider
moves respecting C2, and not necessarily C1. So here we are more per-
missive than standard local search approaches. Then we select a subset
of these moves such that the constraint C1 is respected.

MoveGraphs are key-components to search for a set of moves glob-
ally satisfying the constraints C1. Informally speaking, the edges in a
MoveGraph represent moves such that a cycle represents a set of moves
maintaining the feasibility of C1 (even if a single move of such cycles
may violate C1). The following definition of a MoveGraph is abstract.
It will be instantiated later in this chapter for various global constraints
and various neighborhoods by specifying what the nodes are and how
the edges are mapped into moves.

Definition 8. Given an assignment σ, a MoveGraph MG(σ) is a labeled
graph 〈V,E, η〉 where η is a function E →M. Given E′ ⊆ E, we denote
η(E′) = {η(i, j)|(i, j) ∈ E′}. A move η(i, j) is also denoted ηij.

The following definition captures the requirement that cycles maintain
the feasibility of the global constraint C1.
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Definition 9. Given an assignment σ, a MoveGraph MG(σ) is cycle-
consistent wrt the constraint C1 if

C1(η(C)(σ)) = C1(σ)

for each cycle C in MG(σ) such that η(C) is independent wrt σ.

When considering cycle-consistent MoveGraphs, the neighborhood then
becomes:

V LSN(P, σ) =

{η(C)(σ)|C is a cycle in MG(σ) ∧ η(C) is independent wrt σ}.

Section 4.3 will present how to search this neighborhood by searching
for cycles in MoveGraphs. Please note that the definition of MoveGraph
is independent of any particular COP, so it is a useful concept in a
constraint-based framework.

We now illustrate the concept of MoveGraph on two important global
constraints in VLSN research: permutation and partitioning constraints.

Permutation Problems

We now define a MoveGraph for permutation problems that considers
moves assign(Xj , i) (assign value i to variable Xj). Such moves break
the permutation structure of an assignment if performed alone, but the
MoveGraph will allow to select several of such moves such that the
permutation structure is not broken after having applied all of them.

Definition 10. Given a permutation problem on the variables X = [X1,
. . . , Xk] and an assignment σ, the MoveGraph MGperm(X , D, σ) is the
label graph 〈V,E, η〉 where (1) V = X , (2) E = {(Xi, Xj) : i 6= j} and
(3) η(Xi, Xj) = assign(Xj , σ(Xi)) .

In MGperm, the nodes correspond to variables and the move associ-
ated with edge (Xi, Xj) assigns value σ(Xi) to Xj . MGperm is cycle-
consistent with respect to the permutation constraint.

Proposition 3. Given a permutation problem P = 〈f, Cperm+C2,X , D〉,
the MoveGraph MGperm(X , D, σ) is cycle-consistent wrt Cperm.

Example 6. Consider the TSP with n = 7 described in Example 1.
Given the variables X = [X1, . . . , X7] on domain D = {1, . . . , 7} and
the assignment σ = [6, 4, 3, 2, 1, 5, 7], the MoveGraph MGperm(X , D, σ)
is
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X1 = 6
X2 = 4

X3 = 3

X4 = 2

X5 = 1

X6 = 5

X7 = 7

X1 = 6
X2 = 1

X3 = 3

X4 = 2

X5 = 7

X6 = 5

X7 = 4

The cycle (X5, X2), (X2, X7), (X7, X5) corresponds to the atomic
moves assign(X2, 1), assign(X7, 4) and assign(X5, 7). These moves
are independent and their application yields the new assignment σ′ =
[6, 1, 3, 2, 7, 5, 4]. The assignment σ′ respects the permutation constraint
although we applied moves that breaks this constraint if performed alone.

Partitioning Problems

We now present a MoveGraph for partitioning problems such as the Gen-
eralized Assignment Problem. The MoveGraph considers three types of
moves: exchange(Sk, i, j) replaces the value j in variable Sk by value i,
insert(Sk, i) inserts the value i in Sk, and remove(Sk, i) removes i from
Sk. The nodes in the MoveGraph represent both variables and values,
which enables us to encode the three types of moves.

Definition 11. The MoveGraph MGpart(X , D, σ) for a partitioning
problem and an assignment σ is the label graph 〈V,E, η〉 where

(1) V = X ∪D,

(2) E = {(i, j) ∈ V × V |i ∈ D ∨ j ∈ D},

(3) (a) For i, j ∈ D, η(i, j) = exchange(Sk, i, j) with j ∈ σ(Sk),

(b) For i ∈ D and Sk ∈ X , η(i, Sk) = insert(Sk, i),

(c) For i ∈ D and Sk ∈ X , η(Sk, i) = remove(Sl, i) with i ∈ σ(Sl).

This MoveGraph is very similar to the graphs used in dedicated VLSN
approaches for partitioning problems.

This MoveGraph is cycle-consistent with respect to the partitioning con-
straint. Please note that the semantic of the move represented by an
edge (Sk, i) does not depend on Sk.
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Proposition 4. Given a partitioning problem 〈f, Cpart + C2,X , 2D〉 and
an assignment σ, the MoveGraph MGpart(X , D, σ) is cycle-consistent
wrt Cpart.

Example 7. Consider the GAP introduced in Example 2 with n = 8 and
K = 5. For the assignment σ = {S1 = {5}, S2 = {3, 4}, S3 = {1}, S4 =
{2, 6}, S5 = {7, 8}}, the MoveGraph MGpart(X , D, σ) is

5
3

4

1

2 6

7

8

S1

S2

S3

S4

S5

The cycle (1, 2), (2, S5), (S5, 3), (3, 1) corresponds to the following moves:
exchange(S4, 1, 2), insert(S5, 2), remove(S2, 3) and exchange(S3, 3, 1).
Notice that the move remove(S2, 3) labels all the arcs {(Sk, 3) : ∀k =
1, . . . ,K}. These four moves are independent and their application
yields the new assignment σ′ = {S1 = {5}, S2 = {4}, S3 = {3}, S4 =
{1, 6}, S5 = {2, 7, 8}}. Notice that the assignment σ′ still respects the
partition constraint although each of the single applied moves violates it.

4.1.4 Ensuring Efficient Search of the Cyclic Neighbor-
hood

Compositionality

Computing the differentiation of a set of moves on the constraints and
the objective is complex in general, as it may require simulation. We
now define the concept of compositional moves. When only sets of com-
positional moves are considered, very good candidates in the VLSN can
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be searched efficiently. Informally speaking, moves are compositional if
the differentiation of a set of moves is the sum of the differentiation of
each individual move. In the following definition, for a set M of indepen-
dent moves, we use ∆f (M,σ) to denote f(M(σ))− f(σ) and ∆C2(M,σ)
to denote C2(M(σ))− C2(σ).

Definition 12. Given an COP 〈f, C1 + C2,X , D〉, a set of independent
moves M is compositional wrt a solution σ if

(1) ∆C2(M,σ) =
∑

m∈M ∆C2(m,σ)

(2) ∆f (M,σ) =
∑

m∈M ∆f (m,σ)

It is easy to compute the impact of a set of compositional moves on the
constraints or on the objective. This allows the design of polynomial-
time heuristics for searching the following neighborhood,

V LSNA(P, σ) = {η(C)(σ) | C is a cycle in MG(σ)
and η(C) is independent wrt σ
and η(C) is compositional wrt σ}.

Note that the size of the neighborhood is still exponential. Moreover,
if LS(P, σ) denotes the neighborhood used in standard local search ap-
proaches (selecting only one move), we still have

LS(P, σ) ⊆ V LSN1(P, σ)

Example 8. Consider the TSP with n = 7 and illustrated below. Let
the initial solution be σ0 = [1, 2, 3, 4, 5, 6, 7] with the cost c12 +c23 +c34 +
c45 + c56 + c67 + c71.

1 2 3 4 5 6 7

assign(X3, 1)assign(X4, 6)

assign(X5, 7)

Consider the moves m1 = assign(X3, 1), m2 = assign(X4, 6) and m3 =
assign(X5, 7). The following array gives the cost of the assignment re-
sulting from the application of some combinations of these moves.
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M fTSP (M(σ0)) ∆fTSP (M,σ0)

∅ c12 + c23 + c34 + c45 + c56 + c67 + c71 0
{m1} c12 + c21 + c14 + c45 + c56 + c67 + c71 −c23 − c34 + c21 + c14

{m2} c12 + c23 + c36 + c65 + c56 + c67 + c71 −c34 − c45 + c36 + c65

{m3} c12 + c23 + c34 + c47 + c76 + c67 + c71 −c45 − c56 + c47 + c76

{m1,

m2}
c12 + c21 + c16 + c65 + c56 + c67 + c61

−c23 − c34 − c45

+c21 + c16 + c65

{m1,

m3}
c12 + c21 + c14 + c47 + c76 + c67 + c61

−c23 − c34 − c45 − c56

+c21 + c14 + c47 + c76

The third column of this array shows that the moves m1 and m2 are not
compositional, because

∆fTSP ({m1,m2}, σ0) 6= ∆fTSP (m1, σ0) + ∆fTSP (m2, σ0)

However the moves m1 and m3 are compositional because

∆fTSP ({m1,m3}, σ0) = ∆fTSP (m1, σ0) + ∆fTSP (m3, σ0)

Improvement Graph

The neighborhood V LSNA(P, σ) can now be searched efficiently through
the concept of Improvement Graph, that is built automatically from the
MoveGraph. Improvement graphs are the core of VLSN algorithms but
in constraint-based VLSN, they can be derived automatically from Move-
Graphs thanks to the differentiability of the moves. The key idea is to (1)
remove edges (i, j) with ∆C2(ηij , σ) 6= 0 as these moves violate constraint
C2 and (2) add a weight ∆f (ηij , σ) on every edge (i, j).

Definition 13. Given an COP 〈f, C1 + C2,X , D〉, a MoveGraph G =
〈V,E, η〉 and an assignment σ, the improvement graph is the weighted
graph IG(G, σ) = (V,E′, η, w) such that

(1) E′ = {(i, j) ∈ E|∆C2(ηij , σ) = 0},

(2) wij = ∆f (ηij , σ).

The neighborhood V LSNA(P, σ) can then be searched more efficiently
by searching for cycles in the improvement graph, for the two following
reasons. First, pruning the set of edges does not restrict the neighbor-
hood. Indeed the hard constraint are satisfied by all solutions: C2(σ) =
0, thus ∆C2(m,σ) ≥ 0,∀m ∈ M. So

∑
m∈M ∆C2(m,σ) = 0 ⇐⇒
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∆C2(m,σ) = 0,∀m ∈M . Thus any compositional cycle C in the Move-
Graph G such that ∆C2(η(C), σ) = 0 will also be in the corresponding
improvement graph.

Second, precomputing the values ∆f (m,σ) allows to compute the
variations of a set of compositional moves represented by a path in the
improvement graph very efficiently from Definition 12.

Note that in order to compute the improvement graph, we only need
to compute ∆C2(m,σ) and ∆f (m,σ) for all moves m considered. This
also has to be done in a standard local search algorithm. Thus the time-
complexity of building the improvement graph is the same as searching
standard local search neighborhoods.

Incremental Update of the Improvement Graph

Because the improvement graph depends on the current solution σ, it
must be updated at each iteration. VLSN algorithms update the im-
provement graph incrementally, however the set of edges to update is
problem-dependent. Fortunately, in CBVLSN, the set of edges to update
can be derived automatically. Indeed, one needs only to consider the
edges that are not compositional with the moves applied at the previous
iteration.

Proposition 5. Given an COP 〈f, C1 + C2,X , D〉, a MoveGraph G =
〈V,E, η〉 and an assignment σ, let M be a set of compositional moves
wrt σ and ηij be a move compositional with all moves in M wrt σ. We
have

∆f (ηij ,M(σ)) = ∆f (ηij , σ) (4.1)

∆C2(ηij ,M(σ)) = ∆C2(ηij , σ) (4.2)

Proof.

∆f (ηij ,M(σ)) = f(ηij(M(σ)))− f(M(σ))

=

(
f(σ) + ∆f (ηij , σ) +

∑
m∈M

∆f (m,σ)

)

−

(
f(σ) +

∑
m∈M

∆(m,σ)

)
= ∆f (ηij , σ)

The same reasoning holds with C2. �
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Proposition 5 shows that the presence and the cost of an edge (i, j)
in the improvement graph is constant if applying only compositional
moves wrt ηij . After having applied a set M of moves, an edge (i, j) has
to be updated only if ηij is not compositional with M , or if the semantic
of ηij has changed.

Let us review what we have achieved so far. We have shown that VL-
SNs can be formalized abstractly in terms of differentiable constraints
and functions, and a partitioning of the constraints into a global con-
straint capturing the important substructure of the problem and other,
possible global, constraints. To ensure feasibility, we introduced the
concept of cyclic-consistent MoveGraph, which guarantees that cycles
in the MoveGraph maintain the feasibility of the distinguished global
constraint. Finally, we have indicated that the differentiation on the
model of a set of moves, if it is restricted to be compositional, can be
computed very easily.

The only remaining issues are how to search the cyclic neighborhood
and how to test independence and compositionality. One possibility is
to implement directly Definition 12. Such a “simulation” approach is
often orders of magnitude slower than a dedicated implementation. Our
approach however computes compositionality incrementally from a small
extension in the CLBS interface of constraints and functions.

4.2 Automatic Derivation of Independent and
Compositional Moves

This section presents how to derive systematically the independence and
compositionality of moves from a small extension in the CBLS interface.
Input and output variables are two fundamental concepts used to de-
rive a sufficient condition for a set of moves to be compositional and
independent. The approach relies mainly on two observations: (1) the
independence and compositionality of two moves only depends on the
current values of the decision variables; and (2) the differentiation typi-
cally depends on the values of a subset of the decision variables.

4.2.1 Definitions

The first concept, i.e., output variables, allows us to determine whether
two moves are independent.

Definition 14. Given a set of variables X and an assignment σ, the
output variables of a move m, denoted Var6=(m,σ), is the set of the
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variables modified by applying the move m on σ: Var6=(m,σ) = {Xi ∈
X : m(σ)(Xi) 6= σ(Xi)}.

Definition 15. Given two moves m1 and m2 and an assignment σ, m1

and m2 are variable-independent wrt σ iff Var6=(m1, σ)∩Var6=(m2, σ) =
∅.

If two moves are variable-independent wrt σ, they are also independent
wrt σ, and vice-versa.

Proposition 6. Given two moves m1 and m2 and an assignment σ, m1

and m2 are variable-independent wrt σ iff m1 and m2 are independent
wrt σ.

The following definition is necessary to define variable-compositionality.

Definition 16. Given a set of variables X and a subset of these variables
X ⊆ X , two assignments σ1, σ2 are X-equivalent if ∀Xi ∈ X : σ1(Xi) =
σ2(Xi).

Now, testing compositionality requires to determine which variables
would change the differentiation of moves. This intuition is captured
by the concept of input variables.

Definition 17. Given a set of variables X , a moves m, an assignment σ
and a function g : Λ→ Z, the input variables V ar<(g,m, σ) is a subset
of X of minimum cardinality such that for all assignments σ′ ∈ Λ such
that σ and σ′ are V ar<(g,m, σ)-equivalent we have

∆g(m,σ
′) = ∆g(m,σ)

Example 9. Consider the variables X = [X1, X2, X3], the domain
D = {0, 1} and the function f(σ) = σ(X1).σ(X2).σ(X3). Let the as-
signment σ = {X1 = X2 = X3 = 0}. Clearly ∆f (assign(X1, 1), σ) = 0.
This holds as long as X2 = 0 or X3 = 0. Thus the input variables
Var<(assign(X1, 1), σ) can be either {X2} or {X3}. This shows that
the input variables may not be unique. Other definitions of input vari-
ables may lead to unicity, but for reasons that are made clear hereafter,
we are interested in having as few input variables as possible.

