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Thèse présentée en vue de l’obtention du grade
de Docteur en Sciences de l’Ingénieur

June 2008

Ecole polytechnique de Louvain
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1
Introduction

The objective of this dissertation is to provide an expressive and efficient
declarative framework for subgraph matching problems using constraint
programming.

Subgraph Matching A graph is a set of points where two points are
joined by a line if they are related. Graphs can model, for example,
the representation of the relationships inside a community where points
are persons, and there is a line between two persons if they know each
other. Subgraph matching is the identification of a subgraph inside a
target graph that is exactly the same as a given graph. For example,
one may want to extract a subgraph of an initial community graph that
is exactly the same as a given graph of interest, identifying subgroups of
people that share exactly the same structural relationship than another
given group.

Challenges Subgraph matching is a challenging problem. The first
challenge is that this problem is NP-Complete. This means that there
is little hope that a polynomial time algorithm can be found to solve
it. This calls for practically efficient algorithms. The second challenge
is expressiveness. The user may want to state a property about the
extracted subgraph. For instance, the user may want to extract two
subgraphs that are related by a path inside the initial graph. Expres-
siveness is challenging because the matching algorithm must usually be
redesigned and reimplemented for each new feature.
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Existing Approaches Existing approaches consist in dedicated al-
gorithms. It was previously argued that dedicated algorithm such as
vflib [LV02] represents the state-of-art in subgraph matching. More-
over, many works in subgraph matching use their own dedicated im-
plementation, based on techniques presented in the Ullmann algorithm
[Ull76] (see [Wer06] for an example). Netmatch [FGP+07] is an instance
of the expressiveness approach, where for instance path properties be-
tween two input graphs can be stated.

Constraint Programming Constraint Programming (CP) solves
constraint satisfaction problems (CSP) by combining constraint prop-
agation with search. A CSP is specified by a set of variables that range
over a set of possible values called their domain and a set of constraints
to be satisfied. An assignment of each variable to a value in its domain
is a solution to the CSP if it satisfies all constraints.

The set of constraints is used to filter the domains of the variables.
This filtering is called propagation. Propagation is usually not suffi-
cient to find a solution. Instead, the CSP is simplified by restricting the
domain of variables. This restriction is called branching. The propaga-
tion can then remove further values. The interleaving of branching and
propagation is called search. Branching usually ensures that all possi-
ble restrictions of the domain of the variables are explored so that the
search is complete. This search can be viewed as a tree. The branching
determines the form of the search tree, while the exploration is the way
the tree is traversed.

Most modern CP systems offer high level abstractions in order to
be expressive. Global constraints are constraints aggregating a common
pattern of constraints and using an efficient filtering algorithm for this
conjunction of simpler constraints. They allow the user to declare prob-
lem specific constraints. Model systems also offer an abstracted search,
as the branching and the exploration can be declared. The user just
ignores the search mechanism and is faced only with modelling choices.
Apart from their declarive feature, modern CP systems have also proved
their efficiency for NP-Complete problems.

Subgraph Matching in CP Regarding graph matching, the con-
straint programming approach has already given some efficient practi-
cal results for graph isomorphism [SS08] ; for maximum common sub-
graph, it was claimed that constraint programming is the most ef-
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fective approach on a DIMACS benchmark [Rég03]. Several works
[McG79, Rég95, Rud98a, LV02] have already tackled the subgraph
matching problem using constraint programming. However the sub-
graph matching problem was used as a convenient benchmark for CP
techniques. Several CP techniques were tested, such as path consistency
[McG79], optimal AC filtering [Rég95], or the comparison of different
level of consistencies [LV02]. On the contrary, our goal is to establish CP
as the state-of-the-art approach for subgraph matching, replacing dedi-
cated algorithms. [Rud98b] describes a modeling of subgraph matching
in CP arguing that it could be expressive and efficient, but remains at
a pure modeling level.

The CP framework is thus attractive because it can face the compu-
tational difficulty of subgraph matching, and include subgraph matching
inside a declarative framework.

Contributions The contributions of this thesis are the followings:

• We propose an efficient and expressive declarative framework for
graph matching. It uses constraint programming and exploits
graph and map variables, instead of ground objects. This allows to
handle various graph matching problems, instead of the traditional
development of various dedicated and specific algorithms.

• We develop a novel subgraph isomorphism global constraint. This
global constraint is able to use the semantic of the subgraph iso-
morphism as well as the global structure of the two input graphs.
It is shown that it is the state-of-the-art filtering algorithm, com-
pared to dedicated algorithms and other CP approaches.

• We show how existing CP approaches can be integrated and gener-
alized in a declarative framework using graph and map variables.

• We show that the proposed constraint programming framework is
performant compared to the state-of-the-art dedicated algorithms
for graph matching.

• It is shown how symmetries can be used in the subgraph isomor-
phism problem, taking into account the pattern graph and the
target graph.
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• State-of-the-art decomposition techniques are unable to deal with
subgraph isomorphism. We therefore adapt decomposition tech-
niques to the subgraph isomorphism problem.

• When the number of solutions is high, we show that our decompo-
sition approach outperforms all other approaches, including CP.

Outline Chapter 2 introduces the common ideas behind existing ded-
icated approaches, and details their algorithm. The existing CP model-
ings are also presented, and their associated propagators are detailed.

Chapter 3 faces the challenge of designing and implementing a declar-
ative and efficient CP framework for subgraph matching. Map variables
are introduced; they represent the matching function. The originality
of map variables lies in the fact that the domain and codomain sets are
not ground.

Associated propagation rules are developed, and an original algo-
rithm pruning the Map variables is presented. Afterwards it is shown
how graph variables can be used to model a wide variety of graph match-
ing problems through a single matching constraint. The associated
matching propagator is also presented.

Chapter 4 faces the challenge of developing a global propagator that
takes into account both pattern and target graphs and the current state
of the domains, instead of the conjunction of locally arc-consistent con-
straints. A novel propagator is presented, based on the labelling of the
nodes that iteratively recompute the labels based on their neighboors’
labels. We show experimentally that for difficult problems, our novel
propagator beat all previous dedicated and CP approaches.

Chapter 5 deals with symmetries. It is shown how all global vari-
able and value symmetries can be detected by computing the set of
automorphisms of the pattern graph, and how they can be broken. Ex-
perimental results show that global symmetry breaking is an effective
way to increase the number of tractable instances of the subgraph iso-
morphism problem. We show that local symmetries can be detected by
computing the set of automorphisms on various subgraphs of the target
graph. Experimental results show that global symmetries solve more
difficult instances compared to local symmetries.

Chapter 6 deals with decomposition. It is explained why state-of-
the-art decomposition techniques do not apply to the CP approach of
subgraph isomorphism. Hence, a dedicated decomposition approach is
developed, based on a precomputation of a variable heuristics able to
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decompose the subgraph isomorphism problem during search. The ex-
periments suggest that this approach is effective on graphs that contain
a lot of solutions, making this decomposition approach a promising tool
for subgraph isomorphism enumeration.

We finally conclude this thesis and discuss future works.

Publications Part of the results of this thesis have already been pub-
lished:

• Yves Deville, Grégoire Dooms, Stéphane Zampelli, and Pierre
Dupont. Cp(graph+map) for approximate graph matching. 1st
International Workshop on Constraint Programming Beyond Fi-
nite Integer Domains, CP2005, pages 33–48, 2005

• Stéphane Zampelli, Yves Deville, and Pierre Dupont. Approximate
constrained subgraph matching. In Principles and Pratice of Con-
straint Programming, volume 3709 of Lecture Notes in Computer
Science, pages 832–836, 2005

• Stéphane Zampelli, Yves Deville, and Pierre Dupont. Symmetry
breaking in subgraph pattern matching. Sixth International Work-
shop on Symmetry in Constraint Satisfaction Problems (Sym-
Con’06), 2006

• Stéphane Zampelli, Yves Deville, and Pierre Dupont. Symme-
try breaking in subgraph pattern matching. In F. Benhamou,
N. Jussien, and B. O’Sullivan, editors, Trends in Constraint Pro-
gramming, pages 203–218. ISTE Hermes, 2007

• Stéphane Zampelli, Yves Deville, Christine Solnon, Sébastien Sor-
lin, and Pierre Dupont. Filtering for subgraph isomorphism. In
Proc. 13th Conf. of Principles and Practice of Constraint Pro-
gramming, Lecture Notes in Computer Science, pages 728–742.
Springer, 2007

• Yves Deville, Stéphane Zampelli, and Grégoire Dooms. Combin-
ing two structured domains for modeling various graph matching
problems. In F. Fages, F. Rossi, and S. Soliman, editors, Recent
Advances in Constraint Programming. Springer-Verlag, 2008
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2
State of the Art of Exact

Subgraph Isomorphism

The goal of this chapter is to describe and compare dedicated algorithms
for subgraph isomorphism and existing CP models. First, the fundamen-
tal problem definitions of graph matching are described, based upon the
concept of morphism, which includes subgraph isomorphism as a special
case. Two dedicated algorithms for the subgraph isomorphism, the Ull-
mann algorithm together with the state-of-the-art vflib algorithm, are
studied and compared. The graph morphism problems are then mod-
eled in constraint programming, reviewing the literature on the subject,
and existing implementation of the constraints is given. We conclude
by a comparison of the complexities of the Ullmann and vflib algorithm
against the existing CP approach, showing why it is usually believed
that a declarative approach cannot compete with dedicated algorithms.

The next section introduces graph theory and the constraint pro-
gramming framework.

2.1 Background

2.1.1 Graph Theory

Graphs are mathematical objects useful to represent binary relationships
between a set of elements. They capture the idea of network, seen as a set
of pairwise interconnected elements. The relationships can be directed
or undirected. Suppose we want to represent social relationships. A
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Figure 2.1: In this social network graph, two persons are
related by a line if they know each other.

social network is made of persons, and some persons know each other.
Each person is an element of the graph, and two persons are joined
by a undirected line if those two persons know each other. Moreover,
the points may be labeled, for example by name and surname. The
lines may also be labeled, to denote the type of relationship the two
persons, for example ’family’ or ’friend’. Figure 2.1 gives an example of
a graph representation of a social network. Similarly, graphs can also be
used to represent other types of networks, like communication networks,
phylogeny trees, the world wide web, etc. Once the network has been
represented as a graph, many questions can be answered about this
network by using graph theory. The following graph theory definitions
are taken from [BE05].

Graph A graph G = (V, E) is an object formed by a set V of vertices
(nodes) and a set E of edges (links) that join (connect) pairs of vertices
(E ⊆ V ×V ). The vertex set and edge set of a graph G are also denoted
by V (G) and E(G), respectively. The cardinality of V is usually denoted
by n, the cardinality of E by m. By definition, a pair of vertices can
be related by at most one edge. An edge can relate a vertex to itself
and such an edge is called a selfloop. The two vertices joined by an
edge are called endvertices. If two vertices are joined by an edge, they
are adjacent and we call them neighbors. Graphs can be undirected or
directed. In undirected graphs, the order of endvertices of an edge is
irrelevant. An undirected edge joining vertices u, v ∈ V is denoted by
{u, v}. In directed graphs, each directed edge (arc) has an origin (head)
and a destination (tail). An edge with origin u ∈ V and destination v ∈
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Figure 2.2: Example of partial, induced and edge-induced
subgraphs.

V is represented by an ordered pair (u, v). In an undirected graph, {u, v}
and {v, u} are the same. For a directed graph G = (V, E), the underlying
undirected graph is the undirected graph with vertex set V that has an
undirected edge between two vertices u, v ∈ V if (u, v) or (v, u) is in E.
We do not consider mixed graphs that can have directed edges as well
as undirected edges. A labeled graph is a tuple G = (V, E, α, β) where
(V, E) is a graph, α is a function V → N that associates each node with
a label, and β is a function E → N that associates each edge with a
label. The set N is the usual set of integers.

Subgraphs Reasoning about a subset of a network leads to the notion
of subgraph. A subgraph with respect to a graph is what a string is with
respect to a text. A graph G′ = (V ′, E′) is a (partial) subgraph of the
graph G = (V, E) if V ⊆ V ′ and E′ ⊆ E. It is a (vertex-)induced
subgraph if E′ contains all edges e ∈ E that join vertices in V ′, i.e.
E′ = E ∩ (V ×V ′). The induced subgraph of G = (V, E) with vertex set
V ′ ⊆ V is denoted by G[V ′]. The (edge-)induced subgraph with edge set
E′ ⊆ E, denoted by G[E′], is the subgraph G′ = (V ′, E′) of G, where V ′

is the set of all vertices in V that are endvertices of at least one edge in
E′. If C is a proper subset of V , then G \ C denotes the induced graph
obtained from G by deleting all vertices in C and their incident edges.
If F is a subset of E, G \ F denotes the partial graph obtained from
G by deleting all edges in F . Figure 2.2 shows an example, where the
selected nodes and edges are plain.

Degree and neighbors Given a social network, one may ask the
number and the list of persons a person knows. This is achieved through
the concepts of degree and neighbors of a node. The degree of a vertex
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v of an undirected graph G = (V, E), denoted by d(v), is the number
of edges that have v as an endvertex. The set of edges that have v as
an endvertex is denoted by Γ(v). The set N(v) = {u ∈ V |(v, u) ∈ E}
is the set of neighbors of v. In a directed graph G = (V, E), the out-
degree of v ∈ V , denoted by d+(v), is the number of edges in E that
have origin v. The in-degree of v ∈ V , denoted by d−(v), is the number
of edges in E with destination v. The set of edges with origin v is
denoted by Γ−(v), the set of edges with destination v is denoted by
Γ+(v). The set of successors of a node v is the set of tails of the edges
Γ+(v) and is denoted N+(v). The set of predecessors of a node v is the
set of heads of the edges Γ−(v) and is denoted N−(v). The neighbors
of a subgraph S = (VS , ES) of an undirected graph G = (V, E) are the
set N(S) = {n ∈ V | ∃ m ∈ VS : (n, m) ∈ E}. The in-neighbors of
a subgraph S = (VS , ES) of a directed graph G = (V, E) are the set
N−(S) = {n ∈ V | ∃ m ∈ VS : (m, n) ∈ E}. The out-neighbors of
a subgraph S = (VS , ES) of a directed graph G = (V, E) are the set
N+(S) = {n ∈ V | ∃ m ∈ VS : (n, m) ∈ E}. If the graph under
consideration is not clear from the context, notations can be augmented
by specifying the graph as an index. For example, dG(v) denotes the
degree of v in G. The maximum and minimum degree of an undirected
graph G = (V, E) are denoted by ∆(G) and δ(G), respectively. The
average degree is denoted by d(G) = 1

|V |

∑

u∈V dG(v).

Walks, paths, and cycles Is there a way to reach a person B from
a person A ? What is the exact list of intermediates to reach a person
B from a person A ? Can a person reach himself through distinct inter-
mediates ? Those questions can be answered with the concepts of walk,
path and cycle. A walk from x0 to xk in a graph G = (V, E) is an alter-
nating sequence x0, e1, x1, e2, x2, . . . , xk−1, ek, xk of vertices and edges,
where ei = {xi−1, xi} ∈ E in the undirected case and ei = (xi−1, xi) ∈ E
in the directed case. The length of a walk is defined as the number of
edges on the walk. The walk is called a path, if ei 6= ej for i 6= j, and
a path is a simple path if xi 6= xj for i 6= j. A path with x0 = xk is a
cycle. A cycle is a simple cycle if xi 6= xj for 0 ≤ i < j ≤ k − 1.

2.1.2 Constraint Programming

Constraint programming is a declarative framework, aimed at solving
NP-Complete combinatorial problems. The general idea is that the user
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states the problem, and the solver produces a solution. Stating the prob-
lem means choosing the decision variables, their initial set of possible
values, and the constraints that a solution should respect. Constraints
can be viewed as a list of assignments of the variables, but generally
constraints are high-level building blocks that the user can combine.
The problem model is then given to a constraint solver which should
automatically find an assignment of the variables that satisfies the con-
straints.

Constraint programming is a rich framework, with more than two
decades of research. We only present here definitions useful for the rest
of the dissertation. The interested reader may consult the Handbook of
Constraint Programming [RvBW06].

CSP A constraint satisfaction problem (CSP) is a triple (X,D, C).
Let X be a set of variable={x1, . . . , xn}. Each variable is associated
with a domain D(xi) ⊆ U where U is the universe and D(xi) represents
the set of possible values for xi. The set of domains associated with
X is D. A constraint ci is defined on a subset of variables x1, . . . , xk,
denoted scope(c), and ci ⊆ Uk. A constraint c constraints a variable x if
x ∈ scope(c). A binary constraint is a constraint c with |scope(c)| = 2.
A global constraint is a constraint c whose |scope(c)| can be arbitrary
large. A variable with a singleton domain is assigned. A constraint c is
entailed by D if ×xi∈scope(c)D(xi) ⊆ c (i.e. the constraint holds for all the
values in the domain). A constraint is satisfied by D if all variables in
its scope are assigned and ×xi∈scope(c)D(xi) ⊆ c. The set of constraints
is denoted C. A solution of a CSP is an assignment of all variables
such that all constraints are satisfied. The set of solutions of a CSP P
is noted Sol(P ). Finding Sol(P ) is NP-Complete in the general case.
A CSP is failed if Sol(P ) = ∅. Two CSPs P1 and P2 are equivalent if
Sol(P1) = Sol(P2).

Finite and finite set domains The notion of domain defined so
far is quite abstract. Actual constraint programming systems act on
concrete types, called computation domains, for example integers, sets
or reals. A computation domain is based on a domain abstraction, that
is a practical model to represent the domain, together with its set of
basic operations. A fundamental computation domain is integers, also
called finite domains. Integers are fundamental because they can be
used to model other computation domains like booleans or sets (and
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Table 2.1: Operation complexities of a range sequence of
r ranges and a bit vector bounded by v.

Operations Range sequence Bitvector

x.getmin() O(1) O(1)

x.getmax() O(1) O(1)

x.hasval(d) O(r) O(1)

x.adjmin(d) O(r) O(1)

x.adjmax(d) O(r) O(1)

x.excval(d) O(r) O(v)

i.done() O(1) O(v)

i.value() O(1) O(1)

i.next() O(1) O(v)

any other discrete domains). Popular representations of finite domains
are range sequences and bit vectors. A range sequence for a finite set
of integers I is the shortest sequence s = {[n1, m1], . . . , [nk, mk]} such
that I is covered (I = ∪k

i=1[ni, mi]) and the ranges are ordered by their
smallest elements (ni ≤ ni+1 for 1 ≤ i < k). A range is unique, none
of its ranges are empty and mi + 1 < ni+1 for 1 ≤ i < k. A bit vector
for a finite set of integers of I is a string of bits such that the ith bit
is 1 iff i ∈ I. Basic operations for finite domain and their operations
are summarized in Table 2.1.2 (taken from [SC06]). In this table, x is a
variable, d a value, and i is an iterator.

Another important computation domain are sets. The most com-
monly used domain abstraction for sets are set intervals. Set intervals
are intervals of the partial order defined by set inclusion. Set intervals
are defined by two bounds, the greatest lower bound (glb), and the least
upper bound (lub). The glb represents the set of values that must be
in the set variable. The lub represents the set of values that can belong
to the set variable. More formally, a set interval [sL, sU ] defines the
following (possibly empty) set of sets: {s | sL ⊆ d ⊆ sU}. Set intervals
define a domain abstraction as they allow to represent single sets ([s, s])
and are closed under intersection: [s1

L, s1
U ]∩ [s2

L, s2
U ] = [s1

L ∪ s2
L, s1

U ∩ s2
U ].

Basic operations include intersection, union, difference, cardinality and
membership and can be defined through filtering rules. See [Ger06] for
a detailed explanation of those rules, and an overview of other domain
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abstractions for sets.

Filtering and propagators A simple algorithm exists to find a solu-
tion to a CSP. A straightforward idea is to enumerate all assignments of
the variables with respect to their domains, and check if the constraints
are satisfied. This strategy is correct, but the time to find a solution is
exponential. Individual constraints can be used to remove values.

Values in the domain of a CSP may violate some constraints of the
CSP. Filtering removes values in the domain of D that have no support
in a constraint c. A value d in D(x) has a support in c with respect
to D if there exists an assignment A of the variables in D with x = d
and A ⊆ c. The value d is also said to be consistent with the constraint
c. A propagator is the implementation of a constraint that performs
filtering. A propagator takes a domain D as input and returns a new
domain where inconsistent values with respect to c are removed.

Comparing the output of a propagator with its constraint calls for
notations. A constraint c is a set of tuples indexed by variables, and
can be viewed as a domain of a CSP. Set operations can be extended to
domains of CSPs. Given a set operation ⋄, D1⋄D2 means D1(xi)⋄D2(xi)
for all xi ∈ X. With these notations, properties of a propagator can be
stated.

Let D1 and D2 be two finite domains defined on the same set of vars.
A propagator pc implementing a constraint c must respect the following
conditions :

• contractant: pc(D1) ⊆ D1

• monotone: D1 ⊆ D2 ⇒ pc(D1) ⊆ pc(D2)

• correct: Sol(X,D, {c}) ⊆ Sol(X, pc(D), {c})

Successive applications of a propagator may narrow domains, that
is p(p(D)) ⊆ p(D). A propagator p is said to be idempotent if
p(p(D)) = p(D). This is important in the filtering process, as idem-
potent propagators need to be applied only once.

Levels of consistency Propagators should remove inconsistent values
with respect to a constraint. Doing so can however be NP-Complete.
Moreover a polynomial optimal filtering algorithm is not always useful.
This is the case, for example, when the density of solutions is high.
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Removing values may be expensive, while enumeration leads quickly to
a solution.

This motivates the introduction of levels of consistency. The filtering
performed by a propagator p for a constraint c may vary. We enumerate
here a number of definitions of consistency, from the cheaper to the more
expensive in time complexity, but with increasing filtering power.

• checking: a propagator p is checking for a constraint c if (∀ x ∈
scope(c) : |D(x)| = 1) ⇒ ×xi∈XD(xi) ⊆ c. Intuitively, the prop-
agator waits for the instantiation of all the variables in its scope,
and check if the constraint c is verified for this assignment.

• forward checking: a propagator is forward checking for a constraint
c if all variables in scope(c) are instantiated but the variable xi and
∀ vi ∈ D(xi) : (v1, . . . , vi−1, vi, vi+1, . . . , vk) ∈ c.

• (hyper) arc consistency: A propagator is hyper arc consistent with
respect to a constraint c with scope(c) = x1, . . . , xk if ∀ 1 ≤ i ≤
k : ∀ vi ∈ Di, ∃ v1, . . . , vi−1, vi+1, . . . , vk ∈ D1 × · · · × Dk such
that (v1, . . . , vk) ∈ c. For a binary constraint, it is called arc
consistency, and for a unary constraint, node consistency.

• (hyper) bound consistency: The idea behind bound consistency
is to consider the bounds of the domains. In total ordered finite
domains, there exits a minD(x) and a maxD(x) elements, and
we may prune only on those bounds. This idea leads to several
definitions of bound consistency.

– bound consistency: A propagator is bound consistent with
respect to a constraint c with scope(c) = x1, . . . , xk

if ∀ 1 ≤ i ≤ k : ∃ v1, . . . , vi−1, vi+1, . . . , vk ∈
[minD1, maxD1] × · · · × [minDk, maxDk] such
that (v1, . . . , vi−1, minDi, vi+1, . . . , vk) ∈ c and
(v1, . . . , vi−1, maxDi, vi+1, . . . , vk) ∈ c.

– range bound consistency: A propagator is range bound con-
sistent with respect to a constraint c with scope(c) =
x1, . . . , xk if ∀ 1 ≤ i ≤ k ∀ vi ∈ [minDi, maxDi]
∃ v1, . . . , vi−1, vi+1, . . . , vk ∈ [minD1, maxD1] × · · · ×
[minDk, maxDk] such that (v1, . . . , vi−1, vi, vi+1, . . . , vk) ∈ c.

– domain bound consistent: A propagator is domain bound
consistent with respect to a constraint c with scope(c) =
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x1, . . . , xk if ∀ 1 ≤ i ≤ k ∃ v1, . . . , vi−1, vi+1, . . . , vk ∈
D1×· · ·×Dk such that (v1, . . . , vi−1, minDi, vi+1, . . . , vk) ∈ c
and (v1, . . . , vi−1, maxDi, vi+1, . . . , vk) ∈ c.

Bound consistency is weaker than range and domain bound con-
sistency, which are incomparable.

Instead of performing consistency over a single (binary) constraint, a
set of constraints can be considered for consistency. Let ci,j ∈ C denote
a binary constraint between variables xi and xj .

• Two variables xi and xj are path consistent if for any pair of
values (di, dj) ∈ D(xi) × D(xj) and for any sequence of variables
Y = (xi = xk1

, xk2
, . . . , xkp

= xj) such that for all q ∈ [1, p − 1] :
ckq,kq+1

∈ C, there exits a tuple of values (di = dk1
, . . . , dkp

= dj)
such that for all q ∈ [1, p − 1], (vkq

, vkq+1
) ∈ ckq ,kq+1

.

Consistency of a CSP Many consistency levels have been defined.
For an overview, see [Bes06]. We have so far discussed about the con-
sistency of individual constraints. We now figure out what does it mean
for the CSP itself to be consistent.

The local consistency of the constraints can be combined to reach a
fixpoint of the propagation of the individual constraints. If a constraint
c is made consistent by a propagator p, then other constraints (including
c if pc is not idempotent) may not be consistent anymore, since domains
were reduced. All the propagators are ran in turn until they remove no
values. The propagation of a CSP is the fixed point of all propagators
associated to the current CSP. When each of its constraint is hyper arc
consistent, we say that a CSP is globally arc consistent (GAC). Algo-
rithm 1 gives the pseudo code of such a fixpoint propagation algorithm.
It is the building block of most constraint solvers. Note that Algorithm
1 exits once a domain is empty, instead of going to the fixpoint.

Search Propagation does not solve a CSP. Propagation must there-
fore be associated with a search component. After propagation, non-
deterministic choices can be computed on the current CSP. This is usu-
ally done by adding a constraint such as x = d or x 6= d, with x ∈ X,
d ∈ D(x) and |D(x)| > 1. The propagation can then be performed
again. Interleaving propagation and non-deterministic choices creates a
search tree, and the process is called search. Algorithm 2 implements
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Algorithm 1: Propagation Algorithm

Input: A CSP P = (X,D, C) and a set P of propagators pc for
each c ∈ C

Output: D is filtered to the propagation fixpoint of P .
procedure propagate(X,D, C)1

W ← P2

while W 6= ∅ ∧ ∀ x ∈ X : D(x) 6= ∅ do3

pop pc from W4

D′ ← D5

D ← pc(D)6

if D 6= D′ then7

W ← W ∪ {pc′ | ∃ x ∈ scope(c′) ∧ D(x) 6= D′(x)}8

if pc is idempotent then W ← W \ {pc}9

search. Some mechanisms in this algorithm are actually generic and
can be specialized in a constraint programming framework. The actual
computed choices are defined by a heuristics (line 6). The way choices
are selected is called exploration (line 7). The actual application of the
choice is called branching (line 9). Branching and exploration are two
independent issues: the heuristics determine the search tree, while the
exploration determine how the search tree is traversed (for example by
depth first search or by breadth first search). When branching, state
has to be saved and restored. State restoration is a common issue in
constraint programming engines.

Heuristics Heuristics determine the search tree. It also determine the
position of the solutions and the non solutions in the leaves of the search
tree. Heuristics are important because they may reduce the depth of the
search tree, but also determine the position of the first solution in the
leaves, which is important if the leaves are explored in a fixed order.
From a practical point of view, heuristics have a strong influence on the
performance for a particular problem.

Heuristics can take various forms. The most common heuristics is
to select a non assigned variable x and a value d. The choices are then
x = d and x 6= d which ensure the whole space is traversed. This is
called a variable value heuristics. However, other forms of heuristics
exist. For example, one may split domains in two equal range, leading
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Algorithm 2: Search Algorithm

Input: A CSP P = (X,D, C) and a set of propagators pc for
each c ∈ C

Output: Sol(P )
procedure search(X,D, C)1

S ← ∅2

propagate(X,D, C)3

if ∃ x ∈ X : D(x) = ∅ then return ∅.4

if ∀ x ∈ X : |D(x)| = 1 then return D.5

branchings ← < compute choices for (X,D, C) >6

for next choice in branchings do7

save state (X,D, C)8

apply choice to (X,D, C)9

S ← S ∪ search(X,D, C)10

restore state (X,D, C)11

return S12

to a constraint of the form x = [minD(x), (maxD(x)−minD(x))/2] or
x = [((maxD(x) − minD(x))/2) + 1, maxD(x)].

