
0

Université de Technologie de Compiègne, UMR CNRS 6599 HEUDIASYC

UNE ÉTUDE THÉORIQUE ET EXPÉRIMENTALE DE LA

PROPAGATION DES CONTRAINTES DE RESSOURCES

A THEORETICAL AND EXPERIMENTAL STUDY OF RESOURCE

CONSTRAINT PROPAGATION

Thèse soutenue le 30 octobre 1998, dans la spécialité Contrôle Des Systèmes, par
Monsieur Philippe Baptiste, ingénieur civil des Mines de Nancy, pour l'obtention du grade
de Docteur de l'UTC, devant le jury composé de :

Mademoiselle Marie-Claude Portmann (Présidente)
Monsieur Peter Brucker (Rapporteur)
Monsieur Marc Bui
Monsieur Jacques Carlier (Directeur de Thèse)
Monsieur Yves Caseau
Monsieur Claude Le Pape
Monsieur Wim Nuijten
Monsieur Eric Pinson (Rapporteur)
Monsieur Pierre Villon

 A1
 A2 A1
 A3 A2 A1
 A3 A2 A1 A4

Violations

1

UNE ÉTUDE THÉORIQUE ET

EXPÉRIMENTALE DE LA PROPAGATION

DES CONTRAINTES DE RESSOURCES

A THEORETICAL AND EXPERIMENTAL STUDY OF RESOURCE

CONSTRAINT PROPAGATION

Thèse soutenue le 30 octobre 1998 devant le jury composé de :

Mademoiselle Marie-Claude Portmann (Présidente)
Monsieur Peter Brucker (Rapporteur)
Monsieur Marc Bui
Monsieur Jacques Carlier (Directeur de Thèse)
Monsieur Yves Caseau
Monsieur Claude Le Pape
Monsieur Wim Nuijten
Monsieur Eric Pinson (Rapporteur)
Monsieur Pierre Villon

2

Remerciements

Je tiens à remercier Monsieur Jacques Carlier, Professeur à l’Université de Technologie de
Compiègne, qui m’a encadré tout au long de cette thèse et qui m’a fait partager ses
brillantes intuitions. Qu’il soit aussi remercié pour sa gentillesse, sa disponibilité
permanente et pour les nombreux encouragements qu’il m’a prodiguée.

Je remercie Monsieur Claude Le Pape, directeur du département de Recherche et de
Développement de Bouygues-Telecom. Cette thèse est le fruit d’une collaboration de plus
de cinq années avec lui. C’est à ses côtés que j’ai compris ce que rigueur et précision
voulaient dire.

J’adresse tous mes remerciements à Monsieur Peter Brucker, Professeur à l’Université
d’Osnabrück, ainsi qu’à Monsieur Eric Pinson, Professeur à l’Institut de Mathématiques
Appliquées d’Angers, de l’honneur qu’ils m’ont fait en acceptant d’être rapporteurs de
cette thèse.

Mademoiselle Marie-Claude Portmann, Professeur des Universités à l’Ecole des Mines de
Nancy, m’a non seulement initié à la Recherche Opérationnelle et à la théorie de
l’ordonnancement lorsque j’étais de ses élèves, mais elle m’a aussi prodigué de nombreux
conseils pour bien débuter le troisième cycle universitaire dont cette thèse est
l’accomplissement. Qu’elle en soit remerciée.

J’exprime ma gratitude à Monsieur Marc Bui et à Monsieur Pierre Villon, Professeurs à
l’Université de Technologie de Compiègne, qui ont bien voulu être examinateurs.

Je tiens aussi à remercier Monsieur Yves Caseau, Directeur de la Direction des
Technologies Nouvelles du groupe Bouygues et Professeur associé à l’ENS, qui m’a
accueilli pendant deux ans au sein de son laboratoire. C’est grâce à lui que j’ai pu concilier
avec bonheur recherche théorique et appliquée pendant cette thèse.

Merci aussi à Monsieur Wim Nuijten, responsable du développement de ILOG SCHEDULER,
dont les thèmes de recherche ont fortement inspiré cette thèse.

Enfin, je tiens à remercier tous les membres de la Direction des Technologies Nouvelles
du groupe Bouygues, Catherine Bernez, Tibor Kökény et Arnaud Linz, qui ont répondu
avec calme et patience aux questions quotidiennes dont je les accablais. Un grand merci
aussi à tous les membres du département de Génie Informatique de l’Université de
Technologie de Compiègne et en particulier à, Emmanuel Néron.

3

Table of Contents

REMERCIEMENTS ..2

TABLE OF CONTENTS ...3

TABLE OF ILLUSTRATIONS ..6

CHAPITRE A. INTRODUCTION (EN FRANÇAIS) ..8

A.1. PROGRAMMATION PAR CONTRAINTES ..9
A.2. RECHERCHE OPERATIONNELLE ET PROGRAMMATION PAR CONTRAINTES ...13
A.3. L’ORDONNANCEMENT...14

A.3.1. Représentation des Activités et des Ressources......................................15
A.3.2. Contraintes Temporelles et Contraintes de Ressources16
A.3.3. Des Problèmes Classiques d’Ordonnancement......................................17

A.4. RESUME DES RESULTATS ET PLAN DE LA THESE..20

CHAPTER A. INTRODUCTION...23

A.1. CONSTRAINT PROGRAMMING ..24
A.2. INCORPORATING EFFICIENT O.R. ALGORITHMS IN CONSTRAINT-BASED
 SYSTEMS..27
A.3. SCHEDULING..28

A.3.1. Representation of Activities and Resources..29
A.3.2. Temporal and Resources-Constraints ..30
A.3.3. Modeling some Classical Scheduling Problems.....................................31

A.4. SUMMARY OF RESULTS AND OUTLINE OF THE THESIS34

CHAPTER B. PROPAGATION OF RESOURCE CONSTRAINTS37

B.1. THE NON-PREEMPTIVE DISJUNCTIVE CASE ..38
B.1.1. Time-Table Constraint..38
B.1.2. Disjunctive Constraint Propagation...39
B.1.3. Edge-finding ...40
B.1.4. Not-First, Not-Last ...43

B.2. THE PREEMPTIVE DISJUNCTIVE CASE, THE MIXED CASE47
B.2.1. Time-Table Constraint..47
B.2.2. Disjunctive Constraint Propagation...49

4

B.2.3. Network-Flow based Constraints ...50
B.2.4. Edge-Finding ..53

B.3. THE CUMULATIVE CASE ...57
B.3.1. Necessary Conditions for the Existence of a Feasible Schedule59

B.3.1.1. A Necessary and Sufficient Condition of existence for
 the Fully Elastic CuSP ...59
B.3.1.2. A Necessary and Sufficient Condition of existence for
 the Partially Elastic CuSP ..60

B.3.1.2.1. Jackson’s Partially Elastic Schedule...61
B.3.1.2.2. Energetic Reasoning ...61
B.3.1.2.3. A Quadratic Algorithm ...63

B.3.1.3. A “Left-Shift / Right-Shift” Necessary Condition of
 existence for the CuSP ...67

B.3.1.3.1. Characterization of relevant and irrelevant intervals..................68
B.3.1.3.2 A Quadratic Algorithm ...72

B.3.1.4. Synthesis of Theoretical Results ..74
B.3.2. Time-Bound Adjustments for the CuSP ..77

B.3.2.1. Time-Bound Adjustments for the Fully Elastic CuSP77
B.3.2.2. Time-Bound Adjustments for the CuSP Based on
 the Partially Elastic Relaxation...78

B.3.2.2.1. Resolution of P1 for all i...80
B.3.2.2.2. Resolution of P2 for all i...81