Definition 18. Given a function g and an assignment σ, a set of moves
M = {m1, . . . ,mk} is variable-compositional wrt g and σ iff

V ar<(g,mi, σ) ∩Var6=(mj , σ) = ∅ ∀i, j ∈ {1, . . . , k} with i 6= j

We can now define a sufficient condition for a set of moves to be com-
positional.
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Proposition 7. Given an COP 〈f, C1 +C2,X , D〉, an assignment σ and
a set of independent moves M , if each pair of moves in M is variable-
compositional wrt f and σ, and variable-compositional wrt C2 and σ,
then M is compositional wrt σ.

Proof. Let M = {m1, . . . ,mk} be a set of moves variable-compositional
wrt f and σ, and variable-compositional wrt C2 and σ. We let Mj =
{m1, . . . ,mj} and σj = Mj(σ) for all j = 1, . . . , k. We have to prove
that

(A) ∆f (M,σ) =
∑k

i=1 ∆f (mi, σ)

(B) ∆C2(M,σ) =
∑k

i=1 ∆C2(mi, σ)

We prove (A). A similar reasoning proves (B). From Definition 18
we have

Var<(f,mj , σ) ∩Var6=(mi, σ) = ∅ ∀i, j ∈ {1, . . . , k} with i 6= j
(4.3)

So for all j = 2, . . . , k, we have σj−1(Xl) = σ(Xl) for all Xl ∈
Var<(f,mj , σ), and thus σj−1 and σ are Var<(f,mj , σ)-equivalent as-
signments. From Definition 17 we obtain

∆f (mj , σj−1) = ∆f (mj , σ) (4.4)

Moreover we have

∆f (Mj , σ) = f(Mj(σ))− f(σ) (4.5)

= f(mj(σj−1))− f(σ) (4.6)

= f(mj(σj−1))− f(σj−1) + f(σj−1)− f(σ) (4.7)

= ∆f (mj , σj−1) + f(Mj−1(σ))− f(σ) (4.8)

= ∆f (mj , σj−1) + ∆f (Mj−1, σ) (4.9)

Thus, by (4.4), we obtain

∆f (Mj , σ) = ∆f (Mj−1, σ) + ∆f (mj , σ) ∀j = 2, . . . , k (4.10)

This recurrence formula leads to

∆f (Mj , σ) =

j∑
i=1

∆f (mi, σ) ∀j = 1, . . . , k (4.11)

Finally we have ∆f (M,σ) = ∆f (Mk, σ) =
∑k

i=1 ∆f (mi, σ). �
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Input and output variables are two fundamental concepts: given a COP,
they allow us to compute whether a set of moves is surely compositional
and independent, without any additional knowledge from the user. This
enables the implementation of arbitrarily complex VLSNs with any con-
straint that can be searched by generic algorithms. It suffices to extend
the CBLS interface for constraints and functions to include, not only vi-
olations and differentiation, but also input and output variables which is
natural in practice. Then it is natural to approximate the compositional
and independent cyclic neighborhood by the following neighborhood,

V LSNB(P, σ) = {η(C)(σ) | C is a cycle in MG(σ) and
η(C) is variable-independent and
variables-compositional wrt σ, f and C2}.

How to search V LSNB(P, σ) is described in Section 4.3.

Example 10. We illustrate here all the concepts presented in this sec-
tion on the GAP. We will illustrate the input variables by considering
the capacity constraint that ensures that

∑
i∈σ(Sk) bk ≤ B, ∀k = 1, ...,K.

We consider the move insert(Sk, i) that inserts the element i in the
set variable Sk (i /∈ Sk). The output variables of such move is thus
Var6=(insert(Sk, i), σ) = {Sk}. In order to check whether this move re-
spects the capacity constraint, we must check that

∑
j∈σ(Sk) bj + bi ≤ B.

Indeed, the other variables remaining unchanged, there is no need to ver-
ify the capacity constraint for all other sets. In order to check whether the
insert move respects the capacity constraint, only the current value of the
variable Sk has to be considered. So Var<(insert(Sk), i) = {Sk}. This
tells whether the move insert(Sk, i) respects the capacity constraint or
not is independent from the current value of all other variables than Sk.

Now if the current solution σ is such that
∑

i∈σ(Sk) bi = 10 and
B = 11, bi = 1, bj = 1 with i, j /∈ Sk, then both moves insert(Sk, i)
and insert(Sk, j) respect the capacity constraint separatedly. However,
if performed together, the capacity constraint will be violated. Because
some of the output variables of one move is an input variable of the other
move, our framework knows there is a risk that the constraint may be
violated despite the fact that it is respected by both moves separatedly.
So our generic search algorithm won’t select such pair of moves together.

4.2.2 Operational advantages

Constraint and objective operators: Once the input and output
variables are available for basic constraints and objectives, the input
variables can also be synthesized for traditional logical and arithmetic
operators.
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Proposition 8. The input variables can be determined for the sum,
product or other operations α between multiple functions:

V ar<(f α g,m, σ) ⊆ V ar<(f,m, σ) ∪ V ar<(g,m, σ)

As a result, search algorithms can be enhanced systematically to com-
pute independence and compositionality on the fly: They only need to
collect the input and output variables of the moves for the different dif-
ferential invariant used in the model, and then apply Propositions 7 and
8.

Checking variable-compositionality and variable-independence:
Checking variable-compositionality and variable-independence is a cru-
cial step in CBVLSN search algorithms. We here describe how this check
can be efficiently computed. Let a set M of moves and an assignment
σ, checking whether a move m is variable-compositional and variable-
independent with M can be done in O(|M |.oV + oV ), where oV is an
upper bound of the number of input and output variables per move.

This check is performed in two steps. First the input and output
variables of the moves in M are marked. Introduce two boolean arrays
inputMarked and outputMarked, both indexed by the variables in X .
Marking a move m means setting to true the cells of these arrays cor-
responding to Var<(m,σ) and Var 6=(m,σ). This can be done in O(oV )
where oV is an upper bound of the number of input and output variables
per move. Marking all the nodes in M can thus be done in O(|M |.oV ).

Second, once the moves are marked, it is easy to check whether a
move m is variable-independent and variable-compositional with M . It
suffices to check whether no output variable in Var6=(m,σ) is marked in
both arrays, and if no input variables is marked in outputMarked. This
check can be done in O(oV ).

Update of the improvement graph: Once a set M of moves is
selected and applied, the improvement graph must be recomputed. Sec-
tion 4.1.4 showed that only moves non-compositional with M have to
be reconsidered during this update. As Proposition 7 stated, variable-
compositionality is stricter than compositionality. We can thus update
an improvement graph (V,E′, η, w) by only considering non-variable-
compositional moves wrt M ; only the edges in the set conflict(M,σ) =⋃
m∈M{(i, j) ∈ E : Var<(ηij , σ) ∩ Var6=(m,σ) 6= ∅} have to be reconsid-

ered.

In summary, we have presented a theory for constraint-based VLSN.
Given a CBLS interface for constraints and objective functions enhanced
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with the concepts of input and output variables for each move, we
have demonstrated that a generic VLSN implementation can be de-
rived systematically from a cycle-consistent MoveGraph associated with
〈f, C1+C2,X , D〉. A constraint-based VLSN framework will then provide
a library of MoveGraphs and differential invariants that can be extented
by the users by implementing their own. These contributions make it
possible to define VLSN models at a high level of abstraction and to
include idiosyncratic constraints naturally.

Node MoveGraphs A Node MoveGraph is a MoveGraph with the
input and output variables assigned to the nodes, rather than on the
edges. Indeed each move has its own input and output variables. From
the point of vue of the Move Graph, the input and output variables can
thus be assigned to the edges. However in many applications, the input
and output variables can also be assigned on the node of the MoveGraph.
This arises if all edges incident to a particular node represent moves
having the same input and output variables. This the case of the GAP
for example. In such cases, we define

• Var<V (f, i, σ) as the input variables assigned to node i ∈ V wrt
the function f and assignment σ

• Var6=V (i, σ) as the output variables assigned to node i ∈ V wrt the
assignment σ.

Definition 19. A Node MoveGraph NMG(σ) = 〈V,E, η,Var<V ,Var6=V 〉
wrt the COP 〈f, C1+C2,X , D〉 is a MoveGraph 〈V,E, η〉 such that ∀(i, j) ∈
E

1. Var<(f, ηij , σ) ⊆ Var<V (f, i, σ) ∪Var<V (f, j, σ)

2. Var<(C2, ηij , σ) ⊆ Var<V (C2, i, σ) ∪Var<V (C2, j, σ)

3. Var6=(ηij , σ) ⊆ Var6=V (i, σ) ∪Var<V (j, σ)

The Node MoveGraphs are especially useful for implementation op-
timization. Theoretically, any Node MoveGraph can be represented as
a MoveGraph.

4.3 Exploring the Cyclic Neighborhood

This section describes how the cyclic neighborhood V LSNB(P, σ) can
be searched efficiently despite its theoretical complexity.
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Proposition 9. Finding the best candidate in V LSNB(P, σ) is NP-
Hard.

Proof. This is proved by observing that in the particular case of the Gen-
eralized Assignment Problem, finding the best candidate in V LSNB(P, σ)
is reduced to solving the Cycle Through Distinct Subpartition Problem
(CTDSP), that has been proven to be NP-Hard [TO89].. The general
problem of searching this neighborhood is thus NP-Hard. Notice that
the CTDSP is the usual subproblem to be solved in cyclic VLSN dedi-
cated to partitioning problems.

�

The complexity of searching the best candidate in V LSNB(P, σ)
contrasts with the polynomial-time complexity of searching the minimum-
cost cycle in a graph. However an efficient heuristic can be designed,
based on a polynomial-time algorithm searching for cycles. A heuristic
computing solutions of the Cycle Through Distinct Subpartition problem
has been presented in [AOS01], based on a label-correcting algorithm.
Hereafter we present a variation of this heuristic to find solutions of
the more general problem of searching V LSNB(P, σ). This heuristic is
depicted in Algorithm 5.

This heuristic is based on the label-correcting algorithm [AMO93]
solving the shortest-path problem. This label-correcting algorithm can
find shortest paths in a graph with edges with negative cost. This al-
gorithm computes the shortest-paths from a start node s to any other
node in the graph. For all nodes i, the algorithm maintains the pre-
decessor P [i] of node i on the shortest-path from s to i found so far.
It also maintains d[i], the distance from s to i according to the paths
encoded by the predecessors. If d[i] + wij ≥ d[j] for all edges (i, j) ∈ E,
it can be proved that the paths are optimal. To ensure this condition,
the algorithm maintains a LIST that contains all the nodes i such that
an outgoing edge may violate the optimality condition. Once LIST is
empty, the algorithm stops. Until then, the algorithm pops a node from
LIST, examine all outgoing edges (i, j) and sets the predecessors of j as
i if d[i] + wij < d[j].

Cycles may be identified with the label-correcting algorithm by walk-
ing back the path from s to i when popping the node i from LIST. There
is a cycle in the shortest-path tree encoded by the predecessors if we
reach a node twice during this walk.

The label-correcting algorithm is extended to only consider inde-
pendent and compositional cycles. The first check is done when the
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1 d(s) := 0; pred(s) := 0; d(j) :=∞,∀j 6= s;
2 LIST = {(s, 0)};
3 while LIST 6= ∅ do
55 remove an element (k, i) in LIST ;
6 mark the nodes and edges in P [i];
88 if P [i] is not independent or not compositional, then

continue;
9 for (i, j) ∈ E do

1111 if j ∈ P [i] then return the subpath from i to j in P [i] ;
1313 else if ηij is independent and compositional with all

moves in P [i] then
1515 d(j) := d(i) + wij ;
16 pred(j) := i;
1818 if (j, k) and (j, k + 1) /∈ LIST then add (k + 1, j) in

LIST ;

Algorithm 5: Heuristic algorithm searching for independent and
compositional cycles in an Improvement Graph (i.e. a MoveG-
raph with precomputed values). The label-correcting algorithm
for searching for paths [AMO93] is represented in non-bold font.
The added lines are in bold. These lines allows to return a cycle
only if it represents a set of independent and compositional moves.
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algorithm found an edge such that d[i] + wij < d[j]. Such edge should
be used to update the shortest-path to j. However the algorithm also
check whether this edge is independent and compositional with all edges
in the shortest-path from s to i. If not, the shortest-path to j is not
updated.

The second check is done when a node i is popped from LIST. The
algorithm checks whether the shortest-path to i is still independent and
compositional. Indeed, when the shortest-path to a node j is updated,
the shortest-paths to all successors of j are also modified, and some of
these paths may not be independent and compositional.

The complexity of Algorithm 5 depends on the implementation of
LIST. If we use a queue (FIFO), then Algorithm 5 achieves a polynomial-
time complexity.

Proposition 10. Given an COP 〈f, C1 + C2, X,D〉, an assignment σ
and an improvement graph G = (V,E, η, w), let n = |V |, m = |E|, oV
an upper bound on the number of input and output variables per move,
and U be the maximal cardinality of any path in the shortest path tree.
The time-complexity of Algorithm 5 is O(nU2oV +mU(U+oV )) if using
a FIFO implementation for LIST.

Proof. First note that when popping a couple (k, i) from LIST, only
couples of the form (k + 1, j) will be added to LIST. As we use a FIFO,
couples (k, i) will thus be considered in increasing value of k.

After popping (k, i), only couples (k′, i′) with k′ > k will be added
to LIST. So once (k, i) is popped, it won’t be added to LIST again, and
thus cannot be popped from LIST twice. Given a couple (k, i) ∈ LIST ,
k represents the cardinality of the shortest path from s to i when (k, i)
was added into LIST. So U is an upper bound of the value of k. The
while loop is thus executed at most nU times.

Inside the while loop, marking the nodes and edges in P [i] can be
done in O(U.oV ) (Section 4.2 describes how). Checking independence
and compositionality of the corresponding moves is done during the
marking. So line 8 takes O(U.oV ). Thus the complexity of lines 5-8 is
O(nU2oV ). Each edge (i, j) can be considered only when a couple (k, i)
is popped. Thus each edge can be considered at most U times. Line 11
takes O(U), checking whether ηij can be added to P [i] in O(oV ) and all
operations in lines 15-18 take constant time. Thus the total complexity
of the lines inside the for loop is O(mU(U + oV )).

These considerations lead to a complexity ofO(nU2oV +mU(U+oV ))
for Algorithm 5.

�
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Example 11. This complexity is considerably lowered for practical prob-
lems. For the GAP, each move modifies one variable, and this variable
is also the unique variable in the input variables. This has two conse-
quences. First no more than K moves can be independent (as each move
modifies one variable). This leads to U = K. Second, oV = O(1). So
the complexity of our algorithm 5 is O(nK2 + mK2). Note that if we
stop at the first cycle found, then the complexity becomes O(nK2 +mK).
So our algorithm has the same theoretical complexity as the algorithm
presented in [AOS01]. Indeed, for this problem, our algorithm performs
the same operations as in [AOS01].

s i

j
k

s i

j
k

Figure 4.1: Illustrating the Behavior of the Algorithm.

Figure 4.1 illustrates why the algorithm checks for independence and
compositionality twice and why the algorithm is incomplete. Consider
Algorithm 5 when a node i has been popped and the edge (i, j) is con-
sidered to be added in the shortest path tree (line 7). In this example,
all paths in this tree were independent and compositional, although the
moves represented by the edges (s, i) and (j, k) are not. The edge (i, j)
is added to the shortest path tree because the path [(s, i), (i, j)] is inde-
pendent and compositional (line 9). This implicitely change the shortest
path from s to k to be [(s, i), (i, j), (j, k)], that is not independent and
compositional. This illustrates why the shortest path tree may contain
paths that are not independent and compositional and why we need to
check for it when we pop a node from the list. After the addition of the
edge (i, j), the edge (s, j) is removed from the shortest path tree. The
path [(s, j), (j, k)] is thus forgotten while the current path from s to k
is not valid (not independent and compositional). This illustrates why
Algorithm 5 is incomplete, since it has lost trak of the path from s to k
going through j.
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Chapter 5

Implementation

We implemented generic abstractions to efficiently compute the differen-
tiation of several moves, based on the concept of input and output vari-
ables. Then, using these abstractions, we implemented generic VLSN
search procedures selecting several moves at each iteration, such that a
structural global constraint is respected. These VLSN search procedures
are concise: they can be very quickly implemented and modified to take
into account some expert’s knowledge of the problem.