State restoration State restoration can be done in two ways. The
first method is called trailing. Trailing stores the undo information.
The memory location and the content of the entity to be saved is stored
on a trail. Each time an exploration of a new node in the search tree
is performed, a mark is put on the trail. Restoring state amounts to
copying the entities from the trail and erase the previous mark. In the
context of a constraint programming solver, a timestamp is also added
with the entity, in order to ensure that even if the domains are narrowed
multiple times, the domains are saved only once. The timestamp changes
each time a mark is put on the trail.

Copying is a second method. The current state, that is the do-
mains together with the propagators and their data structures, are sim-
ply copied and stored. All entities are extended with a copy method and
copying a state amounts to recursively copy entities. Restoring a state
amounts to remove and use a stored state.

Trailing aims at saving memory, while copying may seem an aggres-
sive strategy regarding memory usage. Copying has one main advantage:
it is more expressive than trailing. In trailing, the system is forced to
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backtrack to the previous state, while in copying one can select a state
in the list of stored states. Moreover, parallelism is straightforward with
copying: one has to distribute stored states.

In order to trade space for time, copying usually offers recomputation.
Recomputation saves a state in the search from times to times. When
a backtrack is needed the last state saved on the path to the root is
used. The intermediates branching decisions are stored, and using the
last state, the branching decision constraints are added to the CSP and
the propagation fixpoint is computed.

Model Given a problem, the programmer has to formulate the prob-
lem in the constraint programming framework. A (CSP) model consists
of the following elements : the choice of the variables, the choice of the
domains, the choice of the set of constraints, and for each constraint, the
level of consistency; moreover, it may be critical to choose a heuristics
and to define the exploration, for example depth first search. Depending
on the actual solver, there may be some other fine tunings, like the use
of recomputation and the distance between two saved states.

Constraint Programming Systems Constraint logic programming,
that is logic programming augmented with syntactic constraints was
first developped in Prolog [CKC82] with disequations. Finite domains
[Hen89] were introduced in the CHIP [DvH87] constraint logic program-
ming system. Other Prolog systems such as GNU Prolog [DC01] and
ECLIPSE [WNS97] were then developped. OPL [Hen02] is the first
modeling language to combine high-level algebraic and set notations
which are then translated into a constraint program. The underlying
constraint solver is ILOG Solver [Pug94].

Constraint Solvers such as ILOG Solver provide a constraint pro-
gramming API for procedural languages for C and C++. The language
Oz [Smo95, RH04] and its open-source implementation Mozart provide
a multiparadigm framework in which, among others, the functional,
concurrent and logic programming paradigms can be combined with
the concept of first-class computation spaces to implement a constraint
programming framework [Sch02]. The Gecode (http://www.gecode.org)
constraint developement environnement is an open-source C++ library.
Its architecture is described in [SS04a, ST06]. We use the Gecode system
to implement our constraint programming approach of graph matching.
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2.2 Comparing graphs

Basic measures are not sufficient for graph comparison. Two graphs may
have the same number of nodes and edges and the same average degree,
but still be different. Given two graphs, Gp = (Vp, Ep), called the pattern
graph, and Gt = (Vt, Et), called the target graph, one may ask how
they relate to each other, regarding their structure. Many relationships
between Gp and Gt can occur regarding their structure. The graphs Gp

and Gt may be identicals. The graph Gp may be identical to a subgraph
of Gt. There may exist a subgraph of Gp of maximal size that is identical
to Gt. There may exist a subgraph of Gp and a subgraph of Gt that are
identical. The graphs Gp and Gt may be identical if some operations
are performed on Gp and Gt, like removing a node or an edge. Those
relationships can be captured through the concept of matching, which
associates the nodes of the pattern with the nodes of the target.

2.2.1 Matching

Matching two graphs Gp = (Vp, Ep) and Gt = (Vt, Et) consists in relating
their vertex sets Vp and Vt and their edge sets Ep and Et. A general
way is to associate vertices through relations.

Relation and function A relation R is an ordered triple (X, Y, H)
where X and Y are arbitrary sets, and H is a subset of the Cartesian
product X×Y . The sets X and Y are called the domain and codomain,
respectively, of the relation. The statement (x, y) ∈ R is read ”x is R-
related to y”, and is denoted by xRy or R(x, y). The latter notation
corresponds to viewing R as the characteristic function of the set of pairs
H. The order of the elements in each pair of H is important: if a 6= b,
then aRb and bRa can be true or false, independently of each other. A
function F is a relation (X, Y, H) with the restriction that F pairs each
x ∈ X with at most one y ∈ Y . The relational notation xFy is usually
written F (x) = y in the case of a function.

Definition. (Matching) A matching between graphs Gp = (Vp, Ep)
and Gt = (Vt, Et) is a relation (Vp, Vt, F ).

For labeled graphs, labeling compatibility between nodes and edges
may be required. Each node and edge is associated with an integer
through a function α and β respectively. We suppose that there exits
compatibility functions for the nodes and the edges.
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Definition. (Compatibility functions) A node compatibility func-
tion Cn and an edge compatibility function Ce are functions of the type
N × N → {true, false}.

Definition. (Labeled matching) Given two labeled graphs Gp =
(Vp, Ep, αp, βp), Gt = (Vt, Et, αt, βt), a matching F is labeled match-
ing between Gp and Gt if ∀ v1 ∈ Vp ∀ v2 ∈ Vt : v1Fv2 ⇒
Cn(αp(v1), αt(v2)) and ∀ (v1, v2) ∈ Ep ∀ (v2, v4) ∈ Et : v1Fv3 ∧ v2Fv4 ⇒
Ce(βp(v1, v2),βt(v3, v4)).

Matchings are not equally desirable. Interesting matchings should
preserve some structure of Gp onto Gt.

2.2.2 Morphisms

An interesting class of matchings are morphisms. This class imposes
unary relationships between the nodes of the pattern graph and the
nodes of the target graph, that is the relation is a function. The specifity
of a morphism is that a morphism always preserves the structure of Gp

onto Gt.

Definition. ((Homo)morphism) Let ¤ be a binary operation on a
set X, while ¤

′ is another binary operation on a set X ′. A morphism
f : (X, ¤) → (X ′, ¤′) is defined to be a function on X to X ′ which
“carries” the operation ¤ on X onto the operation ¤

′ on X ′, in the sense
that f(x¤y) = f(x)¤′f(y). A morphism is also called a homomorphism.

In graph matching, the ¤ and ¤
′ operators are the neighborhood

relation between vertices. By constraining the function f , new types of
morphism are defined:

1. isomorphism, if f is a bijection,

2. epimorphism, if f is a surjection,

3. monomorphism, if f is an injection.

Two graphs Gp = (Vp, Ep, αp, βp) and Gt = (Vt, Et, αt, βt) are graph
homomorphic if the edges of Gp can be conserved into Gt by mapping
the nodes of Gp onto the nodes of Gt.

Definition. (Graph homomorphism) There exists a graph homo-
morphism between Gp and Gt if there exists a labeled matching f such
that (a, b) ∈ Ep ⇒ (f(a), f(b)) ∈ Et.
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Figure 2.3: Example of graph homomorphism with f =
{(1, A), (2, B), (3, A), (4, B), (5, A).

Graph homomorphism is illustrated in Figure 2.3.
Two graphs Gp = (Vp, Ep, αp, βp) and Gt = (Vt, Et, αt, βt) are graph

isomorphic if they have the same number of nodes and the same struc-
ture.

Definition. (Graph isomorphism) There exists a graph isomorphism
between Gp and Gt if there exists a labeled matching f such that f
if a bijective function and (a, b) ∈ Ep ⇔ (f(a), f(b)) ∈ Et. Graph
isomorphism is illustrated in Figure 2.4.

Figure 2.4: Example of graph isomorphism with f =
{(1, A), (2, E), (5, D), (4.B), (3, C)}.

Two graphs Gp = (Vp, Ep) and Gt = (Vt, Et) are graph epimorphic if
Gp can be contracted (by merging nodes) to match the structure of Gt.
Graph epimorphism is illustrated in Figure 2.5.

Definition. (Graph epimorphism) There exists a graph epimorphism
between Gp and Gt if there exists a labeled matching f such that f if a
surjective function and (a, b) ∈ Ep ⇔ (f(a), f(b)) ∈ Et.
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Figure 2.5: Example of graph epimorphism with f =
{(1, A), (2, B), (3, B)}.

Graph monomorphism looks for a subgraph of Gt that is isomorphic
to Gp. Hence graph monomorphism is also known as subgraph iso-
morphism. Subgraph isomorphism is usually splitted in two definitions
corresponding to the two definitions of a subgraph. Partial subgraph
isomorphism is a classical graph monomorphism that imposes that each
edge of Gp is mapped to an edge of Gt. Induced subgraph isomorphism
adds the condition that non adjacent vertices of Gp match to non adja-
cent nodes of Gt.

Definition. (Graph monomorphism or partial subgraph isomor-
phism) There exists a partial subgraph isomorphism between Gp and
Gt if there exists a labeled matching f such that f is a total injective
function and (a, b) ∈ Ep ⇒ (f(a), f(b)) ∈ Et.

Figure 2.6: Example of partial subgraph isomorphism
with f = {(1, A), (2, B), (3, C)}. There is no
induced subgraph isomorphism, because the
induced subgraph A, B, C has one more edge.

Partial subgraph isomorphism is illustrated in Figure 2.6.

Definition. (Induced subgraph isomorphism) There exists an in-
duced subgraph isomorphism between Gp and Gt if there exists a labeled
matching f such that f is a total injective function and (a, b) ∈ Ep ⇔
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(f(a), f(b)) ∈ Et. Induced subgraph isomorphism is illustrated in Figure
2.7.

Figure 2.7: Example of induced subgraph isomorphism
with f = {(1, A), (2, B), (3, C)}.

Suppose there is no graph or subgraph isomorphism between Gp and
Gt. We may still found however two subgraphs of Gp and Gt that are
isomorphic. Matching a subgraph of Gp can be done by forcing the
function f to be partial.

Definition. (Common subgraph) A common subgraph is a subgraph
G of Gp such that G is isomorph to a subgraph of Gt.

Definition. (Maximum common subgraph) A maximum common
subgraph between Gp and Gt is a common subgraph G between Gp and
Gt of maximal size (number of nodes).

Figure 2.8: Example of maximum common induced sub-
graph with f = {(1, A), (2, B), (3, C)}. The
resulting common subgraph is shown on the
right.

Because the subgraph isomorphism can be induced or partial, we
define accordingly the maximum partial and induced common subgraph
problems. Maximum common induced subgraph is illustrated in Figure
2.8.
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2.2.3 Graph Similarity

Graph similarity measures the distance between two graphs Gp and Gt.
While graph morphism empaphises on preserving the structure (that is
the neighboorhood relationship), graph similarity measures a distance.
Graph similarity is thus more general than graph morphism. Graph
morphism is a possible criteria for graph similarity. Moreover, graph
morphism is based on the notion of function, while graph similarity has
no constraint on the existence and type of matching. Graph similarity is
thus based on relations, and is often required to be a distance, that is a
measure reflexive, symmetric, and that respects the triangle inequality.

We give here two examples of graph similarity. The first one, called
graph edit distance, is a classic graph similarity measure. The second
one is a generic graph similarity measure, able to express many graph
similarities.

Given a set of allowed operations on graphs associated with costs,
the graph edit distance is the minimal cost of a sequence of operations to
transform Gp into a new graph G isomorphic to Gt. There is no general
agreement on the set of operations and associated costs. A basic set of
operations consists of the following set of 4 operations:

• vertex insertion: a new isolated vertex is added to the graph

• vertex deletion: an isolated vertex is deleted from the graph

• edge insertion: a new edge is added between arbitrary vertices of
the graph

• edge deletion: an edge is deleted from the graph.

The cost of all vertex operations are one, and all edge operations cost
zero. The distance between the two graphs is then equal to the number
of |np − nt|.

More recently, Solnon et al. [SSJ07] have proposed a generic graph
distance measure, that is a unifying framework for all distance measures.
This similarity measure considers a relation m. The similarity of two
graphs Gp and Gt is defined as a triple < σvertex, σedge,

⊗

> where
σvertex is the vertex distance function, σedge is the edge distance function,
and

⊗

is the function used to aggregate those distances. Those three
functions are defined with respect to a specific application domain. The
vertex distance function σvertex returns the distance between a node of
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one graph and a set of nodes of the other graph. The edge distance
function σedge returns the distance between an edge of one graph and a
set of edges of the other graph. The aggregate function

⊗

returns the
measure by using σvertex, σedges, and m.

Such a formulation can express all graph morphism problems to-
gether with many published graph similarities in a very elegant way.

2.3 Computing Matchings

Most graph morphism problems presented are at least NP-Complete.

Graph homomorphism is the most general graph morphism problem
and is NP-Complete. Computing graph homomorphism between two
graphs is done by representing a function and maintaining the neigh-
borhood relationship. Rudolf [Rud98a] proposes a CSP modeling where
the function is represented as a vector of finite domain variable and con-
straints enforce the neighborhood relationship. Valiente et al. [VM97]
develop a dedicated algorithm. The function is represented as a boolean
matrix of size np ∗ nt. All matrices are enumerated in a search tree and
leaves are tested for graph homomorphism. Pruning operators are used
during search to enforce the neighboorhood condition.

The graph isomorphism problem is not known to be nor NP-
Complete, nor in P . Although there is no polynomial time algorithm,
most of the instances can be solved efficiently. This had lead researchers
to define an intermediate class of complexity, for problems that can be
reduced to graph isomorphism. A problem is said to be Graph isomor-
phism complete (GI-complete) if there exists a polynomial turing ma-
chine reduction to graph isomorphism. The following class of graphs are
polynomial for graph isomorphism: trees, planar graphs, interval graphs,
permutation graphs, partial k-trees, bounded-parameter graphs, graphs
of bounded genus, graphs of bounded degree, graphs with bounded eigen-
value multiplicity [BE05]. The state-of-the-art software for graph iso-
morphism is Nauty [McK81]. An extensive review of this algorithm can
be found in [BE05]. A filtering algorithm has also been proposed in the
context of constraint programming [SS04b].

Subgraph isomorphism is also tractable for some special classes of
graphs, such as trees [Val02], planar graphs [HW74], and bounded va-
lence graphs [Luk80]. A series of theoretical works also look for partic-
ular classes of polynomial time algorithm based on bounded tree-width
(see for example [HN02]). An extensive review of subgraph isomorphism
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exact algorithm can be found in the next section.

There are two main approaches for the maximum common subgraph
problem. The first is a backtrack search algorithm where the set of as-
signments is extended until a largest common subgraph is found. This
is the approach used initially by McGregor [McG82]. Similar exact algo-
rithms have been proposed more recently [Öst02]. The vflib library also
proposed an algorithm to solve the maximum common subgraph (which
is a straightforward extension of the subgraph isomorphism algorithm
presented in the next sections). The second approach is based on the
fact that a maximum common subgraph of two graphs is equivalent to
a maximum clique in the product graph of the pattern and the target.
The advantage of this second approach is that various bounds on the
clique problem can be used. Many exact algorithms have been proposed
for the clique problem. One of them is the well-known algorithm of Bron
and Kerbosch [BK73]. The Durand-Parasi algorithm is also based on
clique detection [DPBT99]. In constraint programming, J.C. Régin has
designed bounds and search strategies for the clique problem [Rég03],
and claimed to be state-of-the-art for exact approches, by competing on
a set of challenging instances. A recent paper presents an experimental
comparison of three well-known algorithms [DCV07].

More recently, a class of graph matching was defined, where labels are
unique in graphs [DBDK04]. For this class, polynomial time algorithm
for all graph matching problems have been found, including maximum
common subgraph and graph edit distance.

The complexity of graph similarity depends on the definition of the
distance, and is usually at least NP-complete. Because graph similar-
ity is usually harder than graph morphism problems, graph similarity is
computed by local search. For instance, the approach from [SSJ07] de-
fines the neighborhood by adding or removing a couple (i, j) with i ∈ Np

and j ∈ Nt to the relation m. A greedy search is first performed to reach
an initial (good) solution [CS03a]. Reactive tabu search [SS05] and ant
colony optimization [SSSG06] are then used to improve the locally opti-
mum greedy solution. It is worth noting that the authors from [SSJ07]
claim that their algorithms are not competitive for exact graph isomor-
phism and subgraph isomorphism, as dedicated algorithms are able to
use filtering techniques whereas their algorithm explores potentially all
mappings.

The next section focuses on dedicated algorithms for exact subgraph
isomorphism.
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2.4 Subgraph Isomorphism Algorithms

In this section two well-known dedicated algorithms for subgraph isomor-
phism are presented in details. We call dedicated algorithms algorithms
that were designed specifically for a problem, in order to distinguish
those algorithms from a constraint programming approach.

Dedicated algorithms usually implement a backtracking algorithm.
They differ in the way they represent the matching function and how
they ensure that the condition of morphism and injection are respected.
Instead of presenting each algorithm in details, we present two well-
known algorithms that illustrate the principles used by other algorithms.

2.4.1 Ullman algorithm

The Ullmann algorithm is based on a matrix view of the SIP. Let P =
[pi,j ] for 1 ≤ i, j ≤ np and T = [ti,j ] for 1 ≤ i, j ≤ nt be the adjacency
matrices for Gp and Gt. Let M be a binary matrix with np rows and
nt columns, so that a row of M contains exactly one 1 and no column
contains more than one 1. The matrix M represents an injective function
from Np to Nt. Ullmann notices that M can be applied to permute rows
and columns of T :

C = [ci,j ] = M(MT )T

where exponent T denotes transposition. If C is equal to P :

ci,j = pi,j ∀ i, j ∈ [1, np] (1)

then M is an monomorphism function from Gp to Gt.

The basic Ullmann algorithm is an enumeration algorithm. All pos-
sible matrices representing a monomorphism are enumerated and then
checked against condition (1). Ullman also proposes a refinement proce-
dure of the matrix M that prunes the search space of the enumeration.
We start by describing a preprocessing step of the matrix M . We detail
the enumeration algorithm and then present its extension using the re-
finement procedure. The algorithm preprocesses M by forcing some mi,j

to 0 by comparing the the degrees of the pattern and target vertices.

Degree condition Two vertices a from Gp and b from Gt can be
mapped through a morphism iff d(a) ≤ d(b).We restrict the description
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for undirected graphs, but the method can be extended to the directed
case.

The degree condition defines an initial matrix M0:

M0 = m0
i,j =

{

1 if d(i) ≤ d(j)
0 otherwise.

Starting from M0, the Ullmann algorithm performs a backtrack
search by generating all possible injective functions M such that mi,j =
1 ⇒ m0

i,j = 1 To perform backtracking, the algorithm uses several data
structures:

• a variable d denoting the current depth in the search tree

• a variable k denoting the last column selected for the current line

• a vector F =< F1, . . . , Fnp > where Fi = 1 ⇔ ith column has been
selected

• a vector H =< H1, . . . , Hnp > where Hi = j ⇔ jth column has
been selected at depth i in the search tree.

• a vector Mv =< M1, . . . , Mnp > where Mi is the last matrix gen-
erated at depth i.

• a matrix M representing the current matrix.

The vectors H, Mv and the variable d are used for the backtrack-
ing. The vector F and the variable k are used to ensure the injective
condition.

Algorithm 3 gives the pseudo-code. The enumeration algorithm is
read by including the text between < · · · >, and the refinement exten-
sion is read by including the text between [. . . ]. Line 1 initializes the
current matrix M with M0, sets current depth level at 1, indicates that
no column has been selected at depth 1 and that no column has been
selected in the current line. Line 2 indicates that no column has been
selected yet. Line 3 enters a loop that browses the search tree. The
while loop exits when depth 0 is reached, that is when all 1 in row 1
of M have been searched. Line 4 looks for a column k in row d which
has not been selected (we ignore the refine procedure for now). If such
a k is found, then all other 1 in row d are set to zero in matrix M in
line 5, otherwise the algorithm backtracks. If a final state is reached
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Algorithm 3: Ullmann Algorithm

Input: Two adjacency matrices P and T , an initial matrix M0

Output: fail or a |Np| ∗ |Nt| matrix M , with M representing a
subgraph isomorphism function.

M ← M0; d ← 1; H1 ← 0; k ← 0; backtrack ← true;1

for i in [1, |Np|] do Fi ← 0;2

while d 6= 0 do3

if [ refine(M, P, T ) ∧ ] (∃ k : md,k = 1 ∧ Fk = 0) then4

∀ j 6= k : md,j ← 05

if (d = |Np| < ∧ condition (1) is satisfied > ) then return6

M
backtrack ← false7

if backtrack then8

Fk ← 0; d ← d − 1;9

if d > 0 then M ← Md; k ← Hd;10

else11

Hd ← k; Fk ← 1; Md ← M ; d ← d + 1;12

return fail13

and condition (1) is true then the current monomorphism M is returned
(line 6). Line 7 prevents backtracking as a column k has been selected
in a non final state. Line 8 to line 12 handle the search. If backtracking
was selected, then the current column k is deselected, depth is dimin-
ished by 1, and the matrix M of previous depth is restored together with
the column k selected at previous step (line 9 and line 10). Otherwise,
the current state is saved (line 12). Finally, if the while loop exits, no
monomorphism was found and fail is returned (line 14).

The refinement procedure change some mi,j = 1 to 0, by observing
that a pattern vertex can be mapped to a target vertex if and only if
their respective neighbors can also be mapped.

Neighbor condition An entry of mi,j is equal to 1 iff

∀ x ∈ [1, np] : pi,x = 1 ⇒ ∃ y ∈ [1, nt] : mx,y.tj,y = 1. (2)

For each entry mi,j = 1, the neighbor condition can be tested. If it
is false, mi,j can be changed to 0 as mi,j = 0 for any monomorphism
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Algorithm 4: Refinement Algorithm

Input: a matrix M and two adjacency matrices P and T
Output: true if M was refined,

false if a row contains no 1.
procedure refine(M, P, T)1

fixpoint ← true;2

repeat3

for each (i, j) s.t. mi,j = 1 do4

if Condition (2) is not satisfied then5

mi,j ← 0; fixpoint ← false;6

if ∀ k : mi,k = 0 then return false;7

until fixpoint ;8

return true9

derived from M . The modification of one mi,j can modify the neighbor
condition for the other entries of M . The neighbor condition is thus
tested until a fixpoint with respect to M is reached.

If a matrix M ′ is an injective function from Np to Nt, a necessary
and sufficient condition is that refine(M ′, P, T ) leaves M ′ unchanged
since all neighbor relations are respected. Checking condition 1 can be
replaced by the refine procedure.

Algorithm 4 gives the pseudo-code of the refinement procedure. Line
3 introduces a repeat loop that exists when the fixpoint is reached (line
8). For each possible matching between pattern vertex i and target
vertex j in M (line 4), condition (2) is checked (line 5). If condition (2)
is verified, the matching between i and j is pruned, and the fixpoint is
not reached (line 6). Moreover, false is returned if the current row i
has no 1 (line 7). If a fixpoint is reached, true is returned (line 9).

Using the refine procedure in the enumeration is straightforward.
Algorithm 3 can be read by including the text < · · · > and excluding
[. . . ]. Condition (1) is removed, as the refinement is a necessary and
sufficient condition if depth is nt.

Complexity Space complexity for a single state is O(n2
p.nt). The

vector Mv stores np matrices of size np ∗ nt. The best case is a direct
path of the search starting from the root and ending at a solution node.
The worst case is an exploration of all nodes of the search space, which
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can contain almost N ! states. In the best case and in the worst case, the
memory requirement is Θ(n2

pnt), because the vectors are not copied but
only updated. Time complexity of the refine procedure is O(npntd),
(where d is the maximum degree of pattern and target graphs). Line 4
of Algorithm 4 iters at most O(npnt) times and condition (2) is O(d)
because only the neighboors are checked. The test in line 7 can be easily
transformed to a check by using counters and can be considered O(1).
In the best case, a linear branch to a solution has a time complexity of
O(n2

pntd). Worst case time complexity is O(np!npntd).

2.4.2 Vflib

The key points of the vflib algorithm are the incremental building of
connected graphs with cheap pruning rules and a clever choice of data
structures leading to a lower memory footprint. The following presen-
tation is based on [CFSV01] which describes the lastest version of the
algorithm. The same type of algorithm is described in [Val02].

While Ullmann enumerates all monomorphisms and prunes some of
them, vflib builds incrementally the monomorphism M through a back-
tracking procedure, stopping whenever the extension M is impossible.
Vflib represents the monomorphic function by a subset M of Np × Nt.
A state s of the search is a partial (injective) mapping M(s) ⊆ Np ×Nt,
together with Gp and Gt. This M(s) defines two subgraphs, one of
Gp and one of Gt, denoted by M1(s) = (V1, E1) and M2(s) = (V2, E2)
which are isomorph by construction. The extension of M(s) is done by
selecting direct neighbors of those subgraphs. Those two subgraphs are
thus constrained to be connected if they are contained in a connected
component of their respective graph.

Algorithm 5 gives the pseudo-code. If s is final state, the associated
mapping M(s) is returned (line 2). The procedure genneigh in line 3
computes the candidate assignments given the state s. For each such
a candidate (n, m), the procedure feasible checks if assigning n to m
violates the monomorphism (line 4 and 5). If vertex n can be assigned to
vertex m, the state s is extended to the state s′ by adding the assignment
(n, m) (line 6). The procedure vf2 is called recursively on the new state
s′. Line 8 handles the backtracking by restoring data structures.

The procedure genneigh generates the cartesian product of the
neighbors of subgraphs M1(s) and M2(s). It considers first the carte-
sian product of the in-neighbors, then the cartesian product of the out-
neighbors. In case those two sets are empty, it generates the cartesian
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Algorithm 5: vflib2 Algorithm

Input: two graphs Gp and Gt, a state s
Output: a total mapping M(s) if a monomorphism exists

fail otherwise.
procedure vf2(s, Gp, Gt)1

if M(s) covers all Gp then return M(s);2

Candidate ← genneigh(s, Gp, Gt);3

for each (n, m) in Candidate do4

if feasible(s, n, m) then5

create a new state s′ from s by adding the mapping (n, m);6

vf2(s′, Gp, Gt)7

restore data structures;8

product of what is left in the pattern graph and in the target. This cor-
responds to the case where at least one of the input graphs have several
distinct connected components. More formally, one of the following set
is generated:

1. N+(s) = N+(M1(s)) × N+(M2(s)),

2. N−(s) = N−(M1(s)) × N−(M2(s)) if N+(s) is empty,

3. N1 − M1(s) × (N2 − M2(s)) if N+(s) and N−(s) are empty.

In the actual implementation, the candidates are scanned without
an explicit generation.

The procedure feasible first checks the necessary morphism condi-
tion. The two cases of partial subgraph isomorphism and induced sub-
graph isomorphism are distinguished. If a partial subgraph is searched,
each in-neighbor n′ of n in the partial mapping corresponds to a node m′

in the in-neighbors of m. If an induced subgraph is searched, the follow-
ing condition is added: each in-neighbor m′ of m in the partial mapping
corresponds to a node n′ in the in-neighbors of n. More formally, these
necessary conditions can be expressed as:

∀ v ∈ N−
1 (n) ∩ N1(s) ∃ v′ ∈ N−

2 (m) ∩ N2(s) :
(v, v′) ∈ M(s) ∧ (v, n) ∈ Ep ∧ (v′, m) ∈ Et

(partial)
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∀ v′ ∈ N−
2 (m) ∩ N2(s) ∃ v ∈ N−

1 (n) ∩ N1(s) :
(v, v′) ∈ M(s) ∧ (v, n) ∈ Ep ∧ (v′, m) ∈ Et.

(induced)
Redundant conditions that prune the search space are also added.

The first pruning rule checks if the number of in-neighbors of n that
are in the direct in-neighbor of M1(s) is less or equal to the number of
in-neighbors of m that are in the direct in-neighbor (out-neighbor) of
M2(s). The second pruning rule checks if the number of in-neighbors of
n are neither in M1(s) nor in N(M1(s)) is less or equal to the number
of in-neighbors of m that are neither in M2(s) nor in N(M2(s)). More
formally, the pruning rules are :

1. |N−
1 (n) ∩ N(M1(s))| ≤ |N−

2 (m) ∩ N(M2(s))|

2. |N−
1 (n) \ (M1(s) ∪ N(M1(s)))| ≤ |N−

2 (m) \ (M2(s) ∪ N(M2(s)))|.

The morphism condition together with the pruning conditions are
also checked for the out-neighbors. Those additional conditions can be
obtained by replacing the in-neighbor functions N−

1 and N−
2 by the out-

neighbors functions N+
1 and N+

2 respectively, which leads to a total of
six conditions.