B.3.2.3. “Left-Shift / Right-Shift” Time-Bound Adjustments for the CuSP..84
B.3.2.4. Synthesis of Theoretical Results ...84

B.4. OVER-LOADED RESOURCES ..86
B.4.1. Lower Bound Computation...88

B.4.1.1. The Preemptive Lower Bound ...89
B.4.1.1.1. Reformulation of the Problem..89
B.4.1.1.2. Some Fundamental Properties ...89
B.4.1.1.3. Overall Algorithm..93
B.4.1.1.4. Minimizing the Weighted Number of Late Activities94

B.4.1.2. The Relaxed Preemptive Lower Bound ...95
B.4.2. Resource Constraint Propagation ...99

B.4.2.1. Late Activity Detection..100
B.4.2.2. On-Time Activity Detection ..103

CHAPTER C. PROBLEM SOLVING AND EXPERIMENTAL RESULTS...104

C.1. THE JOB-SHOP SCHEDULING PROBLEM ..105
C.2. THE PREEMPTIVE JOB-SHOP SCHEDULING PROBLEM................................108

C.2.1. A dominance property...108
C.2.2. Branching scheme...109

5

C.2.3. Experimental Results ..111
C.3. THE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM.116

C.3.1. General Framework..117
C.3.2. Constraint Propagation ..121
C.3.3. Dominance Rules ..123
C.3.3. Experimental Results ..127

C.4. MINIMIZING THE NUMBER OF LATE ACTIVITIES ON A SINGLE MACHINE..135
C.4.1. Search Strategy ...136

C.4.1.1. Activity Selection...136
C.4.1.2. Solving the One-Machine Problem..136
C.4.1.3. Dominance Properties ..137

C.4.1.3.1. Dominance of Small Activities with Large Time-Windows137
C.4.1.3.2. Straight Scheduling Rule ..138
C.4.1.3.3. Decomposition Rule ...139

C.4.2. Experimental Results ..140

CHAPITRE D. CONCLUSION (EN FRANÇAIS) ...145

CHAPTER D. CONCLUSION..147

BIBLIOGRAPHY...149

APPENDIX 1. SUMMARY OF NOTATIONS..159

APPENDIX 2. MINIMIZING THE WEIGHTED NUMBER OF LATE
JOBS TO BE PREEMPTIVELY SCHEDULED ON A SINGLE
MACHINE, WHEN PROCESSING TIMES ARE EQUAL161

APPENDIX 3. MINIMIZING THE WEIGHTED NUMBER OF LATE

JOBS TO BE SCHEDULED ON A SINGLE MACHINE, WHEN

PROCESSING TIMES ARE EQUAL..165

6

Table of Illustrations

Figure A-1. Le comportement d’un système de programmation par contraintes11
Figure A-2. Les caractéristiques temporelles d'une activité15
Figure A-1. The behavior of a constraint programming system.................................26
Figure A-2. Temporal characteristics of an activity. ..29
Figure B-1. Propagation of the timetable constraint...39
Figure B-2. Propagation of the disjunctive constraint (non-preemptive case)40
Figure B-3. The JPS of 3 activities. ..42
Figure B-4. Propagation of the time-table constraint (mixed case)............................48
Figure B-5. Propagation of the disjunctive constraint (preemptive case)...................49
Figure B-6. A network flow for the preemptive resource constraint..........................51
Figure B-7. Fully Elastic and Partially Elastic schedules...59
Figure B-8. Required energy consumption (Partially Elastic case)............................62
Figure B-9. Required energy consumption (Left shift / Right shift)67
Figure B-10. Some relevant time intervals for the Left shift / Right shift
 necessary condition...71
Figure B-11. A comparison of the 3 necessary conditions. ..74
Figure B-12. Selection of Au in Q. ...82
Figure B-13. A brief comparison of the three adjustment techniques84
Figure B-14. The JPS computed at each step of the algorithm99
Figure B-15. The network flow built from G ...101
Figure B-16. The modified network flow...102
Table C-1. Experimental results obtained on 10 instances of the JSSP
 used by Applegate and Cook in their computational study.106
Figure C-1. A preemptive schedule and its Jackson derivation................................109
Table C-2. Results obtained on 20 instances of the preemptive Job-Shop
 Scheduling Problem..113
Table C-3. GUTB results on ten 10∗ 10 instances of the preemptive Job-Shop
 Scheduling Problem..114
Table C-4. Edge-finding results on ten 10∗ 10 instances of the preemptive
 Job-Shop Scheduling Problem..114
Figure C-2. The incompatibility graph of the instance described in the
 example above. ...123
Figure C-3. The relative positions of Ai and Aj ..125
Figure C-4. A simple instance of the RCPSP...126

7

Figure C-5. The directed graph associated to activities A, B, C, D, E and F.126
Table C-5. Patterson (110 instances of average disjunctive ratio 0.67)128
Table C-6. KSD RS 0.2 (120 instances of average disjunctive ratio 0.65)128
Table C-7. KSD RS 0.7 (120 instances of average disjunctive ratio 0.53)129
Table C-8. KSD ALL (480 instances of average disjunctive ratio 0.56)..................129
Table C-9. BL (40 instances of average disjunctive ratio 0.33)129
Table C-10. Average ratios and standard deviations for different problem sets129
Table C-11. Experimental results on the 96 Alvarez instances (27 or 51 activities)131
Table C-12. Experimental results on the 110 Patterson instances............................131
Table C-13. Experimental results on the 480 KSD instances...................................132
Table C-14. Experimental results on the 40 BL instances..132
Figure C-6. The behavior of LSRS and NO on the KSD instance set..133
Figure C-7. The behavior of LSRS and NO on the BL instances.133
Table C-15. Behavior of the algorithm for several sizes of instances142
Figure C-8. Number of instances solved within a time limit in seconds..................142
Figure C-9. The behavior of the algorithm on 60-activities instances with
 different characteristics (parameters pmin and and pmax
 kept to 0 and 100). ..143
Figure C-10. The behavior of the algorithm on 60-activities instances
 with different characteristics (parameters pmin and and pmax
 kept to 25 and 75). ..143
Table C-16. A comparison of two branch and bound procedures on four sets
 of instances. ..144

8

Chapitre A. Introduction (en français)

Le but de cette thèse est de décrire et de comparer, tant d’un point de vue expérimental
que théorique, de nouveaux algorithmes de propagation de contraintes de ressources en
ordonnancement1.
Dans une première partie (A.1) de ce chapitre introductif, nous donnons un aperçu rapide
de la programmation par contraintes. Nous montrons alors (A.2) que l’efficacité de cette
méthode est conditionnée à l’utilisation de méthodes déductives puissantes, i.e.,
d’algorithmes de propagation de contraintes qui utilisent une formulation « globale » d’un
ensemble de contraintes. Au cours de la troisième partie (A.3), nous proposons une
classification simple (et un tant soit peu grossière) des problèmes d’ordonnancement que
nous avons pu rencontrer. Cette classification nous permet d’identifier un ensemble de
situations dans lesquelles il nous semble utile d’étudier et de développer de nouveaux
algorithmes de propagation de contraintes de ressources. Nous illustrons la pertinence de
ces contraintes de ressources à travers un ensemble de problèmes d’ordonnancement de la
littérature. Nous terminons cette introduction en présentant un résumé des résultats
obtenus et en annonçant le plan de ce mémoire.

1 Les travaux présentés dans ce mémoire ont été réalisés pendant que l’auteur était
ingénieur de recherche au sein du groupe Bouygues. Au long des deux années passées à la
Direction des Technologies Nouvelles, l’auteur a pris part à plusieurs projets industriels
incluant (1) la résolution d’un problème de gestion de projet partiellement préemptif (2)
l’intégration dans le langage CLAIRE de plusieurs produits de programmation linéaire, (3)
la résolution d’un problème de gestion de stocks [Baptiste et al., 1998a] et (4) l’étude d’un
problème de séquencement de véhicules généralisé [Régin et Puget, 1997]. Les deux
dernières applications faisant partie du projet européen CHIC-2. Ces applications ne sont
pas étudiées au long de ce mémoire. Certaines d’entre-elles sont cependant à la source des
travaux de recherche présentés dans la suite.