In this chapter, first we detail how we extended the CBLS solver of
Comet. Second we explain how the input and output variables, and the
MoveGraphs are described. Then we present our abstractions checking
compositionality and independence and differentiating a set of moves.
Finally we describe our generic VLSN search procedures.

5.1 An extension of the CBLS solver

We introduce two new concepts to the current Constraint-Based Local
Search solver of Comet(Listing 5.1). First the concept of decision vari-
ables, which are variables not maintained by invariants [HM06]. Decision
variables are important for memory efficiency.

Second the concept of iteration, which is the step of selecting several
moves and to apply them. This concept is a key component of several
data-structures that can be incrementally updated.

5.1.1 Introducing Decision Variables

A Decision variable is a variable whose value is not a function of some
others. Such variables are thus necessary to fully describe a solution.
In Comet, invariants efficiently maintain the value of some variables

65
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depending on some others. In terms of implementation, we thus define
a decision variable as a variable that is not maintained by mean of an
invariant. In the CBLS module of Comet, each variable has an unique
LS identifier. One of the role of our VLSN solver is to assign a second
VLSN identifier to each decision variable such that all decision variables
have consecutive VLSN identifiers.

The set of LS identifiers of all the decision variables is stored in the
variable decVariables (Listing 5.1). The range decVars contains the
consecutive VLSN identifiers of the decision variables, and the array
idsa contains the VLSN identifier of decision variables: idsa[lsID]

represents the VLSN identifiers of the variable with the LS identifier
lsID (-1 if the variable is not a decision variable).

These values are set in the two following methods. The first method
registerDecisionVariable is used to indicate to the solver that a vari-
able is a decision variable. Second, closeVariables is called when all
the decision variables have been registered and it computes the array
idsa.

5.1.2 Introducing Iterations

The concept of iteration is used to incrementaly maintain the differen-
tiation of atomic moves wrt changes in the solution. The Solver has a
counter iter (Listing 5.1) indicating the current iteration. This counter
is incremented when a move is performed (method performMove). The
array lastModified is indexed by VLSN identifiers of the decision vari-
ables and indicates the last iteration at which the decision variables were
modified. We use events [HM05b] to change the values of this array
when the decision variables are modified (methods registerDecision-
Variable).

1 class Solver <VLSN > extends Solver <LS >{

set{int} decVariables;

range decVars;

int[] idsa;

6
Integer iter;

int[] lastModified;

Solver <VLSN >() : Solver <LS >(){

11 decVariables = new set{int }();

iter = new Integer (0);

}

void registerDecisionVariable(var{int} v){

int c = decVariables.getSize ();
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16 decVariables.insert(v.getId ());

if ( c < decVariables.getSize ())

whenever v@changes (){ setModified(v.getId ()); }

}

void registerDecisionVariable(var{set{int}} v){

21 int c = decVariables.getSize ();

decVariables.insert(v.getId ());

if ( c < decVariables.getSize ()){

whenever v@insert(int i){setModified(v.getId ()); }

whenever v@remove(int i){setModified(v.getId ()); }

26 }

}

void closeVariables (){

int maxId = max(id in decVariables) id;

idsa = new int[id in 0.. maxId] = -1;

31 int currentId = 0;

forall(id in decVariables) idsa[id] = currentId ++;

decVars = 0.. nbDecId -1;

lastModified = new int[decVars] = -1;

36 }

void close (){

if ( idsa == null ) closeVariables ();

super.close();

iter ++;

41 }

void performMove(Closure cl){

iter := iter + 1;

call(cl);

}

46 int getVLSNId(var{int} v) {return idsa[v.getId()];}

int getVLSNId(var{set{int}} v){

return idsa[v.getId ()];

}

range getDecisionVariables () {return decVars ;}

51
int getModified(var{int} v){

return lastModified[idsa[v.getId ()]];

}

int getModified(var{set{int}} v){

56 return lastModified[idsa[v.getId ()]];

}

void setModified(int id){

lastModified[idsa[id]] = iter;

}

61
Integer getIter (){return iter;}

}

Listing 5.1: The VLSN Solver.
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5.2 Getting the Output and Input Variables:
the CBVLSN API

The CBLS API has been extended to include input and output vari-
ables. A human very easily knows what are the input variables of the
differentiable invariants. Our approach is thus based on putting this
knowledge directly into the constraints and objective functions.

The output variables are defined in the implementation where the
moves are defined (Listing 5.3 and 5.4). A VarsCollector collects input
and output variables (Listing 5.2).

The CBVLSN API for the differentiable invariants contains methods
to retrieve the input variables of the moves, plus the traditional CBLS in-
terface that supports the differentiation of the different supported moves
(Listing 5.5 for permutation, and Listing 5.6 for partitionning problems).

The CBVLSN API enables the design of generic VLSN algorithms.
Indeed the API is common to all differential invariants; the semantic of
the differential invariants is thus hidden behind this API. Then these
differential invariants can be generically queried to differentiate atomic
moves and to retrieve input and output variables. This allows VLSN
search procedures to differentiate a set of moves and to compute in-
dependence and compositionality, even if the search procedure has no
knowledge about the semantic of the model.

interface VarsCollector {

2 void clear ();

void addInputVariable(var{int} v);

void addInputVariable(var{set{int}} v);

void addOutputVariable(var{int} v);

void addOutputVariable(var{set{int}} v);

7 }

Listing 5.2: The VarsCollector object is used to collect input and
output variables.

class Permutation{

var{int }[] perm;

3 void assign(var{int} v, int val){ v := val; }

void swap(var{int} v1, var{int} v2){ v1 :=: v2; }

void getOutputAssignVariables(var{int} v, int val ,

VarsCollector vc){

vc.addOutputVariable(v);

}

8 void getSwapOutputVariables(var{int} v1, var{int} v2,

VarsCollector vc){
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vc.addOutputVariable(v1);

vc.addOutputVariable(v2);

}

}

Listing 5.3: Permutation object, with the definition of the moves and
the output variables for each of them.

class Partition{

var{set{int }}[] S;

3 var{int }[] p;

dict{int ->int} idToIndex;

Partition(Solver <VLSN > m, int n, int K){

S = new var{set{int }}[1..K](m);

p = new var{int }[1..n](m);

8 idToIndex = new dict{int ->int}();

forall(k in 1..K) idToIndex{S[k].getId ()} = k;

}

void insert(var{set{int}} v, int j){

int k = idToIndex(v.getId());

13 S[k]. insert(j);

p[j] := k;

}

void getInsertOutputVariables(var{set{int}} v, int j,

VarsCollector vc){

vc.addOutputVariable(v);

18 vc.addOutputVariable(p[j]);

}

void remove(var{set{int}} v, int j){v.delete(j);}

void getRemoveOutputVariables(var{set{int}} v, int j,

VarsCollector vc){

vc.addOutputVariable(v);

23 }

void exchange(var{set{int}} v, int i, int j){

int k = idToIndex(v.getId());

S[k]. delete(i);

S[k]. insert(j);

28 p[j] := k;

}

void getExchangeOutputVariables(var{set{int}} v, int i

, int j, VarsCollector vc){

vc.addOutputVariable(v);

vc.addOutputVariable[p[j]];

33 }

}

Listing 5.4: Partition object, with the definition of the moves and the
output variables for each of them.
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1 interface PermutationDifferentialInvariant <VLSN > {

2 Solver <VLSN > getLocalSolver ();

3 var{int} value();

4 int getAssignDelta(var{int} var ,int v);

5 void getAssignInputVariables(var{int} var ,int v,

6 VarCollector t);

7 int getSwapDelta(var{int} v1 , var{int} v2);

8 void getSwapInputVariables(var{int} v1,var{int} v2,

9 VarCollector t);

10 }

Listing 5.5: The differentiable invariants on permutations can be
differentiated wrt the supported moves (Lines 4 and 7). This is part
of the standard CBLS API. In addition, in our CBVLSN API, these
differentiable invariants can be queried to retrieve the input variables
wrt the supported moves (Lines 5 and 8).

interface PartitionDifferentialInvariant <VLSN > {

Solver <VLSN > getLocalSolver ();

var{int} value();

int getExchangeDelta(var{set{int}} S,int i,int j);

5 void getExchangeInputVariables(var{set{int}} S,int i,

int j, VarCollector t);

int getInsertDelta(var{set{int}} S,int i);

void getInsertInputVariables(var{set{int}} S,int i,

VarCollector t);

10 int getRemoveDelta(var{set{int}} S,int j);

void getRemoveInputVariables(var{set{int}} S,int j,

VarCollector t);

}

Listing 5.6: CBVLSN API for differentiable invariants on partitions.
They contain methods to be differentiated wrt the moves, and methods
to retrieve the corresponding input variables.

These variables are used to compute independence and composition-
ality. The main operations to perform are intersection and union of
input and output variables (Definitions 15 and 18). These variables are
stored as sets of integers, because the decision variables can be uniquely
identified by their integral LS identifiers (Section 5.1.1). These sets are
represented by arrays of bits. This allows to compute the intersection
and union by performing d n32e AND and OR operations on integers,
where n is the number of decision variables and if we use a 32 bits
computer. This representation of input and output variables leads to
the object BitSetCollection that represents a collection of sets repre-
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sented as bit arrays (Listing 5.7).

native class BitSetCollection{

2 bits(int lb , int ub, int m);

void insert(int i, int e);

void remove(int i, int e);

bool areDisjoint(int i, int j);

void _union(int i, int j);

7 void _inter(int i, int j);

void empty(int i);

bool contains(int i, int e);

void copy(int i, int j);

}

Listing 5.7: A BitSetCollection represents a collection of m bits arrays.
These arrays store sets containing elements from lb to ub. For example
the method insert(i,e) inserts the element e to the set at index i in
the collection. The method union(i,j) inserts all the elements in the
set at index j in the set at index i.

5.3 Describing MoveGraphs

Any MoveGraph MG = 〈V,E, η〉 is described by implementing a few
methods (Listing 5.8). An object MoveGraph represents a MoveGraph
(Definition 8), to use in conjunction with one constraint C2 and one
objective function f . Indeed, in practice a MoveGraph is used with only
one constraint and one objective function per program.

The method getNodes returns the set of nodes V . In theory, the
nodes can be any mathematical object. However for efficiency, the set of
nodes V is restricted to be a set of consecutive integers in our implemen-
tation. The set of edges E is defined by the method isMove(i,j) that
returns whether an edge (i, j) is contained in E or not. There is no ob-
ject representing moves in Comet, and we think that such object would
not be efficient to implement and to use in practice. We thus cannot
implement the function η : V → M directly. Five methods implement
the operations to be done with a move η(i, j):

applyMove performs the move η(i, j)

isMoveFeasible returns whether the move η(i, j) respects the con-
straint C2

getMoveDelta returns the differentiation of move η(i, j) on the objec-
tive function f
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getVariables that records the input and output variables of the move
η(i, j)

Once these methods are implemented, the MoveGraph is fully de-
scribed and can be used to compute the differentiation of several moves
efficiently and to search VLSN. The interface MoveGraph is also extended
to describe MoveGraphs to be used when the input and output variables
of η(i, j) can be expressed as a function of i and j, an explained in Sec-
tion 4.2.2 (Listing 5.9).

We also give the implementation of the two MoveGraphs for permu-
tation and partitinning problems from Definitions 10 and 11 (Listings
5.10 and 5.11).

interface MoveGraph{

MoveGraph (){}

4 range getNodes ();

bool isMove(int i, int j);

void applyMove(int i, int j);

bool isMoveFeasible(int i, int j);

9 int getMoveDelta(int i, int j);

void getVariables( int i, int j ,VarsCollector vc);

}

Listing 5.8: Description of a MoveGraph.

interface NodeMoveGraph extends MoveGraph{

void getVariables(int i, VarsCollector vc);

void getVariables(int i, int j, VarsCollector vc){

4 getVariables(i, vc);

getVariables(j, vc);

}

}

Listing 5.9: Description of a MoveGraph to be used with a model such
that the input and output variables of the move ηij are function of i and
j (Section 4.2.2).

class ExchangePermutationMG implements MoveGraph{

Permutation p;

3 PermutationConstraint C;

PermutationFunction f;

ExchangePermutationVLSN( Permutation pp ,

PermutationConstraint Cp, Permutation fp){
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p = pp; C = Cp; f = fp;

}

8 range getNodes (){

return p.rng();}

bool dependOnlyOnJ (){return false ;}

bool isMove(int i, int j){

13 return true;

}

void applyMove(int i, int j){

var{int} v = p.get(j);

v := p.get(i);

18 }

void getVariables(int i, int j, VLSNTracker t){

f.getAssignOutputVariables(p.get(j),p.get(i),t);

}

int getMoveDelta(int i, int j){

23 return f.getAssignDelta(p.get(j),p.get(i));

}

bool isMoveFeasible(int i, int j){

return C.isAssignFeasible(p.get(j),p.get(i));

}

28 }

Listing 5.10: Implementation of the MoveGraph describing the exchange
cyclic neighborhood for permutations (Definition 10).

2 abstract class UserExchangeVLSN extends NodeMoveGraph{

Partition p;

int K;

int V;

7 set{int }[] values;

int[] k;

UserExchangeVLSN(Partition pp , int nbNodesp){

p = pp;

12 K = p.getK().getUp();

V = nbNodesp;

k = new int [1..V];

values = new set{int }[1..V];

17 }

set{int} getValues(int i);

void update (){

22 forall(i in 1..V){



74 Chapter 5. Implementation

values[i] = getValues(i);

select(e in values[i])

k[i] = p.getIndex(e);

}

27 }

range getNodes (){ return -K+1..V;}

void getVariables( int j ,VLSNTracker t){

if (j <= 0)

32 t.write(p.getPartition(-j+1));

else

t.write(p.getPartition(k[j]));

}

bool isMove(int i, int j){

37 return (i > 0 || j > 0) && k[i] != k[j];

}

void applyMove(int i, int j){

if ( j <= 0 ) { // Insert

p.insert(values[i],-j+1);

42 }else if ( i <= 0 ) { // Remove

p.remove(values[j]);

}else { // Exchange

p.exchange(values[i],values[j]);

}

47 }

int getMoveDelta(int i, int j){

if ( j <= 0 ) {

return f.getInsertDelta(p.getPartition(k[j]),

values[i]);

}else if ( i <= 0 ) {

52 return f.getRemoveDelta(p.getPartition(k[j]),

values[j]);

}else{

return f.getExchangeDelta(p.getPartition(k[j]),

values[i],values[j]);

}

}

57 bool isMoveFeasible(int i, int j){

if ( j <= 0 ) {

return C.isInsertFeasible(p.getPartition(k[j]),

values[i]);

}else if ( i <= 0 ) {

return C.isRemoveFeasible(p.getPartition(k[j]),

values[j]);

62 }else{

return C.isExchangeFeasible(p.getPartition(k[j]),

values[i],values[j]);

}

}

}

Listing 5.11: Implementation of the MoveGraph describing the exchange
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cyclic neighborhood for partitions (Definition 11). Here the nodes 1 to
V represents subsets of elements that are in the same subset of the
partition in the current solution. These subsets are defined by the
method getValues(i). Such subsets of elements will be exchanged
among the different subsets of the partition. The nodes −k represents
the entire subset Sk of the partition.

5.4 Checking Independence and Composition-
ality

We here describe how we check for the compositionality and indepen-
dence of a set of moves M .

We assume in the following that the input and output variables of a
move η(i, j) can be expressed as function of i and j, as it is the case for
many problems (Section 5.3). Indeed the implementation of the different
components is harder with this assumption; several optimizations can
be done. The implementation of the components for the general case
(the input and output variables cannot be expressed as functions of i
and j) is simpler and won’t be described here. For sake of clarity, we
also assume the nodes in the MoveGraph range from 1 to n, where n is
the number of nodes.

The input and output variables are computed at the beginning of
each iteration and stored in a BitSetCollection. This object is set to
contain 2n+ 2 sets where n is the number of nodes in the MoveGraph.
The input variables of node i (Var<(i, σ)) are stored in the 2ith set of the
collection, while the output variables of node i are stored in the 2i+ 1th

set. The sets at indices 0 and 1 are used to compute the union of the
input and output variables of several moves.