The morphism condition is illustrated in Figure 2.9. In this fig-
ure, M(s) = {(1, A), (2, B)} and the feasible function is testing the
candidate (3, C). The partial morphism condition is verified, since
(1, A) ∈ M(s) and (1, 3) ∈ Ep and (A, C) ∈ Et. The out-neighbor
vertex 3 of vertex 1 can be associated with the out-neighbor vertex C
of vertex A. The induced morphism condition fails, since (2, B) ∈ M(s)
and (2, 3) /∈ Gp. The vertex C has an in-neighbor B which is matched
with the vertex 2, but the vertex 2 is an in-neighbor of vertex 3.

Figure 2.9: Instance where the subgraph is partial and not
induced.

The first pruning condition is illustrated in Figure 2.10, where no
solutions exist. In this figure, M(s) = {(1, A), (2, B)} and the feasible
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function is testing the candidate (3, C). The morphism condition is
verified as the edge (1, 3) can be matched with the edge (A, C). The first
pruning rule fails. The set of in-neighbors of the node 3 in the direct
neighbor the partial matching is the vertex 4. For the vertex C, there
is no such node. The third pruning rule however, is trivially verified,
since all nodes in the pattern and target graph are either contained in
the partial mapping or in its direct neighbor.

Figure 2.10: Instance where only the first pruning condi-
tion fails

The second pruning condition is illustrated in Figure 2.11, where no
solution exits. In this figure, M(s) = {(1, A), (2, B)} and the feasible

function is testing the candidate (3, C). The morphism condition is
verified, since the edge (1, 3) can be matched with the edge (A, C). The
first pruning condition is also verified, since there no neighbors of vertex
3 and C which are in the direct neighbor of the partial mapping. The
second pruning condition fails. There are two in-neighbor vertices 4
and 5 of vertex 3 which are outside the partial mapping and its direct
neighborhood. There is one in-neighbor vertex E of vertex C which is
outside the partial mapping and its direct neighborhood.

Figure 2.11: Instance where only the second pruning con-
dition fails

Labelling compatibility is also checked by the feasible function. If
the labels of the vertices n and m or the edges relating n and m to the
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current subgraphs are not compatible, the algorithm backtracks.

The injective condition of subgraph isomorphism follows from the
generation of candidates in the genneigh function. When a couple
(n, m) is selected and is feasible, the target node m will not be con-
sidered as a candidate until the next backtrack. Hence the morphism is
guaranteed to be injective.

Implementation The vflib algorithm uses the following data struc-
tures:

• core1[n] = m ⇔ vertex n of Gp is matched with vertex m of Gt.

• core2[m] = n ⇔ vertex m of Gt is matched with vertex n of Gp.

• in1[n] = 1 ⇔ n ∈ M1(s) ∨ n ∈ N−(M1(n))

• in2[m] = 1 ⇔ m ∈ M2(s) ∨ m ∈ N−(M2(n))

• out1 and out2 are defined similarly.

• d is the current depth of the search (|M(s)|).

• nbrin1, nbrin2, nbrout1, nbrout2, are the number of vertices in
N−(M1(s)), etc.

• (n1, n2) are the pair of nodes added to s with respect to its direct
ancestor.

Complexity Time complexity of feasible is proportional to the de-
gree of n and m. Indeed the partial and induced morphism condition
can be checked in O(d1(n)+d2(m)). The second rule can also be checked
in O(d1(n) + d2(m)), since determining the appartenance of a vertex a
to N−(M1(s)) is O(1), thanks to in1[a]. The third rule is also in O(1)
since checking if a ∈ M1(s) is O(1), thanks to core1[a]. Hence best case
time complexity is O(npd) and worst case is O(np!d).

Memory complexity is a striking feature of vflib. Backtracking can
be done without the need of any copy of states. Backtracking from a
state s amounts to setting core1[n1] and core2[n2] to ⊥. Restoring in1 for
instance can be done in a time proportional to the degree of n1 and n2.
This ensures that at any depth in the search tree memory requirement
is Θ(nt).
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Comparing Ullman and vflib Both in time and memory require-
ments, vflib looks more attractive. However, it should be reminded that
vflib and Ullman algorithms perform a different level of consistency. As
proved by McGregor [McG79], the Ullmann algorithm is equivalent to
arc consistency on the morphism condition (see Section 2.5.2 for more
details). Vflib performs a forward checking consistency, as matched
nodes are used to prune future matchings. So it is not obvious, based
on the best and worst case, that the vflib algorithm outperforms the
Ullmann algorithm. Its efficiency is confirmed by experimental results
on randomly generated graphs [CFSV01]. The main advantage of the
vflib algorithm is its low memory footprint and management overhead.

2.4.3 Related Works

There exists a number of subgraph isomorphism algorithms. Ullman is
an instance of the early backtrack based algorithms. Many early sub-
graph isomorphism algorithms were formulated in the context of sub-
structure search in chemical components. Ullmann [Ull76] is one of the
first paper and algorithm dedicated to graph and subgraph isomorphism
problem itself. Moreover, the Ullmann algorithm is the baseline for more
advanced algorithms and it is still cited in recent applications (see for
example [GK07]).

Another important algorithm is the vflib algorithm [CFSV01], which
is considered as the state-of-the-art for subgraph isomorphism. It ex-
tends assignment by growing two connected graphs inside the pattern
and the target graph respectively, and by performing the checking of
conditions in the neighborhood of the current subgraphs. For example,
[Val02] also describes subgraph isomorphism with this approach. The
popularity of vflib is due to several papers [CFSV99, CFS+98, CFSV01]
demonstrating the efficiency of vflib algorithm against the Ullman al-
gorithm, the public availability of its source code, and the systematic
experiments over a synthetic database for graph matching problems
[FSV01b].

Some authors have also suggested to use maximum common sub-
graph algorithms, or the clique algorithms for solving the SIP. Although
those approaches were initially interesting, it proved quickly that those
approaches were outperformed by dedicated algorithms (see for example
[Rég95]).
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2.5 CP Approaches to Subgraph Isomorphism

In this section, we review the constraint programming approaches
for the graph morphism problems, mainly graph homomorphism and
(sub)graph isomorphism. Section 2.5.1 describes common modelings.
Section 2.5.2 describes the implementation for the constraints stated in
the models. Finally, Section 2.5.3 discusses the related works published
in the constraint programming field.

2.5.1 Modeling

The graph morphism problem has been modeled in several ways in the
literature. In the following, we omit the constraint that impose the
compatibility of the labelings together with the degree preprocessing
constraint, as those are straightforward to formulate.

Node based [McG79, Rég95, LV02] In the node based model, the
matching function maps nodes to nodes, and mapping of edges is ig-
nored. The standard model states the morphism condition, together
with additional conditions to produce a particular type of morphism.
More formally, the node based model is defined as :

• a vector of variables [x1, . . . , xn] with D(xi) = Vt, representing the
function.

• a constraint

(i, j) ∈ Ep ⇒ (xi, xj) ∈ Et (MC)

representing the morphism condition, or the constraint

(i, j) ∈ Ep ⇔ (xi, xj) ∈ Et (IMC)

for the induced morphism constraint.

Another formulation of the morphism constraint enforces the neigh-
borhood relationship between pattern nodes instead of mapping pattern
edges:

∀ i ∈ Vp ∀ j ∈ Np(i) : xj ∈ ∪a∈D(xi)Nt(a). (NC)

This former condition is equivalent to the morphism condition (MC).
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Node and edge based [Rud98a] In the node and edge based model,
the nodes and edges are explicitly represented as variables. A first func-
tion maps nodes to nodes, while a second one maps edges to edges. Mor-
phism constraint are implemented by linking the nodes to the edges. If
a vertex k is the source of an edge e in the pattern graph, then they
must be assigned to a vertex k′ and an edge e’ such that k′ is the source
of the edge e′. The same constraint hold for the target of an edge. More
formally, the node and edge based model is defined as :

• a vector of variables [x1, . . . , xn] with D(xi) = Vt, representing the
node function.

• a vector of variables [e1, . . . , e|Ep|] with D(ei) = Et, representing
the edge function.

• i ∈ Vp ∧ j ∈ Ep ∧ head(j) = i ⇒ head(ej) = xi.

• i ∈ Vp ∧ j ∈ Ep ∧ tail(j) = i ⇒ tail(ej) = xi.

Since edges must be mapped to edges, the node and edge based
model is a partial morphism model.

The most used model in the literature is the node based. Indeed,
the node and edge based model creates an additional O(mpmt) vector
(where m denotes the number of edges of a graph). This would slow the
constraint programming approach, especially comparing to dedicated
algorithms that uses Θ(nt) vectors, such as vflib.

Deriving other graph morphism problems Deriving the other
types of graph morphism problems can be done by constraining the
mapping function f , represented by the vector of variables. Those con-
straints can be systematically derived from Section 2.2.2. For graph
isomorphism, the function is total and bijective. For subgraph isomor-
phism, the function is total and injective. The constraint ∀ i, j ∈ Vp : i 6=
j ⇒ xi 6= xj is added, usually modeled as a global alldiff constraint. For
graph epimorphism, the function is total and surjective. For maximum
common subgraph, the function is partial and injective, and its domain
must be maximized. We will give detailed models for those problems in
the next chapter.
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2.5.2 Implementing morphism constraints

The injective condition in the subgraph isomorphism is forced by an
alldiff constraint. We focus first on the implementation of morphism
constraint (MC). We also show how to implementent an additional
redundant constraint, and the neigborhood morphism constraint (NC).
Finally, we compare the complexities of those implementations.

Morphism constraint (c2) A classical AC-consistency algorithm
would cost O(mpn

2
t ) amortized time. By using the problem structure,

its amortized complexity can be reduced to O(npntd) [LV02]. We also
call this constraint c2, following the naming convention introduced in
[LV02].

The propagator keeps track of relations between all the target nodes
and the domain D(xi) in a structure S(i, a) = |D(xi) ∩ Nt(a)| repre-
senting the number of relations between a target node a and D(xi).
Whenever the neighbors of a target node a have no relation with D(xi),
that is when S(i, a) = 0, node a is pruned from all neighbors of xi. Al-
gorithm 6 shows an implementation of the morphism constraint. It has
an O(npntd) amortized time complexity, and the structure S(i, a) has
a Θ(npnt) spatial complexity. Line 3 is called at most O(npnt) times,
and line 4 is executed at most O(npntd) times. Condition in line 5 is
true only O(npnt) times, and hence line 7 is executed at most O(npntd)
times. The preprocessing to compute S(i, a) costs O(npntd).

Algorithm 6: Morphism Propagator

Propagate MC(i,a)1

// Element a exits from D(xi)2

for b ∈ Nt(a) do3

S(i, b) ← S(i, b) − 14

if S(i, b) = 0 then5

foreach j ∈ Np(i) do6

D(xj) ← D(xj) \ {b}7

McGregor [McG79] demonstrated that making the graph morphism
CSP GAC is equivalent to performing the refine procedure of the Ull-
mann algorithm (see Section 2.4.1).

It is worth noting that the Algorithm 6 proposed by [LV02] prop-
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agates only the morphism constraint (MC), that is (x, y) ∈ Ep ⇒
(f(x), f(y)) ∈ Et. We will see in the next chapter how to extend ef-
ficiently this implementation of the (MC) condition to the (IMC) con-
dition.

Forward checking morphism constraint A forward checking mor-
phism constraint can be designed. This is especially useful when in-
stances with a lot of solutions are considered. Algorithm 7 gives the
pseudo-code. Line 6 and 7 implement the induced morphism propaga-
tor and are optional. The forward checking propagator implementing
the induced morphism constraint is obtained by replacing the neigh-
boor function by their complementary neighboorhood functions, that is
Np(i) = {j | (i, j) /∈ Ep} and N t(a) = {b | (a, b) /∈ Et}. The amor-
tized time complexity is O(npd) for the partial morphism constraint,
and O(n2

p) for the induced morphism constraint.

Algorithm 7: Forward checking morphism constraint

Propagate FC(i)1

// Variable xi instantiated2

a ← D(xi)3

for j ∈ Np(i) do4

D(xj) ← D(xj) ∩ Nt(a)5

[ for j ∈ Np(i) do6

D(xj) ← D(xj) \ N t(a) ]7

Local Alldiff Constraint (c3) A redundant constraint pruning the
search space has been proposed in [LV02]. We also call this redundant
constraint c3, following the naming convention introduced in [LV02].
This constraint is a local Alldiff constraint [Reg94] upon the neighbor-
hood of a node, by noting that the number of candidates available in
the union of xi neighbors domain could be less than the actual number
of xi neighbors in the pattern graph :

LA(xi) ≡ | ∪j∈Np(i) D(xj) ∩ Nt(xi)| ≥ |Np(i)| . (2.1)

A structure CT (i, a) = | ∪j∈Np(i) D(xj) ∩ Nt(a)| is updated through
the use of an intermediate structure R(i, a) = |{j ∈ Np(i) | a ∈ D(xj)}|.
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It counts the number of neighbors of xi which have a in their domain.
Whenever R(i, a) equals 0, CT (i, b) decreases by 1 for all b in the neigh-
bor of a in the target graph. The expression |Np(i)| can be obtained
in O(1). Algorithm 8 describes an implementation of the LA(x1, ..., xn)
constraint. The amortized complexity of this redundant constraint is
O(npntd) and its space complexity is Θ(npnt). Line 3 is called at most
O(npnt) times. Line 4 is called at most O(npntd) times. Condition at
line 5 is true at most O(npnt) times. Line 7 is this executed at most
O(npntd) times, and line 8 and line 9 can be considered as constant time.
The preprocessing time to build the CT (i, a) and R(i, a) structures is
O(npntd).

Algorithm 8: Local alldiff constraint

Propagate LA(i,a)1

// Element a exits from D(xi)2

for j ∈ Np(i) do3

R(j, a) ← R(j, a) − 14

if R(j, a) = 0 then5

foreach b ∈ Nt(a) do6

CT (j, b) ← Ct(j, b) − 17

if CT (j, b) < |Nt(j)| then8

D(xj) ← D(xj) \ {b}9

Neighborhood morphism constraint An arc consistent algorithm
can also be designed for the neighborhood morphism constraint (NC).
Algorithm 9 gives the pseudo-code. The propagator is called at most
O(npnt) times and line 4 is executed at most O(ntd) times, and hence
the total time complexity is O(npn

2
t d). The induced version is obtained

by adding lines 7 to 10. Then the amortized complexity is O(n2
pn

2
t ).

Complexity We consider the most widely used model in the liter-
ature, that is the node based model and arc-consistent constraint for
the morphism condition (MC). For such a model the arc-consistent
alldiff constraint costs O(n2

pn
2
t ), while the arc-consistent morphism con-

straint has an amortized complexity of O(npntd). Hence in the best case
the time complexity is O(n3

pn
2
t ), while the wost case time complexity is
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Algorithm 9: Neighborhood morphism constraint

Propagate NEIGH(i,a)1

// Element a exits from D(xi)2

for b ∈ D(xi) do3

R ← R ∪ Nt(b)4

for j ∈ Np(i) do5

D(xj) ← D(xj) ∩ R6

[ for b ∈ D(xi) do7

R ← R ∪ Nt(b)8

for j ∈ Np(i) do9

D(xj) ← D(xj) ∩ R ]10

O(np!n
2
pn

2
t ). Regarding memory, we consider that the restoration strat-

egy is copying. The variables, the domains and the constraints have
to be saved and restore. Saving the variables and the domains costs
Θ(npnt). The alldiff constraint and the morphism constraints have a
memory complexity of Θ(npnt). Hence the memory complexity of the
constraint programming approach is Θ(n2

pnt), as only Θ(np) of previous
states have to be kept during the search.

2.5.3 Related Works

Several authors in the constraint programming fields have proposed
models and implementation of constraints:

• [McG79]: McGregor introduces a simple model based on the nodes
of the graphs, and investigates path consistency with (sub)graph
isomorphism. It is the first work about graph matching and con-
straint programming.

• [Rég95]: J.C. Régin also uses a model based on the nodes of the
graphs, and uses subgraph isomorphism to propose AC7.

• [Rud98a]: the main contribution resides in modeling. Rudolf pro-
poses the node and edge model, together with the semantic of
its constraints, in the context of graph homomorphism. However,
checking is used, and arc consistency is introduced at a very late
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stage in the paper, and no clear implementation and experiments
are given.

• [LV02]: Valiente is one of the most recent work about graph match-
ing and constraint programming. This work uses subgraph iso-
morphism to compare efficiency of levels of consistency. He uses
a model based on the mapping of the nodes of the graphs. The
main contribution of this paper is to give concrete implementation
of the morphism constraints. Moreover, the global constraint alld-
iff is used. Finally, another contribution of this paper is to present
a redundant constraint and its implementation. It is shown that
it is powerful on difficult instances, even thought the mean time is
increased.

• [Pug05a] [Pug03] : Puget uses (sub)graph isomorphism problems
as tools for dominance checks in the context of symmetry [Pug05a]
and for symmetry detection [Pug03]. A node based model is used
and the neighborhood constraint is proposed.

2.6 Conclusion

The exact graph matching problems can be seen as an instantiation of
a morphism problem. Subgraph isomorphism for example can be seen
as an injective graph morphism. Graph morphism problems can be
modeled as constraints. However, regarding subgraph isomorphism, it
remains to be proved that constraint programming can give rise to a com-
petitive approach. Table 2.2 compares the complexities of the dedicated
algorithm together with the arc-consistent CP approach for the partial
subgraph isomorphism problem. It is clear that vflib outperforms both
the Ullmann approach and the arc-consistent CP approach. We could
look for a lower level of consistency. With forward checking, the mor-
phism constraint is O(d), and the alldiff constraint is O(nt). The best
case and the worst case complexities are thus O(npntd) and O(np!ntd),
still worse than vflib. Moreover, the practical overhead created by the
usage of a constraint engine may also decrease the performance of the
CP approach. The memory complexity is where the constraint pro-
gramming cannot beat vflib. The memory requirement of Θ(n2

pnt) is
inherent to constraint programming, since variables and domains have
to be explicitly represented, and have to be saved and restored. Those
reasons explain why it is usually believed that a declarative approach
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cannot compete against a fast and simple dedicated algorithms for the
subgraph isomorphism problem. However, we will show in the next
chapters that not only can CP outperforms state-of-the-art algorithms,
but the CP approach can even offer an attractive declarative framework.

Table 2.2: Comparison of the complexities of Ullman,
vflib and the arc-consistent CP approach for
the best case and the worst case.

Ullmann Vflib

B.C. W.C. B.C. W.C.

time O(n2
pntd) O(np!npntd) O(npd) O(np!d)

memory Θ(n3
pnt) Θ(n3

pnt) Θ(nt) Θ(nt)

CP AC CP FC

B.C. W.C. B.C. W.C.

O(n3
pn

2
t ) O(np!n

2
pn

2
t ) O(npntd) O(np!ntd)

Θ(n2
pnt) Θ(n2

pnt) Θ(n2
pnt) Θ(n2

pnt)



3
Models using structured

constraints1

3.1 Introduction

Declarative modeling together with efficiency is the goal of constraint
programming. In this chapter we propose a modeling schema for graph
matching problems inside constraint programming. We show how the
integration of two domains of computation over countable structures,
graphs and maps, can be used for modeling and solving various graph
matching problems. To achieve this, we extend map variables allowing
the domain and range to be non-fixed and constrained. We describe how
such extended maps are designed and realized on top of finite domain
and finite set variables with specific propagators. Moreover, thanks to
graph variables, morphism constraints can be stated between the pattern
graph, the target graph, and the matching function.

Using graph variables instead of graph structure opens the constraint
programming to approximation. In many areas, the structure of the
pattern can only be approximated and exact matching is then far too
stringent. Approximate matching is a possible solution, and can be
handled in several ways. In a first approach, the matching algorithm may
allow part of the pattern to mismatch the target graph (e.g. [WZC95,
MB98, DK03, CS03b]). The matching problem can then be stated in
a probabilistic framework (see, e.g. [RKH05]). In a second approach,

1Part of this chapter has been published in [DDZD05], [ZDD05] and [DZD08].
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the approximations are declared by the user within the pattern, stating
which part could be discarded (see, e.g. [GS02, DDD05]). This approach
is especially useful in fields where one faces a mixture of precise and
imprecise knowledge of the pattern structures. In this approach, which
will be followed in this chapter, the user is able to declare parts of
the pattern open to approximation. The ideal would be that the user
states properties on the pattern to be found and the CP engine finds it
efficiently.

In constraint programming, two domains of computation over count-
able structures have received recent attention : graphs and maps. In
CP(Graph) [DDD05], graph variables, and constraints on these variables
are described (see also [Ger93, CDPP04] for similar ideas). CP(Graph)
can be used to express and solve combinatorial graph problems modeled
as constrained subgraph extraction problems. In [Ger97, FHK01], func-
tion variables are proposed, but the domain and range are limited to
ground sets. Such function variables are useful for modeling problems
such as warehouse location.

There is a trade-off between declarative modeling and efficiency. We
will show that our approach outperforms the state-of-the-art in subgraph
isomorphism and compete with the vflib approach of maximum common
subgraph.

Contributions

The main contributions of this chapter are the following:

• Extension of function variables, where the domain and range of
the mapping are not limited to ground sets, but can be finite set
variables. Introduction of the MapVar and Map constraints which
allow to use the non-fixed feature of our map variables.

• Demonstration of how a single constraint is able to express a wide
range of graph matching problems thanks to three high-level struc-
tured variables. In particular, we show how switching a parameter
from a fixed graph to a graph interval opens a new spectrum of
matching problems. We show how additional constraints imposed
on this graph interval enable the expression of hybrid problems
such as approximate graph matching. The beauty and originality
of this approach resides in that those problems are either new or
were always treated separately, illustrating the expressive power
and generality of constraint programming.
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• Experimental evaluation of our CP approach. We show that this
modeling exercise is not only aesthetic but is actually competitive
with the current state-of-the-art in subgraph isomorphism (vflib).
The generic approach does not hinder the efficiency of the solver.
On a standard benchmark set, we show that our approach solves in
a given time limit a fourth of the instances which cannot be solved
by vflib while only spending between 9% and 22% more time on
instances solved by the two competing approaches.

The next section describes the basic idea behind the CP(Graph)
framework. CP(Map), our extension to function variables in CP is de-
scribed in Section 3. Approximate graph matching is defined in Sec-
tion 4, and its modeling within CP(Graph+Map) is handled in Section
5. Section 6 discusses the implementation of the morphism constraint.
Section 7 analyzes experimental results, and Section 8 concludes this
Chapter.

3.2 CP(Graph)

Graphs have already been studied in constraint programming. Some
problems involving undetermined graphs have been formulated using
either binary variables, sets ([Ger93, CDPP04]) or integers (successor
variables e.g. in [BC94, PGPR98]). CP(Graph) [DDD05] unifies those
models by recognizing a common structure. Graph variables are vari-
ables whose domain ranges over a set of graphs and as with set vari-
ables [Pug92, Ger97], this set of graphs is represented by a graph inter-
val [D(G), D(G)] where D(G), the greatest lower bound (glb) and D(G),
the least upper bound (lub) are two graphs such that D(G) a (partial)
subgraph of D(G) (we write D(G) ⊆ D(G)). These two bounds are
referred to as the lower and the upper bound. The lower bound D(G)
is the set of all nodes and arcs which must be part of the graph in a
solution while the upper bound D(G) is the set of all nodes and arcs
which could be part of the graph in some solution. The domain of a
graph variable with D(G) = [D(G), D(G)] is the set of graphs g such
that D(G) ⊆ g ⊆ D(G). Here, g is used to denote a constant graph and
G is used to denote a graph variable. This notation is used throughout
this chapter: in CSP, lowercase letters denote constants and uppercase
letters denote domain variables.

Graph variables can be implemented using a dedicated data-
structure or translated into set variables, integer variables or binary
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variables. For instance, a graph variable G can be modeled as a set of
nodes N and a set of arcs E with an additional constraint enforcing
the relation E ⊆ N ×N . Whatever the graph variable implementation,
two basic constraints Nodes(G, SN) and Arcs(G, SA) allow to access
respectively the set of nodes SN and the set of arcs SA of the graph
variable G. To simplify the notation the expression Nodes(G) is used
to represent a set variable constrained to be equal to the set of nodes of
G. A similar notation is used for arcs.

Various constraints have been defined over such graph variables (or
their preceding specialized models); see for instance the cycle [BC94],
tree [BFL05], path [Sel03, CB04], minimum spanning tree [DK06] or
spanning tree optimization constraint [DK07]. In the remainder of this
article, we only use the two simple constraints Subgraph(G1, G2) (also
denoted G1 ⊆ G2) and InducedSubgraph(G1, G2) (also denoted G1 ⊆∗

G2). G1 ⊆ G2 holds if G1 is a partial subgraph of G2, its propagator
enforces that the lower and upper bounds of G1 are subgraphs of the
lower and upper bounds of G2 respectively. The constraint G1 ⊆∗ G2

states that G1 is the node-induced subgraph of G2. It holds if G1 is a
subgraph of G2 such that for each arc a of G2 whose end-nodes are in
G1, a is also in G1.

The CP(Graph) computation domain is an approximation of the
exponential number of graphs that is part of the domain of a graph
variable G. This is also the case for the set computation domain. It
could be argued that such an upper and lower bound representation is
very crude. For instance, a graph inside the lattice D(G) may not be
removed as only bounds can be modified, and inferences of filtering al-
gorithms are only limited to the bounds. However, even for sets, the
state-of-the-art resides in the lattice representation, for time and space
complexity concerns. Only few recent works propose new representa-
tions of set, using for example a length-lexicographic ordering [GH06] or
[DBL06] ROBDDs. Delving in a more accurate representation for the
graph computation domain is outside the scope of this work.

3.3 CP(Map)

The value of a map variable is a mapping from a domain set to a range
set. By map or mapping, we mean here a function, following the mathe-
matical usage. The domain of a map variable is thus a set of mappings.
Map variables were first introduced in CP in [Ger97] where Gervet de-
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fines relation variables. However, the domain and the range of the re-
lations were limited to ground finite sets. Map variables were also in-
troduced as high level type constructors, simplifying the modeling of
combinatorial optimization problems. This was first defined in [FHK01]
as a relation or map variable M from set v into a set w, where supersets
of v and w must be known. Such map variables are then compiled into
OPL. This idea is developed in [Hni03], but the domain and range of
a map variable are limited to ground sets. Relation and map variables
are also described in [FJHM05] as a useful abstraction in constraint
modeling. Rules are proposed for refining constraints on these complex
variables into constraints on finite domain and finite set variables. Map
variables were also introduced in modeling languages such as ALICE
[Lau78], REFINE [Smi87] and NP-SPEC [CPSV99]. To the best of our
knowledge, map variables were not yet introduced directly in a CP lan-
guage. One challenge is then to extend current CP languages to allow
map variables as well as constraints on these variables.

In the remaining of this section, we show how a CP(Map) extension
can be realized on top of finite domain and finite set variables.

3.3.1 The Map domain

We consider the domain of total surjective functions. Given two elements
m1 : s1 → t1 and m2 : s2 → t2, where s1, s2, t1, t2 are sets, we have
m1 ⊆ m2 iff s1 ⊆ s2 ∧ t1 ⊆ t2 ∧ ∀x ∈ s1 : m1(x) = m2(x). We also
have that m = glb(m1, m2) is a map m : s → t with s = {x ∈ s1 ∩ s2 |
m1(x) = m2(x)}, t = {v | ∃x ∈ s : m1(x) = v}, and ∀x ∈ s : m(x) =
m1(x) = m2(x). The lub between two elements m1, m2 exists only if
∀x ∈ s1 ∩ s2 : m1(x) = m2(x). In that case the lub is a map m : s → t
with m(x) = m1(x) if x ∈ s1, and m(x) = m2(x) if x ∈ s2, s = s1 ∪ s2,
and t = {v | ∃x ∈ s : m(x) = v}. The domain of total surjective
functions is then a meet semi lattice, that is a semi lattice where every
pairs of elements has a glb.

3.3.2 Map variables and the MapVar constraint

A map variable is declared with the constraint MapV ar(M, S, T ), where
M is the map variable and S, T are finite set variables of Cardi-
nal [Aze07]. The domain of M is all the total surjective functions from s
to t, where s, t are in the domain of S, T . We call S the source set of M ,
and T the target set of M . When M is instantiated (when its domain is
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a singleton), the source set and the target set of M are ground sets cor-
responding to the domain and the range of the mapping. As usual, the
domain of a set variable S is represented by a set interval [D(S), D(S)],
the set of sets s with D(S) ⊆ s ⊆ D(S).