9

A.1. Programmation par Contraintes

Le problème de satisfaction de contraintes (CSP) peut être énoncé d’une manière
informelle comme suit : étant donné (1) un ensemble de variables, (2) pour chaque
variable, un domaine (i.e., un ensemble de valeurs possibles), et (3) un ensemble de
contraintes entre ces variables, la question est de savoir s’il existe une affectation de
valeurs pour chaque variable qui satisfasse toutes les contraintes. Les contraintes peuvent
être représentées de manière implicite (i.e., il est alors nécessaire d’effectuer un calcul
pour vérifier que la contrainte est vérifiée pour une certaine instanciation des variables) ou
de manière explicite (i.e., les tuples de valeurs qui satisfont la contrainte sont enregistrés
dans une base de données). D’une façon générale, la programmation par contraintes
s’attaque à ce problème. Nous renvoyons le lecteur à, par exemple, [Prosser, 1993],
[Esquirol et al., 1995], [Caseau, 1996] pour une description plus poussée de la
programmation par contraintes et de ses applications. L’un des intérêts majeurs de cette
technique est que les contraintes sont utilisées dans un processus déductif, i.e., la
propagation, qui peut permettre de détecter rapidement une inconsistance ou de réduire les
domaines des variables ; ce qui permet d’accélérer le traitement du problème.
Par exemple, si x et y sont des variables entières, sur lesquelles les contraintes x < y et
x > 8 sont imposées, la phase de propagation permet de déduire que la valeur de la
variable y est au moins égale à 10. Si la contrainte y ≤ 9 est ajoutée au système, une
contradiction est immédiatement détectée. Sans cette phase de propagation, l’absence
d’affectation faisable ne pourrait être prouvée qu’après une énumération plus ou moins
longue.
De nombreuses techniques ont été proposées pour propager les contraintes.
L’arc-consistance est une technique largement répandue.

Définition A-1.
Etant donnée une contrainte c sur n variables x1, …, xn et un domaine d(xi) pour chaque
variable xi, c est “arc-consistante” si et seulement si pour toute variable xi et pour toute
valeur vali de d(xi), il existe des valeurs val1, …, vali−1, vali+1, …, valn appartenant aux
domaines d(x1), …, d(xi−1), d(xi+1), …, d(xn) telles que la contrainte c soit vérifiée lorsque
∀ j ∈ {1, ..., n}, xj = valj. �

Beaucoup de recherches ont été consacrées à des algorithmes de propagation capables de
maintenir l’arc-consistance de toutes les contraintes d’un CSP binaire, i.e., d’un CSP dans
lequel les contraintes jouent sur deux variables ([Montanari, 1974], [Mackworth, 1977],
[Mohr et Henderson, 1986], [Van Hentenryck et al., 1992], [Bessière at al., 1995]).

10

Dans le cas particulier d’un CSP dont les variables sont contraintes à prendre des valeurs
numériques, les domaines sont parfois représentés sous la forme d’un intervalle
[lb(x), ub(x)]. Cette représentation beaucoup plus compacte permet, d’un point de vue
pratique, de manipuler un grand nombre de variables. La propagation de contraintes sur de
telles variables se résume souvent à l’arc-B-consistance [Lhomme, 1993], c’est à dire à
l’arc-consistance restreinte aux bornes des domaines. Il est aisé de rendre
arc-B-consistantes certaines contraintes arithmétiques, comme des contraintes linéaires
([Lhomme, 1993]).

Définition A-2.
Etant donné une contrainte c sur n variables x1, …, xn et un domaine d(xi) = [lb(xi), ub(xi)]
pour chaque variable xi, c est “arc-B-consistante” si et seulement si ∀ i et
∀ vali ∈ {lb(xi), ub(xi)}, il existe val1, …, vali−1, vali+1, …, valn appartenant respectivement
aux domaines d(x1), …, d(xi−1), d(xi+1), …, d(xn) telles que la contrainte c soit vérifiée
lorsque ∀ j ∈ {1, ..., n}, xj = valj. �

Pour des raisons évidentes de complexité, la propagation des contraintes est généralement
incomplète, toutes les conséquences des contraintes sur les domaines des variables n’étant
pas calculables en un temps limité. Il est donc nécessaire de développer une recherche
arborescente pour déterminer s’il existe ou non une affectation valide de valeurs aux
variables. Les deux caractéristiques les plus importantes d’une telle recherche
arborescente sont :
• Les heuristiques utilisées pour choisir la variable à instancier et pour déterminer la

valeur du domaine de cette variable à essayer en premier (e.g., choisir la variable dont
le domaine est le plus petit et essayer de l’instancier à la valeur minimum de son
domaine).

• La stratégie de retour arrière en cas d’échec, i.e., lorsqu’il a été prouvé qu’aucune
affectation faisable ne peut être dérivée de l’état courant du système. La plupart des
outils de programmation par contraintes sont basés sur une recherche en profondeur
d’abord : la dernière décision est remise en cause et l’alternative à cette décision est
imposée. D’autres stratégies de retour arrière ont été proposées, comme le
« backtrack » intelligent.

11

Le comportement général d’un système de contraintes peut se résumer à la figure A-1.
Notons que le la définition du problème, la propagation des contraintes et la phase de prise
de décision sont clairement séparés.
• En premier lieu, le problème est défini en termes de variables et de contraintes.
• Puis, les algorithmes de propagation de ces contraintes sont spécifiés. En pratique,

l’utilisateur d’un système de contraintes peut soit utiliser des contraintes prédéfinies,
par exemple des contraintes sur des entiers ou sur des ensembles, soit définir ses
propres contraintes dont il pourra expliciter les méthodes de propagation.

• Enfin, le mécanisme de prise de décision, c’est-à-dire la façon dont l’arbre de
recherche est construit, est défini. Il précise le type de décisions qui doivent être prises
au fur et à mesure de la recherche (e.g., instancier une variable à une valeur, ordonner
une paire d’activités).

Figure A-1. Le comportement d’un système de programmation par contraintes

Définition
du problème

Prise de décision
et retour en arrière

Propagation des
contraintes

Solution partielle
Contraintes initiales

Contraintes déduites
contradictions détectées

Nouvelles contraintes
(décision)

12

Le fait que la propagation des contraintes soit un mécanisme indépendant des autres
parties du système est d’un grand intérêt en terme de réutilisation de code. En effet, les
algorithmes de propagation de contraintes sont (ou devraient être) totalement génériques,
et peuvent donc être réutilisés dans toutes les applications où la même contrainte est à
nouveau présente. Tel n’est pas le cas des algorithmes de recherche qui sont difficilement
réutilisables d’un problème à l’autre (ces algorithmes utilisent souvent des critères de
dominance qui la plupart du temps ne sont plus vérifiés dès qu’une nouvelle contrainte est
ajoutée au système).
Cette possibilité de réutiliser des algorithmes de propagation d’une application à l’autre
est l’une des raisons de l’engouement des industriels pour des outils de programmation par
contraintes, parfois au détriment d’autres techniques de résolution, comme la
programmation linéaire qui, même si elle se montre extrêmement performante sur certains
problèmes, nécessite souvent l’élaboration de modèles complexes. Parmi les systèmes de
contraintes (commerciaux ou de domaine public), citons ILOG SOLVER [Puget, 1994],
[Puget et Leconte, 1995], CHIP [Aggoun et Beldiceanu, 1993], [Beldiceanu et Contejean,
1994], ECLIPSE, et CLAIRE [Caseau et Laburthe, 1996b] accompagné d’ECLAIR [Laburthe
et al., 1998].