It is easy to compute whether a set of moves M is compositional
and independant once the BitSetCollection is built (Listing 5.12).
The object CompoAndIndepChecker stores a set of moves M . It also
maintains the union of the input and output variables of the moves in
M in the sets at indices 0 and 1 respectively.

A move η(i, j) is added to M by calling the method mark(i,j). This
method returns true if and only if η(i, j) is independant and composi-
tional with the moves already in M . This method also adds the input
and output variables of η(i, j) in the sets 0 and 1. The set of moves
M and the sets at indices 0 and 1 are emptied by calling the method
unmark().
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Then we can efficiently compute whether a move m is compositional
and independent with the moves in M (method isCompoAndIndep).

class CompoAndIndepChecker{

MoveGraph mg;

3 BitSetCollection ioVars;

int[] mod;

int nbMarked;

void update (){

8 BSCFiller bsc(ioVars , mod);

forall(n in nodes){

bsc.fill(n);

mg.register(n, bsc);

mod[n] = bsc.getModified ();

13 }

}

bool mark(int i, int j){

if (nbMarked ==0){

if ( !ioVars.isDisjoint (2*i , 2*j+1)

18 || !ioVars.isDisjoint (2*i+1, 2*j )

|| !ioVars.isDisjoint (2*i+1, 2*j+1) )

return false;

ioVars._union(0, 2*i );

ioVars._union(1, 2*i+1);

23 ioVars._union(0, 2*j );

ioVars._union(1, 2*j+1);

}else{

if ( !ioVars.isDisjoint (0, 2*j+1)

|| !ioVars.isDisjoint (1, 2*j )

28 || !ioVars.isDisjoint (1, 2*j+1) )

return false;

ioVars._union(0, 2*j );

ioVars._union(1, 2*j+1);

}

33 nbMarked ++;

return true;

}

void unmark (){

ioVars.empty (0);

38 ioVars.empty (1);

nbMarked = 0;

return true;

}

bool isCompoAndIndep(int i, int j){

43 return ioVars.isDisjoint (0, 2*j+1)

&& ioVars.isDisjoint (1, 2*j )

&& ioVars.isDisjoint (1, 2*j+1);

}

}
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Listing 5.12: Checking independence and compositionality. The entry
mod[i] stores the last iteration one of the variables in the set i of the
collection has been modified. The object BSCFiller implements the
interface VarsCollector. It stores the BitSetCollection and the array
mod as instance variables. We indicate which entry of the collection and
of mod has to be filled (line 10). Then it is passed to the MoveGraph
that will call bsc for each variable. At each of these calls, the BSCFiller
will insert the variable in the sets 2n or 2n+ 1 and will update mod[n]

if needed.

5.5 Differentiating Several Moves

Our implementation can efficiently differentiate many sets of moves, if
they are compositional and independent. First by precomputing the im-
provement graph at the beginning of each iteration. Second by checking
compositionality and independence of each set of moves.

The improvement graph is a MoveGraph where (1) the edges repre-
senting moves not respecting the constraint have been removed, and (2)
a weight equal to the differentiation of the corresponding atomic moves
have been assigned to the edges (Definition 13). The improvement graph
IG = (V,EIG, w) is stored by a cost adjancency matrix c, where cij =∞
if (i, j) /∈ EIG and cij = wij otherwise.

The Improvement graph can be automatically derived from a Move-
Graph (Listing 5.13). It also can be updated incrementally at each
iteration (Listing 5.14).

class ImprovementGraph{

MoveGraph mg;

3 int[,] cost;

void buildFromScratch (){

forall(j in mg.getNodes (), i in mg.getNodes () )

cost[i,j] =

8 (mg.isMove(i,j) && mg.isMoveFeasible(i,j))

? mg.getMoveDelta(i,j)

: System.getMAXINT ();

}

}

Listing 5.13: An Improvement Graph is built from the MoveGraph mg

and is stored by a adjacency matrix cost.
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class IncrementalNodeIG extends ImprovementGraph{

int lastComputed;

3 void incrementalUpdate(int[] mod){

forall(j in nodes: mod[j] > lastComputed[j],

i in nodes )

cost[i,j] =

(mg.isMove(i,j) && mg.isMoveFeasible(i,j))

8 ? mg.getMoveDelta(i,j)

: System.getMAXINT ();

forall(i in nodes : mod[i] > lastComputed[i],

j in nodes : mod[j] <= lastComputed[j] )

13 cost[i,j] =

(mg.isMove(i,j) && mg.isMoveFeasible(i,j))

? mg.getMoveDelta(i,j)

: System.getMAXINT ();

lastComputed = m.getIter ();

18 }

}

Listing 5.14: Improvement Graph that can be updated incrementally.
The variable lastComputed stores the last iteration this Improvement
Graph has been updated. The parameter mod is an array indexed by the
nodes. The entry mod[i] contains the last iteration any input or output
variables of node i has been modified. The update is done in two phase.
First we update the incident edges to all the nodes j whose variables
have been modified. Second we update the incident edges of the nodes
j whose variables have not been modified and such that the variables of
i have been modified.

It is easy to differentiate a set of moves once the improvement graph,
the input and output variables have been precomputed. This differentia-
tion is computed through the object MoveCompound (Listing 5.15). It ex-
tends CompoAndIndepChecker by providing a method getDelta(i,j).
This method returns ∞ if m = η(i, j) is not compositional or indepen-
dant with M . Otherwise it returns the weight set to edge (i, j) in the
Improvement Graph.

1 class MoveCompound extends CompoAndIndepChecker{

IncrementalNodeIG ig;

void update (){

super.update ();

ig.incrementalUpdate(mod);

6 }

int getCost(int i, int j){return ig.getCost(i,j);}
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int getDelta(int i, int j){

if (! isCompoAndIndep(i,j)) return System.getMAXINT ()

;

11 else return ig.getCost(i,j);

}

}

Listing 5.15: Differentiation of a set of moves. This object is built on
top of the checker of compositionality and independence. Note how
this differentiation is made easy thanks to the concepts of input output
variables and improvement graph.

5.6 Searching the Cyclic Neighborhood

The VLSN search algorithms are efficiently and simply implemented
using the above abstractions. First we extended MoveCompound to ex-
plicitely store the set of moves M and to provide some simple methods
easing the writing of the cyclic VLSN search procedure (Listing 5.16).
Second the procedure searching for improving compositional and inde-
pendent cycles is written concisely (Listing 5.17).

The main advantages of this concise procedure are twofold. First it
can be easily extended to integrate meta-heuristics (Listings 5.18 and
5.19). Second the procedure in Listing 5.17 is generic wrt the implemen-
tation of the MoveCompound. In the context of this thesis we presented
an implementation relying on compositionality and independence to ef-
ficiently differentiating a set of moves. But the MoveCompound could be
implemented differently, enabling the computation of set of moves that
are not compositional or independent (for example using simulation).

class CyclicMoveCompound extends MoveCompound{

2 int[] is;

int[] js;

bool[] markedNodes;

MoveSubset getMarkedMoves(int i, int j, int cost){

7 is[nbMarked +1] = i;

js[nbMarked +1] = j;

int p;

for(p=1; is[p] != j;p++){}

return MoveSubset(is,js,p.. nbMarked+1,cost);

12 }

bool isAnEdge(int i, int j){

return getCost(i,j) < System.getMAXINT ();

}

bool isMarked(int i){return markedNodes[i];}
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17 bool mark(int iid , int jid){

if (super.mark(iid ,jid)){

markedNodes[iid] = true;

markedNodes[jid] = true;

is[ nbMarked ] = iid;

22 js[ nbMarked ] = jid;

return true;

}else return false;

}

bool unmark (){

27 forall(i in 1.. nbMarked) {

markedNodes[is[i]] = false;

markedNodes[js[i]] = false;

}

super.unmark ();

32 }

}

Listing 5.16: The CyclicMoveCompound helps writing the cyclic search
procedure. In addition to MoveCompound it also stores explicitely the
set of moves M in the arrays is and js, η(is[1],js[1]) is the first move
added in M ,. . . , and η(is[nbMarked],js[nbMarked]) is the last marked
move. It also stores which nodes are endpoints of the moves in M
(markedNodes). These data are maintained when calling the methods
mark and unmark. The method getMarkedMoves(i,j,c) is called when
the node j is marked. In this case adding the move η(i,j) to M would
create a cycle (perhaps not containing all the moves in M). This
methods returns an object containing all the edges corresponding to
this cycle.

function bool markNodes(int i, int[] pred ,

2 CyclicMoveCompound ms){

return pred[i]>=0 ||

markNodes(pred[i],pred ,ms) && ms.mark(pred[i],i);

}

7 function searchCycle(CyclicMoveCompound cmc){

MoveGraph mg = cmc.getIG().getMoveGraph ();

int inf = System.getMAXINT ();

forall(s in mg.getNodes ()){

int d[-1..mg.getNodes ().getUp()] =inf;

12 int pred[mg.getNodes ()] = -1;

ILIST LIST = DeQueue(mg.getNodes ());

LIST.put(s,0,0);

d[s] = 0;

17
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while( !LIST.isEmpty ()){

int i = LIST.get();

if ( markNodes(i,pred ,cmc) ){

forall(j in mg.getNodes () : cmc.isAnEdge(i,j)){

22 int cij = cmc.getDelta(i,j);

if( cmc.isMarked(j) ){

int cost = d[i] + cmc.getCost(i,j) - d[j];

return cmc.getMarkedMoves(i,j,cost);

}else if( !cmc.isMarked(j) && cij < inf

27 && d[i]+cij < 0 && d[j] > d[i] + cij

){

LIST.put(j, d[j], d[i] + cij);

pred[j] = i;

d[j] = d[i] + cij;

}

32 }

}

cmc.unmark ();

}

}

37 }

Listing 5.17: Cyclic VLSN search algorithm. Our abstractions allows
the concise writing of complex VLSN search procedures. This helps
designing and testing many variants of the same algorithm.

Solver <VLSN > m();

Partition p(m,n,K);

3 PartitionConstraint C = ...;

PartitionFunction f = ...;

m.close();

PartitionMoveGraph mg(p,C,f);

8 ImprovementGraph ig(mg);

CycleMoveCompound cmc(ig);

int inf = System.getMAXINT ();

13 forall(e in 1..n){

whenever p.getIndex(e)@changes (){

select(it in 2..4){

tabuUntil[e] = m.getIter () + it;

}}}

18
while(true){

set{int} nodes = setof(n in mg.getNodes ()) (tabuUntil[

n] <= m.getIter ());

forall(s in nodes){

int d[-1..mg.getNodes ().getUp()] =inf;
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23 int pred[mg.getNodes ()] = -1;

ILIST LIST = DeQueue(mg.getNodes ());

LIST.put(s,0,0);

d[s] = 0;

while( !LIST.isEmpty ()){

28 int i = LIST.get();

if ( markNodes(i,pred ,cmc) ){

forall(j in nodes : cmc.isAnEdge(i,j)){

int cij = cmc.getDelta(i,j);

if( cmc.isMarked(j) ){

33 int cost = d[i] + cmc.getCost(i,j) - d[j];

return cmc.getMarkedMoves(i,j,cost);

}else if( !cmc.isMarked(j) && cij < inf

&& d[i]+cij < 0 && d[j] > d[i] +

cij ){

LIST.put(j, d[j], d[i] + cij);

38 pred[j] = i;

d[j] = d[i] + cij;

}}}

cmc.unmark ();

}}}

Listing 5.18: Cyclic VLSN search algorithm with a tabu meta-heuristic
(for partitionning problems). The array tabuUntil is indexed by the
elements of the partition, and stores the iteration until elements cannot
be moved from their current partition. The set of nodes representing
elements that are not tabu for the current iteration is computed (nodes),
and the two forall loops of the cyclic VLSN search procedure are
modified to only loop on these nodes.

Solver <VLSN > m();

Partition p(m,n,K);

3 PartitionConstraint C = ...;

PartitionFunction f = ...;

m.close();

PartitionMoveGraph mg(p,C,f);

8 ImprovementGraph ig(mg);

CycleMoveCompound cmc(ig);

int inf = System.getMAXINT ();

UniformDistribution u(1..10000);

13 float t=30;

while(true){

set{int} nodes = mg.getNodes ();

forall(s in nodes){

18 int d[-1..mg.getNodes ().getUp()] =inf;
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int pred[mg.getNodes ()] = -1;

ILIST LIST = DeQueue(mg.getNodes ());

LIST.put(s,0,0);

d[s] = 0;

23 while( !LIST.isEmpty ()){

int i = LIST.get();

if ( markNodes(i,pred ,cmc) ){

forall(j in nodes : cmc.isAnEdge(i,j)){

int cij = cmc.getDelta(i,j);

28 if( cmc.isMarked(j) ){

int cost = d[i] + cmc.getCost(i,j) - d[j];

return cmc.getMarkedMoves(i,j,cost);

}else if( !cmc.isMarked(j) && cij < inf

&& d[j] > d[i] + cij

33 && u.get() < exp ^( -1.0*(d[i]+cij)

/t) < 0 ){

LIST.put(j, d[j], d[i] + cij);

pred[j] = i;

d[j] = d[i] + cij;

}}}

38 cmc.unmark ();

}}

update t;

}

Listing 5.19: Cyclic VLSN search procedure with simulated annealing.
A path is extended by an edge (i,j) if its length is negative. Otherwise
it is extended with a probability proportional to its length (line 33).
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This section illustrates how our new concepts allow the direct imple-
mentation of sophisticated VLSN search algorithms from the literature
and how they are a key tool to prove them. The experimental results
presented here are a proof of concept of our theoretical framework.

First the Capacitated Minimum Spanning Tree problem is modelled
and searched using our generic approach. This allows to compare the
efficiency of our work compared to a dedicated C++ implementation of
VLSN search algorithm.

Second, the Capacitated Exam Timetabling Problem is solved. This
allow to illustrate the benefits of the notion of compositionality that is
novel in this work.

Finally, the Vehicle Routing with Time-Windows is considered and
we illustrate how complex VLSN search algorithms can be implemented
and extended using our approach.
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Chapter 6

The Capacitated Minimum
Spanning Tree

The Capacitated Minimum Spanning Tree (CMST) is a communica-
tion problem. An efficient VLSN implementation in C++ has been
developed in the literature to solve this problem [AOS03]. This section
demonstrates that the efficiency of our generic approach is comparable
to a dedicated implementation in C++.

The CMST is a partitionning problem and its formulation is similar
to the Generalized Assignment Problem (GAP) described in Section
2; only the objective functions are different. Thus, once a CBVLSN
algorithm has been developped for the GAP, most of its parts can be
reused to solve the CMST using VLSN. This motivates the design of a
constraint-based approach.

A VLSN for the CMST was proposed in [AOS01, AOS03] and it finds
the best known solutions to this problem. It uses a cyclic neighborhood
and searches for cycles passing through any subset at most once. Their
neighborhood is equivalent to our compositional cyclic neighborhood but
is hardcoded in their search algorithm. It is thus easy to implement their
algorithm by means of our constraint-based framework.

6.1 Problem Description

The Capacitated Minimum Spanning Tree problem is about partition-
ning a set of n terminals into K subnetworks. We are given a matrix
d ∈ Rn+1×n+1 specifying the distance between all pairs of the n termi-
nals and between all these terminals and a particular node R called the
root. Each terminal i also requires a given bandwidth bi. The goal of
the CMST is to find a partition X = [S1, . . . , SK ] of the n terminals,

89
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respecting the capacity constraint∑
i∈Sk

bi ≤ D ∀k = 1, 2, . . . ,K

and minimizing the following objective function

fCMST =
K∑
k=1

(
mst(Sk, d) + min

i∈Sk
dR,i

)

where mst(Sk, d) computes the cost of the minimum spanning tree over
the terminals in Sk given the cost matrix d. The CMST is modeled
as the COP 〈fCMST , Cpart + Ccapa,X , 2N 〉, where N = {1, . . . , n}, Cpart
is the global partition constraint and Ccapa is the capacity constraint,
as for the GAP. We refer the reader to [AOS01, AOS03] for extensive
references about the CMST.