Example Let M be a map variable declared in MapV ar(M, S, T ),
with dom(S) = [{8}, {4, 6, 8}] and dom(T ) = [{}, {1, 2, 4}]. A possible
instance of M is {4 → 1, 8 → 4}. On this instance, S = {4, 8}, and
T = {1, 4}. Another instance is M = {4 → 1, 8 → 1}, S = {4, 8}, and
T = {1}.

Map variables can be used for defining various kinds of mappings,
such as :

• Surjective function : SurjectFct(M, S, T ) ≡ MapV ar(M, S, T ).

• Bijective function : BijectFct(M, S, T ) ≡ SurjectFct(M, S, T ) ∧
∀i, j ∈ S : i 6= j ⇒ M(i) 6= M(j).

• Injective function : InjectFct(M, S, T ) ≡ T ′ ⊆ T ∧
BijectFct(M, S, T ′)

• Total function : TotalFct(M, S, T ) ≡ T ′ ⊆ T ∧
SurjectFct(M, S, T ′)

• Partial function : PartialFct(M, S, T ) ≡ S′ ⊆ S ∧
TotalFct(M, S′, T )

In order to access individual elements of the map, we define the
constraint Map(M, X, V ), where X and V are finite domain variables.
Given a map variable declared with MapV ar(M, S, T ), the constraint
Map(M, X, V ) holds when X ∈ S ∧V ∈ T ∧M(X) = V . We also define
the constraint M1 ⊆ M2 where M1 and M2 are map variables.

3.3.3 Implementing Map Variables in a Finite Domain
Solver

When a map variable M is declared by MapV ar(M, S, T ), a finite do-
main (FD) variable Mx is associated to each element x of the upper
bound of the source set (D(S)).

The semantics of these FD variables is simple : Mx represents M(x),
the image of x through the function M . Since the source set S can be
non-fixed, x might not be in S and its image would not be defined. A
special value ⊥ is used for this purpose. The relationship between the
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domain of each variable Mx and the set variables S and T can be stated
as follows :

• (1) S = {x | Mx 6=⊥} (M is total)

• (2) T = {v | ∃x : Mx = v 6=⊥} (M is surjective)

Given MapV ar(M, S, T ), the domain of M is the set of total sur-
jective functions m : s → t with s ∈ D(S), t ∈ D(T ), ∀x ∈ s : m(x) ∈
D(Mx), and ∀x 6∈ s :⊥∈ D(Mx).

As can be seen on Figure 3.1, these variables are stored in an ar-
ray and accessed by value x through a dictionary data structure (e.g.
hashmap) index used to store the index in the array of each value of
D(S). The initial domain of each FD variable is D(T ) ∪ {⊥}.

3.3.4 Additional Constraints and Propagators

Given two map constraints MapV ar(M1, S1, T1) and
MapV ar(M2, S2, T2) the constraint M1 ⊆ M2 is implemented
as S1 ⊆ S2 ∧ T1 ⊆ T2 ∧ ∀x ∈ S1 : M1x = M2x. The last conjunct can
be implemented as a set of propagation rules :

• x ∈ D(S1) → M1x = M2x

• for each x ∈ D(S1) \ D(S1) : M1x 6= M2x → x /∈ S1.

The constraint Map(M, X, V ) is translated to
Element(index(X), I, V ) ∧ X ∈ S ∧ V ∈ T , where S and T are
the source and target sets of M , I is the array representing the FD
variables Mx, and index(X) is a finite domain obtained by taking the
index of each value of the domain of X using the index dictionary.

8

4

6
32

index
1

4 6 8

dom(S)=[{8},{4,8}]

dom(T)=[{},{1,2,4}]

dom(M )={    }

dom(M )={1,2,    }

dom(M )={1,4}

{1,4}{    }{1,2,   }

Figure 3.1: Implementation of MapV ar(M, S, T ) (with
initial domain dom(S) = [{8}, {4, 6, 8}] and
dom(T ) = [{}, {1, 2, 4}]), assuming (other)
constraints already achieved some pruning.
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The implementation of BijectFct(M, S, T ) is realized through
MapV ar(M, S, T ) ∧ AllDiffExceptV al(I,⊥) ∧ |S| = |T |, where I is
the array representing the FD variables Mx, and AllDiffExceptV al
holds when all the FD variables in I are different when their value is not
⊥ [Bel00].

Given MapV ar(M, S, T ), the propagation between M , S and T is
based on their relationship described in the previous section, and is
achieved by maintaining the following invariants :

• D(S) = {x | D(Mx) 6= {⊥}}

• D(S) =
{

x ∈ D(S) |⊥/∈ D(Mx)
}

• D(T ) = {v | v 6=⊥ ∧ ∃x : v ∈ D(Mx)}

• D(T ) ⊇ {v | v 6=⊥ ∧ ∃x : D(Mx) = {v}}

The last invariant is not an equality because when a value is known to
be in T , it is not always possible to decide which element in I should be
assigned to v.

Propagations rules are then easily derived from these invariants (two
rules per invariant) :

Mx = ⊥ → x /∈ D(S)

x /∈ D(S) → Mx = ⊥

x ∈ D(S) → Mx 6= ⊥

Mx 6= ⊥ → x ∈ D(S)

v /∈ D(T ) ∧ v 6= ⊥ → v /∈ D(Mx)

NbOccur(I, v) = 0 ∧ v 6= ⊥ → v /∈ D(T )

Mx = v 6= ⊥ → v ∈ D(T )

v ∈ D(T ) ∧ NbOccur(I, v) = 1 ∧ v ∈ D(Mx) → Mx = v

where NbOccur(I, v) denotes the number of occurrences of v in the
domains of the FD variables in I. Each of these propagation rules can
be implemented in O(1) (assuming a bit representation of sets). The
implementation of propagators also exploits the cardinality information
associated with set variables.
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3.3.5 A global constraint based on matching theory

The above propagators do not prune the Mx FD variables (except the ⊥
value). We show here how flow and matching theory can be used to de-
sign a complete filtering algorithm for the MapV ar(M, S, T ) constraint.
The algorithm is similar to that of the GCC and Alldiff constraints but
is based on a slightly different notion: the V -matchings (see [Thi04]). In
the remainder of this section we show that V -matchings characterize the
structure of the MapV ar constraint. Note that it also has similarities
with the Nvalue, Range and Roots constraints ([BHH+05a, BHH+05b]).

Definition. The variable-value graph of a MapV ar(M, S, T ) constraint
is a bipartite graph where the two classes of nodes are the elements of
D(S) on one side and the elements of D(T ) plus ⊥ on the other side.
An arc (x, v) is part of the graph iff v ∈ D(Mx).

Definition. In a bipartite graph g = (N1 ∪ N2, A), a matching M is a
subset of the arcs such that no two arcs share an endpoint : ∀(u1, v1) 6=
(u2, v2) ∈ M : u1 6= u2 ∧ v1 6= v2. A matching M covers a set of nodes
V , or M is a V -matching of g iff ∀x ∈ V : ∃(u, v) ∈ M : u = x ∨ v = x

The following property states the relationship between matching in
the bipartite graphs and solutions of the MapV ar constraint.

Property 1. Given the constraint MapV ar(M, S, T ) and its associated
variable-value graph g, assuming the constraint is consistent, we have :

• (1) Any solution m : s → t contains a t-matching of g, and any
t-matching can be extended to a solution.

• (2) An arc (x, v) belongs to a D(T )-matching of g, iff there exists
a solution m with m(x) = v.

Proof. (1) The solution m is surjective; every node of t must have at
least one incident arc. If we choose one incident arc per node in t, we
have a t-matching as m is a function.

Given a t matching, let m : s → t be the bijective function cor-
responding to this matching. Adding arcs to t leads to a surjective
function. Let s′ = D(S) ∪ s, and t′ = D(T ) ∪ t. Since the constraint is
consistent, ∀x ∈ s′ \ s ∃(x, v) ∈ g : v 6=⊥, and ∀v ∈ t′ \ t ∃(x, v) ∈ g.
Adding all these arcs leads to a surjective function which is a solution.

(2) (⇒) This is a special case of the second part of (1).
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(⇐)Let m : s → t be a solution with m(x) = v. We then have
(x, v) ∈ g. By (1), the graph g contains a t-matching M which is also
a D(T )-matching as D(T ) ⊆ t. If (x, v) ∈ M we are done. Assume
(x, v) /∈ M . Then x is free with respect to M because M(x) = v.
As v ∈ t, v is covered by M; there is a variable node w such that
(w, v) ∈ M . Then, x, v, w is an even alternating path starting in a free
node. Replacing (w, v) by (x, v) leads to another t-matching, hence a
D(T )-matching of g. ¥

From Property 1, an arc-consistency filtering algorithm can be de-
rived : compute the set A of arcs belonging to some D(T )-matching of
the bipartite graph; if (x, v) /∈ A, remove v from D(Mx). The com-
putation of this set can be done using techniques such as described in
[Thi04], with a complexity of O(mn), where n is the size of T , and m is
the number of arcs in the variable-value graph.

3.4 Approximate graph matching and other
matching problems

In this section, we define different matching problems ranging from graph
homomorphism to approximate subgraph matching.

A useful extension is approximate subgraph matching, where the
pattern graph and the found subgraph in the target graph may differ
with respect to their structure [ZDD05]. We choose an approach where
the approximations are declared by the user in the pattern graph through
optional nodes and forbidden arcs.

In many graph morphism problems, all the specified nodes in the
patterns must be matched. It would be interesting to allow some of
them to be optional. Such nodes are declared optional in the pattern
graph. Arcs can also be incident to optional nodes. Once an optional
node is matched, all its incident arcs to other matched nodes must be
matched too. The selected pattern must thus be an induced subgraph
of the complete pattern.

In graph isomorphism, if two nodes in the pattern are not related by
an arc, this absence of arc is an implicit forbidden arc in the matching.
It would be interesting to declare explicitly which arcs are forbidden,
leading to problems between monomorphism and isomorphism.

In Figure 3.2, mandatory nodes are represented as filled nodes, and
optional nodes are represented as empty nodes. Mandatory arcs are
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Figure 3.2: Example of approximate matching.

represented with plain line, and arcs incident to optional nodes are rep-
resented with dashed lines. Forbidden arcs are represented with a plain
line crossed.

In that figure, node 6 cannot be matched to node f because only
one of the arcs (6, 4) and (6, 5) in the pattern can be matched in the
target. The right side of the figure presents two solutions of the matching
problem. The nodes and arcs not matched in the target graph are greyed.

A pattern graph with optional nodes and forbidden arcs forms an
approximate pattern graph, and the corresponding matching is called an
approximate subgraph matching [ZDD05]. We focus here on approximate
graph monomorphism.

Definition 1. An approximate pattern graph is a tuple
(Vp, Op, Ep, Fp) where (Vp, Ep) is a graph, Op ⊆ Vp is the set of optional
nodes and Fp ⊆ Vp × Vp is the set of forbidden arcs, with Ep ∩ Fp = ∅.

Definition 2. An approximate subgraph matching between an ap-
proximate pattern graph P = (Vp, Op, Ep, Fp) and a target graph
G = (Vt, Et) is a partial function f : Vp → Vt such that:

1. Vp \ Op ⊆ dom(f)

2. ∀ i, j ∈ dom(f) : i 6= j ⇒ f(i) 6= f(j)

3. ∀ i, j ∈ dom(f) : (i, j) ∈ Ep ⇒ (f(i), f(j)) ∈ Et

4. ∀ i, j ∈ dom(f) : (i, j) ∈ Fp ⇒ (f(i), f(j)) /∈ Et

The notation dom(f) represents the domain of f . Elements of
dom(f) are called the selected nodes of the matching. According to
this definition, if Fp = ∅ the matching is a subgraph monomorphism,
and if Fp = Vp × Vp \ Ep, the matching is an isomorphism.
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3.5 Modeling graph matching and related prob-
lems

In this section, we show how CP(Graph+Map) can be used for modeling
and solving a wide range of graph matching problems.

The problems of graph matching can be stated along three different
dimensions:

• homomorphism versus monomorphism versus isomorphism;

• graph versus subgraph matching;

• exact versus approximate matching

These different problems illustrated in Table 3.1. All these problems
can be modeled and solved through a morphism constraint on a map
variable and two graph variables.

3.5.1 The basic morphism constraints

The two important morphism constraints introduced in this chapter are
the SurjMC(P, G, M) and BijMC(P, G, M) constraints, which holds
when M is a total surjective / bijective mapping from P to G respecting
the morphism constraint.

SurjMC(P,G,M) ≡ SurjectFct(M,Nodes(P ), Nodes(G))∧MC(P,G,M)

BijMC(P,G,M) ≡ BijectFct(M,Nodes(P ), Nodes(G)) ∧ MC(P,G,M)

with MC(P,G,M) ≡ ∀(i, j) ∈ Arcs(P ) : (M(i),M(j)) ∈ Arcs(G)

We now show how these two morphism constraints can be used to solve
the different classes of problems.

3.5.2 Exact matching

Let p be a pattern graph and g be a target graph. The graphs p and g are
ground objects in CP(Graph+Map). Graph homo and monomorphism
can easily be modeled as shown in Table 3.1. Homomorphism (resp.
monomorphism) requires a surjective (resp. bijective) function between
p and a subgraph of g, respecting the morphism constraint. We use here
a graph variable instead of a graph constant for the target graph (G
with D(G) = [∅, g])
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Exact matching
homomorphism G ⊆ g ∧ SurjMC(p, G, M)
monomorphism G ⊆ g ∧ BijMC(p, G, M)
isomorphism BijMC(p, g, M)

∧ BijMC(Comp(p), Comp(g), M)
subgraph isomorph. G ⊆∗ g ∧ BijMC(p, G, M)

∧ BijMC(Comp(p), Comp(G), M)
Optional nodes
homomorphism P ∈ [pman, p] ∧ P ⊆∗ p ∧ G ⊆ g

∧ SurjMC(P, G, M)
monomorphism P ∈ [pman, p] ∧ P ⊆∗ p ∧ G ⊆ g

∧ BijMC(P, G, M)
isomorphism P ∈ [pman, p] ∧ P ⊆∗ p ∧ BijMC(P, g, M)

∧ BijMC(Comp(P ), Comp(g), M)
subgraph isomorph. G ⊆∗ g ∧ P ∈ [pman, p] ∧ P ⊆∗ p

∧ BijMC(P, G, M)
∧ BijMC(Comp(P ), Comp(G), M)

Forbidden arcs
monomorphism G ⊆∗ g ∧ BijMC(p, G, M)

∧ BijMC(pforb, Comp(G), M)

Table 3.1: Constraints for graph matching problems

Graph isomorphism requires a bijective function between p and g
respecting two morphism constraints : one between the graphs, and a
second between the complementary graphs. This requires a complemen-
tary graph constraint CompGraph(G, Gc) which holds if Nodes(G) =
Nodes(Gc) = Vt and Arcs(Gc) = (Vt × Vt) \ Arcs(G). For conciseness,
we also use the functional notation Comp(G) = Gc. In the subgraph
isomorphism problem, there should exist an isomorphism between p and
an induced subgraph of g.

3.5.3 Optional nodes and forbidden arcs

To cope with the optional nodes in the pattern graph, we replace the
fixed graph pattern by a constrained graph variable, as illustrated in
Table 3.1. Let p be the pattern graph with optional nodes, and pman

be the subgraph of p induced by the mandatory nodes of p. Graph
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monomorphisms with optional nodes amounts to find an intermediate
graph between pman and p which is monomorphic to the target graph.
However, between pman and p, only the subgraphs induced by p should
be considered. When two optional nodes are selected in the matching,
if there is an arc between these nodes in pattern graph p, this arc must
be considered in the matching, according to our definition of optional
nodes, this is done through the use of the induced subgraph relation
(⊆∗).

When all the nodes of the pattern graph are optional in the graph
monomorphism, we have the maximum common subgraph problem by
adding the size of P as an objective function. Similarly for subgraph
isomorphism, this leads to the maximum common induced subgraph prob-
lem.

Allowing the specification of a set of forbidden arcs amounts to
a simple generalization of the isomorphism problem, lying between
monomorphism and isomorphism. As in the model for isomorphism,
forbidden arcs are handled through a morphism constraint on the com-
plement of the target graph. This time, only a specified set pforb

of arcs are forbidden. Isomorphism constitutes a special case where
pforb = Arcs(Comp(p)). This illustrated for the monomorphism prob-
lem in Table 3.1

The problem of approximate subgraph matching as defined in sec-
tion 3.5, simply combines the use of optional nodes and forbidden arcs.
Given an approximate pattern graph (Vp, Op, Ep, Fp) where (Vp, Ep) is a
graph, Op ⊆ Vp is the set of optional nodes, and Fp ⊆ Vp × Vp is the set
of forbidden arcs, and a target graph (Vt, Et), we define the following
CP(Graph+Map) constants :

• p: the pattern graph (Vp, Ep),

• pman: the subgraph of p induced by the mandatory nodes Vp \ Op

of p,

• g: the target graph (Vt, Et),

• pforb : the graph (Vp, Fp) of the forbidden arcs.

The modeling of approximate matching is then a combination of
graph monomorphism with optional nodes, and forbidden arcs.



3.6 Implementing the MC(P, G, M) constraint 67

G ⊆∗ g ∧ P ∈ [pman, p] ∧ P ⊆∗ p ∧ BijMC(P, G, M)

∧Nodes(Pc) = Nodes(P )∧Pc ⊆∗ pforb ∧BijMC(Pc, Comp(G), M)

3.6 Implementing the MC(P, G, M) constraint

The main difference between the SurjMC(P, G, M) and
BijMC(P, G, M) constraints is an alldiff constraint ensuring the
bijective property of the mapping M . A central constraint is the
MC(P, G, M) constraint, that ensures the morphism condition. The
goal of this section is to explain the implementations of the MC
constraint, based on a generalization to map and graph variable of
the morphism constraint introduced in Chapter 2 (see Section 2.5.2).
To simplify the presentation, the proposed implementations consider
undirected graphs, using the undirected neighboorhood function NG()̇
where G is a graph variable. The algorithms can be however extended
to the directed case, by instantiating the undirected NG()̇ by the
directed N+

G ()̇ and N−
G ()̇. We start by studying the complexity of the

MC constraint. We then describe the morphism propagator, followed
by the description of the induced morphism propagator. We will show
how the introduction of induced constraints over P and G can fasten the
propagator. Finally, we will study a forward checking implementation
of the MC constraint.

3.6.1 Complexity

The semantic of the MC constraint is an extension of the semantic of the
morphism constraint and the induced morphism constraint (see Section
2.5.1):

(i, j) ∈ Ep ⇒ (xi, xj) ∈ Et (MC)

(i, j) ∈ Ep ⇔ (xi, xj) ∈ Et (IMC)

that implements the morphism constraints in state-of-the-art CP mod-
els.

Defining the semantic of the MC(P, G, M) constraint to enforce
graph homomorphism:

∀ (i, j) ∈ Arcs(P ) ⇒ (M [i], M [j]) ∈ Arcs(G), (3.1)
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is NP-complete. The following formulation for induced graph homomor-
phism:

∀ (i, j) ∈ Arcs(P ) ⇔ (M [i], M [j]) ∈ Arcs(G) (3.2)

is also NP-Complete. It is already NP-Complete for the particular case
of MC(p, G, M). If there exists a polynomial algorithm to achieve GAC
on MC(p, G, M), then graph homomorphism can be solved in polyno-
mial time. Indeed, proving there is no solution to MC(p, G, M) could
be done in polynomial time. Finding a solution could be done by O(np)
applications of the GAC MC propagator.

The proposed propagator achieves only GAC on the decomposition
of 3.1 and 3.2, that is GAC is ensured on each following constraints:

(i, j) ∈ Arcs(P ) ⇒ (M [i], M [j]) ∈ Arcs(G). (3.3)

separately for each i, j ∈ Arc(P ) and for each following constraints:

(i, j) ∈ Arcs(P ) ⇔ (M [i], M [j]) ∈ Arcs(G). (3.4)

regarding the induced case.

3.6.2 Morphism Propagator

We propose an implementation of the general MC(P, G, M) constraint.
The propagator is an extension of the Valiente propagator (see Section
2.5.2) that handles the Valiente morphism propagator as a particular
case.

Recall that the Valiente morphism constraint is based on a S(i, a)
data structure equal to |M [i]∩NG(a)| for all i ∈ Nodes(P ) and for all a ∈
Nodes(G). The structure S(i, a) represents the number of target nodes
in the domain of M [i] that are neighboor of target node a. Whenever
S(i, a) is equal to zero, the target node a must be removed from the
neighbors of i. The implementation of the rule:

S(i, a) = 0 ⇒ M [j] ← M [j] \ {a} ∀ j ∈ NP (i) (3.5)

can be achieved by maintaining the S(i, a) structure.

The main difference in our new modeling framework is that the pat-
tern and target graphs are variables, and have a greatest lower bound
(noted glb or simply lb) together with a least upper bound (noted lub or
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simply ub). In this context the S(i, a) structure has a lower bound and
an upper bound, and there are two propagation rules:

Slb(i, a) = |M [i] ∩ NG(a)| = 0

⇒ i ∈ Nodes(P ) ∧ M [j] ← M [j] \ {a} ∀ j ∈ NP (i) (3.6)

Sub(i, a) = |M [i] ∩ NG(a)| = 0

⇒ i ∈ Nodes(P ) ∧ M [j] ← M [j] \ {a} ∀ j ∈ NP (i). (3.7)

Since the condition for pruning is S(i, a) = 0, only Sub(i, a) has to be
checked to be equal to zero. Hence the S(i, a) structure is now defined
as |M [i] ∩ NG(a)|, and has to be maintained in the algorithm.

The equation 3.7 depends on the variables P , G, M and the following
four rules:

1. target node a exits from M [i]: the S(i, a) structure has to be
decremented and checked for the application of rule 3.7

2. target arc (a, b) exits from variable G: for all node i ∈ Nodes(P ),
S(i, a) has to be decremented if b ∈ M [i] and checked for the
application of rule 3.7.

3. pattern node i enters P : for all node a ∈ Nodes(G), S(i, a) has to
checked for the application of rule 3.7.

4. pattern arc (i, j) enters P : for all a ∈ M [i], if S(i, a) = 0 then a
must be removed from M [j] following rule 3.7.

The initial morphism algorithm from section 2.5.2 was only aimed at
pruning on M . Hence the four rules deduced from equation 3.7 are par-
tial. We also need to maintain P and G, regarding their arcs, following
3.3.

Algorithm 10 implements those five rules. The procedure
Propagate M implements the first rule by updating the S(i, a) struc-
ture and checking for the propagation condition S(i, a) = 0. Then
it checks for instantiated neighboor variables (i, j), forces (i, j) to be-
long to P and (M [i], M [j]) to belong to G. This implements the last
rule not handled by the computation of the S(i, a) structure. Since it
can be called O(npnt) times, the total amortized cost of Propagate M

is O(npntdt). The procedure Propag has an amortized complexity of
O(npntdp) since the condition S(i, a) = 0 can be met at most O(npnt)
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times. The procedure Propagate Arc G handles the second rule. It has
an amortized complexity of O(mtnp) since at most O(mt) edges can exit
G. The procedure Propagate Node P has an O(npnt) amortized com-
plexity, since there can be at most O(np) nodes that enter P . Total
amortized complexity of Algorithm 10 is O(mtnp), still better than a
generic consistency (see Section 2.5.2) which has a an amortized com-
plexity of O(mpn

2
t ).

3.6.3 Induced morphism propagator

Algorithm 10 proposed by [LV02] and presented in Section 2.5.2 propa-
gates only the morphism constraint, that is (x, y) ∈ Ep ⇒ (f(x), f(y)) ∈
Et.

We discuss here how to extend Algorithm 10 to implement equation
3.4. The only condition still to implement is:

(i, j) /∈ Arcs(P ) ⇒ (M [i], M [j]) /∈ Arcs(G) (3.8)

which can be rewritten as:

(i, j) ∈ Arcs(Pc) ⇒ (M [i], M [j]) ∈ Arcs(Gc), (3.9)

where Pc = Compl(P ) and Gc = Compl(G). The equation 3.9 can be
implemented the same way as the equation MC. The propagation rule
is thus:

S(i, a) = |M [i] ∩ NGc
(a)| = 0

⇒ i ∈ Nodes(P ) ∧ M [j] ← M [j] \ {a} ∀ j ∈ NPc
(i) (3.10)

The following rules can be deduced in order to prune M :

1. target node a exits from M [i]: the S(i, a) structure has to be
decremented and checked for the application of rule 3.10

2. target arc (a, b) enters variable G: for all node i ∈ Nodes(P ),
S(i, a) has to be decremented if b ∈ M [i] and checked for the
application of rule 3.10.

3. pattern node i enters P : for all node a ∈ Nodes(G), S(i, a) has to
checked for the application of rule 3.7.
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Algorithm 10: Propagating MC(P, G, M).

procedure Propagate M(i,a)1

// Element a 6=⊥ exits from M [i]2

for b ∈ NG(a) do3

S(i, b) ← S(i, b) − 14

Propag(i, b)5

if M [i] = {u} 6=⊥ then6

for j ∈ NP (i) s.t. M [j] = {v} 6=⊥ do7

G ← G ∪ (M [i], M [j])8

P ← P ∪ (i, j)9

procedure Propagate Arc G(a, b)10

// Arc (a, b) exits G11

for i ∈ Nodes(P ) do12

if b ∈ M [i] then13

S(i, b) ← S(i, b) − 114

Propag(i, b)15

procedure Propagate Node P(i)16

// Node i enters P17

for a ∈ M [i] do18

Propag(i, a)19

procedure Propagate Arc P(i, j)20

// Arc (i, j) enters P21

for a ∈ M [i] do22

if S(i, a) == 0 then23

M [j] ← M [j] \ {a}24

procedure Propag(i, b)25

if S(i, b) == 0 ∧ i ∈ Nodes(P ) then26

for j ∈ NP (i) do27

M [j] ← M [j] \ b28
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4. pattern arc (i, j) exits P : for all a ∈ M [i], if S(i, a) = 0 then a
must be removed from M [j] following rule 3.7.

Among those rules, there are two new events: a target arc (a, b) en-
ters G (which is equivalent to a target arc (a, b) exits Gc) and a pattern
arc enters P (which is equivalent to a pattern arc exits Pc). They are im-
plemented in two new separated procedures, Propagate Arc Enters G

and Propagate Arc Exits P. The two other rules are implemented in
the same procedure as in Algorithm 10. We also need to add a rule to
update P and G following equation 3.4.

Algorithm 11 implements those five rules. The rules associated with
the constraint MC(P, G, M) from Algorithm 10 that are unmodified are
not reported in Algorithm 11. Only modified procedures are shown in
Algorithm 11. The first rule is implemented from line 6 to line 8. It
updates S(i, a) whenever a target node a exits M [i]. The procedure
NegPropag applies the rule condition from equation 3.10. The amor-
tized complexity of procedure Propagate M is O(npn

2
t ), as the proce-

dure is called at most O(npnt) and in the worst case all target nodes
NG(a) ∪ NG(a) are scanned. The fifth rule is implemented from line
13 to line 15. The second rule is implemented in the new procedure
Propagate Arc Enters G. Whenever an arc (a, b) enters G, the structure
S(i, a) is updated and rule 3.10 is applied. The procedure has an amor-
tized complexity of O(n2

pnt), since it can be called at most O(np) times,

M [i] is scanned in O(nt), and Propag and NegPropag cost O(dp + dp) =
O(np) in the worst case. The procedure Propagate Arc Exits P has an
amortized complexity of O(mpnt), since it can be called O(mp) times,
and it scans each time M [i] in O(nt). The lines 30 and 31 cost O(npnt)
since S(i, a) = 0 happens at most O(npnt). Hence the total amortized
complexity of the propagation for MC(P, G, M)∧MC(Pc, Gc, M) costs
O(npn

2
t ).

3.6.4 Induced constraints

If the constraint P ⊆∗ p (that is P is induced on p) is used, the morphism
constraint can be rewritten as:

Sub(i, a) = |M [i] ∩ NG(a)| = 0

⇒ i ∈ Nodes(P ) ∧ M [j] ← M [j] \ {a} ∀ j ∈ Np(i). (3.11)

Propagation can be done using NP (i) instead of NP (i) (for example in
line 27 of Algorithm 10) and using NPc

(i) instead of NPc
(for example in
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line 34 of Algorithm 11). This affords a better propagation. Moreover,
there is no need to check for any arc (i, j) to enter or to exit P , since the
check for the entrance or exit of any node i from P is sufficient. More
interestingly, if the constraint G ⊆∗ g is added, the morphism constraint
can be rewritten as:

Sub(i, a) = |M [i] ∩ Ng(a)| = 0

⇒ i ∈ Nodes(P ) ∧ M [j] ← M [j] \ {a} ∀ j ∈ Np(i). (3.12)

The rules concerning the arcs of G can be ignored. This is interesting
because those rules dominated the complexity of Algorithm 10 and 11.
By using induced graphs, the complexity of Algorithm 10 is O(npntdp)
instead of O(mtnp), since the procedure Propagate Arc G can be dis-
carded. Regarding Algorithm 11, its complexity is still O(mtn

2
t ) (be-

cause of Propagate M), but the procedures implementing rules concern-
ing G are discarded.