13

A.2. Recherche Opérationnelle et
Programmation par Contraintes

L’utilisation d’algorithmes « dédiés » de propagation de contraintes permet d’accroître
considérablement l’efficacité des systèmes de contraintes. De tels algorithmes sont
capables de prendre en compte d’un point de vue global un ensemble de contraintes.
Considérons par exemple la contrainte dite « tous-différents » qui contraint un ensemble
de n variables à prendre des valeurs deux à deux distinctes. Un algorithme de propagation
trivial consiste à décomposer cette contrainte en n * (n – 1) / 2 contraintes « locales » qui
imposent pour toute paire de variables (x, y) que x ≠ y. Propager cette contrainte se fait
alors simplement par arc-consistance locale sur chacune des contraintes. [Régin, 1994]
décrit un algorithme bien plus puissant qui garantit l’arc-consistance globale de la
contrainte « tous-différents ». La contrainte est modélisée sous la forme d’un graphe
biparti, où sont représentées d’un côté les variables, de l’autre l’union des domaines des
variables. Une arête entre une variable et une valeur indiquant que cette valeur fait partie
du domaine de la variable. La contrainte est évidemment consistante si et seulement si le
couplage maximum du graphe est de cardinalité n. Régin utilise donc un algorithme de
Recherche Opérationnelle pour assurer la consistance globale de la contrainte. Mais il
étend aussi de façon originale ce mécanisme pour assurer, avec une complexité
raisonnable, l’arc-consistance globale de la contrainte : pour chaque variable, les valeurs
du domaine qui rendraient la contrainte insatisfiable sont retirées. Une autre contrainte
globale célèbre est la contrainte de ressource qui impose à un ensemble d’activités de
s’exécuter sur une machine. De nombreux travaux (e.g., [Nuijten, 1994], [Caseau et
Laburthe, 1995], [Baptiste et Le Pape, 1995b], [Colombani, 1996]) ont porté sur des
algorithmes de propagation globaux pour cette contrainte. Tous reprennent les idées des
travaux fondateurs de Carlier et Pinson sur le Job-Shop (e.g., [Carlier et Pinson, 1989]).
L’intégration de tels algorithmes permet de bénéficier de l’efficacité de techniques de
recherche opérationnelle dans le cadre très souple de la programmation par contraintes. En
d’autres termes, nous disposons d’une part d’algorithmes très efficaces de Recherche
Opérationnelle mais dont le spectre d’utilisation est parfois réduit, et d’autre part de
techniques plus générales de propagation de contraintes dont le spectre est beaucoup plus
large mais dont l’efficacité reste souvent à démontrer. Nous nous proposons de développer
un ensemble d’algorithmes de Recherche Opérationnelle intégrables dans un système
d’ordonnancement à base de contraintes.

14

A.3. L’Ordonnancement

Nous proposons une typologie rudimentaire des problèmes d’ordonnancement à
contraintes de ressources. Fondée, en partie, sur les problèmes industriels que nous avons
pu rencontrer au cours de ces dernières années, elle ne prétend pas être exhaustive. Au
sens strict, un problème d’ordonnancement consiste à déterminer les dates d’exécutions
d’activités qui utilisent une ou des quantités connues d’un ensemble donné de ressources
dont les capacités sont limitées. Nous laissons donc de côté les problèmes d’affectation où
le positionnement des activités est connu, et où l’on cherche à couvrir la demande en
ressource de ces activités par une affectation adéquate de ressources aux activités.
Nous distinguons trois dimensions dans notre classification.
• Dans un problème d’ordonnancement non-préemptif, les activités sont exécutées sans

interruption de leur date de début à leur date de fin. Au contraire, dans un problème
préemptif, les activités peuvent être interrompues à tout instant pour laisser, par
exemple, s’exécuter des activités plus urgentes.

• Dans un problème disjonctif, les ressources ne peuvent exécuter qu’une activité à la
fois. Dans un problème cumulatif, une ressource peut exécuter plusieurs activités en
parallèle.

• Dans la plupart des cas, les contraintes de ressources doivent être prises au sens
strict, (i.e., elles ne peuvent jamais être violées). Dans certains problèmes, lorsque la
ressource est surchargée, les contraintes de ressources peuvent être prises dans un
sens plus large : un nombre limité d’activités peuvent être sous-traitées, pour rendre la
contrainte de ressource satisfiable. La ressource se caractérise alors par sa capacité
totale et par le nombre d’activités qu’elle peut sous-traiter.

Dans le « meilleur » des cas, le problème consiste à déterminer un ordonnancement
faisable, c’est à dire un ordonnancement qui respecte toutes les contraintes, mais le plus
souvent, un critère doit être optimisé. Bien que le makespan, i.e., la date de fin de
l’ordonnancement, soit le critère le plus fréquemment utilisé (ce qui d’ailleurs ne
correspond pas forcément à un critère d’une grande utilité concrète), d’autres critères
peuvent être considérés. Citons par exemple le nombre d’activités exécutées dans un
certain délai, le retard moyen ou pondéré, ou encore le pic d’utilisation d’une ressource.
La théorie de l’ordonnancement est un champ de recherches très large qui, tant d’un point
de vue pratique qu’appliqué, a donné lieu à un nombre important de publications. Nous
renvoyons le lecteur à [Baker, 1974], [Coffman, 1976], [French, 1982], [Carlier et
Chrétienne, 1988], [GOThA, 1993], [Brucker, 1995] pour une introduction plus poussée à
ce domaine.

15

Comment représenter cet ensemble de problèmes d’ordonnancement dans un système de
contraintes ? Nous utilisons un modèle simple constitué de quatre entités : les activités, les
ressources, les contraintes temporelles et les contraintes de ressources. Les activités sont
liées entre elles par des contraintes temporelles. Activités et ressources sont liées entre
elles par des contraintes de ressources.

A.3.1. Représentation des Activités et des Ressources

Dans le cas non-préemptif, deux variables start(Ai) et end(Ai) sont associées à chaque
activité Ai. Elles représentent respectivement les dates de début et de fin de Ai. La plus
petite valeur dans le domaine de start(Ai) est en fait la date de disponibilité ri de l’activité,
et la plus grande des valeurs dans le domaine de end(Ai) est la date d’échéance di de Ai.
Nous appellerons lsti la plus grande valeur dans le domaine de start(Ai), i.e., la date de
début au plus tard de Ai, et nous appellerons eeti la plus petite valeur dans le domaine de
end(Ai), i.e., la date de fin au plus tôt de Ai. Le temps d’exécution de Ai est représenté par
une autre variable processingTime(Ai) qui est contrainte à être égale à la différence entre
end(Ai) et start(Ai). Le plus souvent, nous considérerons que la variable
processingTime(Ai) est instanciée à une valeur pi, (i.e., les temps d’exécution sont connus
et fixés).

Figure A-2. La date de disponibilité, la date d’échéance, le temps d’exécution, la date de
fin au plus tôt et la date de début au plus tard d’une activité (la couleur gris clair est
utilisée pour représenter la fenêtre [ri, di] de l’activité alors que le gris foncé représente
la durée de l’activité).