6.2 A Concise Model

The CMST can be modelled as depicted in Listing 6.1. The variable p

represents a partition of the elements {1, . . . , n} into K sets. The differ-
entiable objective mst computes the cost of the minimum spanning trees
for a set of nodes, and Obj is a differentiable invariant representing the
cost of a partition for this problem. The constraint system Cs contains
all the constraints C2 of the problem, i.e. the capacity constraints in this
case. The input and output variables wrt the model of the GAP and
the moves defined on partitions have been described in Example 10. In
our implementation, the input and output variables are defined only for
each separate differential invariant.

Solver <VLSN > vs();

Partition <VLSN > p(vs ,1..n,1..K);

var{set{int }}[] S = p.getSubsets ();

4 PartitionFunction <VLSN > Obj(

sum(k in 1..K) (mst(vs ,S[k],d) + min(i in S[k]) d[R,i

]));

PartitionConstraintSystem <VLSN > Cs(m);

Cs.post(CapacityConstraint(p,b,B));

vs.close ();

Listing 6.1: Model for the CMST
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6.3 An Efficient Search

In order to compare our approach to the dedicated implementation de-
scribed in [AOS01], we reproduced their VLSN search procedure using
our framework. We used a Greedy Randomized Adaptative Search Pro-
cedure (GRASP). The principle of such procedure is to compute an
initial solution using a randomized greedy algorithm, and then improv-
ing it by performing VLSN moves. When no improving move can be
identified, the process in restarted. The search algorithm stops when a
given time limit is reached.

In order to fully describe a GRASP, we thus need to explain how
the initial solutions are computed, and which VLSN search algorithm is
used to improve them. We compute the initial solution as in [AOS01] by
using a randomized version of the greedy algorithm proposed in [EW66].
This algorithm starts with each subtree containing a singleton node. In
each iteration, the algorithm joins two subtrees into a single subtree so
that the new subtree satisfies the capacity constraints and the savings
achieved by the join operation are maximum. We select randomly one
of the three join operations achieving the bests savings exactly as it is
done in [AOS01].

These initial solutions are improved using the cyclic neighborhood.
The search first looks for an improving neighbor in the cyclic exchange
neighborhood. If such a move exists, it is applied. Otherwise, a new
randomized initial solution is computed and the search restarts. This
search is depicted in Listing 6.2. Line 1 constructs the move graph
and line 2 automatically derives its associated improvement graph. In
line 4, the best move found by the cyclic search algorithm is obtained:
it encapsulates the actual move and the improvement graph (and thus
the move graph) to update the improvements when applied. It also
can be differentiated as shown in line 5. Observe how the search is
completely separated from the model and could thus be used for any
other partitioning problems without any modification.

6.4 Enlarging the Neighborhood

The VLSN algorithm presented above only exchanges single values be-
tween set variables. In [AOS03], a more complex neighborhood is pre-
sented, in which subtrees of the current solution and/or single values
can be exchanged among different subsets as illustrated in Figure 6.1.
Our abstractions allow to implement this new neighborhood by simply
extending the MoveGraph presented in Section 4.1.3. There is no need
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Solution bestSol(m);

2 int bestCost = Obj.value();

PartitionExchangeMoveGraph mg(vs,p,Obj ,Cs);

ImprovementGraph ig(mg);

CycleMoveCompound cmc(ig);

while (System.getCPUTime () < timeLimit ){

7 MoveSubset M = cmc.getBestCycle ();

if (M == null || M.getDelta () > 0) p.initialize ();

else M.apply ();

if (bestCost > Obj.value ()){

bestCost = Obj.value ();

12 bestSol = Solution(m);

}

}

Listing 6.2: Search for the CMST

R

S1
S2

S3

Figure 6.1: Composite Cyclic Exchange for the CMST.

to modify the model or the search algorithm provided that the CBLS
API supports the atomic moves.

This complex neighborhood can be implemented as depicted in List-
ing 6.3.

1 class CMSTMoveGraph extends PartitionExchangeMoveGraph{

set{int} getValues(int i){

return (i > n)

? getSubtree(i)

: {i};

6 }

set{int} getSubtree(int i){

// computes the elements in the subtree rooted

// at i of the MST induced by the current partition.

}
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11 }

Listing 6.3: Class defining a MoveGraph for the CMST problem. A node
i : 1 ≤ i ≤ n represents the element i ∈ {1, . . . , n}, a node i : n < i ≤ 2n
represents the subtree rooted at the element i in the current solution
and a node i ≤ 0 represents the subset S−i+1.

6.5 Comparing to Dedicated Solutions

The extensive computational study in [AOS01, AOS03] allows us to com-
pare our approach to a dedicated and highly efficient implementation in
C++. We reproduced the same analysis as in [AOS01] and on the same
instances. The initial solutions are computed exactly as in [AOS01] and
the GRASP (Greedy Randomized Adaptive Search Procedure) is tuned
with the same parameters (Time limit of 200 seconds, application of
the first improving cycle found). The experimental analysis presented
in [AOS01] (denoted Du in Table 6.1) was made on a Pentium 1,4 GHz
with 512MB of memory. Our algorithm (denoted MDVH) is run on a
single core of a machine with an Intel Core Quad CPU Q6600 at 2.4GHz
with 1GB memory. The difference of speed between both setups was es-
timated at a factor 3.3 after running some tests.

Table 6.1 shows that both implementations behave similarly: they
compute solutions of equivalent quality (although our results are slighly
inferior which may be due to implementation details that were not de-
scribed in [AOS01]) and perform roughly the same number of iterations
per run. The last column shows our implementation is about 4 times
slower than the dedicated implementation of [AOS01] (the difference of
computers used is already taken into account in Table 6.1), which is not
surprising since our abstractions are built on top of Comet. Supporting
the abstractions directly in the core of Comet will remove this gap.
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Instance Q Avg value Nb of iter Time per iter Time

MDV Du MDV Du MDV Du Factor

tc80-1 5 1112 1108 21.25 23 34.15 20 5.63

tc80-3 5 1087 1082 17.94 18.9 34.73 20 5.73

tc80-5 5 1301 1301 18.94 20.2 34.28 20 5.66

tc80-1 10 905 905 12.69 12 49.61 60 2.73

tc80-3 10 898 890 9.77 7 49.53 70 2.33

tc80-5 10 1036 1023 11.06 6.3 49.19 80 2.03

te80-1 5 2556 2555 15.68 11.6 39.01 30 4.29

te80-3 5 2636 2624 17.4 19.7 35.99 30 3.96

te80-5 5 2491 2486 13.89 18 35.98 20 5.94

te80-1 10 1717 1701 11.23 14.7 52.56 60 2.89

te80-3 10 1731 1719 13.54 13.9 51.94 60 2.86

te80-5 10 1662 1651 10.6 13.4 54.43 60 2.99

Table 6.1: Experimental comparison of our implementation with
[AOS01]. Q is the maximum allowed number of terminals in a sub-
set (capacity constraint). Avg value is the average of the values found
after each run, Nb of iter is the average number of iterations per run and
Time per iter is the average time in milliseconds to find a cycle. The last
column indicates the time factor between both implementations, with
the difference in computers taken into account.



Chapter 7

The Capacitated
Examination Timetabling
Problem

This chapter presents a CBVLSN program for solving a hard problem
encountered nowadays in universities. It illustrates that compositional-
ity is essential for efficiently driving the search towards good solutions,
and consequently to obtain new state-of-the-art solutions.

7.1 Problem Description

The Capacitated Examination Timetabling Problem (CETP) is a real-
life – and very complex – problem encountered in universities. The
goal of the CETP is to partition n exams into K consecutive time slots
subject to an exclusion constraint: there are no students taking two
exams scheduled in the same time slot.

The adaptability and reusability of the algorithms solving some vari-
ants of this problem is valuable. Indeed each university has its own
additional requirements and, depending on its own reality, it may be
willing to consider additional constraints or objective. Constraint-based
approaches are designed with this challenge in mind.

Here we focus on a variant that has been considered multiple times
in the literature [AAB+07, AABD04, AABD07]. There is an additional
constraint stating that for each time slot k, the total number of students
having an exam scheduled at k is less than a total room capacity D. The
objective is to minimize the number of students having two exams the
same day in two consecutive time slots. We let S = [S1, . . . , SK ] be
K set variables, where Sk represents the set of exams scheduled at the
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timeslot k for k = 1, . . . ,K. The objective function can be formulated
as follows:

fcetp =
∑

1≤k<K
dayk=dayk+1

∑
i∈Sk
j∈Sk+1

cij (7.1)

where the number of students taking exams i and j is given by the matrix
(cij) ∈ Nn×n, and dayk is the day of time slot k. The capacity constraint
is equivalent to the constraint of the Capacitated Minimum Spanning
Tree. The violation of the exclusion constraint can be computed as
follows

Cexcl =

K∑
k=1

 ∑
i,j∈Sk:i<j

cij

 (7.2)

This constraint is respected if cij = 0, ∀i, j ∈ Sk, k = 1, . . . ,K.
Thus the CETP can be defined as the OCSP 〈fcetp, Cpart + Ccapa +

Cexcl, S, 2N 〉, where Cpart is the global partition constraint, Ccapa is the
capacity constraint, and N = {1, . . . , n}.

This problem can be implemented using our framework as follows.

7.2 Model and Search

The model of the CETP is similar to the CMST, except that there is
an additional exclusion constraint to ensure there is no conflict for any
student. The Comet model for this problem is illustrated in Listing 7.1
and is very similar to Listing 6.1; observe that the capacity constraint
implemented for the CMST can be reused as is for the CEPT.

Solver <VLSN > m();

Partition <VLSN > p(m,1..n,1..K);

CETPFunction f(p,day);

4 PartitionConstraintSystem <VLSN > Cs(m);

Cs.post(CapacityConstraint(p,b,D));

Cs.post(ExclusiveConstraint(p,c));

vs.close ();

Listing 7.1: A declarative model of the Capacitated Examination
Timetabling Problem. Each component of the model captures essential
substructure of the problem, and can be queried for differentiability and
input variables. Generic VLSN search components can communicate
with such models through the CBVLSN API, and are then able to
efficiently find very good solutions.
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The GRASP search used for the CMST will be reused here (Listing
6.2). This illustrates the reusability of our approach,

7.3 Compositionality Enhances the Search

Several works solved the Capacitated Exams Timetabling Problem by
designing a dedicated VLSN approach and obtained the best known
solutions to some of these instances [AAB+07, AABD04, AABD07].

These VLSN search algorithms often compute useless iterations; the
selected set of moves is often rejected. Indeed they all search for an
independent cycle (i.e., a cycle with no pair of moves modifying the
same set variable), and do not consider compositionality. Hence they
may find a cycle with a negative cost, that is not reflecting the true
variation on fcetp of the corresponding moves. In such cases the selected
set of moves may be degrading and thus be rejected a posteriori. This
makes unvaluable the previous work of selecting the negative cycle.

This problem is avoided by considering compositionality. Indeed
from Equation (7.1), the variation on the objective fcetp of a move
modifying the set variable Sk may depend on the set variables Sk−1

and Sk+1. Compositionality captures this fundamental structure of the
objective function. So the cost of a compositional cycle reflects the true
variation on fcetp of the corresponding moves. This allows to directly
compute a cycle leading to a better solution.

Hard instances coming from Canadian universities are available [CL96]
and were considered in [AAB+07, AABD04, AABD07]. Their approach
is equivalent to ours, except that they do not check for compositionality
during the search for an improving cycle.

We quantified the added value of the novel concept of composition-
ality. We made 50 runs of our Comet program of 10 minutes, with and
without the check for compositionality. The time limit has been chosen
such that both algorithms were able to perform enough iterations to
illustrate their behavior. We report the average of the cost of the best
solution found after a given number of iterations (Figure 7.1).

These results indicate that the notion of compositionality may signif-
icantly improve the results of VLSN algorithms. In constraint-based VL-
SNs, the shortest-path algorithm is driven towards cycles that improve
the current solution. If compositionality is not checked, some improving
cycles do not necessarily reflect the true variation on the objective func-
tion. This may drive the search algorithm towards degrading solutions
and reduce the efficiency of the algorithm. This inequality between the
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cost of a cycle in the improvement graph and the true variation of the
objective wrt the corresponding moves leads to an unwanted random
behavior. In constraint-based VLSN, this issue is avoided entirely and
compositionality comes from free since it is uderived compositionally
from primitive constraints and objectives.

7.4 New state-of-the-art solutions

We found new state-of-the-art solutions to the CETP with our GRASP
search by computing better initial solutions and making our algorithm
run until no improving cycle is found. We have already described what
our Cometprogram does, except how the initial ramdomized solutions
are computed. Given an exam i, let CEi be the set of exams conflicting
with i: CEi = {j ∈ {1, . . . , n}|cij > 0}. In order to assign the exams
to the timeslots, we select an exam not already assigned having the
largest number of assigned conflicting exams. We break ties by choosing
the exam with the most conflicting students

∑
j∈CEi cij , or with the

most conflicting exams. We thus select the exam i with the greater
lexicographical value〈

|{j ∈ CEi|j is assigned}| ,
∑
j∈CEi

cij , |CEi|

〉

We then assign the selected exam to the timeslot minimizing the impact
on the objective function according to the already assigned exams. We
repeat this process until all the exams are assigned. This randomized
procedure is not always able to produce a complete partition; an exam
can be impossible to assign to any timeslot. However after a few trials,
a good initial solution can be found.

Our concise CBVLSN model and search for the CETP improves the
best solution found for two of the data sets considered in [AABD07],
and obtains the optimal solution for the data set TRE-S-92 (Table 7.1).
We compared our algorithm to [AABD07] and [MBHS03] that are the
two algorithms computing the best known solutions on these data sets.
Unfortunately our procedure computing the initial solutions didn’t find
a feasible initial partition for the fifth instance CAR-F-92.

Selecting many moves at each iteration is crucial to improve the
generated initial solutions. Indeed our algorithm had to explore cycles
with many edges in order to identify some improving cycles (max and
avg cycle denotes the maximum and average length of the improving
cycles returned by our algorithm) .
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Our algorithm also performs faster than the two other algorithms.
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(a) car-f-92 (b) kfu-s-93

(c) uta-s-92 (d) car-s-91

(e) tre-s-92

Figure 7.1: Experimental results for the CEPT, using a saturation de-
gree heuristic to compute the initial solutions. The efficiency of the cyclic
neighborhood without the check for compositionality (brighter curve
[AABD07]) is compared to our compositional neighborhood (darker
curve). Each curve represents the average of the cost of the best so-
lution found among the fifty runs, after a given number of iterations.
The area around the curve represents the standard deviation among the
fifty runs. These results illustrate that compositionality enhances the
search, by guiding it towards good solutions. Not checking composition-
ality leads to an unwanted random behavior (illustrated by the larger
error area around the bright curve).



7.4. New state-of-the-art solutions 101

Instance [MBHS03] AAB[AABD07] CBVLSN

CAR-S-91
Best 31 47 14
Average 47 - 35.05
Time(sec) 125 overnight 20.2
# iter - - 3.4
max cycle - - 18
avg cycle - - 6.56

KFU-S-93
Best 237 206 542
Average 290.6 - 614.75
Time(sec) 45 overnight 29.8
# iter - - 31.75
max cycle - - 11
avg cycle - - 4.33

TRE-S-92
Best 0 4 0
Average 0.4 - 0.6
Time(sec) 16 overnight 1.2
# iter - - 1.2
max cycle - - 10
avg cycle - - 6.08

UTA-S-92
Best 334 310 288
Average 393.4 - 347.15
Time(sec) 173 overnight 29.4
# iter - - 13.85
max cycle - - 19
avg cycle - - 6.47

Table 7.1: Our CBVLSN algorithm improves two instances, and finds the
optimal solution for a third one. Our approach is also faster. Howerer it
performs poorly on the instance KFU-S-93. The maximum and average
length of the improving cycles found by our algorithm are high. This
indicates that being able to perform a huge number of moves at the same
iteration is crucial to be able to improve the generated initial solutions.
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Chapter 8

Vehicle Routing Problem
with Time-Windows

This chapter describes a CBVLSN algorithm that finds the best solutions
to the Vehicle Routing Problem with Soft Time-Windows (VRPSTW).
This problem is an extension of the classical vehicle routing problem with
capacity constraints; when the customers should be served is constrained
in time. These constraints can be both treated as hard (they absolutely
have to be satisfied), or soft (a penalty cost is incurred if they are not
satisfied).