3.6.5 Forward Checking

The direct application of the definition of forward checking to MC leads
to poor pruning, since we have to wait for two of the variables P ,G,M
to be instantiated. Hence we define the forward checking of MC based
on the instantiation of particular M [i]. The rules are applied only if the
M [i] are assigned.

Algorithm 12 implements forward checking for MC. The first rule
and the fifth rule are implemented in Propagate M. The procedure waits
for M [i] to be instantiated to {a} 6=⊥, and propagates to every manda-
tory neighboor of i. The fifth rule for a pattern arc (i, j) is applied only
when M [i] and M [j] are instantiated to a target node (line 4 to 7). The
second rule is implemented in the procedure Propagate Arc Exits G.
Whenever an arc (a, b) exits G, all M [i] are checked to be instanti-
ated to a. If it is the case, the target node b is removed from the
mandatory neighbors of i. The third rule does not apply in our for-
ward checking procedure. Indeed, whenever a node i enters P , we
have to wait for the M [i] to be instantiated, which is exactly what
the forward checking version of the first rule does. Hence the procedure
Propagate Arc P is discarded. The fourth rule is implemented in the
procedure Propagate Arc Enters P. Whenever an arc (i, j) enters P ,
we check for M [i] to be instantiated to a target node a. If it is the case,
the target node b is removed from the neighboor j of M [i].
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Algorithm 11: Propagating MC(P, G, M) ∧ MC(Pc, Gc, M).

procedure Propagate M(i,a)1

// Element a 6=⊥ exits from M [i]2

for b ∈ NG(a) do3

S(i, b) ← S(i, b) − 14

Propag(i, b)5

for b ∈ NGc
(a) do6

S(i, b) ← S(i, b) − 17

NegPropag(i, b)8

if M [i] = {u} 6=⊥ then9

for j ∈ NP (i) s.t. M [j] = {v} 6=⊥ do10

P ← P ∪ (i, j)11

G ← G ∪ (M [i], M [j])12

for j ∈ NPc
(i) s.t. M [j] = {v} 6=⊥ do13

P ← P \ (i, j)14

G ← G \ (M [i], M [j])15

procedure Propagate Arc Enters G(a, b)16

// Arc (a, b) enters G17

for i ∈ Nodes(P ) do18

if b ∈ M [i] then19

S(i, b) ← S(i, b) − 120

NegPropag(i, b)21

procedure Propagate Node P(i)22

// Node i enters P23

for a ∈ M [i] do24

Propag(i, a)25

NegPropag(i, a)26

procedure Propagate Arc Exits P(i, j)27

// Arc (i, j) exits P28

for a ∈ M [i] do29

if S(i, a) == 0 then30

M [j] ← M [j] \ {a}31

procedure NegPropag(i, b)32

if S(i, b) == 0 ∧ i ∈ Nodes(Pc) then33

for j ∈ NPc
(i) do M [j] ← M [j] \ b34
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The amortized complexity of Algorithm 12 is dominated by the pro-
cedure Propagate Arc Exits G. This procedure can be called at most
O(mt) times, and propagates at most O(np) times, leading to a complex-
ity of O(mtnp). When the constraint G ⊆∗ g is added, the amortized
complexity of the forward checking version is the amortized complexity
of the Propagate M procedure, that is O(npdp).

Algorithm 12: Forward Checking MC(P, G, M).

procedure Propagate M(i,a)1

// M[i] is instantiated to {a} 6=⊥2

Propag(i,a)3

if M [i] = {u} 6=⊥ then4

for j ∈ NP (i) s.t. M [j] = {v} 6=⊥ do5

G ← G ∪ (M [i], M [j])6

P ← P ∪ (i, j)7

procedure Propagate Arc Exits G(a, b)8

// Arc (a, b) exits G9

for i ∈ Nodes(P ) do10

if M [i] = {a} 6=⊥ then11

M [j] ← M [j] \ {b}12

procedure Propagate Arc Enters P(i, j)13

// Arc (i, j) enters P14

if M [i] = {a} then15

M [j] ← M [j] ∩ NG(a)16

procedure Propag(i, b)17

for j ∈ NP (i) do18

M [j] ← M [j] ∩ NG(b)19

3.7 Experimental results

The critical question is to know if our framework can compete with
dedicated algorithms. Should our framework be considered as a pure
modeling tool or as an effective tool for graph matching ? Regarding
the different types of matching defined, we selected the subgraph iso-
morphism problem. Indeed, efficient dedicated constraints to solve the
isomorphism problem have been developed in constraint programming
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[SS08], and constraints have also been proposed for the maximum com-
mon subgraph [Rég03]. The performance of our framework is compared
to the performance of the vflib dedicated algorithm [FSV01a, CFSV99]
over the subgraph isomorphism problem and the induced subgraph iso-
morphism problem.

The CP(Graph+Map) framework has been implemented over the
Gecode system (http://www.gecode.org). This includes graph vari-
ables and propagators, map variables and propagators, together with
matching propagators. Regarding the MapV ar constraint, the propa-
gation over M of Section 3.3.5 was not implemented.

Moreover, we use the induced morphism propagator for the
constraint MC(P, G, M), for the subgraph isomorphism problem.
We use the induced morphism propagator for the constraints
MC(P, G, M) ∧ MC(Pc, Gc, M), but we use only forward checking for
the MC(Pc, Gc, M) constraint. An adaptation of the local alldiff con-
straint (see Section 2.5.2) is also used in the model.

Our benchmark set consists of graphs made of different topological
structures as explained in [LV02]. These graphs were generated using the
Stanford GraphBase [Knu93], consisting of 1225 undirected instances,
and 405 directed instances. The graphs range from 10 to 125 nodes for
undirected graphs, and from 10 to 462 for directed graphs.

The experiments consist in performing partial subgraph isomorphism
over the 1225 undirected instances, and induced subgraph isomorphism
over the 405 instances. All solutions are searched. Searching for a
single solution would bias the results because of the heuristics. Indeed,
one of the algorithm could find a solution by chance because of the
choice points made during the search. Moreover, it is difficult to ensure
that algorithms use the same heuristics, as they use different levels of
consistency: equivalent choices may not be available. Following the
methodology used in [LV02], we ran the competing algorithms for five
minutes on each of the problem instances. A run is called solved if it
finishes under five minutes or unsolved otherwise. All benchmarks were
performed on an Intel Xeon 3 Ghz.

Table 3.2 shows the experimental results. We report the percentage
of solved instances (sol.), the total running time (tot.T), the mean run-
ning time (av.T) and memory (av.M) and the mean running time and
memory over instances solved by both approaches (resp. “av.T com.”
and “av.M com.”).

The CP(Graph+Map) model solves more problem instances than the
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specialized vflib algorithm. This difference is significant for subgraph
monomorphism (61% vs. 48%). It is interesting to notice that around
4% of the instances solved by vflib were not solved by our CP model.
This shows that on some instances, standard algorithms can be better,
but that globally, CP(Graph+Map) solves more instances. It is clear
that the CP approach consumes more memory. The comparison of the
average time is clearly in favor of CP(Graph+Map) as it solves more
instances. It is more interesting to compare the mean execution time
on the commonly solved instances. This shows that the time overhead
induced by the CP approach is minimal on the commonly solved in-
stances : about 9% for monomorphism over undirected graphs and 22%
for isomorphism over directed graphs.

Regarding memory consumption, the CP framework tends to use
more memory than vflib, as expected in Chapter 2.

We conclude that our approach is beneficial to someone willing to
pay an average time overhead of 9% to 22% on “simple” instances to be
able to solve a fourth of the instances of the benchmark which cannot
be solved in the time limit by the other method. The low memory
consumption is a clear advantage to dedicated algorithms such as vflib.

Another important question to answer is how is performing our
framework for subgraph isomorphism against a direct CP model of sub-
graph isomorphism.

We thus compared a standard subgraph isomorphism CP model
against CP(Graph+Map). The standard CP model uses finite domain
variables, a forward checking alldiff constraint, and arc-consistent mor-
phism constraints. The CP(Graph+Map) model used is equivalent re-
garding the set of constraints and their level of consistency.

We propose a second set of experiments in order to measure the
factor lost due to the use of our framework. Random sparse graph in-
stances were selected from the vflib graph matching database [FSV01b].
Given the size of the target graph, the pattern graphs have a size of
20% of the target graph. Moreover, the graphs are generated with a
probability to have an edge between two nodes of 0.01. For each size of
the target graph, there are 100 subgraph isomorphism instances. Target
graphs have increasing size of 200, 400, 800, and 1600 nodes. Note that
we generated the instances with target graphs of 1600 nodes (following
[FSV01b]), as there are no instances in the database beyond a target
graph of size of 1000 nodes. For each size, 10 instances were executed
using each model. A time limit of 30 minutes was used, and 2 instances
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Partial SIP over undirected graphs (5 min. limit)

solved tot.T av.T av.M av.T com. av.M com.
min sec kb sec kb

vflib 48% 3273 160 11.91 4.96 97.6
CP(Graph+Map) 61% 2479 121 9115.46 5.43 8243

Induced SIP over directed graphs (5 min. limit)

solved tot.T av.T av.M av.T com. av.M com.
min sec kb sec kb

vflib 92% 181 26.95 114.28 4.11 4.22
CP(Graph+Map) 96% 109 16.22 2859.85 5.04 2754

Table 3.2: Comparison of our CP framework against vflib
on subgraph isomorphism problems.

of the 1600 set ran out of time. A limit of 106 was also set on the
maximum number of solutions to be found.

This set of instances is challenging for CP(Graph+Map), because
there is a high number of solutions, and few fails. Most of the time is
spent enumerating the solutions (see Table 3.3). Thus it is expected
that a simple CP model, minimizing the overhead of managing memory
and updating the structure, should perform better.

The results of those experiments are described in Table 3.4 and 3.5.
Table 3.4 reports the average time and the standard deviation for the
standard CP model and the CP(Graph+Map) model, together with the
lost due to our framework. The times reported are averaged over ten
instances. The lost reported is clearly not significant, less than 1%.
Table 3.5 reports the average memory and the standard deviation for
the standard CP model and the CP(Graph+Map) model, together with
the lost. Once again, the memory consumption is averaged over ten
instances. The reported memory lost is less than 1%.

This second set experiments show that using CP(graph+map) for
subgraph isomorphism creates no overhead, but still the expressiveness
is available.

3.8 Conclusion

In this chapter, we showed how the integration of two domains of com-
putation over countable structures, graphs[DDD05] and maps, [Ger97],



3.8 Conclusion 79

Table 3.3: Comparison of the number of solutions and the
number of fails. Note that for the size 1600,
the number of fails is different because some
instances were not solved within the timelimit.

#sol std cp (#fails) cp(graph+map) (#fails)

size avg stdd avg stdd avg stdd

200 585461 473893 1429.1 3986.29 1429.1 3986.29

400 914464 270489 255.8 147.53 255.8 147.53

800 106 0 309.2 129.95 309.2 129.95

1600 4680.67 13607.3 1066.33 799.75 1288.78 475.92

Table 3.4: Comparison of the time (in seconds) averaged
over ten instances for increasing size of the tar-
get graph. The pattern graph have a size of
20% of the target graph.

std cp cp(graph+map)

size avg stdd avg stdd lost (%)

200 8.02 6.58 8.53 6.97 .064

400 18.98 6.07 20.8 6.53 .096

800 46.65 22.36 51.08 22.23 .095

1600 987.95 665.01 992.11 663.1 .004

Table 3.5: Comparison of the memory consumption aver-
aged over ten instances for increasing size of
the target graph. The pattern graph has a size
of 20% of the target graph.

std cp cp(graph+map)

size avg stdd avg stdd lost (%)

200 5433.6 2743.22 5509.6 2463.97 .014

400 15386.8 104.24 15624 117.24 .015

800 49034.8 106.87 49302.8 115.05 .005

1600 183124 1028.88 183398 1042.15 .001
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can be used for modeling and solving a wide spectrum of graph matching
problems with any combination of the following properties : monomor-
phism or isomorphism, graph or subgraph matching, exact or approxi-
mate matching (user-specified approximation [ZDD05]). To achieve this,
we needed to generalize the map variables with non-fixed source and tar-
get sets (of the Cardinal kind [Aze07]).

We showed how a single constraint able to use both fixed and non-
fixed graph variables is sufficient to model all these graph matching
problems. Furthermore we showed that this constraint programming
approach is competitive with the state-of-the-art algorithm for subgraph
isomorphism vflib based on the Ullman graph matching algorithm; by
solving substantially more instances (our approach solves more complex
instances) and requiring a small overhead over the simple instances.
Moreover, our framework performs as well as a direct CP model.

The next steps is to design new propagators to achieve stronger con-
sistencies for the subgraph isomorphism problem. This is the focus of
the next chapter.



4
Global constraints based

on graph structures1

4.1 Introduction

In this chapter, we introduce a new filtering algorithm for the subgraph
isomorphism problem. Instead of considering the conjunction of con-
straints:

alldiff(x1, . . . , xnp)

∧ ∀ (u, v) ∈ Vp × Vp : ((u, v) ∈ Ep ⇒ (xu, xv) ∈ Et), (4.1)

we consider the global semantic of the subgraph isomorphism problem:

SIP (p, G, M) ≡ M is a subgraph isomorphism between p and G.

Inside the declarative framework of Chapter 3, the SIP (p, G, M)
constraint is viewed as a redundant constraint that is added to the
BijMC(p, G, M) constraint (implementing equation 4.1 for graph and
map variables), and our new filtering algorithm prunes over p and
(lub(G)). It can also be applied to classical models described in Section
2.5.1.

Our new filtering algorithm exploits the global structure of the graph
to achieve a stronger partial consistency. This work takes inspiration
from the partition refinement procedure used in Nauty [McK81] and

1Part of this chapter has been published in [ZDS+07].
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Saucy [PTDM04] for finding graph automorphisms: the idea is to label
every node by some invariant property, such as node degrees, and to
iteratively extend labels by considering labels of adjacent nodes. Similar
labelings are used in [SS04b, SS06, SS08] to define filtering algorithms for
the graph isomorphism problem: the idea is to remove from the domain
of a variable associated to a node v every node the label of which is
different from the label of v. The extension of such a label-based filtering
to subgraph isomorphism problems mainly requires to define a partial
order on labels in order to express compatibility of labels for subgraph
isomorphism: this partial order is used to remove from the domain of
a variable associated to a node v every node the label of which is not
compatible with the label of v. We show that this extension is more
effective on difficult instances of scale free graphs than state-of-the-art
subgraph isomorphism algorithms and other CP approaches.

Section 4.2 describes the theoretical framework of our filtering: it
first introduces the concept of labeling, and shows how labelings can be
used for filtering; it then shows that labelings can be iteratively strength-
ened by adding information from labels of neighbors. Section 4.3 intro-
duces the practical framework and describes how to compute a label
strengthening. An exact algorithm as well as an approximate version
are provided. Experimental results are described in Section 4.4.

In the following, we assume Gp = (Vp, Ep) and Gt = (Vt, Et) to be the
underlying instance of subgraph isomorphism problem. We also define
Node = Vp ∪ Vt, Edge = Ep ∪ Et, np = #Vp, nt = #Vt, n = #Node, dp

and dt the maximal degree of the graphs Gp and Gt, and d = max(dp, dt).
We also assume that the graphs are undirected. The proposed framework
can be extended to directed graphs as discussed in Section 4.4.

4.2 Theoretical Framework

This section introduces a new filtering algorithm for subgraph isomor-
phism. We will show in the next section how filtering can be achieved
in practice from this theoretical work.

4.2.1 Subgraph Isomorphism Consistent Labelings

Definition 4.1. A labeling l is defined by a triple (L,¹, α) such that

• L is a set of labels that may be associated to nodes;
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• ¹⊆ L × L is a partial order on L;

• α : Node → L is a total function assigning a label α(v) to every
node v.

A labeling induces a compatibility relation between nodes of the
pattern graph and the target graph.

Definition 4.2. The set of compatible couples of nodes induced by a
labeling l = (L,¹, α) is defined by CCl = {(u, v) ∈ Vp × Vt | α(u) ¹
α(v)}

This compatibility relation can be used to filter the domain of a
variable xu associated with a node u of the pattern graph by removing
from it every node v of the target graph such that (u, v) 6∈ CCl.

The goal of this work is to find a labeling that filters domains as
strongly as possible without removing solutions to the subgraph isomor-
phism problem, i.e., if a node v of the pattern graph may be matched
to a node u of the target graph by a subgraph matching function, then
the label of v must be compatible with the label of u. This property is
called subgraph isomorphism consistency.

Definition 4.3. A labeling l is subgraph isomorphism consistent (SIC)
iff for any subgraph matching function f , we have ∀v ∈ Vp, (v, f(v)) ∈
CCl.

In the context of graph isomorphism, such as in [McK81], as opposed
to subgraph isomorphism studied here, an SIC labeling is often called
an invariant. In this case, the partial ordering is replaced by an equality
condition: two nodes are compatible if they have the same label.

Many graph properties, that are “invariant” to subgraph isomor-
phism, may be used to define SIC labelings such as, e.g., the three
following SIC labelings:

• ldeg = (N,≤, deg) where deg is the function that returns node
degree;

• ldistancek
= (N,≤, distancek) where distancek is the function that

returns the number of nodes that are reachable by a path of length
smaller than k;

• lcliquek
= (N,≤, cliquek) where cliquek is the function that returns

the number of cliques of size k that contain the node.
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Figure 4.1: Instance of subgraph isomorphism problem.

Example

Let us consider for example the subgraph isomorphism problem dis-
played in Fig. 4.1. Note that this instance has no solution as Gp cannot
be mapped into a subgraph of Gt. The labeling ldeg = (N,≤, deg) assigns
the following labels to nodes.

deg(A) = deg(B) = deg(D) = deg(2) = deg(4) = 4
deg(C) = deg(E) = deg(F ) = deg(G) = deg(1) = deg(3) = 3

deg(5) = deg(6) = 2

Hence, the set of compatible couples induced by this labeling is

CCldeg
= {(u, v) | u ∈ {2, 4}, v ∈ {A, B, D}}

∪ {(u, v) | u ∈ {1, 3, 5, 6}, v ∈ {A, B, C, D, E, F, G}}

This set of compatible couples allows one to remove values C, E, F and
G from the domains of the variables associated with nodes 2 and 4.

4.2.2 Strengthening a Labeling

We propose to start from an elementary SIC labeling that is easy to
compute such as the ldeg labeling defined above, and to iteratively
strengthen this labeling. The strength of labelings is defined with re-
spect to the induced compatible couples as follows.

Definition 4.4. Let l and l′ be two labelings. l′ is strictly stronger than
l iff CCl′ ⊂ CCl, and l′ is equivalent to l iff CCl′ = CCl.
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A stronger labeling yields a better filtering, as it contains less com-
patible couples.

To strengthen a labeling, the idea is to extend the label of a node by
adding information from the labels of its neighbors. This information is
a multiset (as several neighbors may have the same label). We shall use
the following notations for multisets.

Definition 4.5. Given an underlying set A, a multiset is a function
m : A → N, such that m(a) is the multiplicity (i.e., the number of
occurrences) of a in m. The multiset m can also be represented by the
bag {a0, . . . , a0, a1, . . .} where elements are repeated according to their
multiplicity.

For example, the multiset m that contains 2 occurrences of a, 3 oc-
currences of b, and 1 occurrence of c is defined by m(a)=2, m(b)=3,
m(c)=1, and ∀x 6∈ {a, b, c}, m(x)=0. This multiset may also be repre-
sented by {a, a, b, b, b, c}.

Given a partial order on a set A, we extend the partial order to
multisets over A as follows.

Definition 4.6. Given two multisets m and m′ over a set A, and a
partial order ¹⊆ A × A, we define m ¹ m′ iff there exists a total
injective mapping t : m → m′ such that ∀ai ∈ m, ai ¹ t(ai).

In other words, m ¹ m′ iff for every element of m there exists a
different element of m′ which is greater or equal. For example, if we
consider the classical ordering on N, we have {3, 3, 4} ¹ {2, 3, 5, 5},
but {3, 3, 4} is not comparable with {2, 5, 6}. Note that comparing two
multisets is not trivial in the general case, especially if the order relation
on the underlying set A is not total. This point will be handled in the
next section.

We now define the labeling extension procedure.

Definition 4.7. Given a labeling l = (L,¹, α), the neighborhood exten-
sion of l is the labeling l′ = (L′,¹′, α′) such that:

• every label of L
′ is composed of a label of L and a multiset of labels

of L, i.e., L
′ = L · (L → N);

• the labeling function α′ extends every label α(v) by the multiset
of the labels of the neighbors of v, i.e., α′(v) = α(v) · m where
∀li ∈ L,
m(li) = #{u | (u, v) ∈ Edge ∧ α(u) = li};
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• the partial order on the extended labels of L
′ is defined by l1 ·m1 ¹′

l2 · m2 iff l1 ¹ l2 and m1 ¹ m2.

The next theorem states that the neighborhood extension of a SIC
labeling is a stronger (or equal) SIC labeling.

Theorem 4.1. Let l = (L,¹, α) be a labeling, and l′ = (L′,¹′, α′) be its
neighborhood extension. If l is an SIC labeling, then (i) l′ is also SIC,
and (ii) l′ is stronger than or equal to l.

Proof. (i): Let f be a subgraph matching function and v ∈ Vp. We
show that α′(v) ¹′ α′(f(v)), that is α(v) ¹ α(f(v)) and m ¹ m′, with
m (resp. m′) the multiset of the labels of the neighbors of v in Gp (resp.
of f(v) in Gt):

• α(v) ¹ α(f(v)) because l is SIC;

• m ¹ m′ because m′ contains, for each neighbor u of v, the la-
bel α(f(u)) of the node matched to u by the subgraph matching
function f ; as l is SIC, α(u) ¹ α(f(u)), and thus m ¹ m′.

(ii) : This is a direct consequence of the partial order on the extended
labels in L

′ (Definition 4.7) : α(u) ¹ α(v) is one of the conditions to
have α′(u) ¹ α′(v).

Example

Let us consider again the subgraph isomorphism problem displayed in
Fig. 4.1, and the labeling ldeg = (N,≤, deg) defined in 4.2.1. The

neighborhood extension of ldeg is the labeling l′ = (L′,¹′, α′) displayed

below. Note that we only display compatibility relationships li ¹ lj
such that li is the label of a node of the pattern graph and lj is the label
of a node of the target graph as other relations are useless for filtering
purposes.

α′(A) = 4 · {3, 3, 4, 4}
α′(B) = α′(D) = 4 · {3, 3, 3, 4}
α′(2) = α′(4) = 4 · {2, 2, 3, 3} ¹′ 4 · {3, 3, 4, 4} and 4 · {3, 3, 3, 4}

α′(C) = 3 · {4, 4, 4}
α′(E) = α′(F ) = 3 · {3, 4, 4} ¹′ 4 · {3, 3, 4, 4}, 3 · {4, 4, 4} and 3 · {3, 4, 4}
α′(1) = α′(3) = 3 · {3, 4, 4} ¹′ 4 · {3, 3, 4, 4}, 3 · {4, 4, 4} and 3 · {3, 4, 4}

α′(G) = 3 · {3, 3, 4}
α′(5) = α′(6) = 2 · {4, 4} ¹′ 4 · {3, 3, 4, 4}, 3 · {4, 4, 4} and 3 · {3, 4, 4}
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Hence, the set of compatible couples induced by this extended labeling
is

CCl′ = {(u, v) | u ∈ {2, 4}, v ∈ {A, B, D}}
∪ {(u, v) | u ∈ {1, 3, 5, 6}, v ∈ {A, C, E, F}}

As compared to the initial labeling ldeg, this set of compatible couples
allows one to further remove values B, D and G from the domains of
the variables associated with nodes 1, 3, 5 and 6.

4.2.3 Iterative Labeling Strengthening

The strengthening of a labeling described in the previous section can
be repeated by relabeling nodes iteratively, starting from a given SIC
labeling l.

Definition 4.8. Let l = (L,¹, α) be an initial SIC labeling. We define
the sequence of SIC labelings li = (Li,¹i, αi) such that l0 = l and li+1 =
neighborhood extension of li (i ≥ 0).

A theoretical filter can be built on this sequence. Starting from an
initial SIC labeling function l = l0, we iteratively compute li+1 from li

and filter domains with respect to the set of compatible couples induced
by li until either a domain becomes empty (thus indicating that the
problem has no solution) or reaching some termination condition.

A termination condition is to stop iterating when the sequence
reaches a fixpoint, i.e., a step where any further relabeling cannot change
the strength of the labeling. Theorem 4.2 shows that a fixpoint is reached
when both the set of compatible couples and the number of different la-
bels are not changed between two consecutive steps.

Definition 4.9. Given a labeling l = (L,¹, α), we note labels(l) the set
of labels associated to nodes, i.e., labels(l) = Codom(α), and #labels(l)
the cardinality of this set.

Theorem 4.2. Let l = (L,¹, α) be a SIC labeling. The following prop-
erties hold:

1. ∀k ≥ 0, CClk+1 ⊆ CClk and #labels(lk+1) ≥ #labels(lk)

2. ∀k ≥ 0, if CClk+1 = CClk and #labels(lk+1) = #labels(lk),
then ∀j > k, CClj = CClk and #labels(lj) = #labels(lk)

3. ∃k ≥ 0 such that CClk+1 = CClk and #labels(lk+1) = #labels(lk)
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Proof. (1) The inclusion is a direct consequence of property (ii) in The-
orem 4.1. For the cardinality of the labels, by Definition 4.7, we have
αk+1(v) = αk(v).m, with m some multiset. Hence αk+1(u) = αk+1(v)
only if αk(u) = αk(v). (2) The set of labels at step k define a par-
tition Pk of Np × Nt. The relation between a set P1 of Pk and a set
P2 of Pk+1 must be either P1 ∩ P2 = ∅ or P1 ⊆ P2. This follows
from Definition 4.7: αk+1(v) = αk(v).m implies that a node v must
be in a partition αk+1(v) finer than the partition αk(v). Hence, when
#labels(lk) = #labels(lk+1), the underlying partitions are the same
for all subsequent steps. In particular the number of labels will never
change. It remains to show that
∀ u, v ∈ Np × Nt

if (αk(u) ¹k αk(v)) ⇔ (αk+1(u) ¹k+1 αk+1(v))
and (αk(u) = αk(v)) ⇔ (αk+1(u) = αk+1(v))
then (αk+1(u) ¹k+1 αk+1(v)) ⇔ (αk+2(u) ¹k+2 αk+2(v)).
We know that the underlying partitions and the set of compatible cou-
ples are the same for step k and step k + 1. This means that there
exists an isomorphism preserving ¹ between labels(lk) and labels(lk+1).
(3) is a consequence of (1). The fixpoint is reached in at most
#labels(l) + #CCl steps, that is O(np.nt).

Theorem 4.2 gives a simple fixpoint condition. The fixpoint of the
iteration is reached as soon as #CCk = #CCk+1 and #labels(lk+1) =
#labels(lk) with k > 0. This can be tested in O(1).

Example

Let us consider again the subgraph isomorphism problem displayed in
Fig. 4.1, and let us suppose that the sequence of SIC labelings is started
from l0 = ldeg = (N,≤, deg) as defined in 4.2.1. After the first iteration,

the neighborhood extension l1 of l0 is the labeling displayed in the ex-
ample of section 4.2.2. To improve reading, we rename these labels as
follows:

α1(A) = 4 · {3, 3, 4, 4} ≡ m1

α1(B) = α1(D) = 4 · {3, 3, 3, 4} ≡ m2

α1(2) = α1(4) = 4 · {2, 2, 3, 3} ≡ m3 ¹1 {m1,m2}
α1(C) = 3 · {4, 4, 4} ≡ m4

α1(1) = α1(3) = α1(E) = α1(F ) = 3 · {3, 4, 4} ≡ m5 ¹1 {m1,m4}
α1(G) = 3 · {3, 3, 4} ≡ m6

α1(5) = α1(6) = 2 · {4, 4} ≡ m7 ¹1 {m1,m4,m5}
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From labeling l1, we compute the following extended labels and par-
tial order:

α2(A) = m1 · {m2, m2, m4, m5} ≡ n1

α2(B) = m2 · {m1, m4, m5, m6} ≡ n2

α2(C) = m4 · {m1, m2, m2} ≡ n3

α2(D) = m2 · {m1, m4, m5, m5} ≡ n4

α2(E) = m5 · {m1, m2, m6} ≡ n5

α2(F ) = m5 · {m2, m2, m6} ≡ n6

α2(G) = m6 · {m2, m5, m5} ≡ n7

α2(1) = α2(3) = m5 · {m3, m3, m5} ≡ n8 ¹2 {n1, n3}
α2(2) = α2(4) = m3 · {m5, m5, m7, m7} ≡ n9 ¹2 {n4}
α2(5) = α2(6) = m7 · {m3, m3} ≡ n10 ¹2 {n1, n3, n5, n6}

The set of compatible couples induced by this labeling is

CCl2 = {(2, D), (4, D), (1, A), (1, C), (3, A), (3, C)}
∪ {(u, v) | u ∈ {5, 6}, v ∈ {A, C, E, F}}

This set of compatible couples allows one to remove values A and B from
the domains of the variables associated with nodes 2 and 4. Hence, the
domains of these two variables only contain one value (D), and thanks
to the alldiff constraint on the variables, an inconsistency is detected.