Un problème d’ordonnancement préemptif est sensiblement plus complexe à représenter.
Il est tout aussi possible d’associer une variable ensembliste (i.e., une variable dont la
valeur est un ensemble) set(Ai) à chaque activité Ai que d’utiliser des variables binaires
W(Ai, t) pour chaque activité Ai ; l’activité s’exécutant à l’instant t si et seulement si
W(Ai, t) = 1. Sans tenir compte des détails d’implémentation, notons que

lsti eeti

pi

ri di

16

• W(Ai, t) vaut 1 si et seulement si t appartient à set(Ai)
• start(Ai) = mint∈ set(Ai)(t) et end(Ai) = maxt∈ set(Ai)(t + 1) ; ces variables étant

indispensables pour connecter les activités par des contraintes temporelles, comme
nous le verrons dans la suite. Notons que dans le cas non-préemptif, l’équation
set(Ai) = [start(Ai), end(Ai)) est vérifiée. L’intervalle est fermé à gauche et ouvert à
droite, ce qui permet de vérifier |set(Ai)| = end(Ai) − start(Ai) = processingTime(Ai).

Nous représentons une ressource R par la variable capacity(R) qui définit la capacité de la
ressource, e.g., le nombre de machines parallèles identiques disponibles dans l’atelier.
Notons que si la capacité de la ressource varie au cours du temps, il suffit alors
d’introduire pour chaque instant t, capacity(R, t), la variable contrainte qui représente la
capacité de la ressource R à l’instant t. Pour simplifier, nous noterons CR la capacité
maximale de la ressource (CR = ub(capacity(R)). Dans la suite, l’indice R sera omis
lorsqu’une seule ressource est considérée.
Un tel modèle permet de représenter un grand nombre de types de ressources. Cependant,
pour prendre en compte le cas où une ressource est surchargée, nous introduisons une
variable reject(R) qui représente le nombre d’activités qui devraient s’exécuter sur la
ressource, mais qui sont sous-traitées du fait de la surcharge.

A.3.2. Contraintes Temporelles et Contraintes de
Ressources

Nous qualifions de contrainte temporelle une contrainte qui lie le début ou la fin de deux
activités par une relation linéaire. Par exemple, une contrainte de précédence entre Ai et Aj
se représente par l’équation linéaire end(Ai) ≤ start(Aj). De telles contraintes sont
propagées en utilisant un algorithme d’arc-B-consistance [Lhomme, 1993]. De plus, une
variante de l’algorithme de Ford proposée par [Cesta et Oddi, 1996] est utilisée pour
détecter en temps polynomial en le nombre de contraintes toute inconsistance liée au
réseau de contraintes de précédence (et aux contraintes de temps d’exécution).
Une contrainte de ressource représente le fait que les activités utilisent une certaine
quantité de ressource tout au long de leur exécution. Etant données une activité Ai et une
ressource R, nous noterons capacity(Ai, R) la variable contrainte correspondant à la
quantité de ressource R requise par l’activité Ai. ci,R = lb(capacity(Ai, R)) est alors la
quantité minimale de ressource utilisée pendant l’exécution de Ai. Une contrainte de
ressource spécifie qu’à chaque instant t, la capacité de la ressource R est supérieure ou
égale à la somme, sur toutes les activités, des capacités requises à l’instant t.

17

• Dans le cas non-préemptif, cette contrainte peut s’écrire

∀ R, ∀ t �
<≤)()(

),(
ii AendtAstart

i RAcapacity ≤ capacity(R, t).

• Dans le cas préemptif,

∀ R, ∀ t �
<≤)()(

),(*),(
ii AendtAstart

ii RAcapacitytAW ≤ capacity(R, t).

Examinons maintenant le cas où la machine est surchargée. Il est assez naturel
d’introduire, pour chaque activité Ai et pour chaque ressource surchargée R sur laquelle
elle peut s’exécuter, une variable in(Ai, R) qui permet de déterminer si Ai est exécutée (i.e.,
in(Ai, R) = 1) sur R ou si Ai est sous-traitée (i.e., in(Ai, R) = 0). Lorsqu’une seule ressource
est considérée, l’indice R sera omis. La contrainte de ressource impose alors que toutes les
activités non sous-traitées vérifient une contrainte de ressource standard.
• Dans le cas non préemptif, cette contrainte peut s’écrire

��

�
�

�

−≥

≤∀∀

�

�
<≤

)(),(

),(),(*),(,,
)()(
RrejectnRAin

tRcapacityRAcapacityRAintR

i

AendtAstart
ii

ii

• Dans le cas préemptif,

��

�
�

�

−≥

≤∀∀

�

�
<≤

)(),(

),(),(*),(*),(,,
)()(
RrejectnRAin

tRcapacityRAcapacitytAWRAintR

i

AendtAstart
iii

ii

Notons que ce modèle se généralise trivialement si un poids est associé à chaque activité
et que la ressource ne peut sous-traiter qu’un poids total donné d’activités.

A.3.3. Des Problèmes Classiques d’Ordonnancement

Nous nous proposons de montrer la façon dont peuvent être représentés, au moyen du
modèle proposé dans les paragraphes précédents, quatre problèmes classiques
d’ordonnancement. Dans ces quatre cas, les problèmes de décisions associés sont
NP-Complets au sens fort [Garey et Johnson, 1979].

18

Le problème du Job-Shop (JSSP)
Instance. Une instance de la variante de décision du Job-Shop est décrite par un ensemble
de m machines, par un ensemble de n jobs et par une date d’échéance globale D. Chaque
job Ji est constitué d’une liste Li d’activités. Pour chaque activité Ai, un temps d’exécution
pi entier ainsi que la machine sur laquelle elle doit s’exécuter sont spécifiés.
Question. Existe-t-il un ordonnancement non-préemptif des activités, c’est-à-dire une date
de démarrage pour chaque activité, tel que (1) chaque machine exécute au plus une
activité à la fois, (2) les activités d’un même job sont exécutées dans l’ordre induit par la
liste Li et (3) les dates de fin des activités ne dépassent pas la date d’échéance D ?
Modèle. Chaque machine est représentée par une ressource disjonctive. Les activités sont
non-interruptibles et utilisent la ressource correspondant à la machine qui leur est
attribuée. Les contraintes de précédence induites par les jobs sont imposées sur les
activités. Enfin, pour chaque activité Ai, les domaine initiaux des variables start(Ai) et
end(Ai) sont fixés à [0, D].

Le problème du Job-Shop préemptif (PJSSP)
Instance. Mêmes données que celles du JSSP.
Question. Existe-t-il un ordonnancement préemptif des activités, c’est-à-dire, pour chaque
activité, un ensemble d’intervalles de temps dont la durée totale est la durée de l’activité,
tel que (1) chaque machine exécute au plus une activité à la fois, (2) les activités d’un
même job sont exécutées dans l’ordre induit par la liste Li et (3) les dates de fin des
activités ne dépassent pas la date d’échéance D ?
Modèle. Chaque machine est représentée par une ressource disjonctive. Les activités sont
interruptibles et utilisent la ressource correspondant à la machine qui leur est attribuée.
Pour chaque activité, les domaine initiaux des variables start(Ai) et end(Ai) sont fixés à
[0, D].
Alors que pour la plupart des problèmes d’ordonnancement, la relaxation préemptive est
plus « facile » que le problème d’origine, le PJSSP est « plus difficile » que le JSSP. En
effet, il a été démontré que lorsque le nombre de machines est fixé à 2 et que le nombre de
jobs est fixé à 3, le PJSSP est NP-difficile alors que le problème non-préemptif est
fortement polynomial ([Brucker et al., 1999]).