New complex problems can be modelled in our framework. As il-
lustrated in this chapter, new constraints and objectives can be quickly
designed. This enriches the expressiveness of the framework while exist-
ing components can be reused simultaneously. Our framework is open
and modular.

Our VLSN search abstractions also perform efficiently on problems
with complex objectives. Indeed, the search procedures presented in this
thesis can be easily modified to take into account some human knowledge
of how to search for good solutions. Moreover, the search procedures
described here below can be used on many different problems because
the independence and compositionality of moves can be automatically
detected wrt a given model.

Developing new constraints, objectives or new search procedures is
quick thanks to the provided high-level abstractions. This allows to use
our framework to develop state-of-the-art VLSN approaches in industrial
environments where short development times are required.

Our algorithm obtains better solutions than previous work on this
problem and manages to reduce the number of vehicle used for almost
half of the instances. This section illustrates three qualities of our ap-
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proach that are important in modern combinatorial optimization: flexi-
bility, efficiency and robustness.

In Section 8.1, the VRPSTW will be defined thoroughly. The model
and the search for solving the VRPSTW are described in Sections 8.2 and
8.3, while the implementation is depicted in Section 8.4. The benefits
of our approach are assessed in the experimental Section 8.5.

8.1 Definition of the Real-Life Problem

The capacitated vehicle routing problem (CVRP)

Let a fleet of K identical vehicles: V ehicles = {v1, . . . , vK}. Each
vehicle has a limited capacity Q.

Let a set of n customers Customers = {1, . . . , n} and a central
depot D. For ease of notation, we identify the depot as K dummy sites:
Depots = {n + 1, . . . , n + K}. The set Sites = Depots ∪ Customers
identifies all the sites considered in this problem. The travel cost between
sites i and j is denoted cij . Each customer i has a specific demand qi.

A route r is a sequence of sites 〈r0, . . . , r|r|〉 such that r1, . . . , r|r| ∈
Customers and r0 ∈ Depots. Such a route represents a tour that
starts from the depot, visits a sequence distinct of customers and re-
turns to the depot. The set of customers served by a route r is de-
noted cust(r) = {r1, . . . , r|r|} and we let |r| = |cust(r)|. Given a route
r = 〈r0, r1, . . . , r|r|〉, we let the successor visit of visit ri be ri+1. As a
route represents a tour from and to the depot, we let the successor of
visit r|r| be r0. We define the subsequent visits of ri as all the customers
visited after ri: {ri+1, . . . , r|r|}. A route r is valid wrt the capacity
constraint if

∑
i∈cust(r) qi ≤ Q.

A routing R is a collection of valid routes R = [r(1), . . . , r(K)] as-
signing a valid route r(k) to each vehicle vk ∈ V ehicles and such that
the routes represent a partition of the set of customers1.

As a customer i is contained in exactly one route in a routing R =
[r(1), . . . , r(K)], we define the successor i+ of visit i as the site visited
right after i. A vehicle vk is used if its route contains at least one
customer (|cust(rk)| > 0). We denote the number of used vehicles in a
routing R by |R| and the total distance of R as dist(R) =

∑
i∈Sites ci,i+ .

The CVRP calls for a valid routing wrt the capacity constraint and
that minimizes the lexicographical objective 〈|R|, dist(R)〉.

1(1) cust(r(i)) ∩ cust(r(j)) = ∅,∀vi 6= vj ∈ V ehicles, and
(2) ∪vi∈V ehiclescust(r

(i)) = Customers.
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The vehicle routing problem with Time-Windows (VRPTW)

The vehicle routing problem with Time-Windows is an extension of the
CVRP where customers have specified the periods they can be served.
A time-window for customer i is an interval [ei; li] where ei is the earliest
service time and li is the latest service time (ei < li). A time-window
can be hard (the customer has to be served within his time-window)
or soft (a unit penalty is incurred if the customer is not served within
his time-window). We are also given service duration di representing
the duration of visit to customer i. The feasibility and the penalty of
the soft time-windows constraints of a routing R depends on the service
time si which has to be assigned to each customer i. From the service
times, we can derive the departure time of customer i:

δi ≥ 0 ∀i ∈ Depots (8.1)

δi = si + di ∀i ∈ Customers (8.2)

Given a routing, because the vehicle must spend some time at visit
i and must travel from this visit to its successor, the service times must
satisfy the constraints

δi + ci,i+ = si+ ∀i ∈ Depots (8.3)

δi + ci,i+ ≤ si+ ∀i ∈ Customers (8.4)

Service times {si|i ∈ Sites} are valid if they respect constraint (8.1)-
(8.4).

Hard Time-windows The availability of a customer i is specified
by the time-window [ei; li]. A vehicle can arrive at a site i before ei
but cannot wait more than wmax minutes before serving customer i (it
should arrive at i after ei − wmax). Given a routing R, the problem is
to assign valid service times si for each customer i such that

ei ≤ si ≤ li (8.5)

si + di + ci,i+ ≥ &si+ − wmax (8.6)

Constraints (8.6) states that the vehicle does not have to wait more
than wmax before serving a client. A route r is valid wrt the hard time-
windows constraint iff there exists valid service times for all i ∈ cust(r)
respecting constraints (8.5) and (8.6).

Because a vehicle needs to depart from the depot and to travel to a
customer i before serving him, we assume that

ei ≤ c0,i ∀i ∈ Customers (8.7)
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Note that Equation (8.1) is implied by Equation (8.5) and (8.7).
Given a valid routing R, for all customer i, the customers visited after i
determines an earliest delivery time yi for i; if the vehicle serves i before
yi, it will have to wait more than wmax minutes at one point in the route.
These visits also determine a latest delivery time zi for customer i; if
the vehicle serves i later than zi, then it will be impossible to serve all
the subsequent visits before their latest service time. The earliest and
latest service time are defined recursively as follows.

zi =

{
li ∀i ∈ Depots
min(li, zi+ − ci,i+ − di) ∀i ∈ Customers

(8.8)

yi =

{
ei ∀i ∈ Depots
max(ei, yi+ − wmax − ci,i+ − di) ∀i ∈ Customers

(8.9)

Proposition 11. A route r = 〈r0, . . . , rK〉 is valid wrt the hard time-
windows constraint if and only if yi ≤ zi and yi ≥ c0,i,∀i ∈ cust(r).

Proof. (⇒) From the definitions of the earliest and latest service time,
we clearly must have yi ≤ si ≤ zi for all i ∈ cust(r). Thus if ∃i ∈
cust(r)|yi > zi, then the route is not valid wrt the time-windows con-
straint.

(⇐) We will prove that if yi ≤ zi, ∀i ∈ Sites, then there exists a set
of service time {si|i ∈ cust(r), yi ≤ si ≤ zi} such that Equations (8.4)
to (8.6) are verified. This can be proven by induction on the customers
of a route using the following inductive hypothesis.

Hypothesis 1 (Recur(k)). If yi ≤ zi,∀i ∈ Sites, then for any service
time srk such that yrk ≤ srk ≤ zrk , ∃[si|i ∈ rk+1, . . . , rK , yi ≤ si ≤ zi]
such that [srk , srk+1

, . . . , srK ] respect Equations (8.4) to (8.6) for all i =
rk, . . . , rK .

Proposition 11 is equivalent toRecur(1). We will prove thatRecur(k)
holds for k = K, . . . , 1.

Initial case (k = K): Consider the subroute 〈rK〉 and let srK such
that yrk ≤ srk ≤ zrk and sr0 = δrK+crK ,r0 = srK+drK+crK ,r0 . Equation
(8.4) is clearly respected for i = rK and we have

erK ≤ yrK ≤ srK ≤ zrK ≤ lrK
er0 ≤ erK ≤ srK + drK + crK ,r0 ≤ zrK + drK + crK ,r0 ≤ zr0 ≤ lr0

Thus Equation (8.5) is respected for i = rK and i = r0. And finally

srK + drK + crK ,r0 = sr0 ≥ sr0 ≥ sr0 − wmax
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Recursive case: Let suppose Recur(k + 1) holds. We prove that
Recur(k) holds. Let suppose yi ≤ zi,∀i ∈ Sites and let srk such that
yrk ≤ srk ≤ zrk . We have

srk + drk + crk,rk+1
≤ zrk + drk + crk,rk+1

≤ zrk+1
from (8.8) (8.10)

yrk+1
≤ zrk+1

(8.11)

yrk+1
≤ yrk + drk+crk,rk+1

+ wmax

≤ srk + drk+crk,rk+1
+ wmax from (8.9) (8.12)

srk + drk+crk,rk+1
≤ srk + drk+crk,rk+1

+ wmax (8.13)

Thus

[max(yk+1, srk + drk+crk,rk+1
); min(zrk+1

, srk + drk+crk,rk+1
+wmax)] 6= ∅

Let srk+1
= srk + drk+crk,rk+1

in this interval. This service time
is such that yrk+1

≤ srk+1
≤ zrk+1

and from Recur(k + 1), let [si|i ∈
rk+2, . . . , rK , yi ≤ si ≤ zi] be such that [srk+1

, . . . , srK ] respect Equations
(8.4) to (8.6) for all i = rk+1, . . . , rK .

We then have

erk+1
≤ yrk+1

≤ max(yk+1, srk+1
) (8.14)

srk+1
+ drk+crk,rk+1

≤ . . . (8.15)

and

min(zrk+1
, srk+1

+ wmax) ≤ zrk+1 ≤ lrk+1
(8.16)

≤ srk+1
+ wmax (8.17)

So [srk , srk+1
, . . . , srK ] respect Equations (8.4) to (8.6) also for i =

rk+1. This shows that for all srk |yrk ≤ srk ≤ zrk , ∃[si|i ∈ rk+1, . . . , rK , yi ≤
si ≤ zi] such that [srk , . . . , srK ] respect Equations (8.4) to (8.6) for all
i = r1, . . . , rK+1. � �

The proof of Proposition 11 illustrates how the service times can be
determined such that the hard time-windows constraint is respected.

Corollary 1. Given a route r = 〈r1, . . . , rK〉, the following method de-
termines valid service times {si|i ∈ cust(r)} wrt the hard time-windows
constraint:

1) select a service time sr1 ∈ [yr1 ; zr1 ], and then

2) select service times sk+1 successively for k = 1, . . . ,K − 1 in the
interval

[max(yk+1, srk + drk+crk,rk+1
); min(zrk+1

, srk + drk+crk,rk+1
+ wmax)]
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Soft time-windows We are also given preferences for each customer
about the time they would like to be served. These preferences are
specified by soft time-windows [e∗i ; l

∗
i ] such that [e∗i ; l

∗
i ] ⊆ [ei; li]. Given a

routing, we define the latest preferred delivery time z∗i as the latest time
a vehicle can serve at site i in order to be able to serve the successor
visits of i within their preferred time-windows. The definition of z∗i is
similar to the definition of zi.

z∗i =

{
l∗i ∀i ∈ Depots
min(l∗i , z

∗
i+ − ci,i+ − di) ∀i ∈ Customers

Given a routing R and service times S = [si|i ∈ Sites], the violations
of the soft time-windows constraint is defined as the number of customers
who are not served within their soft time-windows: V iolStw(R,S) =
|{i ∈ Customers | si /∈ [e∗i ; z

∗
i ]}|. Please note that setting a service time

si > z∗i will induce at least one unit of penalty for subsequent visits of i
(and maybe more).

The VRPTW calls for a routing valid wrt the capacity and hard
time-windows constraints, and minimizing the lexicographical objective
f(R,S) = 〈|R|, V iolStw,

∑
i∈Sites ci,i+〉.

8.2 An Expressive Model

Let n be the number of clients to visit and K the number of available
vehicles. We represent the depot by K dummy visits ranging from n+ 1
to n+K.

Variables A routing is represented as a collection of K variables X =
[S1, . . . , SK ] representing sequences. The domain D of these variables is
the set of possible sequences on the elements 1 to n+K. The number of
elements in a sequence S is denoted |S|. For all i such that 1 ≤ i < |S|,
we denote S[i] the element at the ith position in the sequence S.

Note that the values yi, zi, z
∗
i are derived from the routing and these

are not decision variables. We will also see that service times si can be
derived frow the routing too.

The VRP with hard and soft time-windows to solve is the OCSP
P = 〈f, CV RP +C2,X , D〉, where f is the objective function, CV RP is the
structural constraint (whether the variables represent a routing) and
C2 is the hard constraints to be respected by all routings. These are
described here below.
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Structural Constraint In order for an assignment σ to represent
a valid routing, we enforce that (a) the first visit of any vehicle k is
the dummy visit n + k representing the depot, and (b) the sequences
represent a partition of the visits 1 to n+K .

The structural global constraint CV RP is such that CV RP (σ) = 0 iff
the conditions (a) and (b) are respected. A routing is an assignment σ
such that CV RP (σ) = 0. We denote the position of element i in sequence
S by Sranki and the subsequence of length m beginning with i by S[i;m].
A subsequence S[i;m] is valid if i ∈ S and Sranki +m− 1 ≤ |S|.

Hard constraints The hard constraint C2 for the vehicle routing
problem with hard/soft time-windows is C2 = Ccapa + CHtw where CHtw
and Ccapa are the hard time-windows and capacity constraint respec-
tively. The violations of these constraints are defined as follows

CHtw(σ) =
n+K∑
i=1

max(0, yi − zi) (8.18)

Ccapa(σ) =

K∑
k=1

max(0,
∑
i∈Sk

di −Q) (8.19)

Objectives The objective function for this problem is f(σ) = α.card(σ)+
β.CStw(σ)+dist(σ) with α, β > 0 where card is the function counting the
number of vehicle used, CStw is the violation of the soft time-windows
and dist is the function giving the total distance of a routing.

We define

card(σ) =
∣∣∣{Sk ∈ X ∣∣ |σ(Sk)| > 1}

∣∣∣ (8.20)

dist(σ) =
n+k∑
i=1

ci,i+ (8.21)

CStw(σ) =
n+K∑
i=1

(
max(0, si − l∗i , e∗i − si) > 0

)
(8.22)

where si are the service time of customer i. In our approach, we serve a
client as soon as possible while trying to minimize the violations of the
soft time-windows constraint:

si = max(yi, si− + di− + di−,i,min(e∗i , z
∗
i )) ∀i ∈ Customers

Indeed, the soonest a customer i can be served is at time max(yi, si− +
di−+di−,i) (from Corollary 1). In order to minimize the violations of the
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soft time-windows constraint, we would like to serve customer i at time
min(e∗i , z

∗
i ). Serving customer i at time e∗i would induce no violation

for customer i. However, if z∗i < e∗i , at least one subsequent customer
of i will be served outside his preferred time-window. In this case it is
desirable to serve i at time z∗i ; the preferred time-window of customer
i will be violated, but we ensure that the preferred time-windows of
all subsequent customers of i will be respected. Note that if z∗i < e∗i
it is impossible to achieve a zero-violation for the soft time-windows
constraint.

Neighborhoods

We define four basic moves on sequences (Example 1). Let S be a se-
quence and i, j ∈ S. The move reverse(S, i, j) reverses the subsequence
from i to j in S. Let S1 6= S2 be two sequences, i ∈ S1, j ∈ S2 and
S1[i;m], S2[j;n] be two valid subsequences. The moves are defined as
follows: insert(S1, i,m, S2, j) inserts the subsequence S1[i;m] in S2 right
after j, remove(S2, j, n) removes the subsequence S2[j, n] from S2 and
replace(S1, i,m, S2, j, n, r) inserts S1[i;m] in S2 at rank r and then re-
moves S2[j;n] from S2.