4.3 Practical Framework

Algorithm 13 describes the overall filtering procedure. Starting from an
initial SIC labeling, that may be, e.g., ldeg, this procedure first filters
domains with respect to this initial labeling (lines 1–2) and then itera-
tively extends this labeling (lines 5–9) and filters domains with respect
to the new extended labeling (lines 10-11) until some domain becomes
empty, or a maximum number of iterations have been performed, or the
fixpoint (see Theorem 4.2) is reached (line 4).

Labeling extension (lines 5–9) is decomposed into three steps:

• lines 5–7: αi is computed from αi−1; this step is done in
O(#Edge);

• line 8: labels of L
i are renamed; this step is done in O(d ·#Node);
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Algorithm 13: Filtering procedure

Input: two graphs Gp = (Vp, Ep) and Gt = (Vt, Et) such that
Vp ∩ Vt = ∅, an initial SIC labeling l0 = (L0, α0,¹0),
initial domains D : Vp → P(Vt),
a limit k on the number of iterations

Output: filtered domains
for every node u ∈ Vp do1

D(u) ← D(u) ∩ {v ∈ Vt | α0(u) ¹0 α0(v)}2

i ← 13

while ∀ u ∈ Vp, D(u) 6= ∅ and i ≤ k and fixpoint not reached do4

for every node u ∈ Vp ∪ Vt do5

mi
u ← multiset containing an occurrence of6

αi−1(v),∀(u, v) ∈ Ep ∪ Et

αi(u) ← αi−1(u) · mi
u7

L
i ← {αi(u)|u ∈ Vp ∪ Vt}; rename labels in L

i and αi
8

¹i← {(αi(u), αi(v)) | u ∈ Vp ∧ v ∈ D(u) ∧ test(mi
u, mi

v,¹
i−1)}9

for every node u ∈ Vp do10

D(u) ← D(u) ∩ {v ∈ Vt | αi(u) ¹i αi(v)}11

i ← i + 112

return D13

• line 9: the partial order ¹i is computed, i.e., for every couple of
nodes (u, v) such that u is a node of the pattern graph and v is
a node of the target graph which was compatible with u at step
i − 1, we test for the compatibility of the multisets mi

u and mi
v

to determine if the labels of u and v are still compatible at step
i. Testing the compatibility of two multisets is not trivial. We
show in 4.3.1 how to do this exactly in O(d5/2), so that line 9 has
a time complexity of O(np · nt · d

5/2). We then show in 4.3.2 how
to compute an order inducing a weaker filtering in O(nt · d · (np +
dt · log nt)). These two variants are experimentally compared in
Section 4.4.

The filtering step (lines 10–11) is done in O(np · nt).



4.3 Practical Framework 91

4.3.1 Exact computation of the partial order

Given two multisets mu and mv, and a partial order ¹, the function
test(mu, mv, ¹) determines if mu ¹ mv, i.e., if there exists for each label
occurrence in mu a distinct label occurrence in mv which is greater or
equal according to ¹.

Property 2. Let G = (V = (Vu, Vv), E) be the bipartite graph such that
Vu (resp. Vv) associates a different node with every label occurrence in
the multiset mu (resp. mv), and E contains the set of edges (i, j) such
that i ¹ j. We have mu ¹ mv iff there exists a matching that covers Vu

in G.

Hopcroft [HK73] proposes an algorithm for solving this problem in
O(|Vu| · |Vv| ·

√

|V |). As the sizes of mu and mv are bounded by the
maximal degree d, the test function can be done in O(d5/2).

4.3.2 Computation of an approximated order

If ¹ is a total order, the function test(mu, mv,¹) can be implemented
more efficiently, by sorting each multiset and matching every label of mu

with the smallest compatible label of mv. In this case, the complexity
of test is O(d · log d).

When ¹ is not a total order, one may extend it into a total order
≤. This total order can then be used in the test function to determine if
mu ≤ mv. However, the total order introduces new label compatibilities
so that test(mu, mv,≤) may return true while test(mu, mv,¹) returns
false. As a consequence, using this approximated order may induce a
weaker filtering.

In this section, we first introduce the theoretical framework that
defines a new neighborhood labeling extension based on a total order
and proves its validity; then we show how it can be achieved in practice.

Neighborhood labeling extension based on a total order

The next definition gives a simple condition on the total order to ensure
its consistency with respect to the partial order, i.e., to ensure that
test(mu, mv,¹) = True ⇒ test(mu, mv,≤) = True.

Definition 4.10. Let l = (L,¹, α) be a labeling. A consistent total
order for l is a total order ≤ on L such that ∀u ∈ np,∀v ∈ nt, α(u) ¹
α(v) ⇒ α(u) ≤ α(v)
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We extend the order ≤ on multisets like for partial orders in Defini-
tion 4.6, i.e., m ≤ m′ iff there exists an injective function t : m → m′

such that ∀ai ∈ m, ai ≤ t(ai). Hence, m ¹ m′ ⇒ m ≤ m′. Let us
note however that this extension of ≤ to multisets only induces a partial
order on multisets as some multisets may not be comparable.

We can then define a new neighborhood extension procedure, based
on a consistent total order.

Definition 4.11. Let l = (L,¹, α) be a labeling, and ≤ be a consistent
total order for l. The neighborhood extension of l based on ≤ is the
labeling l′≤ = (L′,¹′

≤, α′) where L
′ and α′ are defined like in Definition

4.7, and the order relation ¹′
≤⊆ L

′ × L
′ is defined by

l1 · m1 ¹′
≤ l2 · m2 iff l1 ¹ l2 ∧ m1 ≤ m2

The next theorem shows that the neighborhood extension l′≤ based
on ≤ may be used in our iterative labeling process, and that it is stronger
or equal to l. However, it may be weaker than the neighborhood exten-
sion based on the partial order ¹. Indeed, the total order induces more
compatible couples of labels than the partial order.

Theorem 4.3. Let l = (L,¹, α), l′ = (L′,¹′, α′), and l′≤ = (L′,¹′
≤, α′),

be three labelings such that l′ is the neighborhood extension of l and l′≤
is the neighborhood extension of l based on a consistent total order ≤.

If l is an SIC labeling, then (i) l′≤ is SIC, (ii) l′≤ is stronger than (or
equal to) l, and (iii) l′ is stronger than (or equal to) l′≤.

Proof. (ii) and (iii): For labeling l′, we have l1 · m1 ¹′ l2 · m2 iff l1 ¹
l2 ∧ m1 ¹ m2. As ≤ is consistent w.r.t. ¹, we have m ¹ m′ ⇒ m ≤ m′.
Hence, CCl′ ⊆ CCl′

≤
⊆ CCl. (i) is a direct consequence of (iii), as l′ is

SIC (Theorem 4.1). ¤

Different consistent total orders may be derived from a given partial
order, leading to prunings of different strength: the less new couples of
compatible nodes are introduced by the total order, the better the filter-
ing. However, finding the best consistent total order is NP-hard [CH07].
Hence, we propose a heuristic algorithm that aims at computing a total
order that introduces few new compatible couples without guarantee of
optimality. Let us note Lp (resp. Lt) the set of labels associated with
nodes of the pattern graph Gp (resp. target graph Gt). We shall suppose
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without loss of generality2 that Lp ∩Lt = ∅. The idea is to sequence the
labels of Lp ∪ Lt, thus defining a total order on these labels, according
to the following greedy principle: starting from an empty sequence, one
iteratively adds some labels of Lp ∪ Lt at the end of the sequence, and
removes these labels from Lp and Lt, until Lp ∪ Lt = ∅.

To choose the labels added in the sequence at each iteration, our
heuristic is based on the fact that the new couples of compatible nodes
are introduced by new couples of compatible labels (ep, et) such that
ep ∈ Lp and et ∈ Lt. Hence, the goal is to sequence as late as possible
the labels of Lp. To this aim, we first compute the set of labels et ∈ Lt

for which the number of labels ep ∈ Lp, ep ¹ et is minimal. To break
ties, we then choose a label et such that the average number of labels
e′t ∈ Lt, ep ¹ e′t, for every label ep ∈ Lp, ep ¹ et, is minimal. Then, we
introduce in the sequence the selected label et, preceded by every label
ep ∈ Lp such that ep ¹ et.

The time complexity of this heuristic algorithm is in O(nt · log nt ·
dp · dt).

Practical computation of an approximate partial order

In practice, one has to compute a total order ≤i−1 that approximates
the partial order ¹i−1 at each iteration i of Algorithm 13. This must be
done between lines 7 and 8. Then each call to the test function, line 8,
is performed with the total order ≤i−1 instead of the partial order ¹i−1.

In this case, the time complexity of the computation of ¹i (line 8) is
in O(nt ·np ·d · log d). This complexity can be reduced to O(nt ·np ·d) by
first sorting all the multisets. When adding the time complexity of the
computation of the total order by our heuristic algorithm, we obtain an
overall complexity in O(nt · d · (np + dt · log nt)).

4.3.3 Filtering within a Branch and Propagate framework

In this section, we introduce two optimizations that may be done when
filtering is integrated within a branch and propagate search, where a
variable assignment is done at each step of the search.

A first optimization provides an entailment condition for the filtering.
If the initial labeling l0 is such that the maximum label of the pattern

2If a label e both belongs to Lp and Lt, it is always possible to rename e into e
′

in Lt (where e
′ is a new label), and to add a relation e

′′
¹ e

′ for every label e
′′
∈ Lp

such that e
′′
¹ e.
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graph is smaller or equal to the minimum label of the target graph, every
label of nodes of the pattern graph is compatible with all the labels of
nodes of the target graph so that no domain can be reduced by our
filtering procedure.

A second optimization is done when, during the search, the variable
associated with a pattern node is assigned to a target node. In this
case, the neighborhood extension procedure is modified by forcing the
two nodes to have a same new label which is not compatible with other
labels as follows:

Definition 4.12. Let l = (L,¹, α) be an SIC labeling, and let (u, v) ∈
Vp × Vt such that v ∈ xu. The propagation of xu = v on l is the new
labeling l′ = (L′,¹′, α′) such that

• L
′ = L ∪ {luv} where luv is a new label such that luv 6∈ L;

• ¹′=¹ ∪{(luv, luv)} so that the new label luv is not comparable
with any other label except itself;

• α′(u) = α′(v) = luv and ∀w ∈ Nodes \ {u, v}, α′(w) = α(w)

This labeling l′ is used as a starting point of a new sequence of
labeling extensions. Note that this propagation is done every time a
domain is reduced to a singleton.

4.4 Experimental Results

Considered instances

We evaluate our approach on graphs that are randomly generated using
a power law distribution of degrees P (d = k) = k−λ: this distribution
corresponds to scale-free networks which model a wide range of real
networks, such as social, Internet, or neural networks [Bar03]. We have
made experiments with different values of λ, ranging between 1 and
5, and obtained similar results. Hence, we only report experiments on
graphs generated with the standard value λ = 2.5.

We have considered 6 classes of instances, each class containing 20
different instances. For each instance, we first generate a connected
target graph which node degrees are bounded between dmin and dmax.
Then, a connected pattern graph is extracted from the target graph by
randomly selecting a percentage pn (resp. pe) of nodes (resp. edges).
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All instances of classes A, B, and C are non directed feasible instances
that have been generated with dmin = 5, dmax = 8, and pn = pe = 90%.
Target graphs in A (resp. B and C) have 200 (resp. 600 and 1000)
nodes.

All instances of class D are directed feasible instances that have been
generated with dmin = 5, dmax = 8, and pn = pe = 90%. Target graphs
have 600 nodes. Edges of target graphs have been randomly directed.
To solve these directed instances, the filtering procedure is adapted by
extending labelings with two multisets that respectively contain labels
of successors and predecessors.

All instances of classes E and F are non directed instances that have
been generated with dmin = 20, dmax = 300, and pn = 90%. Target
graphs have 300 nodes. Instances of class E are feasible ones that have
been generated with pe = 90%. Instances of class F are non feasible ones:
for these instances, pattern graphs are extracted from target graphs
by randomly selecting 90% of nodes and 90% of edges, but after this
extraction, 10% of new edges have been randomly added.

For all experimentations reported below, each run searches for all
solutions of an instance.

Comparison of different variants of our filtering algorithm

Algorithm 13 has been implemented in Gecode
(http://www.gecode.org), using CP(Graph) and CP(Map)
[DDD05, DDZD05] which provide graph and function domain variables.
The global subgraph isomorphism constraint has been combined with c2
constraints (as defined in Section 4.2.1) and a global AllDiff constraint
which are propagated by forward checking.

Table 4.1 compares different variants of Algorithm 13, obtained by
either computing an exact partial order or an approximated one (as
described in 4.3.1 and 4.3.2), and by considering different limits k on
the number of iterations. In all variants, the initial labeling l0 is the
labeling ldeg defined in 4.2.1. Note that the order of ldeg is a total order
so that in this case the exact and approximated variants are equivalent
for k = 1.

Let us first compare the exact and approximated variants. The num-
ber of failed nodes with Approx./k = 2 is greater than Exact/k = 2, but
it is smaller than with Exact/k = 1. This shows us that the total
order computed by our heuristic algorithm is a quite good approxima-
tion of the partial order. When considering CPU-times, we note that
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Solved instances (%) Average time Average failed nodes
Exact Approx. Exact Approx. Exact Approx.

k=0 k=1 k=2 k=2 k=4 k=8 k=0 k=1 k=2 k=2 k=4 k=8 k=0 k=1 k=2 k=2 k=4 k=8

A 100 100 100 100 100 100 2.2 0.6 23.4 1.3 1.9 3.2 440 14 0 13 0 0

B 100 100 100 100 100 100 61.4 5.6 144.2 24.5 28.7 59.6 1314 8 0 3 0 0

C 45 100 45 100 100 100 439.2 26.3 495.8 101.8 110.4 227.8 1750 13 0 2 0 0

D 100 100 100 100 100 100 0.7 2.6 99.6 7.5 24.7 56.3 2 0 0 0 0 0

E 80 60 0 75 80 85 126.7 98.6 - 35.2 18.8 36.7 4438 159 - 39 13 7

F 23 20 0 38 63 68 186.4 109.9 - 45.0 10.5 3.9 18958 3304 - 2323 481 107

Table 4.1: Comparison of different variants of Algorithm
13: Exact (resp. Approx.) refers to the im-
plementation of test (line 8 of Algorithm 13)
described in 4.3.1 (resp. 4.3.2); k gives the
maximum number of iterations. Each line suc-
cessively reports the percentage of instances
that have been solved within a CPU time limit
of 600s on an Intel Xeon 3,06 Ghz with 2Go
of RAM; the average run time for the solved
instances; and the average number of failed
nodes in the search tree for the solved in-
stances.
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Approx./k = 2 is significantly quicker than Exact/k = 2.
Table 4.1 also shows that the best performing variant differs when

considering different classes of instances. Instances of class D are best
solved when k = 0, i.e., with the simple ldeg labeling: these instances
are easy ones, as adding a direction on edges greatly narrows the search
space. Instances of classes A, B and C are more difficult ones, as they
are not directed; these instances are best solved when k = 1, i.e., after
one iteration of the exact labelling extension. Instances of classes E and
F, which have significantly higher node degrees, are very difficult ones.
For these instances, and more particularly for those of class F which are
not feasible ones and which appear to be even more difficult, iterative
labeling extensions actually improve the solution process and the best
results are obtained when k = 8.

As a conclusion, these experimentations show us that (1) the approx-
imated variant offers a good compromise between filtering’s strength and
time, and (2) the optimal limit k on the number of iterations depends
on the difficulty of instances. The best average results are obtained with
Approx./k = 4.

Comparison with state-of-the-art approaches

We now compare the variant Approx./k=4 of Algorithm 13 with a state-
of-the-art algorithm coming from a C++ library vflib, and with CP.
We consider two different CP models:

• c2 is the model using (MC) morphism constraints described in
Section 2.5.1;

• c2 + c3 is the model that uses additional LocalAlldiff redundant
constraints introduced in [LV02] described in Section 2.5.1.

These two models are combined with a global Alldiff constraint. For c2
and Alldiff constraints, two levels of consistency are considered, i.e., For-
ward Checking (denoted by FC) and Arc Consistency (denoted by AC).
Propagation of c3 follows [LV02]. All CP models have been implemented
in Gecode using CP(Graph) and CP(Map).

Table 4.2 compares all these approaches and shows us that, except
for easy instances of class D which are best solved by vflib, all other
classes of instances are best solved by Approx./k=4. When comparing
the different CP models, we note that adding redundant c3 constraints
significantly improves the solution process except for the easy instances
of class D which are better solved with simpler models.
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Solved instances (%) Average time Average failed nodes
vflib c2 c2+c3 App. vflib c2 c2+c3 App. vflib c2 c2+c3 App.

FC AC FC AC k=4 FC AC FC AC k=4 FC AC FC AC k=4

A 35 100 100 100 100 100 251.4 57.1 38.7 26.9 22.3 1.9 - 165239 19 67 0 0

B 0 0 0 0 0 100 - - - - - 28.7 - - - - - 0

C 0 0 0 0 0 100 - - - - - 110.4 - - - - - 0

D 100 100 100 5 0 100 0.8 7.9 81.7 542.7 - 24.7 - 2402 0 0 0 0

E 0 0 5 33 20 80 - - 362.0 319.5 397.6 18.8 - - 154 21 7 13

F 0 0 0 10 5 63 - - - 381.7 346.5 10.5 - - - 52 14 481

Table 4.2: Comparison of state-of-the-art approaches.
Each line successively reports the percentage of
instances that have been solved within a CPU
time limit of 600s on an Intel Xeon 3,06 Ghz
with 2Go of RAM; the average run time for
the solved instances; and the average number
of failed nodes in the search tree for the solved
instances.



4.5 Conclusion 99

4.5 Conclusion

We introduced a new filtering algorithm for the subgraph isomorphism
problem that exploits the global structure of the graph in order to
achieve a stronger partial consistency. This work extends a filtering
algorithm for graph isomorphism [SS06] where a total order defined on
some graph property labelling is strengthened until a fixpoint. The ex-
tension to subgraph isomorphism has been theoretically founded. The
order is partial and can also be iterated until a fixpoint. However, using
such a partial order is ineffective. Instead, one can map this partial
order to a total order. Performing such a mapping is hard, and can be
efficiently approximated through a heuristic algorithm. Experimental
results show that our propagators are efficient against state-of-the-art
propagators and algorithms.

There are several open research interesting issues. A dynamic termi-
nation criteria for the iterative labeling should be designed. For now the
number of iterations has to be fixed. The algorithm could be stopped
whenever the gain of pruning is low. Moreover, the lower bound of G is
ignored in the algorithm, and we could use this information in the algo-
rithm. Some theoretical issues also exit. It concerns the exact level of
consistency of our algorithm when the fixpoint is reached. It is not clear
for instance if the alldiff and morphism constraints can be discarded
when the algorithm goes to the fixpoint.
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5
Symmetries1

5.1 Introduction

This chapter aims at developing symmetry breaking techniques for sub-
graph isomorphism. Our first goal is to develop specific detection tech-
niques for the classical variable symmetries and value symmetries, and
to break such symmetries when solving subgraph isomorphism. Our sec-
ond goal is to develop local symmetry detection and breaking techniques
that can be easily handled for subgraph isomorphism. Symmetries arise
naturally in graphs as automorphisms. However, although many graph
problems have been tackled [BFL05, CB04, Sel03] and a computation
domain for graphs has been defined [DDD05], and despite the fact that
symmetries and graphs are related, little has been done to investigate
the use of symmetry breaking for graph problems in constraint program-
ming.

Contributions The contributions are the followings:

• We show that all global variable symmetries can be detected by
computing the set of automorphisms of the pattern graph, and
how they can be broken.

• We show that all global value symmetries can be detected by com-
puting the set of automorphisms of the target graph, and how they
can be broken.

1Part of this work has been published in [ZDD06] [ZDD07].
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• Experimental results show that global symmetry breaking is an
effective way to increase the number of tractable instances of the
subgraph isomorphism problem.

• We show that local symmetries can be detected by computing the
set of automorphisms on various subgraphs of the target graph.

• Experimental results show that local symmetries solve more diffi-
cult instances compared to global symmetries.

Applications Regarding subgraph isomorphism, the direct applica-
tion is to use symmetries to speed up the search, especially when search-
ing for all solutions. The efficiency of symmetry breaking depends on
the number of symmetries in the pattern and target graph in a given in-
stance. Thus there is no guarantee that even a single symmetry exists in
a given instance. This pushes symmetry breaking subgraph isomorphism
toward fields where graphs are naturally symmetric.

It was recently discovered ([GK07]) that symmetry breaking sub-
graph isomorphism finds an application in motif discovery. The problem
of motif discovery is to find frequent subgraphs of a given graph, that
is found more frequently than in a random graph. Former techniques
(such as [Wer06]) enumerated the subgraphs of the given graph, leading
to network centric algorithms. The authors of [GK07] obtained the best
motif discovery algorithm by using a Ullmann subgraph isomorphism
algorithm together with symmetry breaking. They generate all possible
subgraphs of a given size and match the generated subgraph to the given
graph, leading to matching centric algorithms. Using this method, they
beat all former techniques. Their technique however uses only global
variable symmetries. The methods developed in this chapter find thus
a direct application in motif discovery.

Related Works A symmetry in a Constraint Satisfaction Problem
(CSP) is a bijective function that preserves CSP structure and solu-
tions. Symmetries are important because they induce symmetric sub-
trees in the search tree. If the instance has no solution, failure has to
be proved for equivalent subtrees regarding symmetries. If the instance
has solutions, many symmetric solutions will have to be enumerated in
symmetric subtrees. The detection and breaking of symmetries can thus
speed up the solving of a CSP.
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Handling symmetries to reduce search space has been a subject of
research in constraint programming for many years. Crawford et al.
[CGLR96] showed that computing the set of predicates breaking the
symmetries of an instance is NP-hard in general. Different approaches
exist for exploiting symmetries. Symmetries can be broken during search
either by posting additional constraints (SBDS) [GS01] or by pruning
the tree below a state symmetrical to a previous one (SBDD) [GHK03].
Symmetries can be broken by taking into account the symmetries into
the search heuristic [MT01]. Symmetries can be broken by adding con-
straints to the initial problem at its root node [CGLR96]. Symmetries
can also be broken by remodeling the problem [Smi01].

Dynamic detection of value symmetries (also called local value sym-
metries or conditional value symmetries) and a general method for de-
tecting them has been proposed in [Ben94]. The general case for such a
detection is difficult. However in binary CSPs made of non-equal con-
straints, dominance detection for value symmetries can be performed in
linear time [BS06].

Lately research efforts has been triggered towards defining, detecting
and breaking symmetries. Cohen et al. [CJJ+05] defined two types of
symmetries, solution symmetries and constraint symmetries and proved
that the group of constraint symmetries is a subgroup of solution symme-
tries. Puget [Pug05d] showed how to detect symmetries automatically,
showed that all variable symmetries can be broken with a linear num-
ber of constraints for injective problems [Pug05c], and also propose to
apply this idea to SIP [Pug04]. Gent et al. [GKL+05] rediscovered lo-
cal symmetries defined in [Ben94] and evaluated several techniques to
break local symmetries. However the detection of local symmetries re-
mains a research topic, as it not clear whether the trade off between
local symmetry detection and tree search reduction is worth.

Outline Sections 5.2 provides the necessary background in symmetry
breaking. Sections 5.3 and 5.4 present variable symmetries and value
symmetries in subgraph isomorphism. Section 5.5 describes local sym-
metries for subgraph isomorphism. Experiments are discussed in Section
5.6. Finally, Section 5.7 concludes this chapter.
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5.2 Background

Recall that a CSP instance is a triple < X, D, C > where X is the
set of variables, D is the universal domain specifying the possible val-
ues for those variables, and C is the set of constraints. In the sequel,
n = |Vp|, d = |D|, and D(xi) is the domain of xi. A symmetry over
a CSP instance P is a bijection σ mapping solutions to solutions, and
hence non solutions to non solutions [Pug05d]. Since a symmetry is a
bijection where domain and target sets are the same, a symmetry is a
permutation. A variable symmetry is a bijective function σ : X → X
permuting a (non) solution s = ((x1, d1), . . . , (xn, dn)) to a (non) solution
σs = ((σ(x1), d1), . . . , (σ(xn), dn)). A value symmetry is a bijective func-
tion σ : D → D permuting a (non) solution s = ((x1, d1), . . . , (xn, dn))
to a (non) solution σs = ((x1, σ(d1)), . . . , (xn, σ(dn)). A value and
variable symmetry is a bijective function σ : X × D → X × D per-
muting a (non) solution s = ((x1, d1), . . . , (xn, dn)) to a (non) solution
σs = (σ(x1, d1), . . . , σ(xn, dn)). A global symmetry of a CSP is a sym-
metry holding on the initial problem. A local symmetry of a CSP P is a
symmetry holding only in a sub-problem P

′
of P . The conditions of the

symmetry are the constraints necessary to generate P
′

from P [GKL+05]
[Ben94]. A group is a finite or infinite set of elements together with a
binary operation (called the group operation) that satisfies the four fun-
damental properties of closure, associativity, the identity property, and
the inverse property. An automorphism of a graph is a graph isomor-
phism with itself. The set of automorphisms Aut(G) defines a finite
group of permutations.

5.3 Variable Symmetries

In this section, we show that the set of global variable symmetries of a
subgraph isomorphism CSP is the set of automorphisms of the pattern
graph. Moreover, we show how existing techniques can be used to break
all global variable symmetries.

5.3.1 Detection

This subsection shows that, in subgraph isomorphism, global variable
symmetries are the automorphisms of the pattern graph and do not
depend on the target graph. It has been shown that the set of variable
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symmetries of the CSP is the automorphism group of a symbolic graph
[Pug05d]. The pattern Gp is transformed into a symbolic graph S(Gp)
where Aut(S(Gp)) is the set of variable symmetries of the CSP.

Definition. A CSP P modeling a subgraph isomorphism instance
(Gp, Gt) can be transformed into the following symbolic graph S(P )
:

1. Each variable xi is a distinct node labelled i.

2. If there exists a morphism constraint between xi and xj , then there
exists an arc between i and j in the symbolic graph.

3. The constraint alldiff is transformed into a node typed with label
’a’; an arc (a, xi) is added to the symbolic graph for each xi.

Figure 5.1 shows a pattern transformed into its symbolic graph. If
we do not consider the extra node and arcs introduced by the alldiff
constraint, then the symbolic graph S(P ) and Gp are isomorphic by
construction. Given the labelling of nodes representing constraints, an
automorphism in S(P ) maps the alldiff node to itself and the nodes
corresponding to the variables to another node corresponding to the
variables. Each automorphism in Aut(Gp) will thus be a restriction of
an automorphism in Aut(S(P )), and an element in Aut(S(P )) will be an
extension of an element in Aut(Gp). Hence the two following theorems.

Theorem 1. Let (Gp, Gt) be a subgraph isomorphism instance, P its
associated CSP. We have :

• ∀ σ ∈ Aut(Gp) ∃ σ
′

∈ Aut(S(P )) : ∀ n ∈ Vp : σ(n) = σ
′

(n)

• ∀ σ
′

∈ Aut(S(P )) ∃ σ ∈ Aut(Gp) : ∀ n ∈ Vp : σ(n) = σ
′

(n)

Theorem 2. Let (Gp, Gt) be a subgraph isomorphism instance, P its
associated CSP. The set of variable symmetries of P is the set of bijective
functions Aut(S(P )) restricted to Vp, which is equal to Aut(Gp).

The above theorem states that only Aut(Gp) has to be computed in
order to get all variable symmetries.