19

Le problème de gestion de projet à contraintes de ressources (RCPSP)
Instance. Une instance de la variante de décision du RCPSP est décrite par (1) un
ensemble de ressources de capacités données, (2) un ensemble d’activités
non-interruptibles de durées données, (3) un graphe orienté sans cycle représentant les
contraintes de précédence entre les activités, (4) un entier par activité et par ressource
représentant la quantité de ressource utilisée par l’activité tout au long de son exécution, et
enfin (5) par une date d’échéance globale D.
Question. Existe-t-il un ordonnancement, i.e., un ensemble de dates de démarrage des
activités, qui permet de satisfaire à la fois les contraintes de précédence et les contraintes
de ressources, et dont la durée totale est inférieure ou égale à D ?
Modèle. Les activités de l’instance sont représentées par des activités non-interruptibles,
chaque ressource est représentée par une ressource cumulative dont la capacité est fixée
(i.e., la variable capacity(R) est instanciée). Des contraintes de ressources sont imposées
entre activités et ressources (capacity(Ai, R) est instanciée). Des contraintes temporelles
sont imposées conformément au graphe de précédence. Enfin, pour chaque activité Ai, les
domaine initiaux des variables start(Ai) et end(Ai) sont fixés à [0, D].

Minimiser le nombre de jobs en retard sur une machine (1 | rj | ΣΣΣΣUj)
Instance. Une instance de la variante de décision de ce problème est constituée d’un
ensemble de n jobs (chaque job étant décrit par une date de disponibilité ri, une date
d’échéance di et un temps d’exécution pi avec ri + pi ≤ di) et d’un entier N.
Question. Existe-t-il un ordonnancement des jobs, i.e., un ensemble de dates de
démarrage, tel que (1) un job au plus s’exécute à chaque instant, (2) chaque job débute
après sa date de disponibilité, (3) moins de N jobs finissent après leur date d’échéance ?
Modèle. Chaque job est représenté par une activité. Dates de disponibilités, dates
d’échéances et durées sont imposées aux variables start, end et processingTime. Une
ressource disjonctive R, dont la surcharge est autorisée, est utilisée pour modéliser la
machine. Les activités Ai telles que in(Ai, R) = 1 sont à l’heure. Les autres sont en retard et
peuvent être ordonnancées arbitrairement tard. Enfin, le domaine de la variable reject(R)
est fixé à [0, N].

20

A.4. Résumé des Résultats et Plan de la Thèse

Le modèle que nous avons présenté est très général. Pour être totalement exhaustif, il nous
faudrait étudier huit types de contraintes de ressources (préemptif vs. Non-préemptif,
disjonctif vs. cumulatif et contrainte de ressource stricte vs. contrainte de ressource
surchargée). En pratique, nous ne nous sommes pour l’instant intéressé en détail qu’aux
cas détaillés ci-dessous.
• Contraintes de ressources disjonctives sans préemption. Suite aux travaux de

[Nuijten, 1994], la plupart des systèmes de programmation par contraintes ont
maintenant intégré des variantes des travaux de Carlier et Pinson sur le problème à une
machine. L’idée sous-jacente de ces travaux est de comparer les caractéristiques
temporelles d’une activité par rapport à un ensemble d’activités. Il est alors possible de
déduire qu’une activité Ai peut, ne peut pas, ou doit s’exécuter après un ensemble
d’autres activités S ; ceci se traduisant par une réduction des fenêtres de temps des
activités. Plusieurs algorithmes ont été proposés pour effectuer toutes les déductions
possibles du type « Ai doit s’exécuter après S ». En particulier, [Carlier et Pinson,
1994] décrit un algorithme dont la complexité théorique n’est que O(n log(n)). Les
règles permettant de prouver qu’une activité ne peut pas s’exécuter après un ensemble
de tâches ont été beaucoup moins étudiées. Nous proposons le premier algorithme
capable d’effectuer toutes les déductions possibles à partir de ces règles. La
complexité de cet algorithme est O(n2).

• Contraintes de ressources disjonctives dans le cas préemptif. A notre connaissance,
de telles contraintes de ressources n’ont jamais été étudiées en tant que telles. Nous
proposons plusieurs algorithmes de propagation de cette contrainte : le premier est
basé sur un emploi du temps de la ressource, le second sur une formulation disjonctive
du problème, le troisième sur un problème de flot dans un réseau de transport et le
dernier sur une extension au cas préemptif des algorithmes d’ajustement de Carlier et
Pinson.

• Contraintes de ressources cumulatives. Contrairement au cas disjonctif, la
communauté de Recherche Opérationnelle a peu étudié les méthodes déductives pour
ce genre de problème, mis à part évidemment des calculs de borne inférieure pour
certains cas particuliers de cette contrainte de ressource. De nombreux travaux ont été
menés au sein de la communauté de programmation par contraintes pour tenter de
généraliser les résultats obtenus dans le cas disjonctif (e.g., [Aggoun and Beldiceanu,
1993], [Nuijten, 1994], [Caseau et Laburthe, 1996a]). Les résultats sont moins
satisfaisants que dans le cas disjonctif. Nous abordons l’étude de cette contrainte de

21

ressource en introduisant un problème de décision, le « Cumulative Scheduling
Problem » (CuSP), dont nous étudions deux relaxations — une relaxation dite
totalement élastique qui permet de se ramener à un problème à une machine, et une
relaxation partiellement élastique. Nous étudions aussi un ensemble de conditions
nécessaires à l’existence d’un ordonnancement faisable basées sur une approche
énergétique [Lopez et al., 1992]. Dans tous les cas, nous proposons des algorithmes
permettant de vérifier des conditions nécessaires d’existence et d’ajuster les fenêtres
temporelles des tâches. Nous comparons ces résultats aux bornes inférieures de la
littérature pour le problème à m-machines. Nous montrons que la relaxation
partiellement élastique est équivalente à une borne inférieure connue sous le nom de la
subset bound [Perregaard, 1995], elle-même équivalente à la borne obtenue par une
relaxation pseudo-préemptive proposée par [Carlier et Pinson, 1996]. Nous montrons
aussi que le raisonnement énergétique domine strictement toutes les autres techniques
précédemment citées. Notons enfin que certains des résultats énoncés sont valables
dans le cas cumulatif préemptif.

• Les contraintes de ressources disjonctives et surchargées. Dans le cadre de la
programmation par contraintes, de telles contraintes de ressources n’ont pas été
étudiées. Dans la communauté de Recherche Opérationnelle, un grand nombre de
travaux ont été effectués sur le problème de la minimisation du nombre de « jobs » en
retard sur une machine. En particulier, de nombreux cas particulier ont été traités.
Nous montrons d’ailleurs que deux d’entre eux, jusqu’alors ouverts, sont
polynomiaux : deux algorithmes fortement polynomiaux décrits en annexe permettent
de minimiser dans les cas préemptif et non-préemptif le nombre pondéré de jobs en
retard lorsque les durées des jobs sont égales.
Nous proposons plusieurs techniques pour la contrainte de ressource surchargée. Nous
étudions la relaxation préemptive de cette contrainte de ressource et nous proposons
un algorithme en O(n4) qui permet de calculer l’optimum préemptif. Nous améliorons
ainsi l’algorithme de [Lawler, 1990]. Nous montrons aussi qu’en utilisant une
relaxation encore plus forte, une borne de moindre qualité peut être obtenue (à
moindre coût). De plus, cette relaxation nous permet de proposer un algorithme
capable de déduire que certaines activités doivent obligatoirement être sous-traitées
alors que d’autres doivent être obligatoirement exécutées sur la ressource.