Example 1 We illustrate here the effect of the moves defined on se-
quences. Note that the sequence S1 is not modified by any of these
moves.
Input Move Result

reverse(S2, 6, 8) S2 = [5, 8, 7, 6, 9]
S1 = [1, 2, 3, 4] insert(S1, 2, 2, S2, 7) S2 = [5, 6, 7, 2, 3, 8, 9]
S2 = [5, 6, 7, 8, 9] remove(S2, 7, 3) S2 = [5, 6]

exchange(S1, 1, 3, S2, 6, 2, 5) S2 = [5, 8, 1, 2, 3, 9]

We also define two moves that better improves the objective function
f by inserting subsequences at a position minimizing the objective.

insert(S1, i,m, S2, f) ≡ insert(S1, i,m, S2, j)

where j is such that ∆f (insert(S1, i,m, S2, j), σ) is minimum, and

exchange(S1, i,m, S2, j, n, f) ≡ exchange(S1, i,m, S2, j, n, r)

where r is such that ∆f (exchange(S1, i,m, S2, j, n, r), σ) is minimum.
The moves presented here above must be encoded as a MoveGraph

in order to use our generic cyclic search algorithm. A MoveGraph is a
graph that is a special encoding of the moves: each edge corresponds to
a move.
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Definition 20. We define the MoveGraph MGV RP (f, L)(σ) = (V =
V1 ∪ V2, E, η) where

• V1 = {(i,m)|1 ≤ i ≤ n, 1 ≤ m ≤ L, i ∈ Customers,
S[i;m] is valid with i ∈ σ(S), S ∈ X}

• V2 = X = {S1, . . . , SK}

• E = {(a, b) ∈ V × V | a ∈ V1 ∨ b ∈ V1

∧a, b correspond to different routes}

• η(a, b) =

exchange(Sk, i,m, Sk′ , j, n, f) if a = (i,m), b = (j, n) ∈ V1

with i ∈ σ(Sk), j ∈ σ(Sk′)

insert(Sk, i,m, S, f) if a = (i,m) ∈ V1, b = S ∈ V2

with i ∈ Sk, S 6= Sk

remove(S, i,m) if a = Sk ∈ V2, b = (i,m) ∈ V1

with i ∈ σ(S)

The MoveGraph used for the VRPTW is described in Definition 20
and illustrated in Example 2. The nodes represents either valid subse-
quences Sk[i;m] of the current routing, or entire routes r(k). The moves
insert, remove and exchange are represented by edges. There is an edge
between two nodes only if they correspond to different routes in order to
maintain the consistency of the routing structure. A subsequence begin-
ning with customer i correspond to the route r(k) such that i ∈ r(k).Note
that for the moves remove, the semantic of the move η(a, b) does not
depend on a.

This MoveGraph is especially useful because any independant cycle
corresponds to moves whose application respects the structural vehicle
routing constraint, as stated by the following property.

Proposition 12. The MoveGraph MGV RP (f, L)(σ) is cycle-consistent
wrt the Vehicle Routing structure.

Proof. The vehicle routing structure is respected iff (a) the first visit
of any vehicle k is the dummy visit n + k representing the depot, and
(b) the sequences represent a partition of the visits 1 to n+K .

We must prove that if a assignment σ satisfies these conditions, then
applying the moves of an independant cycle of MGV RP (f, L)(σ) will
still respect (a) and (b)
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(a) Only subsequences Sk[i;m] with i /∈ Depots are represented in the
MoveGraph. Thus the depot will never be moved.

(b) Given any subsequence Sk[i;m], it is represented by a node b =
(i,m) ∈ V1, the only moves that may remove these visits from the
current routing are remove and exchange moves that are repre-
sented in the MoveGraph by an ingoing edge (a, b). Reciprocally, the
only moves inserting these visits into routes are insert and exchange
moves represented by outgoing edges (b, c). Thus if a cycle C con-
tains a move removing the subsequence Sk[i;m], then it necessarily
contains a move reinserting this same subsequence to another route.
Reciprocally, if a cycle C contains a move inserting the subsequence
Sk[i;m] into a route, then it also contains a move removing this
same subsequence from its current route.

So if a cycle contains only nodes representing disjoint subsequences,
then by applying such cycle, there will be neither lost visits nor
duplicated visits. As two moves are independant iff they modify dif-
ferent routes, the subsequences moved by applying an independant
cycle will all belong to different routes and thus be disjoint.

�

The neighborhood V LSN(P, σ,MGV RP ) contains an exponential
number of candidates but our generic search procedure presented in
Section 4.3 can search it heuristically in polinomial time. This empha-
sizes the usefulness of the MoveGraph MGV RP (f, L)(σ) as it completely
defines a new VLSN.

8.3 Capturing Human Knowledge in Search

Our VLSN search abstractions are open and flexible. They can be mod-
ified according to some expert’s knowledge of the problem. We illustrate
it here by mean of a multi-stage method to minimize the lexicograph-
ical objective 〈card, CStw, t〉. Secondary objectives are used to better
guide the search, and the search procedures are modified to better find
improving cycles for the VRPTW.

Our multi-stage approach first minimizes the number of vehicles
used, then the soft time-windows violations, and finally the overall dis-
tance.

We try to maintain the quality of the routes wrt the objective func-
tion as high as possible by searching for the best reverse move and
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Example 2 Example of MoveGraph.

•D

•1 •3
•2

•4

•5

•6

•7

S1

(1, 1) (1, 2)

(2, 1) (2, 2)

(3, 1)

S2

(4, 1) (4, 2)

(5, 1)

S3

(6, 1) (6, 2)

(7, 1)

•D

•1 •3
•2

•4

•5

•6

•7

Let n = 7, σ ∈ Λ such that σ(S1) = [8, 1, 2, 3], σ(S2) = [9, 4, 5], σ(S3) =
[10, 6, 7]. The routing described by σ is illustrated on the left. The
MoveGraph MGV RP (dist, 2)(σ) = 〈V,E, η〉 is illustrated in the mid-
dle, where dist is the function of the overall distance of a rout-
ing. The set of nodes V is entirely represented. By sake of clarity,
only three edges are represented. The edge ((2, 2), (4, 1)) corresponds
to the move exchange(S1, 2, 2, S2, 4, 1, t). Similarly η(((4, 1), S3)) =
insert(S2, 4, 1, S3, t) and η((S3, (2, 2))) = remove(S1, 2, 2). These moves
are independant, so applying them respects the structural constraint
CV RP . These moves are also compositional. The routing obtained is
illustrated on the right. Note that visit 4 is inserted right before visit 6
because this position minimizes dist.

applying it before searching the cyclic VLSN at all these steps. This
is repeated until there is no more reverse move improving the current
solution wrt the current objective.

A) Reducing the number of vehicles used We select a vehicle and
visits are moved one at the time to empty it. This process is repeated
until no more vehicle can be emptied. However the hard time-windows
often makes it impossible to move any visit. Similarly as in [BH04], we
use two secondary objectives to guide the search towards solutions with
enough space in the routes to allow the selected visit to be moved to
another vehicle.

Given a vehicle k, we define the minimal delay of visit i ∈ Sk′

(k 6= k′) as the minimal violation of the hard time-windows constraint
incurred by the insertion of visit i into vehicle k:

mdlk,i(σ) = min
j∈Sk

∆CHtw(insert(Sk′ , i, 1, Sk, j), σ) (8.23)

We also define the total minimum delay wrt visit i by mdli(σ) =
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∑K
k=1 h(mdlk,i) where h is a function favoring small values: here we

use h(x) = C
x −

x2

C′ , where C,C ′ are two constants. Some experimental
analysis showed that the values C = 100000 and C ′ = 1000000 worked
well for the instances studied in our experimental section.

We also use the squared cardinality of visit i that favors solutions
with less visits in the vehicle serving customer i:

expi(σ) = (ubvisits − |Sk|)2 with i ∈ Sk (8.24)

Where ubvisits is an upper bound on the number of customers visited
by a vehicle. Here we set ubvisits = 15, that is function of the instances
used in our experimental section. In order to reduce the number of ve-
hicle used, we optimize the OCSP Pcard = 〈〈card, expi,mdli〉, CV RP +
C2,X , D〉 where i is the visit we want to remove from its current vehi-
cle. We iteratively apply the best negative candidate that is found in
V LSNcycle(Pcard, σ,MGV RP (f, 2), {s}) with s ∈ V selected randomly.
If no cycle is found, the search procedure is repeated for different start
nodes until a compositional and independant cycle is found or all start
nodes have been considered. The exact search procedure is depicted
through lines 1 to 12 in Algorithm 6. Note that because we want to
empty a given vehicle Sk, we freeze this vehicle: the insert and exchange
moves adding visits to Sk are not considered during the search for a cycle
as they would increase the number of visits in Sk.

B) Reducing the soft time-windows violations In order to re-
duce the soft time-windows violations, we optimize the OCSP Pcard =
〈f2 = 〈card, CStw〉, CV RP+C2,X , D〉 by iteratevely applying the first neg-
ative candidate found in V LSNcycle(Pcard, σ,MGV RP (f2, 2)). We per-
form nbIterStw iterations at this step. This search is depicted through
lines 13 to 15 in Algorithm 6.

C) Reducing the overall distance The overall distance is mini-
mized by optimizing the OCSP Pcard = 〈f3 = 〈card, 10.CStw+t〉, CV RP +
C2,X , D〉 by iteratevely applying the best negative candidate that is
found in V LSNcycle(Pcard, σ,MGV RP (f3, 2), V ′) with a set V ′ ⊆ V of
20 start nodes selected randomly. This search is depicted through lines
17 to 19 in Algorithm 6.
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1 while the algorithm has not run for timeLimit seconds do
2 select ( k in 1..K ) do
3 freeze(Sk);
4 minimize 〈card, t〉 by applying the first cycle found in

V LSNcycle(Pcard, σ,MGV RP ) while such cycle exists;
5 while |Sk| > 1 do
6 select ( i ∈ Sk with the smallest hard time windows )

do
7 while cycle found do
8 for s ∈ V do
9 minimize 〈card, expi,mdli〉 by applying the

best cycle in
V LSNcycle(Pcard, σ,MGV RP , {s});

10 if cycle found then break;

11 if no cycle found ∀s ∈ V then break;

12 unFreeze(Sk);

13 while it < nbIterStw do
14 minimize f = 〈card, Stw〉 by applying the first cycle found;
15 if no cycle found then break;

16 restore the best solution found in the loop 13-15;
17 while true do
18 minimize 〈card, 10.Stw + dist〉 by applying the best cycle in

V LSNcycle(Pcard, σ,MGV RP , V
′);

19 if no cycle found then break;
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8.4 A Simple and Efficient Implementation

The VRPTW illustrates that our framework is open to new variables
and moves. New computational domains can thus be integrated into
our framework. Indeed the VRPTW cannot be totally modelled as a
partitionning or a permutation problem. Thus the differentiable invari-
ant presented so far cannot be reused. In order to use our generic VLSN
search procedures, we have to implement (1) new variables to represent
a routing, (2) the moves modifying these variables, (3) the differential
invariants to be used in the model, and (4) the MoveGraph fully describ-
ing the VLSN. The VRPTW is thus a worst-case problem in terms of
implementation requirements. However these requirements can still be
developped easily. We detail the integration of vehicle routing problems
in our framework here below.

Routing and Sequences

Sequences are important for modeling the VRPTW. Indeed we represent
a vehicle routing by a collection of K sequences (Listing 8.1). A sequence
is encoded as an array of successors succ and the first element of this
sequence (these fully describe a sequence). For example succ[2] is the
next element after element 2 and the variable first represents the first
element of the sequence. The array of the predecessors and the set of
values of a sequence are also maintained from the successor array.

We represent a routing by a collection of K sequences over the ele-
ments 1 to n + K (Listing 8.2). Each sequence represents the route of
one vehicle. The visits from 1 to n represent clients to be visited and
the depot is represented by K dummy visits numbered from n + 1 to
n + K. In order to be space-efficient, the array of successors is shared
among the K sequences. This is well-defined as a given visit can only
be served by a unique vehicle and has thus a unique successor. The first
visit of the kth sequence is constantly the visit n + k representing the
depot.

Moves on Sequences

The class Sequence(Listing 8.1) also contains the definition of the four
basic moves defined on sequences: insert, remove, exchange and reverse.
For each move, two methods are provided. The first applies the move and
the second records the corresponding output variables. The complete
implementation of the move reverse is given as an example.

class Sequence{
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var{int }[] succ;

3 var{int} first;

Sequence(Solver <VLSN > m, int n);

int getSize ();

var{set{int}} getValues ();

var{int} getFirst ();

8 var{int} getSucc(int i);

var{int} getPred(int i);

var{int} getRank(int i);

void setInitialSolution(int[] seq);

13 void reverse(int i, int h){

succ[i] := succ[h];

pred[(int)succ[h]] := i;

pred[h] := pred[i];

succ[(int)pred[i]] := h;

18 int c = i;

while ( c != h ) {

pred[c] := (int)succ[c];

succ[(int)succ[c]] := c;

c = succ[c];

23 }

}

void registerReverse(int i, int h, VLSNTracker t){

t.write(this);

t.write(succ[i]) ;

28 t.write(pred[(int)succ[h]]) ;

t.write(pred[h]) ;

t.write(succ[(int)pred[i]]) ;

int c = succ[i];

while ( c != h ) {

33 t.write(pred[c]) ;

t.write(succ[(int)succ[c]]) ;

c = succ[c];

}

int rh = rank[h];

38 int ri = rank[i];

}

void exchange(int i, int m, Sequence s,int j, int n,

int r);

void registerExchange(int i, int m, Sequence s,int j,

int n, int r, VLSNTracker t);

void insert(int i, int m, Sequence s,int j);

43 void registerInsert(int i, int m, Sequence s,int j,

VLSNTracker t);

void remove(int i, int m);

void registerRemove(int i, int m, VLSNTracker t);

}

Listing 8.1: API of sequences
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class Routing{

Sequence [] seqs;

var{int }[] p; // p[i] represents the index of

4 // the sequence containing i

Routing(Solver <VLSN > m, int n, int K){

seqs = new Sequence[k in 1..K](n);

}

Sequence getSequence(int k){ return seqs[k];}

9 Sequence getSequenceOf(int i){ return seqs[p[i]];}

void insert(int i, int l, int j);

void remove(int i, int l);

void exchange(int i, int l, int j, int k, int r);

}

Listing 8.2: Routing object using Sequences.

The Model and Differential Invariants

The Comet model for the Vehicle Routing Problem reflects the model
of Section 8.2 (Listing 8.3). It describes the COP PV RPTW and contains
three parts: (1) the description of the variables (and domains), (2) the
definition of the objective function, and (3) the constraints .

Solver <VLSN > m();

2 Sequence Seqs [1..K](m,n+K);

var{int} coefMDL(m);

var{int} coefStw(m);

var{int} coefSq(m);

7 var{int} coefDist(m);

var{int} coefP [1..K](m);

var{int} visitToMove(m);

12 ConstraintSystem <Sequence > S(m);

S.post(CapacityConstraint(m, Seqs , demands ,Q)); //

Capacity constraint

S.post(HardTW(Seqs , distances , duration , earliest ,

latest));

S.close();

17 SumFunction <Sequence > O(m);

O.post (10000000* Card(Seqs));

O.post(coefSq*sum(i in 1..K) (coefP[i]*(15 - Card(Seqs[i])

)^2));

O.post(coefDist*sum(i in 1..K) SeqDistanceSym(m, Seqs[i

], costs));
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O.post(coefStw*STWSeq(Seqs , costs , service , earlydate ,

duedate , Wmax));

22 O.post(coefMDL*MinimalDelayInvariant (visitToMove , Seqs ,

Htw , n));

O.close();

m.close();

Listing 8.3: Model for the VRPTW.

We already have described the implementation of the Sequence vari-
ables and their domains. The coefficients allow to implement the dif-
ferent lexicographical objectives presented in Section 8.3. The integer
variable visitToMove represents the visit to be removed when reducing
the number of vehicles of the routing. It is used for the minimal delay
objective.