5.3.2 Breaking

Two existing techniques are relevant to our particular problem. The first
technique is an approximation and consists in breaking only the gener-
ators of the symmetry group [CGLR96]. Those generators are obtained
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Figure 5.1: Example of symbolic graph for a square pat-
tern.

by an automorphism detection software such as NAUTY [McK81] . For
each generator σ, an ordering constraint s ≤ σs is posted.

The second technique breaks all variable symmetries of an injective
problem by using a Schreier-Sims algorithm, provided that the genera-
tors of the variable symmetry group are known [Pug05b]. Puget showed
that the number of constraints to be posted is linear with the number
of variables. The Schreier-Sims algorithm computes a base and a strong
generating set of a permutation group. Let G be the group, Sg the sym-
metry group of g elements containing G, and t the number of generators,
then its complexity is in O(g2log3|G| + t.g.log|G|).

5.4 Value Symmetries

In this section we show how all global value symmetries can be detected
and how existing techniques can be extended to break them.

5.4.1 Detection

In subgraph isomorphism, global value symmetries are automorphisms
of the target graph and do not depend on the pattern graph.

Theorem 3. Let (Gp, Gt) be a subgraph isomorphism instance and P be
its associated CSP. The set of global value symmetries of P is equal to
Aut(Gt).

Proof Suppose that σ ∈ Aut(Gt), that f is a subgraph isomorphism
between Gp and Gt, and that f(i) = vi for i ∈ Vp. Consider the sub-
graph G = (V, E) of Gt, where V = {v1, . . . , vn} and E = {(i, j) ∈
Et | (f−1(i), f−1(j)) ∈ Ep}. This means that there exists an isomorphic
function f

′
matching Gp to σG. Hence ((x1, σ(v1)), . . . , (xn, σ(vn))) is a

solution. Suppose σ is a value symmetry of P and suppose σ /∈ Aut(Gt).
This means that a solution can be mapped to a non solution, or a non
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solution to a solution, which is impossible by definition of a value sym-
metry. ¥

5.4.2 Breaking

Breaking global value symmetries can be performed by using the GE-
Tree technique [RDGKL04]. The idea is to modify the labelling by
avoiding symmetrical value assignments. Suppose a state S is reached,
where x1, . . . , xk are assigned to v1, . . . , vk respectively, and xk+1, . . . , xn

are not assigned yet. The variable xk+1 should not be assigned to two
symmetrical values, since two symmetric subtrees would be searched.
For each value vi ∈ D(xk+1) that is symmetric to a value vj ∈ D(xk+1),
only one state S1 should be generated with the new constraint xk+1 = vi.

A convenient way to compute those symmetrical values uses the
Schreier-Sims algorithm. Algorithm Schreier-Sims outputs the sets Ui =
{k | ∃ σ ∈ Aut(Gt) : σ(i) = k∧σ(j) = j ∀ j < i}. A set Ui gives the im-
ages of i by the automorphisms of G mapping 0, . . . , i−1 to themselves.
If values are assigned in an increasing order, assigning symmetrical val-
ues can be avoided by using those sets Ui. Using symmetry breaking
constraints together with GE-Tree is complete and correct as shown in
[Pug05b].

5.5 Local Symmetries

Global symmetries may hide symmetries arising during search. During
search, variables are assigned and new variable symmetries may arise. As
values are removed from domains, new value symmetries are created and
can be exploited. In this section, we focus on detecting those symmetries
for the subgraph isomorphism problem.

Local symmetries for subgraph isomorphism can be found through
subgraphs of the initial pattern and target graphs. During the search,
subgraphs of the pattern and target graph define variable and value local
symmetries. We first show how to define those subgraphs, and then
we explain local variable symmetry detection and local value symmetry
detection.

5.5.1 Partial dynamic graphs

We first introduce partial dynamic graphs. Those graphs are associated
to a state in the search and correspond to the unsolved part of the
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problem. This can be viewed as a new local problem to the current
state.

Definition. Let S be a state in the search.
The partial dynamic pattern graph G−

p = (V −
p , E−

p ) induced by S
is a subgraph of Gp such that :

• V −
p = {i ∈ Vp | ∃ j : (i, j) ∈ Ep∧∃ a ∈ D(xi)∧∃ b ∈ D(xj)∧(a, b) /∈

Et}

• E−
p = {(i, j) ∈ Ep | i ∈ V −

p ∧ j ∈ V −
p }

The partial dynamic target graph G−
t = (V −

t , E−
t ) is a subgraph of

Gt such that :

• V −
t = ∪i∈V −

p
D(xi)

• E−
t = {(a, b) ∈ Et | a ∈ V −

t ∧ b ∈ V −
t }

Those partial dynamic graphs define the local CSP corresponding to
the local state.

Figure 5.2 shows an example where circled nodes are assigned to each
other. The domain of the variables are D(1) = {k}, D(2) = D(4) =
{f, j}, and D(3) = {g, c, e, i}. In the pattern graph, plain nodes and
edges represent G−

p . Regarding morphism constraints, dashed edges are
entailed morphism constraints and plain edges are non entailed mor-
phism constraints. In the target graph, plain nodes and edges represent
G−

t assuming a forward checking propagation for the morphism con-
straints.

One general way to compute local symmetries of binary CSPs is to
use the microstructure of the CSP [CJJ+05]. The set of nodes of the
microstructure graph is the product set of the variables and the domain.
In our particular problem of subgraph isomorphism, the variables are
the nodes of G−

p and the domain is the set of nodes of G−
t . Hence the

order of the microstructure is |G−
p × G−

t | and can be very large. But
in subgraph isomorphism, local symmetries can be computed directly in
the graphs G−

p and G−
t , without using the microstructure.

5.5.2 Local variable symmetries

Local variable symmetries must map variables having the same domain.
This fact follows directly from the definition of a variable symmetry.
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Figure 5.2: Example of local subgraphs.

This problem was not present for global variable symmetries as the ini-
tial domains are Vt. The set of automorphisms of the partial dynamic
pattern graph has to be redefined.

Definition. Given a partial dynamic pattern graph G−
p , Aut′(G−

p ) is
the set of automorphisms mapping a node i to a node j if and only if
D(xi) = D(xj).

The following theorem states that local variable symmetries can be
obtained by computing Aut′(G−

p ).

Theorem 4. Let (Gp, Gt) be a subgraph isomorphism instance, L be a
state in the search space, G−

p the partial dynamic pattern graph associ-
ated with L, and P ′ be the CSP associated with L. The set of variable
symmetry of P

′
is Aut′(G−

p ).

Proof Suppose σ ∈ Aut′(G−
p ). Consider the symbolic graph S(P ′) of

P ′. Recall that the alldiff constraint has no influence on Aut(S(P ′)). All
automorphisms β of Aut(S(P ′)) are not variable symmetry of P ′ since
domains of variables may be different in the local subproblem P ′. Since
σ ∈ Aut(S(P ′)) and is restricted to map only variables with the same
domains, σ is a variable symmetry of P ′. Suppose that σ is a variable
symmetry of P

′
and that σ /∈ Aut′(G−

p ). This means that a solution
can be mapped to a non solution, or a non solution can be mapped to a
solution, which is impossible by definition of a local variable symmetry.
¥

Computing Aut′(G−
p ) can be done as usual by using automorphism
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detection software. The initial partition is refined into ordered sets con-
taining variables having the same domain.

Breaking

Local variable symmetries can be broken by using the same technique
as for global variable symmetries (Section 5.3.2). This ensures that all
detected local variable symmetries are broken. However, adding break-
ing constraint of the form xi < xj modifies the local symbolic graph
S(P ). This may introduce or remove new local variable symmetries.
The detection presented in the previous section is however valid. In-
deed, the additional constraints xi < xj ensure that D(xi) 6= D(xj).
Any automorphism between xi and xj is excluded from Aut′(G−

p ).

5.5.3 Local value symmetries

The following theorem states that value symmetries of the local CSP P ′

can be obtained by computing Aut(G−
t ) and that these symmetries can

be exploited without losing or adding solutions to the initial problem.

Theorem 5. Let (Gp, Gt) be a subgraph isomorphism instance, P ′ be the
local CSP associated with a state during the search. The set of value
symmetry of P

′
is Aut(G−

t ).

Proof This follows directly from Theorem 3 and the fact that
(G−

p , G−
t ) is a subgraph isomorphism instance. ¥

When using graph variables inside our declarative framework, the
dynamic target graph G−

t can be computed dynamically. Given a con-
straint BijMC(P, T, M), the dynamic target graph G−

t is the upper
bound of variable T and can be obtained in O(1).

Speeding up detection

Computing directly Aut(G−
t ) is correct but this computation can be

fasten. Actually, all value symmetries are not possible in a local instance
(G−

p , G−
t ). Only nodes that are all present in at least one domain can be

mapped to each other in a value symmetry of P ′. The search tree of the
automorphism algorithm can be pruned when such nodes are mapped
together.
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Breaking

In this subsection, we show how to modify the GE-Tree method to handle
local value symmetries. Before distribution, the following actions are
triggered :

1. Compute the partial dynamic target graph G−
t .

2. The NAUTY and Schreier-Sims algorithms are called to produce
the new U

′

i sets.

3. Given a state S, a new variable and value selection can be used
such that local value symmetries are broken :

(a) a new state S1 with a constraint xk = vk

(b) a new state S2 with constraints : xk 6= vk and xk 6= vj ∀ j ∈
Uk−1 ∪ U

′

k−1.

The only difference with the original GE-Tree method is the addition
of the U ′

k−1 during the creation of the second branch corresponding to
the state S2.

An issue is how to handle the global and local structures U . In the
Gecode system (http://www.gecode.org), in which the actual implemen-
tation is made, the states are copied and trailing is not needed. Thus
the global structure U must not be updated because of backtracking. A
single global copy is kept during the whole search process. In a state
S where local values symmetries are discovered, structure U is copied
into a new structure U

′′
and merged with U

′
. This structure U

′′
shall

be used for all states S
′

having S in its predecessors.

5.6 Experimental results

The objectives in this section are to assess performances of global sym-
metries, and performance of local symmetries against global symmetries.
For local symmetries, we study the overhead of computing local symme-
try information and their ability to solve more difficult instances. More-
over, we would like to know whether local symmetries can be applied on
the whole search space.

The CSP model for subgraph isomorphism has been implemented
in Gecode, using CP(Graph) and CP(Map) [DDD05] [DDZD05] . The
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CP(Graph) framework provides graph domain variables and CP(Map)
provides function domain variables. All the software is implemented in
C++. The standard implementation of the NAUTY algorithm is used.
We also implemented Schreier-Sims algorithm. The computation of the
constraints for breaking injective problems is implemented, and GE-Tree
method is also incorporated. All local symmetry techniques presented
are also implemented.

Instances - The data graphs used to generate instances are from
the GraphBase database containing different topologies (see Chapter 3)
and has been used in [LV02]. Experiments are performed on the first
50 undirected graphs from GraphBase. The undirected set was selected
because it holds potentially more symmetries than the directed graphs.
This undirected set contains graphs ranging from 10 nodes to 138 nodes.
All those graphs are tested for isomorphism with one another. Only
subgraph isomorphism instances with a pattern graph smaller than the
target graph are kept. There are 1225 instances.

Setup - All runs were performed on a dual Intel(R) Xeon(TM) CPU
2.66GHz with 2 Go of RAM. In our tests, we look for all solutions. This
ensures that we measure the whole tree search reduction, and we avoid
strong influence of the heuristic. As shown later in this section, the
number of solved instances stabilizes for all instances after a couple of
minutes. Hence a run time limit is set. A run is solved if it finishes in
less than 5 minutes, unsolved otherwise. Detecting the local symmetries
on the whole search space tends to be time-consuming. Hence local
symmetry detection is seen as an extension of global symmetries. No
detection is made when more than 3 variables are instantiated. Breaking
is performed over the whole search space.

Automorphism detection time - A main concern is how much
time it takes to compute the symmetries of the graphs. Regarding global
symmetries, NAUTY processed each undirected graph in less than 0.02
second. All undirected graphs were processed by Schreier-Sims in less
than one second, except two of them, with 4 seconds and 8 seconds.
This shows a negligible time regarding symmetry detection on this set
of instances.

Models - Depending on the symmetry breaking techniques, various
models are selected for these experiments :

• vflib : state of the art dedicated C++ algorithm [CFSV01]

• light : simple CP model
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solved tot.T av.T av.M av.T com. av.M com.

min sec kb sec kb

vflib 47.1% 3329 9.35 115 9.35 92

light 51.4% 3162 17.91 2028 14.89 1391

heavy 58.94% 2584 6.57 7892 5.81 3103

global var 64% 2318 8.72 7744 2.75 2933

global value 61.2% 2479 8.45 7820 3.06 3014

global varvalue 65.7% 2197 7.35 7545 2.50 2983

Table 5.1: Detailed results for global symmetries.

– Forward checking constraints

– No redundant constraint (that is only the morphism con-
straints are considered).

• heavy : advanced CP model

– Arc consistency

– Redundant constraint [LV02]

• global var : heavy + global variable symmetry

• global value : heavy + global value symmetry

• global varvalue : heavy + global variable and value symmetry

• local var : heavy + local variable symmetry

• local value : heavy + local value symmetry

• glocal var : heavy + global and local variable symmetry

• glocal value : heavy + global and local value symmetry

Vflib and the light model are considered as basic models since they
perform only forward checking. We call easy instances those instances
that are quickly solved by vflib and the light model. Those instances do
not require any arc consistent or redundant constraint.

Detailed results - We study first experimental results for global
symmetries. Figure 5.3 shows the number of solved instances against
time. This Figure justifies the choice of a time limit of 5 minutes, as most
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Figure 5.3: Results for global symmetries

solved tot.T av.T av.M av.T com. av.M com.

min sec kb sec kb

heavy 58.94% 2584 6.57 7892 5.81 3103

glocal var 60.82% 2473 5.93 19201 4.40 3182

local var 58.45% 2615 5.88 18666 3.30 3096

glocal value 58.78% 2601 6.37 17839 3.88 3684

local value 57.14% 2682 4.96 7812 3.29 3243

Table 5.2: Detailed results for local symmetries over all
instances.

of the solved instances are solved during the first 100 seconds. Hence
only the percentage of solved instances is relevant. Table 5.1 shows
the detailed results. The total time is the time to solve all instances,
the mean time is the mean time over all solved instances, the common
mean time(memory) is the mean time(memory) over instances solved
by vflib. Global symmetries clearly outperforms light, heavy and vflib
and improve time on easy instances and all instances. Thanks to global
variable and value symmetries, 18% more instances are solved compared
to vflib and all instances are solved much more efficiently.

We now study the experimental results for local symmetries. Ta-
ble 5.2 shows the detailed results. The common time is still reduced,
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solved total time mean time mean mem

global var 64,73% 2203 min. 4.27 sec. 11371 kb

glocal var 65,96% 2150 min. 3.26 sec. 11503 kb

local var 63,10% 2300 min. 3.15 sec. 4105 kb

global value 63,92% 2256 min. 2.94 sec. 11475 kb

glocal value 64,49% 2234 min. 3.78 sec. 28610 kb

local value 63,18% 2301 min. 3.77 sec. 4330 kb

Table 5.3: Detailed results for local symmetries with
coroutining.

but local symmetries achieve the same performance as the heavy model
without any symmetry technique, with the exception of local and global
variable symmetries. Those results for local symmetries are due to the
time needed to compute local symmetries. Actually, some easy instances
are not solved with local symmetries.

In order to assess efficiency of local symmetries for difficult prob-
lems, we performed the following experiment. The light model is ran for
30 seconds, and if the instance is not solved, local symmetry models are
used for 270 seconds. This coroutining setup ensures that easy instances
are solved. Results for this new setup are shown in Table 5.3. We com-
pare the results of local symmetries against global symmetries. Local
symmetries slightly outperform global symmetries. Inside local symme-
try models, the models combining global symmetries outperform pure
local symmetry models. This is mainly because some instances contain
a lot of symmetries that disappear during search. Local symmetry has
a high cost but reduces time for difficult instances. Not surprisingly, lo-
cal symmetries performance are poor on easy instances, but outperform
global symmetry on difficult instances.

To the best of our knowledge, subgraph isomorphism with symme-
try breaking achieves the best percentage of solved instances over the
GraphBase benchmark proposed by [LV02].

5.7 Conclusion

In subgraph isomorphism, both global variable and value symmetries
can be computed on the initial instance. Indeed, this computation can
be made directly on the pattern graph and the target graph. Moreover,
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all variable and value symmetries can be broken by computing a base
and a strong generating set of the permutation groups thanks to the
Schreier-Sims algorithm. Local variable and value symmetries can be
found in a similar way. A suitable definition of the local pattern and
target graphs makes the computation of local symmetries as direct as
for global symmetries.

Experimental results suggest that breaking all variable and value
symmetries is an efficient way to solve difficult instances. Global sym-
metries together with arc consistency and redundant constraints were
able to solve 65% of the instances, which makes constraint programming
the most efficient technique for this data set. Local symmetries achieve
also good results on difficult instances. However, computing local sym-
metries may not be the good tradeoff between search and symmetries,
especially for easy instances. Computing local symmetries during the
whole search is inefficient.

Interesting directions include experiments on faster but weaker de-
tection methods. One could search for and break generators, as the
Schreier-Sims tends to be time consuming. Other weaker forms of de-
tection could also be used. Experiments should be conducted on real-
world class of graphs such as scale-free networks. Finally, it would be
interesting to reproduce motif discovery experiments from [GK07], but
using the whole range of global and local symmetries.



6
Decomposition

6.1 Introduction

In this chapter we study the limits of the direct application of state-
of-the-art (static and dynamic) decomposition techniques for problems
with global constraints; we show that such a direct application is useless
for SIP. We develop a hybrid decomposition approach for such problems
and design specific search heuristics for SIP, exploiting the structure
of the problem to achieve decomposition. We show that the CP ap-
proach using the proposed decomposition techniques outperforms the
state-of-the-art algorithms, and solves more instances on some classes of
problems (sparse instances with many solutions).

Decomposition techniques are an instantiation of the divide and
conquer paradigm to overcome redundant work for independent partial
problems. A constraint problem (CSP) can be associated with its con-
straint network, which represents the active constraints together with
their relationship by means of shared variables. During search, the con-
straint network looses structure as variables are instantiated and con-
straints entailed by domain propagation. The constraint network can
possibly consist of two or more independent components, leading to re-
dundant work due to the repeated computation and combination of the
corresponding independent partial solutions. The key to solve this is
decomposition that consists of two steps. The first step detects the pos-
sible problem decompositions, by examining the underlying constraint
network for independent components. The second step exploits these
independent components by solving the corresponding partial CSPs in-
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dependently, and combines their solutions without redundant work. De-
composition can occur at any node of the search tree, i.e. at the root
node or dynamically during search. In constraint programming, decom-
position techniques have been studied through the concept of AND/OR
search [Mat07]. AND/OR search is sensitive to problem decomposition,
introducing search subtree combining AND nodes as an extension to
classical OR search nodes. The size of the minimal AND/OR search
tree is exponential in the tree width while the size of the minimal OR
search tree is exponential in the path width, and is never worse than the
size of the OR tree search.

Checking for decomposition is usually done in one of two ways.
Either, only the initial constraint network is statically analyzed, re-
sulting in a so called pseudo-tree. This structure encodes both, the
static search heuristic and the information when a subproblem is de-
composable [DM04]. Another possibility is to consider the dynamic
changes of the constraint network by analyzing it at each node during
the search [DM07]. Such a dynamic approach is better suited if a strong
constraint propagation (e.g. by AC) is present but obviously to the cost
of additional computations.

A major problem of decomposition techniques are their problem
specificity. Without good heuristics, decomposition may occur seldom
or very late such that the computational overhead for checking etc. is
too high for an efficient application. Nevertheless, some approaches have
been shown to be more general by applying dedicated algorithms, e.g.
graph separators or cycle cutset conditioning [KK98, Mat07, MD05].

However, those (usually static) algorithms fail to compute good
heuristics on problems with global constraints, which have an initially
complete constraint graph. Indeed, such algorithms presuppose a sparse
constraint graph. In the subgraph isomorphism problem (SIP), for ex-
ample, the initial constraint graph is complete due to the presence of a
global alldiff-constraint. This prevents cycle cutset and graph separa-
tor algorithms to be applied. A further drawback of a static analysis is
the non-predictable decomposability of the constraint network achieved
by constraint entailment through propagation. To exploit this, a dy-
namic analysis of the problem structure during the search is necessary.
This is of high importance for SAT- [LvB04] and CSP-solving [DM07].
Unfortunately, a dynamic analysis requires significant additional work
that slows down the search process once more.

In this chapter we show how to overcome those shortcomings by com-
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bining static and dynamic decomposition approaches to take advantage
of decomposition for the hard problem of SIP. A combination yields a
balance between the fast static analysis and the needed full propagation
exploited by dynamic search strategies in the presence of global con-
straints. The underlying idea is to follow the static ordering until a first
problem decomposition is available (or likely) and to switch afterwards
to a full propagated decomposing search. For the later, we consider only
a binary constraint representation inside the constraint network in or-
der to compute a good decomposition-enforcing heuristic. As shown in
the experiments, this idea is a key point for an efficient application of a
decomposing search (as AND/OR) for the SIP.

Regarding decomposition of graph matching, Valiente and al.
[VM97] have shown how to use decomposition techniques in order to
speed up subgraph homomorphism. [VM97] states that, if the initial
pattern graph is made of several disconnected components, then match-
ing each component separately is equivalent to matching all of them
together. Specific algorithms are also demonstrated. Our work can be
seen as an extension to this work. We consider the subgraph isomor-
phism problem instead of the subgraph homomorphism problem. The
latter case is easier as the constraint graph is made only of the initial
pattern graph. Moreover, we apply the decomposition dynamically when
[VM97] decomposes only statically on the initial pattern graph.

Outline - The chapter is structured as follows. Section 6.2 intro-
duces a decomposition method able to detect decomposition at any stage
during the search. In Section 6.3, the proposed decomposition method
is applied and specialized to SIP. Experimental results assessing the
efficiency of our approach are presented in Section 6.4. Section 6.5 con-
cludes the chapter.

6.2 Decomposition

In this section we show how to define and detect decomposition during
search. Sections 6.2.1 and 6.2.2 define a decomposition method able to
detect decomposition at any state during search, considering that we
do not know a priori when decomposition occurs. Section 6.2.3 shows
that our method is able to compute the same decompositions than the
AND/OR search framework [Mat07], where the search is precomputed
on a graph representation of the constraint network, and decomposition
events are known in advance. The AND/OR search method has shown to
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be very attractive for a large number of classes of constraint networks.
But as we shall see in Section 6.3, our method is suited for the SIP
while the AND/OR method is not applicable because the decomposition
events cannot be precomputed.

6.2.1 Preliminary

A Constraint Satisfaction Problem (CSP) P is a triple (X,D, C) where
X = {x1, . . . , xn} is a set of variables, D = {D1, . . . , Dn} is a set of
domains (i.e. a finite set of values), each variable xi is associated with a
domain Di, and C is a finite set of constraints with scope(c) ⊆ X for all
c ∈ C, where scope(c) is the set of variables involved in the constraint
c. A constraint c over a set of variables defines a relation between the
variables. A solution of the CSP is an assignment of each variable in
X to one value in its associated domain so that no constraint c ∈ C is
violated. We denote Sol(P ) the set of solutions of a CSP P .

A partial CSP P̂ of a CSP P ≡ (X,D, C) is a CSP (X̂, D̂, Ĉ) where
X̂ ⊆ X, ∀D̂k ∈ D̂ : D̂k ⊆ Dk and Ĉ ⊆ C. Note that since P̂ is a CSP,
we have scope(ĉ) ⊆ X̂ for all ĉ ∈ Ĉ.

6.2.2 Decomposing CSPs and graphs

This subsection defines the notion of decomposition for a CSP. A CSP is
decomposable into partial CSPs if the CSP and its decomposition have
the same solutions.

Definition. A CSP P is decomposable in partial CSPs P1, . . . , Pn iff :

• ∀ s ∈ Sol(P ) : ∃ s1, . . . , sk ∈ Sol(P1), . . . , Sol(Pk) : s = ∪i∈[1,k]si

• ∀ s1, . . . , sk ∈ Sol(P1), . . . , Sol(Pk) : ∃ s ∈ Sol(P ) : s = ∪i∈[1,k]si.

This general definition of decomposition can be instantiated to two
practical cases. The first definition corresponds to the direct intuition of
a decomposition: a CSP is decomposable if it can be split into disjoint
partial CSPs. It is called 0-decomposability as no variable are shared
between the partial CSPs.

Definition. A CSP P = (X,D, C) is 0-decomposable in partial CSPs
P1, . . . , Pn with Pi = (Xi,Di, Ci) iff ∀ 1 ≤ i < j ≤ n : Xi ∩ Xj = ∅,
∪i∈[1,k]Xi = X, ∪i∈[1,k]Di = D, ∪i∈[1,k]Ci = C.
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The second definition finds more decompositions by allowing the
partial CSPs to have instantiated variables in common. It is called 1-
decomposability as variables shared between the partial CSPs have a
domain of size 1.

Definition. A CSP P = (X,D, C) is 1-decomposable in partial CSPs
P1, . . . , Pk with Pi = (Xi,Di, Ci) iff ∀ 1 ≤ i < j ≤ n : x ∈ (Xi ∩ Xj) ⇒
|Dx| = 1, ∪i∈[1,k]Xi = X, ∪i∈[1,k]Di = D, ∪i∈[1,k]Ci = C.

The relationship with the general definition is direct. If a CSP P
is 0-decomposable or 1-decomposable in partial CSPs P1, . . . , Pk, then P
is decomposable in partial CSPs P1, . . . , Pk. From Definitions 6.2.2 and
6.2.2, it follows further :

Property 3. If a CSP P = (X,D, C) is 0-decomposable in P1, . . . , Pk,
then P is 1-decomposable in P1, . . . , Pk. Further P might be 1-
decomposable in P ′

1, . . . , P
′
k′ with k′ ≥ k via overlapping partial prob-

lems P ′
i .

Redundant computation during CSP-solving is performed whenever
a CSP is 0- or 1-decomposable into k partial CSPs P1, . . . , Pk. For in-
stance, if the solutions of P1 are computed first, then for each solution
of P1 repeatedly all solutions of P2, . . . , Pk are computed. Therefore,
P2, . . . , Pk are solved |Sol(P1)| times and this overhead can be expo-
nential in the size of the CSP. This can be avoided by solving the
partial problems independently. The necessary detection of the CSP-
decomposition into independent partial CSPs can be performed through
the concept of constraint graphs.

Definition. The constraint graph of a (partial) CSP P = (X,D, C) is an
undirected graph GP = (V, E) where V = X and E = {(xi, xj) | ∃ c ∈
C : xi, xj ∈ scope(c)}.

Note that all variables in the scope of one constraint form a clique
in GP . This constraint graph is also called the primal graph [Dec03].
There is a standard syntactic way of decomposing a CSP, based on its
constraint graph.

Definition. A graph G = (V, E) is decomposable into k subgraphs
G1, . . . , Gk iff ∀1≤i<j≤k : Vi ∩ Vj = ∅, ∪i∈[1,k]Vi = V , and ∪i∈[1,k]Ei = E.

Property 4 shows that one has to compute disjoint components of
the constraint graph to detect independent CSPs. This can be done in
linear time by a simple BFS.
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Property 4. Given a CSP P = (X,D, C) with its constraint graph G, for
all k ≥ 1, the constraint graph G of P is decomposable in G1, . . . , Gk, iff
P is 0-decomposable in P1, . . . , Pk iff P is 1-decomposable in P ′

1, . . . , P
′
m

with m ≥ k.

Proof - The first iff is straightforward. For the second iff, we
can construct a 1-decomposition P1, . . . , Pm of P from a decomposition
G1, . . . , Gk of G, with m ≥ k. The construction is described for the case
k = 1 (i.e. P1 = P ), and can be easily generalized. Let G = (V, E) be the
graph constraint of P . Let Vs = {x ∈ V | |Dx| = 1}. Transform G into
G′ where G′ is the graph G without variables with a singleton domain.
More formally, G′ = (V ′, E′) with V ′ = V \ Vs and E′ = (V ′ × V ′) ∩ E.
Suppose G′ is decomposable into G′

1, . . . , G
′
m (m ≥ 1). Then, nodes as-

sociated to variables with a singleton domain and their associated edges
are added to the G′

i, giving G1
i = (V 1

i , E1
i ). More formally G1

i = (V 1
i , E1

i )
where V 1

i = V ′
i ∪ Vs and E1

i = (V 1
i × V 1

i ) ∩ E. The graphs G1
1, . . . , G

1
m

are the constraint graphs of the partial CSPs Pi of the 1-decomposition
of P . ¥

The above property is especially useful when k = 1. In this case, the
0-decomposition does not decompose the CSP, while 1-decomposition
may decompose it.