Le Chapitre B est consacré à l’étude de ces différentes contraintes et aux algorithmes de
propagation associés. Dans le but d’évaluer d’un point de vue expérimental leur efficacité,
nous décrivons dans le Chapitre C des méthodes arborescentes avec propagation de
contraintes pour résoudre les problèmes classiques d’ordonnancement que nous avons
évoqués précédemment. Le Job-Shop préemptif, le problème de gestion de projet à
contraintes de ressources, ainsi que le problème de la minimisation du nombre de jobs en

22

retard sur une machine (1 | rj | ΣUj) sont étudiés. En sus de la propagation, nous utilisons un
certain nombre de critères de dominance qui, bien exploités, permettent de réduire
considérablement l’espace de recherche. Des résultats expérimentaux sont décrits pour
chaque problème. Ils nous permettent non seulement d’évaluer l’efficacité relative des
algorithmes de propagation du chapitre B, mais aussi de nous comparer, pour chaque
problème, aux meilleures procédures de séparation et d’évaluation connues.
• A notre connaissance, aucune méthode exacte n’a été proposée pour résoudre le

problème du Job-Shop préemptif. Nous nous contentons donc de comparer les
différentes méthodes que nous proposons. Notre schéma de branchement est
chronologique et nous appliquons un critère de dominance qui impose que les
ordonnancements des machines soient du type de ceux de Jackson. Ce schéma de
branchement, associé aux ajustements qui étendent les travaux de Carlier et Pinson au
cas préemptif, est relativement efficace puisque toutes les instances de la littérature de
taille 10*10 sont résolues.

• Nous proposons plusieurs variantes du même schéma de branchement pour le RCPSP.
Une caractérisation simple des instances nous permet de déterminer si celles-ci sont
« fortement disjonctives » ou « fortement cumulatives ». Nous montrons alors que les
différents schémas de branchement que nous utilisons sont plus ou moins efficaces
suivant le type d’instance. Il est clair que sur des instances fortement disjonctives,
notre méthode n’est pas aussi efficace que les procédures utilisant les résultats de
[Demeulemeester et Herroelen, 1995]. Nous montrons cependant que sur des instances
fortement cumulatives, nous obtenons des résultats extrêmement encourageants.
Résultats confirmés d’ailleurs sur le problème du flow-shop hybride [Néron et al.,
1998].

• Nous proposons pour finir une procédure arborescente pour minimiser le nombre de
jobs en retard sur une machine. Le schéma de branchement est extrêmement simple
puisqu’il consiste à choisir un job et à le mettre à l’heure ou en retard. A chaque nœud
de l’arborescence, nous vérifions que les jobs à l’heure peuvent être ordonnancés (ce
sous problème est NP-difficile mais est extrêmement bien résolu par la méthode de
[Carlier, 1982]). L’efficacité de cette procédure provient de la propagation des
contraintes mais aussi de l’utilisation d’un certain nombre de critères de dominance.
Les précédentes méthodes exactes ([Dauzère-Pérès, 1995]) pour résoudre ce problème
étaient limitées à une dizaine de jobs. Notre procédure résout 90 % des instances à 100
jobs. De plus nos résultats se comparent très favorablement à la dernière procédure de
[Dauzère-Pérès et Sevaux, 1998b].

Nous présentons nos conclusions au cours du chapitre D et nous évoquons quelques
directions de recherche qui nous semblent prometteuses dans un avenir proche.

23

Chapter A. Introduction

The aim of this thesis is to describe and to evaluate, both from a theoretical and
experimental point of view, new resource constraint propagation algorithms for several
classes of scheduling problems2.
A brief overview of constraint programming is provided in the first section of this
introductory chapter (Section A.1). We then show that a key reason for the efficiency of
this technique is the use of powerful deductive methods, i.e., of global propagation
algorithms that are applicable on a whole set of constraints (Section A.2). We provide in
Section A.3 a simple, and somewhat naive, classification of scheduling problems. It
allows us do identify some of the scheduling areas where it could be worth to study a
(new) global resource constraint. The relevance of these resource constraints is illustrated
through a set of scheduling problems from the literature. Finally, an outline of the thesis
and of our research results is provided in Section A.4.

2 This thesis has been done while the author was working as an engineer at the “Direction
des Technologies Nouvelles” of Bouygues. Along the two years spent in this department,
the author has taken a part in the development of several industrial projects. This includes
(1) the resolution of a partially preemptive project scheduling problem (2) the integration
into the Claire programming language of LP solvers, (3) the resolution of a complex stock
management problem [Baptiste et al., 1998a] and, (4) in the context of the CHIC-2
ESPRIT project, the study of a generalization of the Car-Sequencing Problem [Régin and
Puget, 1997]. These applications are not studied throughout this thesis. However, they
have motivated a large amount of the research presented in the following.

24

A.1. Constraint Programming

Constraint programming is concerned with solving instances of the Constraint Satisfaction
Problem (CSP). Informally speaking, an instance of the CSP is described by a set of
variables, a set of possible values (domain) for each variable, and a set of constraints
between the variables. The question is whether there exists an assignment of values to
variables, so that all the constraints are satisfied. Constraints are stated either implicitly
(e.g., an arithmetic formula) or explicitly (each constraint is a set of tuples of values that
satisfy the constraint). For an overview of constraint programming and of its applications,
see for instance [Prosser, 1993], [Esquirol et al., 1995], [Caseau, 1996]. The interest of
this technique lies in using constraints to reduce the computational effort needed to solve
combinatorial problems. Constraints are used not only to test the validity of a solution, as
in conventional programming languages, but also in a constructive mode to deduce new
constraints and rapidly detect inconsistencies.
For example, from x < y and x > 8, we deduce, if x and y denote integers, that the value of
y is at least 10. If later we add the constraint y ≤ 9, a contradiction can be immediately
detected. Without propagation, the “y ≤ 9” test could not be performed before the
instantiation of y and thus no contradiction would be detected at this stage of the problem-
solving process.
Several techniques have been developed to propagate constraints. Among these
techniques, let us mention arc-consistency.

Definition A-1.
Given a constraint c over n variables x1, …, xn and a domain d(xi) for each variable xi, c is
“arc-consistent” if and only if for any variable xi and any value vali in d(xi), there exist
values val1, …, vali−1, vali+1, …, valn in d(x1), …, d(xi−1), d(xi+1), …, d(xn) for the variables
x1, ..., xi-1, xi+1, ..., xn such that the constraint c is consistent (i.e., holds when
∀ j ∈ {1, ..., n}, xj = valj). �

A huge amount of work has been carried on constraint propagation algorithms that
maintain arc-consistency on the constraints of a binary CSP, i.e., of a CSP whose
constraints link at most two variables ([Montanari, 1974], [Mackworth, 1977], [Mohr and
Henderson, 1986], [Van Hentenryck et al., 1992], [Bessière at al., 1995]).
Numeric CSPs are special cases of the CSP where the variables are constrained to take
numeric values. The domain of a variable x can then be represented by an interval
[lb(x), ub(x)]. This compact representation is often used to tackle real life problems for
which maintaining explicitly the set of values that can be taken by each variable

25

throughout the search tree may not be reasonable. A usual way to propagate constraints on
such variables is to achieve arc-B-consistency [Lhomme, 1993], i.e., arc-consistency
restricted to the Bounds of the domains. Arc-B-consistency can be easily achieved on
some arithmetic constraints such as linear constraints [Lhomme, 1993].

Definition A-2.
Given a constraint c over n variables x1, …, xn and a domain d(xi) = [lb(xi), ub(xi)] for each
variable xi, c is “arc-B-consistent” if and only if ∀ i and ∀ vali ∈ {lb(xi), ub(xi)}, there exist
values val1, …, vali−1, vali+1, …, valn in d(x1), …, d(xi−1), d(xi+1), …, d(xn) for the variables
x1, ..., xi-1, xi+1, ..., xn such that the constraint c is consistent (i.e., holds when
∀ j ∈ {1, ..., n}, xj = valj). �

For complexity reasons, constraint propagation is usually incomplete. This means that
some but not all the consequences of constraints are deduced. In particular, constraint
propagation cannot detect all inconsistencies. Consequently, tree search algorithms must
be implemented to determine if the CSP instance is consistent or not. To precisely define
the search tree, one has to specify both the heuristic selection and the backtracking
strategies.
• Most of the generic search strategies use dynamic criteria to choose both the variable x

to instantiate and the value val to which x is to be instantiated (e.g., select the unbound
variable with the smallest domain and bound it to the minimum value of its domain).