The constraints and objective functions are described by differential
invariants (Listing 8.4). For each of the moves, there are two methods
defined: one differentiating the invariant wrt this move, and a second
returning the input variables of this move. The implementation of the
getDelta methods is straightforward for all objectives and constraints
used in the model from their definition. For each of these moves, the
differentiation only depends on the sequence modified by the move, so
the getVariables method only add this sequence as an input variable
in the VariablesCollector.

interface SequenceDifferentialInvariant{

var{int} value();

set{int} registerVariables ();

int getInsertDelta(Sequence si , int i, int m, Sequence

sj, int j);

5 void getInsertVariables(Sequence si, int i, int m,

Sequence sj, int j,

VariablesCollector t);

int getExchangeDelta(Sequence si ,int i,int m,Sequence

sj , int j, int n, int r);

void getExchangeVariables(Sequence si, int i, int m,

Sequence sj, int j, int n,

int r, VariablesCollector t);

10 int getRemoveDelta(Sequence sj , int j, int n);

void getRemoveVariables(Sequence sj, int j, int n,

VariablesCollector t);

int getReverseDelta(Sequence S, int i, int j);

void getReverseVariables(Sequence S, int i, int j,

VariablesCollector t);

}
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Listing 8.4: Interface for the differential invariants to be used with the
Routing object.

The Search and MoveGraph

Once a MoveGraph is implemented, our generic search algorithms can
be used to search VLSN. Because we can reuse the complex shortest-
cycle algorithm, only the MoveGraph MGV RP must be implemented to
completely describe the search. The MoveGraph is described through
the implementation of the interface depicted in Listing 5.8. There is no
difficulty in translating the MoveGraph from Definition 20 into Comet
(Listing 8.5).

1 class ExchangeVRPVLSN extends MoveGraph{

SequenceConstraint C;

SequenceFunction O;

VRP v;

6 int L;

range nodes;

int[] a;

int[] b;

11
ExchangeVRPVLSN(Solver <VLSN > vs , SequenceConstraint C,

SequenceFunction O, VRP v, int L){

nodes = 1..L*v.getN()+v.getK();

a = new int[i in nodes] = (i-1)%v.getN()+1;

b = new int[i in nodes] = (i-1)/v.getN()+1;

16 }

range getNodes (){ return nodes; }

bool isValid(int i){

if ( b[i] == 0) return true;

Sequence S = (b[i] == 0) ? v.getSequence(a[i]) : v.

getSequenceOf(a[i]);

21 return S.getRank(a[i]) + b[i] <= S.getSize ();

}

bool isMove(int i, int j){

Sequence Si = (nn[oi ,2] == 0) ? v.getSequence(i) : v

.getSequenceOf(i);

Sequence Sj = (nn[oj ,2] == 0) ? v.getSequence(j) : v

.getSequenceOf(j);

26
if (Si.getId () == Sj.getId ()) return false;

if (li+lj <= 0 && li+lj != -2) return false;

return true;
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}

31 void applyMove(int oi, int oj){

Sequence Si = (b[i] == 0 ) ? v.getSequence(a[i])

: v.getSequenceOf(a[i]);

Sequence Sj = (b[j] == 0 ) ? v.getSequence(a[j])

: v.getSequenceOf(a[j]);

36
if ( b[j] == 0 ) { // Insert

selectMin(jp in Sj.getValues () :

C.isInsertFeasible(Si , a[i], b[i],Sj ,

jp),

d = O.getInsertDelta(Si , a[i], b[i],

Sj, jp)

41 )(d){

v.insert(a[i], b[i],jp);

}

}else if ( b[i] == 0 ) { // Remove

if (! C.isRemoveFeasible(Sj, a[j], b[j]) ) return;

46 else v.remove(a[j], b[j]);

}else { // Exchange

selectMin(r in 1..Sj.getSize () :

(r <= Sj.getRank(a[j]) || r > Sj.

getRank(a[j])+b[j])

&& C.isExchangeFeasible (Si, a[i], b[i

],Sj, a[j], b[j],r),

51 d = O.getExchangeDelta(Si , a[i], b[i],

Sj, a[j], b[j],r)

)(d){

v.exchange(a[i],b[i],a[j],b[j],r);

}

}

56 }

bool isMoveFeasible(int i, int j);

int getMoveDelta(int i, int j);

}

Listing 8.5: MoveGraph for the VRPTW. The parameter L is the
maximum length of the subroutes to be exchanged during the VLSN
search. A node i|0 < i ≤ nL represents the subroute beginning at visit
a[i] and containing b[i] consecutive visits. A node i > nL represents
the entire route i − nL. The method isValid(i) checks whether the
subroute represented by the node i is valid.

Once the MoveGraph is defined, our generic search algorithm can
search for compositionnal and independant cycles (Section 5.6).
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8.5 State-of-the-Art Solutions on Well-known
Benchmarks

This section assesses the efficiency of our CBVLSN approach to solve
the Vehicle Routing Problem with Soft Time-Windows.

Benchmarks

This section compares our CBVLSN approach to other solution meth-
ods on several well-known benchmarks. These benchmarks were first
proposed by [Bal93] and are variations of the Solomon instances for
the VRP with hard time-windows. For these instances, a time-window
[ai, bi] is specified for each customer i. The depot is also constrained by
the time-window [a0, b0].

Different definitions of the hard and soft time-windows have been
investigated in the literature. They were classified into six types in
[FEL08]. Our approach using hard and soft time-windows can deal with
all these different definitions. In this section, we focus on type 1 and
type 3 because state-of-the-art approaches mainly consider these two
types.

Type 1 In [TBG+97], a vehicle can arrive earlier at a customer i,
but cannot serve him earlier than his earliest service time (ei = e∗i =
ai). However, the vehicle can serve the client later, with a penalty
linear in the delay (l∗i = bi). For the customers, there is no hard latest
service time (li = ∞), but for the depot, the time-window [a0, b0] is
hard. To our knowledge, these type of problem has been investigated in
[TBG+97, FEL08, Fig09].

Type 3 In [Bal93], the time-window is considered as soft (e∗i = ai and
l∗i = bi). There is also a hard time-window for each customer i, requiring
that each customer has to be served within a certain percentage P of
the total route duration D = b0 − a0:

ei =ai −D
P

100

li =bi +D
P

100

Moreover, a vehicle is allowed to arrive earlier than ei at a customer
i but cannot wait more than wmax before serving the customer. The
parameter wmax is also expressed as a percentage of the total route
duration D: wmax = D W

100 .
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Typical values of P and W are 0, 5 or 10. To our knowledge, these
type of problem has been investigated in [Bal93, CR04, Fig09, FEL08].

Experimental setup

The experiments were run on Intel Q6600 2,4GHz. Our algorithms were
not parallelized (a single core was used). We used a time limit of 250
seconds to reduce the number of vehicles and performed 200 iterations
to reduce the violations of the soft time-windows constraint.

Experimental Results

The results achieved with our Comet implementation of the CBVLSN
framework for solving the VRPSTW(type 1) are depicted in Table 8.1.
They are compared to the best published solutions among [TBG+97,
FEL08, Fig09]. Our approach found better solutions for all the 20 in-
stances and managed to decrease the number of vehicles for 9 instances.

For Type 3, our method found better solutions for 14 out of 16
instances and decreased the number of vehicles used for 4 instances.

These results shows that our algorithms obtained state-of-the-art so-
lutions for the Vehicle Routing Problem with soft Time-Windows. Our
algorithm often finds routing using less vehicles than previously pub-
lished solutions. Reducing the number of vehicles used is very impor-
tant in real-life as it decreases significantly the operational cost of the
routing.
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Best Published CBVLSN
Instance card CStw dist card CStw dist Time(s)

R101 12 44 1129 11 45 1318 499
R102 11 54 1059 10 38 1232 523
R103 10 66 1027 9 30 1032 599
R104 9 82 947 9 12 946 624
R105 11 58 1074 10 32 1181 573
R106 10 67 1047 10 24 1090 640
R107 10 76 988 9 20 985 555
R108 9 86 947 9 8 940 696
R109 10 72 1001 10 20 1118 629
R110 9 71 1013 9 24 1028 527
R111 10 74 983 9 19 1003 635
R112 9 83 941 9 10 1025 644

RC101 11 56 1255 11 31 1459 496
RC102 10 68 1230 10 28 1323 473
RC103 10 75 1155 10 14 1259 567
RC104 10 88 1084 9 12 1129 638
RC105 11 62 1220 10 31 1333 501
RC106 10 73 1150 10 18 1231 493
RC107 10 72 1123 10 15 1180 609
RC108 10 90 1072 9 14 1126 620

Average 55% 0% 100% 100%

Table 8.1: Results for the Type 1. Our algorithm found the best solution
for all the instances. It was able to improve the number of vehicle
used for 45% of the instances. The numbers in bold-font indicate the
component of the lexicographical objective that was improved and that
lead to the best solution.
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Best Published CBVLSN
pmax Instance card CStw dist card CStw dist time

R101 14 32 1633 13 58 1582 526
R102 12 37 1404 12 31 1430 610
R103 11 7 1374 10 32 1274 529
R109 11 7 1393 10 38 1242 521
RC101 13 7 1778 12 51 1696 425
RC102 11 42 1375 11 28 1550 451
RC103 10 17 1256 10 15 1362 511

5%

RC106 11 19 1336 11 18 1492 424

R101 12 69 1376 12 59 1421 495
R102 10 67 1173 10 62 1259 554
R103 10 24 1274 10 26 1228 559
R109 10 47 1116 10 28 1200 522
RC101 11 57 1322 11 51 1491 466
RC102 11 26 1367 11 23 1341 489
RC103 10 15 1228 10 24 1344 464

10%

RC106 10 51 1160 10 33 1327 540

75% 12.5% 100% 87.5%

Table 8.2: Results for the Type 3. Our algorithm found the best solution
for 87.8% of the instances and was able to reduce the number of vehicles
used for 25% of them. Note that for the two instances not improved by
our algorithm, the solution found is close to the best known solution.
The numbers in bold-font indicate the component of the lexicographical
objective that was improved and that lead to the best solution. Time is
expressed in seconds
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Chapter 9

Conclusions and Future
Works

The objective of this research was the merge of two different technolo-
gies: Constraint-Based Local Search and Very Large-Scale Neighbor-
hood. The advantages of these two technologies broaden the field of ap-
plication of each other. Now VLSN techniques profit from the high-level
modelling of CBLS. First, incremental algorithms searching a VLSN are
encapsulated inside expressive objects that can be reused to solve many
different applications. Second, the inherent modularity of CBLS enables
to build VLSN search algorithms more quickly, while preserving the ef-
ficiency of dedicated algorithms. Finally, the high-level of reasoning
of CBLS allows to implement more complex VLSN approaches whose
development time would be prohibitive without this framework.

On the other side, CBLS also profits from the integration of VLSN.
First, CBLS approaches can now rely on exponential-sized neighbor-
hoods. This broadens the range of applications that can be solved by
CBLS. Second, VLSN as compounding moves can be considered as a
meta-heuristic; from a local search approach performing only one sin-
gle move per iteration, one can design a VLSN approach that performs
many of them per iteration. Our approach significantly helps in design-
ing a VLSN search algorithm from existing CBLS algorithms. Third,
new original solutions can also be developped mixing the existing con-
cepts of CBLS with the concepts designed in this work, opening new
research perspectives for CBLS.

First we have highlighted that VLSN are efficient because they con-
sider atomic moves that violates some constraints. Such moves would not
be considered by standard Local Search approaches. This larger set of
considered moves allows VLSN search algorithms to escape local optima

127
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of standard Local Search approaches. Second we expressed VLSN search
algorithms as three separated high-level concepts: a model, a description
of the VLSN structure and the search. The model captures the input
and output variables that are required to compute which moves can be
applied at the same iteration. The MoveGraph captures the structure of
the VLSN that is independent from the model and the search algorithm.
The search captures the efficient algorithms that selects the best candi-
date in a VLSN. Now we can synthetize state-of-the-art VLSN search
algorithms by using these modular components that can be defined in-
dependently.

From a technical point of vue, the contributions of this thesis are the
following:

1. We identified that a large part of the definition of the improvement
graph, used in existing works, is independent of the problem to
solve. This part was captured in the concept of MoveGraph.

2. We showed that VLSN approaches are beneficial because they can
consider atomic moves that violate a selected constraint. The se-
lected constraint is maintained by appropriately selecting the set of
moves to apply at each iteration. This is captured by the concept
of cycle consistency.

3. We raised that independence does not completely specify which
moves can be selected together in a VLSN search algorithm. We
introduced the concept of compositionality to complete the cri-
teria that a set of moves has to respect in order to be applied
together.

4. We enlightened that compositionality enables to specify which
edges have to be updated in the improvement graph after several
moves have been applied.

5. We demonstrated that input and output variables enable the
automatic computation of the variable-independence and variable-
compositionality. These notions are stricter than theoretical inde-
pendence and compositionality, but equivalent for most problems
in practice; this is the case for all problems considered in this the-
sis. Input and output variables are natural to express in function
of the constraint or the objective function.

6. We illustrated that VLSN search algorithms implemented using
our CBVLSN abstractions performs exactly the same operations
than a dedicated VLSN search algorithm, and is comparable in
time with this same dedicated implementation.



129

7. We highlighted that checking compositionality enhances the effi-
ciency of VLSN search algorithms compared to the same algorithm
only checking independence.

8. We found that our high-level abstractions allow the design of a
VLSN search algorithm that solves a problem with complex con-
straints and objective functions.

These technical contributions have the following respective signifi-
ance:

1. We can define several VLSN generically and use them for solving
several different problems

2. It is well understood that the more a constraint prunes the set of
neighbors, the more a VLSN designed wrt this constraint will be
efficient.

3. There is a well-defined criteria to ensure that the differentiation of
a set of moves can be computed accurately and efficiently.

4. A necessary condition determines if the differentiation of a move
has changed from the last iteration.

5. Checking whether a set of moves is independent and compositional
wrt a problem can be automated, based on a natural extension of
the CBLS API that provides the input and output variables.

6. We know that all the benefits of our approach in terms of mod-
ularity, flexibility and easiness have no slow down counterparts
compared to dedicated algorithms.

7. Compositionality has to be considered in VLSN search algorithms.

8. Our modular components can be reused to quickly assess the effi-
ciency of a VLSN approach, and the VLSN search can be enhanced
by the transparent addition of heuristics.

There are several perspectives opened by this research. First, VLSN
are powerful because they consider moves that violate a specific con-
straint and select several of them such that the set of applied move do
not violate it. In the literature, VLSN were designed only wrt the per-
mutation and partitioning constraints. A perspective of research is the
design of VLSN focusing on other constraints. This would broaden the
range of problems that can be solved by VLSN approaches.
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Second, VLSN and Large Neighborhood Search (LNS) may have
interesting properties if used bibtogether. Large Neigborhood Search
departs from an initial solution. Then it unassigns several variables and
uses Constraint Programming (CP) techniques to reassign them in order
to improve the objective function. The choice of variables to relax is the
critical aspect when designing a LNS algorithm. If the variables are
independent, the CP algorithm will likely reassign them the values they
had at the previous iteration. It is thus important to select correlated
variables according to the computation of the objective function and the
constraints. The input and output variables introduced in this thesis
specify which variables are independent. The study of a generic LNS
algorithm that selects the variables to relax based on the input and
output variables may lead to interesting results.

Third, LNS and VLSN algorithms are likely to complement each
other very well when solving complex problems. Indeed, VLSN algo-
rithms modify several independent variables at the same iteration. At
the opposite, LNS algorithms modify several correlated variables at the
same iteration. Thus we believe that these approaches are likely to es-
cape local optima of each other.

Fourth, this work showed that the input and output variables are
useful to compute whether a set of moves can be differentiated efficiently
and to incrementally build the improvement graph. They could also be
useful for generic LNS variables selection as explained here above. Other
usage of these variables may exist.

Fifth, the efficiency of CBVLSN search algorithms depends whether
many moves have non-intersecting input and output variables. Thus how
the problem is modelled impacts on the behaviour of the generic VLSN
algorithms. Using low-level variables (such as boolean variables) will
more likely lead to non-intersecting input and output variables. However
the trend of Constraint-Based Local Search is to use high-level variables.
Using a lower-level model for the input and output variables could have
advantages when solving some applications.
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Very Large-Scale neighborhood search: Overview and
case studies on coloring problems, Hybrid Metaheuristics
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