6.2.3 Relationship with AND/OR search tree

Another approach to define decomposable CSPs is to use the concept of
AND/OR search spaces defined with pseudo-trees [Mat07].

Definition. Given an undirected graph G = (V, E), a directed rooted
tree T = (V, E′) defined on all its nodes is called pseudo-tree of G if any
arc of E which is not included in E′ is a back-arc, namely it connects a
node to an ancestor in T .

Definition. Given a CSP P = (X,D, C), its constraint graph GP and
a pseudo-tree TP of GP , the associated AND/OR search tree has alter-
nating levels of OR nodes and AND nodes. The OR nodes are labeled
xi and correspond to variables. The AND nodes are labeled < xi, vk >
and correspond to assignment of the values vk in the domains of the
variables. The root of the AND/OR search tree is an OR node, labeled
with the root of the pseudo-tree TP . The children of an OR node xi are
AND nodes labeled with assignments < xi, vk >, consistent along the
path from the root. The children of an AND node < xi, vk > are OR
nodes labeled with the children of variable xi in TP .
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Semantically, the OR states represent alternative solutions, whereas
the AND nodes represent the problem decompositions into independent
partial problems, all of which need to be solved. When the pseudo-tree is
a chain, the AND/OR search tree coincides with the regular OR search
tree.

Following the ordering induced by the given pseudo-tree TP of the
constraint graph of a CSP P , the notion of 1-decomposability coincides
with the decompositions induced by an AND/OR search.

Property 5. Given a CSP P = (X,D, C), a pseudo tree TP over the
constraint graph of P and a path p of length l (l ≥ 1) from the root
node of TP to an AND node pl, the CSP P where all variables in the
path p are assigned is 1-decomposable into P1, . . . , Pk where k is the
number of OR successors in TP of the end node pl.

Proof - Let y1, . . . , yk (k ≥ 1) be the OR successor nodes of the
end node pl in TP . We note tree(yi) the tree rooted at yi in TP . Let
Xs = {v ∈ X|v ∈ p}. Then build the partial CSPs Pi = (Xi,Di, Ci)
(i ∈ [1, k]):

Xi = Xs ∪ {v ∈ X | v ∈ tree(yi)}

Di = {Dx ∈ D | x ∈ Xi}

Ci = {c ∈ C | scope(c) ⊆ Xi}.

It is clear that ∪i∈[1,k]Ci = C since there exists no constraint between

two different tree(yi) in TP , by definition of a pseudo tree. ¥

As will be explained in the next section, neither static nor dynamic
AND/OR search is suited for our particular problem. In SIP, the con-
straint graph is complete, and thus the pseudo tree is a chain, leading to
an AND/OR search tree equivalent to an OR search tree. However the
CSP P becomes 1-decomposable during search and a dynamic frame-
work is needed in order to check decomposition on any state during the
search. But this is computationally very expensive as we will show in
Section 6.4.

6.3 Applying decomposition to SIP

The CSP model P = (X,D, C) of subgraph isomorphism should repre-
sent a total function f : Np → Nt. This total function can be modeled
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with X = x1, . . . , xn with xi a FD variable corresponding to the ith

node of Gp and D(xi) = Nt. The injective condition is modeled with
an alldiff(x1, . . . , xn) global constraint. The isomorphism condition is
translated into a set of n constraints MCi ≡ (xi, xj) ∈ Et for all xi ∈ Np.
Given the above modelling, the constraint graph of the CSP, called the
SIP constraint graph, is the graph GP = (NP , EP ) where NP = X and
EP = Ep ∪ E 6=. Note, Ep is representing all propagations of the MCi

constraints while E 6= depicts the global alldiff-constraints, i.e. a clique
(E 6= = Np × Np). Therefore, the SIP-CSP consists of global constraints
only that would prevent decomposition using a static AND/OR search.
Implementation, comparison with dedicated algorithms, and extension
to subgraph isomorphism and to graph and function computation do-
mains can be found in [ZDD05].

6.3.1 Decomposing SIP

This subsection explains how to decompose the SIP problem. We first
show why static AND/OR search fails by studying the SIP constraint
graph.

Static AND/OR Search: Because of the alldiff-constraint, the
SIP constraint graph corresponds to the complete graph K|Np|. The
pseudo-tree computed on the constraint graph of any SIP instance is
a chain, detecting no decomposition at all. Moreover, the initial SIP
constraint graph is not 1-decomposable. Therefore a static analysis of
the SIP-CSP yields no decomposition at all and is not applicable.

Decomposition seems difficult to achieve. However, as variables are
assigned during search, 1-decomposition may occur at some nodes of the
search tree. A dynamic detection of 1-decomposition at different nodes
of the search tree gives a first way of detecting decomposition for the
SIP.

Dynamic AND/OR Search: A dynamic analysis of the SIP con-
straint graph, as done for dynamic AND/OR search, takes care of pos-
sible constraint entailments and propagation results. It is therefore very
useful for a strongly propagated CSP. The main drawback is the slow
down due to the additional propagation and dynamic decomposition
checks. Further, the SIP constraint graph is still a complete one and
does not allow for decomposition.
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Our 1-decomposition removes assigned variables in the decompo-
sition process. One could also remove entailed constraints, leading
thus to more decomposition. This can easily be done for the alldiff-
constraint by removing an edge (xi, xj) ∈ EP representing xi 6= xj when
Di ∩ Dj = ∅ (i 6= j). In the following, we redefine the constraint graph
of a SIP as a constraint graph for the morphism constraints together
with a dynamic constraint graph of the alldiff-constraint.

Definition. Given the CSP P = (X,D, C) of a SIP instance, its SIP
constraint graph is the undirected graph G = (V, EMC ∪ E 6=), where
V = X, EMC = {(xi, xj) ∈ Ep | xi, xj ∈ X} and E 6= = {(i, j) ∈
X × X | Di ∩ Dj = ∅}.

Given the particular structure of a SIP constraint graph, it is possible
to specialize and simplify the detection of 1-decomposition.

Property 6. Let P = (X,D, C) be a CSP model of a SIP instance,
and let G = (V, EMC ∪ E 6=) be its SIP constraint graph. Let M =
(V ′, E′) be the constraint graph without assigned variables, i.e. with
V ′ = {x ∈ X | |Dx| > 1} and E′ = (V ′ × V ′) ∩ EMC . Then P is
1-decomposable into P1, . . . , Pm iff M is decomposable into M1, . . . , Mm

and D(Mi) ∩ D(Mj) = ∅ (1 ≤ i < j ≤ m) with D(Mi) the union of the
domains of the variables associated to the nodes of Mi.

The above property states that the decomposition of M is a necessary
condition. We can therefore design heuristics leading to the decomposi-
tion of M , hence in some cases in the decomposition of P .

A direct approach consists in detecting 1-decomposition at each node
of the search tree. When the CSP becomes 1-decomposable in partial
CSPs, those are computed separately in AND nodes. As show in the
experimental section, this strategy proves to be much slower than a
standard OR search tree. The reason is twofold:

1. Decomposition is tested at every node of the search tree. Starting
from the root node is useless, as a lot of computation time is lost.

2. There is no guarantee that a decomposition will occur.

Based on this observation, we present a hybrid approach combining
the best of the static and dynamic strategies.
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The Hybrid Approach: As stated before, even a dedicated dynamic
AND/OR search, checking for decomposition on the reduced constraint
graph only, is not fast enough to compete with state-of-the-art SIP-
solvers as implemented in the vflib library. Therefore, we suggest a
hybrid approach in order to fix this. The idea is as follows:

1. calculate a static pseudo tree heuristic on the reduced constraint
graph

2. apply a forward checking search following the pseudotree up to the
first branching or until a fixed number of variables is assigned

3. switch the strategy to dynamic AND/OR search with full AC-
propagation

This ensures, that the expensive dynamic approach is first used when
a decomposition is available or at least likely after full propagation. Up
to that moment, a cheap forward checking approach is used for a fast
inconsistency check and a strong reduction of the reduced constraint
graph.

In the following, we will give two dedicated heuristics we have applied
in the preliminary forward checking procedure.

6.3.2 Heuristics

We now present two heuristics based on Property 6 aiming at reducing
the number of decomposition tests, and favoring decomposition. The
general idea is to first detect a subset of variables disconnecting the
morphism constraint graph into disjoint components as it is a necessary
condition for 1-decomposability. The search process will first distribute
over these variables. The test of 1-decomposition is performed when all
these variables are instantiated. It is also performed at the subsequent
nodes of the search tree.

The cycle heuristic (h1)

The objective of the cycle heuristic is to find a set of nodes S in the
morphism graph CGMC = (X, EMC) (see Def. 6.3.1) such that the
graph without those nodes is simply connected (i.e. a tree). When
the variables associated to S are assigned, any subsequent assignment
will decompose the morphism graph. Finding the minimal set of nodes is
known as the minimal cycle cutset problem and is a NP-Hard problem
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[FL06]. We propose here a simple linear approximation that returns
the nodes of the cycles of the graph. Algorithm 6 runs in O(|Vp|). The
effectiveness of such a procedure on different classes of problems is shown
in the experimental section. One of the main advantage is its simplicity.

Algorithm 14: Selection of the body variables.

input : G = (X, E) the CGMC

output: The nodes of the cycles of G

All ← X1

T ← ∅2

while (∃ n ∈ X | Degree(n) == 1) do3

T ← T ∪ {n}4

remove node n from G5

return All \ T6

Using graph partitioning (h2)

Graph partitioning is a well-known technique that allows hard graph
problems to be handled by a divide and conquer approach. In our con-
text, it can be used to separate the morphism constraint graph into two
graphs of equal size.

Definition. Given a graph G = (V, E), a k-graph partitioning of G is
a partition of V in k subsets, V1, . . . , Vk, such that Vi ∩ Vj = ∅ for i 6= j,
∪iVi = V , and the number of edges of E whose incident vertices belong
to different subsets is minimized (called the edgecut).

Based on the edgecut of the morphism constraint graph, we can
easily deduce a subset variables.

Definition. Given a 2-graph partitioning of G, a nodecut is a set of
nodes containing one node of each edge in the cutset.

Finding a minimum edgecut is a NP-Hard problem for k ≥ 3, but
can be solved in polynomial time for k = 2 by matching (see [GJ90],
page 209). However we use a fast local search approximation [KK98], as
the exact minimum subset is not needed.
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6.4 Experimental Results

Goals

The objective of our experiments is to identify the class of graphs where
decomposition is effective. We compare our decomposition method on
different classes of SIP with standard CSP models as well as vflib, the
standard and reference algorithm for subgraph isomorphism [CFSV01].
We also compare our decomposition method with standard direct de-
composition. The different heuristics presented in Section 3.5 are also
tested.

Instances

The instances are taken from the vflib graph database described in
[FSV01b]. There are several classes of randomly generated graph, ran-
dom graphs, bounded graphs and meshes graphs. The target graphs
has a size n and the relative size of the pattern is noted α. For ran-
dom graphs, the target graph has a fixed number of nodes n and there
is a directed arc between two nodes with a probability η. The pattern
graph is also generated with the same probability η, but its number
of nodes is αn. If the generated graph is not connected, further edges
are added until the graph is connected. For random graphs, n takes a
value in [20, 40, 80, 100, 200, 400, 800, 1000], η in [0.01, 0.05, 0.1], and α
in [20%, 40%, 60%]. There are thus 69 classes of randomly connected
graphs. In a class of instances denoted as si2-r001-m200, we have
α = 20%, η = 0.01, and n = 200 nodes.

Mesh-k-connected graphs are graphs where each node is connected
with its k neighborhood nodes. Irregular mesh-k-connected graphs
are made of a regular mesh with the addition of random edges uni-
formly distributed. The number of added branches is ρn. For ran-
dom graphs, n can take a value in [16, . . . , 1096], k in [2, 3, 4], and ρ in
[0.2, 0.4, 0.6]. In an irregular mesh-connected class of instances denoted
as si2-m4Dr6-m625, we have α = 20%, k = 4, ρ = 0.6 and n = 625
nodes.

One hundred graphs are generated for each class of instances. For
random graphs, we also generated 100 additional instances where the
target graph has 1600 nodes, for each possible value of η and α. We
used the generator freely available from the graph database, following
the methodology described in [FSV01b].
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Models

Several models were considered for the experiments. First of all, we use
the available implementation of vflib. Then classical CP models are
used, called CPFC and CPAC. The model CPFC is a model where all the con-
straints use forward checking and the variable selection selects the first
variable which is involved in the maximum number of constraints (called
maxcstr) using minimal domain size as tiebreaker. The model CPAC is
similar except it uses an arc consistent version of the MC constraint, plus
n arc-consistent alldiff constraints over the neighbors of each pattern
node, as proposed in [Rég95]. Similar results are observed with a single
global arc-consistent alldiff, but with slightly worse performance.

The model CP+Dec waits for 30% of the variables to be instantiated
following a variable selection policy, called minsize, selecting the non
instantiated variable with the smallest domain. It then tests at each
node of the search tree if decomposition occurs using a maxcstr vari-
able selection. The model CP+Dec+h1 uses the cycle heuristics; once
the nodes belonging to the cycles of the pattern graph are instantiated
using a minsize variable selection policy (up to 30% of the size of the
pattern), decomposition is tested at each node of the search tree and fol-
lows a maxcstr variable selection. The model CP+Dec+h2 uses the graph
partitioning heuristics; once the variables belonging to the nodecut set
are instantiated (up to 30% of the size of the pattern), decomposition
is tested at each node of the search tree and follows a maxcstr variable
selection.

Setup

All experiments were performed on a cluster of 16 machines (AMD
Opteron(tm) 875 2.2Ghz with 2Gb of RAM). All runs are limited to
a time bound of 10 minutes. In each experiment, we search for all solu-
tions. Experiments searching for one solution have also been done but
are not reported here for lack of space. These experiments lead to the
same conclusions.

Description of the tables

Table 6.1 shows the results for random graphs and Table 6.2 for irreg-
ular mesh-connected graphs. Each line describes the execution of 100
instances from a particular class. The column N indicates the mean
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number of solutions among the solved instances. The column % indi-
cates the number of instances that were solved within the time bound
of 10 minutes. The column µ indicates the mean time over the solved
instances and the column σ indicates the corresponding standard de-
viation. The column D indicates the number of instances that used
decomposition among the solved instances. The column #D indicates
the mean number of decomposition that occurred over all solved in-
stances. The column S indicates the mean size of the initial variable set
computed by the heuristics h1 or h2. Table 6.3 gives the mean degree
and its variance for the different instances classes. For each class of in-
stances in Tables 6.1 and 6.2, the results of the best algorithms are in
bold.

Analysis

We start the analysis by looking at random graphs (see Table 6.1). We
compare first the vflib with the CP models CPFC and CPAC. For all
si2-* and si6-* instances, the CPAC model is the best in mean time
and % of the solved instances except for si2-r001-m200, where CPFC is
the best.

We now look at the comparison of decomposition methods for ran-
dom graphs (second table in Table 6.1).

First, we will focus on the si2-r001-* classes. The models
CP+Dec+h1 and CP+Dec+h2 achieve better decompositions than the
CP+Dec model. Even though CP+Dec tends to induce more decompo-
sitions, the number of instances using decomposition (see column D) is
higher for CP+Dec+h1 and CP+Dec+h2 than for CP+Dec. This visualizes
the computational overhead of a pure dynamic decomposition approach.
However, the number of instances using decomposition tends to be zero
for m1600 instances. This is due to the fact that the graphs have higher
degrees as their size increases (see Table 6.3). This can be observed
by looking at the column S: the size of the initial subset of variable to
instantiate becomes closer to 100% as size increases. Indeed, our decom-
position method is beaten by the CPAC model for si2-r001-m800 and
m1600.

We now focus on the si6-r01-* classes. As stressed earlier, those
instances have denser graphs. The initial set of variables to instanti-
ate is the whole set of pattern nodes for CP+Dec+h1 and CP+Dec+h2.
No decomposition occurs. Why then CP+Dec+h* models outperform all
other methods in those classes? Because in the class si6-r01-*, the
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Table 6.1: Randomly connected graphs, searching for all

solutions.

Bench vflib CPAC CPFC
N % µ σ % µ σ % µ σ

si2-r001-m200 61E+6 72 74 115 83 56 109 85 41 76
si2-r001-m400 17E+8 2 248 118 10 106 156 7 288 177
si2-r001-m800 28E+7 0 - - 14 166 133 1 153 -
si2-r001-m1600 2500 16 203 202 81 224 93 0 - -

si6-r01-m200 1 100 2 3 100 9 11 100 12 17
si6-r01-m400 1 66 99 133 89 156 116 50 190 137
si6-r01-m800 1 7 235 153 0 - - 5 389 125
si6-r01-m1600 1 0 - - 0 - - 39 499 51

Bench CP+Dec CP+Dec+h1 CP+Dec+h2
N % µ σ D #D % µ σ D #D S % µ σ D #D S

si2-r001-m200 61E+6 94 49 100 91 9244 98 6 40 98 1834 0.2 87 23 48 71 909 0.2
si2-r001-m400 17E+8 15 160 177 15 35655 75 68 125 75 2268 0.4 29 212 218 22 196 0.3
si2-r001-m800 28E+7 0 - - 0 12 4 227 254 4 21 0.6 12 256 239 8 0 0.6
si2-r001-m1600 2500 0 - - 0 0 7 165 199 1 0 0.8 0 - - 0 0 0.9

si6-r01-m200 1 94 148 153 0 0 100 0 0 0 0 1 100 0 0 0 0 1
si6-r01-m400 1 2 179 220 0 0 100 2 1 0 0 1 100 4 6 0 0 1
si6-r01-m800 1 0 - - 0 0 100 46 35 0 0 1 100 46 39 0 0 1
si6-r01-m1600 1 0 - - 0 0 74 479 71 0 0 1 54 435 79 0 0 1
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Table 6.2: Irregular meshes, searching for all solutions.

Bench vflib CPAC CPFC
N % µ σ % µ σ % µ σ

si2-m4Dr6-m625 88E+5 89 23 50 94 21 38 95 6 27
si2-m4Dr6-m1296 17E+7 16 135 137 33 178 123 38 107 154

si6-m4Dr6-m625 3.31 100 7 43 100 29 4 100 9 4
si6-m4Dr6-m1296 10.38 100 13 55 100 233 30 100 113 65

Bench CP+Dec CP+Dec+h1 CP+Dec+h2
N % µ σ D #D % µ σ D #D S % µ σ D #D S

si2-m4Dr6-m625 88E+5 35 223 151 35 0.7 100 6 22 96 5.4 0.5 94 6 21 88 5.5 0.3
si2-m4Dr6-m1296 17E+7 3 120 36 3 0.1 63 67 109 63 4 0.5 49 163 170 49 3.9 0.5

si6-m4Dr6-m625 3.3 8 105 32 0 0 100 7 3 6 0.1 0.8 100 22 26 6 0.1 0.7
si6-m4Dr6-m1296 10.3 0 - - 0 0 100 65 20 41 0.6 0.7 77 223 161 29 0.4 0.7
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Table 6.3: Mean degree for the tested graph set.

Bench degree

µ σ

si2-r001-m200 2.30 0.14

si2-r001-m400 2.89 0.14

si2-r001-m800 3.99 0.18

si2-r001-m1600 6.80 0.19

si6-r01-m200 3.29 0.14

si6-r01-m400 5.27 0.16

si6-r01-m800 9.76 0.15

si6-r01-m1600 19.20 0.17

si2-m4Dr6-m625 3.51 0.26

si2-m4Dr6-m1296 3.53 0.20

si6-m4Dr6-m625 5.12 0.16

si6-m4Dr6-m1296 5.19 0.14

CP+Dec+h1 approach reduces to a hybrid level of consistency between
CPFC and CPAC with a minsize variable selection policy during the for-
ward checking phase.

For random graphs, the decomposition method with heuristics is
especially useful for sparse graphs with many solutions, while an hybrid
model beginning with forward checking and switching to arc consistency
at some point seems the best choice for denser graphs and there are
few solutions. The vflib is clearly outperformed on all these classes
of instances. Experiments on the other classes of random graphs, not
reported here for lack of space, confirmed this analysis.

We now analyze irregular mesh-connected graphs. We observe in
Table 6.3 that the mean degree of the si2-m4Dr6-* classes is higher
than for the si6-m4Dr6-* classes. We first compare the vflib and CP
models without decomposition. For sparser si2-m4Dr6-* classes, CPFC
is the best method, while for denser si6-m4Dr6-* classes, vflib is the
best. We have no particular explanation for this behavior and this is
an open question. Regarding decomposition methods, the same remarks
than for random graphs apply. The CP+Dec model tends to produce
less decomposition than the CP+Dec+h* models. Moreover, CP+Dec+h*
models are the best models for sparser instances with many solutions.
As the mean degree of the instances increases (see Table 6.3) and the
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number of solutions decreases, the decomposition methods become less
efficient. Indeed, for si6-m4Dr6-m1296, the best method is vflib, but
our decomposition approach also solves all the instances and helps CP
at diminishing the mean time.

Summary

The application of standard direct decomposition methods CP+Dec leads
to performances worse than the direct application of standard CP models
(CPFC, CPAC) and vflib. On most classes, the cycle heuristic (h1) is
better than the graph partitioning heuristic (h2). On sparse randomly
connected graphs with many solutions, and on sparse irregular meshes,
our decomposition method outperforms standard CP approaches as well
as vflib. For denser connected graphs, hybrid CP models between CPAC

and CPFC with a minsize policy) is the best choice. For denser irregular
meshes, vflib, the standard CP models and our decomposition method
solve all the instances, but vflib is more efficient.

6.5 Conclusion

Our initial question was to investigate the application of decomposition
techniques as AND/OR search for problems with global constraints, in
particular for the SIP. We showed that it is indeed possible using a hy-
brid approach of static and dynamic techniques and a dedicated problem
structure analysis. For the SIP, one can derive a decomposition enforc-
ing static heuristic that is used by a cheap forward checking approach.
As soon as the problem gets (likely) decomposable, the search process
is switched to a fully propagated, dynamically decomposed search. This
exploits the non-predictable reduction of the constraint graph structure
via constraint propagation and entailment but reduces the huge com-
putational effort of a completely propagated search. We showed that
our hybrid decomposition approach is able to beat the state-of-the-art
VF-algorithm for sparse graphs with high solution numbers. As future
work, we would like to investigate more heuristics for SIP as it influences
the quality of decomposition. Moreover, we intend to investigate the use
of our decomposition method for motif discovery where solving SIP is
used as an enumeration tool [GK07].
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Conclusion

The goal of this thesis is to propose an efficient and declarative frame-
work for graph matching. We propose such a framework in Chapter 3.
The idea it to use graph and map variables, instead of ground graph and
function objects. Map variables where the domain and the codomain are
not ground were introduced. A specific map constraint that prunes the
array by taking into account the available information from the domain
and the codomain is developed. Together with graph variables, this
allows to express graph matching problems, using optional nodes and
optional arcs. Morphism constraints can be extended to this frame-
work. The experiments have shown that such a framework is efficient
for subgraph isomorphism compared to dedicated state-of-the-art algo-
rithms and compared to a direct CP model. Hence embedding graph
matching problems in our framework is efficient, but we also inherit from
the expressiveness of the various constraints defined over the graph com-
putation domain.

Chapter 4 turned to the problem of designing stronger propagators
for the subgraph isomorphism problem. We show how to extend the idea
of iterative labelling in the context of subgraph isomorphism, instead of
the graph isomorphism [SS08]. Such an extension implies the compu-
tation of a partial order on the labelings. The idea was proved to be
well-founded and efficient. Indeed, benchmarks on difficult problems -
that is instances leading to a large search space with few or no solutions -
show great benefits in using the proposed propagator, outperforming all
previous CP models. Our framework is thus able to deal with difficult
problems. It remains to show that common constraint programming
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techniques can be incorporated in our framework and that our frame-
work can beat dedicated state-of-the-art algorithm vflib for problems
with many solutions.

Chapter 5 studies the use of symmetries in the context of subgraph
isomorphism. The symmetries of the subgraph isomorphism depend on
the instance, and we show how it is indeed possible to detect automat-
ically all global variable and value symmetries, and how to detect local
variable and value symmetries. Moreover, experiments show the benefits
of global and local symmetries.

Chapter 6 studies the limits of the direct application of decomposi-
tion to the subgraph isomorphism problem. Even though the initial con-
straint graph is complete, decomposition can be achieved by computing
a static heuristic over the pattern graph and by using forward checking
in a first stage of the search. Afterwards full arc-consistent propaga-
tion is triggered and decomposition is checked. Such an approach has
been proved to be effective on random sparse graphs containing a lot of
solutions. Hence, not only our framework is able to deal with difficult
problems, it is also able to deal with problems with a high density of
solutions.

The significance of this thesis lies in the fact that, even though our
framework is expressive, CP can be considered as the state-of-the-art
for subgraph isomorphism, outperforming the dedicated state-of-the-art
vflib algorithm for difficult instances - where CP is known to be effective
- but also on the vflib random graph benchmarks, especially on sparse
instances. Together with decomposition, it offers moreover the auto-
matic detection of symmetries, which have been shown to be important
in motif discovery [GK07].

Memory consumption is however a clear advantage for vflib. As
shown in this thesis, the CP approach consumes more memory than the
vflib algorithm. As stressed in the conclusion of the chapter 2, this is a
consequence of the CP approach that considers the way to reduce the
domain of computation, whereas the vflib algorithm uses a constructive
approach. For this reason, we think a challenge is to overcome the
memory gap between vflib and the CP approach.

In addition to this open issue, we would like to stress some interesting
future works.

Regarding the matching framework, it would be interesting to inte-
grate the techniques proposed in [SS08] and [Rég03], for graph isomor-
phism and maximum common subgraph respectively. Path constraints
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can also be integrated to the framework, enabling a feature available in
some matching algorithms [FGP+07].

Regarding the subgraph isomorphism constraint, there remains two
open questions: the first one concerns theoretical study on the level of
consistency achieved when the fixpoint is reached, even though reaching
the fixpoint has been showed to be ineffective in practice. Moreover, a
criteria should also be designed to stop the iterations of the labelling
process.

Can symmetry techniques be successfully applied in a context where
computational difficulty is proportional to the number of solutions ?
[GK07] showed that global variable symmetries are essential to solve
the motif discovery problem using subgraph isomorphism, where sub-
graphs have to be enumerated and enumeration is important. This is
mainly because there are a lot of solutions, and finding the unique solu-
tions regarding symmetries is very efficient. It would be interesting to
reproduce the experiments conducted in [GK07], to see if global vari-
able symmetries are more efficient. Moreover, global value symmetries
as well as local symmetries could be used. Decomposition is useful for
sparse graphs with a lot of solutions, and hence could also be applied
and evaluated in this context, which leads to the question of knowing
how to combine decomposition and symmetry breaking.
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bases théoriques et développements actuels. Technique et
sciences informatiques, 2(4), 1982.

[CPSV99] Marco Cadoli, Luigi Palopoli, Andrea Schaerf, and
Domenico Vasile. NP-SPEC: An executable specification
language for solving all problems in NP. LNCS, 1551:16–
30, 1999.



142 Bibliography

[CS03a] Pierre-Antoine Champin and Christine Solnon. Measuring
the similarity of labeled graphs. In Kevin D. Ashley and
Derek G. Bridge, editors, 5th Int. Conf. On Case-Based
Reasoning (ICCBR 2003), LNAI, pages 80–95. Springer,
June 2003.

[CS03b] Pierre-Antoine Champin and Christine Solnon. Measuring
the similarity of labeled graphs. In Kevin D. Ashley and
Derek G. Bridge, editors, ICCBR, volume 2689 of Lecture
Notes in Computer Science, pages 80–95. Springer, 2003.

[DBDK04] Peter J. Dickinson, Horst Bunke, Arek Dadej, and Miro
Kraetzl. Matching graphs with unique node labels. Pattern
Anal. Appl., 7(3):243–254, 2004.

[DBL06] Proceedings, The Twenty-First National Conference on Ar-
tificial Intelligence and the Eighteenth Innovative Appli-
cations of Artificial Intelligence Conference, July 16-20,
2006, Boston, Massachusetts, USA. AAAI Press, 2006.

[DC01] Daniel Diaz and Philippe Codognet. Design and implemen-
tation of the GNU prolog system. Journal of Functional
and Logic Programming, 2001(6), 2001.

[DCV07] Pasquale Foggia Donatello Conte and Mario Vento. Chal-
lenging complexity of maximum common subgraph detec-
tion algorithms: A performance analysis of three algo-
rithms on a wide database of graphs. Journal of Graph
Algorithms and Applications, 11(1):99–143, 2007.
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