• The backtracking strategy states how the system shall behave when a contradiction is
detected, i.e., when it is proven that there is no feasible assignment of values to
variables given the original data of the CSP and given the heuristic choices that have
been made. Most constraint programming tools rely on depth-first chronological
backtracking: The last decision is undone and the alternative constraint is imposed.
More complex backtracking strategies have also been proposed (e.g., intelligent
backtracking).

The overall behavior of a constraint-based system is depicted on Figure A-1. This figure
underlines the fact that problem definition, constraint propagation and decision making are
clearly separated.
• First, the problem is defined in terms of variables and of constraints.
• Then, constraint propagation algorithms are specified. In practice the user of a

constraint programming tool can use some pre-defined constraints (e.g., constraints on
integers, constraints on sets, scheduling constraints) for which the corresponding
propagation algorithms have been pre-implemented.

• Finally, the decision-making process, i.e., the way the search tree is built, is specified.
It states how new constraints are added to the system (e.g., instantiating a variable to a
value, ordering a pair of activities).

26

Figure A-1. The behavior of a constraint programming system

The separation between constraint propagation and the other parts of the system is a key
feature of constraint programming. It impacts a lot on the reusability of the constraint
propagation algorithms in the several applications where similar constraints apply. This
explains the success of commercial and public domain constraint programming packages
such as ILOG SOLVER [Puget, 1994], [Puget and Leconte, 1995], CHIP [Aggoun and
Beldiceanu, 1993], [Beldiceanu and Contejean, 1994], ECLIPSE, CLAIRE [Caseau and
Laburthe, 1996b] and ECLAIR [Laburthe et al., 1998]

Problem
definition

 Decision-making
 (and retracting)

 Constraint
 propagation

 Problem specification
 or partial solution in
 terms of constraints Initial constraints

Deduced constraints
Contradictions

New constraints
(decisions)

27

A.2. Incorporating Efficient O.R. Algorithms in
Constraint-Based Systems

It appeared in the past few years that the use of specific constraint propagation algorithms
can drastically enhance the efficiency of constraint-based systems. Such algorithms are
able to take into account a set of constraints from a “global” point of view, and can
propagate them very efficiently. Let us consider for instance the so-called “all-different”
constraint. It constrains a set of n variables to take pairwise distinct values. Such a
constraint can be obviously propagated by maintaining arc-consistency on n * (n – 1) / 2
“local” constraints that state for any pair of variables {x, y} that x ≠ y. [Régin, 1994]
describes an algorithm to achieve the global consistency of the “all-different” constraint.
The constraint is modeled by a bi-partite graph. One of the sets is the set of the variables
while the other one is the union of the domains. An edge between a variable and a value
states that the given value is in the domain of the given variable. The constraint is
consistent if and only if there is a matching whose cardinality is n. Régin uses an
Operations Research algorithm to ensure the global consistency of the constraint. On top
of that, an extension is proposed to achieve, with a reasonable algorithmic cost, the global
arc-consistency of the constraint. The domains of the variables are filtered to remove the
values that would make the constraint inconsistent. Another famous global constraint is
the resource constraint that states that a set of activities has to execute on a single
machine. [Nuijten, 1994], [Caseau and Laburthe, 1995], [Baptiste and Le Pape, 1995b],
[Colombani, 1996] describe several constraint propagation algorithms for this constraint.
All of them are based upon the work of Carlier and Pinson for the Job-Shop problem
([Carlier and Pinson, 1989]).
These algorithms, integrated in a constraint-based tool, allow any user to benefit from the
efficiency of operations research techniques in a flexible framework (e.g., [Baptiste et al.,
1995a]). Stated another way, on the one hand operations research offers efficient
algorithms to solve problems that however might not be well suited to be used in practice,
and on the other hand “classical” constraint propagation offers algorithms that are more
generally applicable, but that might suffer from somewhat poor performance. Naturally,
we want the best of both worlds, i.e., we want efficient algorithms that we can apply to a
wide range of problems.

28

A.3. Scheduling

Following the idea developed above, we tried to identify some of the (deterministic)
scheduling areas where it could be worth to study in details global resource constraints.
Partially based upon the scheduling problems we encountered in the industry, we
introduce a simple (and necessarily incomplete) typology of scheduling. In pure
scheduling problems (e.g., job-shop scheduling), the capacity of each resource is defined
over a number of time intervals and the problem consists of positioning resource-
demanding activities over time, without ever exceeding the available capacity. In the
following, we do not consider problems where a resource allocation dimension occurs.
Three broad families are distinguished.
• In non-preemptive scheduling, activities cannot be interrupted. Each activity must

execute without interruption from its start time to its end time. In preemptive
scheduling, activities can be interrupted at any time, e.g., to let some other activities
execute.

• In disjunctive scheduling, each resource can execute at most one activity at a time. In
cumulative scheduling, a resource can run several activities in parallel, provided that
the resource capacity is not exceeded.

• Most often, resource constraints must be taken in the strict sense, i.e., they can never
be violated. For some problems, when the resource is overloaded, resource constraints
can be taken in a broader sense: A limited number of activities can be sub-contracted
to make the resource constraint consistent. The resource is then characterized by its
overall capacity and by the number of activities it can sub-contract.

On top of that, several optimization criteria can be considered. The problem sometimes
lies in finding a feasible schedule but most often a criteria has to be optimized. Although
the minimization of the makespan, i.e., the finishing time of the schedule, is commonly
used, other criteria are sometimes of great practical interest (e.g., the number of activities
performed with given delays, the maximal or average tardiness or earliness, the peak or
average resource utilization). Over the years, the theory and application of scheduling has
grown into an important field of research, and an extensive body of literature exists on the
subject. For more elaborate introductions to the theory of scheduling, we refer to [Baker,
1974], [Coffman, 1976], [French, 1982], [Carlier and Chrétienne, 1988], [GOThA, 1993]
and [Brucker, 1995].
To represent this set of scheduling problems, we use a simple model based upon four
entities: Activities, resources, temporal constraints and resource constraints.

29

A.3.1. Representation of Activities and Resources

A non-preemptive scheduling problem can be encoded efficiently as a constraint
satisfaction problem: two variables, start(Ai) and end(Ai), are associated with each activity
Ai; they represent the start time and the end time of Ai. The smallest values in the domains
of start(Ai) and end(Ai) are called the release date and the earliest end time of Ai (ri and
eeti). Similarly, the greatest values in the domains of start(Ai) and end(Ai) are called the
latest start time and the deadline of Ai (lsti and di). The processing time of the activity is an
additional variable processingTime(Ai), that is constrained to be lower than or equal to the
difference between the end and the start times of the activity (most often, processing time
is known and bound to a value pi).

Figure A-2. The release date, the deadline, the processing time, the earliest end time and
the latest start time of an activity (light gray is used to depict the time-window [ri, di] of an
activity and dark gray is used to represent the processing time of the activity).

A preemptive scheduling problem is more difficult to represent. One can either associate a
set variable (i.e., a variable the value of which will be a set) set(Ai) with each activity Ai,
or define a 0-1 variable W(Ai, t) for each activity Ai and time t; set(Ai) represents the set of
times at which Ai executes, while W(Ai, t) assumes value 1 if and only if Ai executes at
time t. Ignoring implementation details, let us note that:
• the value of W(Ai, t) is 1 if and only if t belongs to set(Ai).
• assuming time is discretized, start(Ai) and end(Ai) can be defined, in the preemptive

case, by start(Ai) = mint∈ set(Ai)(t) and end(A) = maxt∈ set(Ai)(t + 1); such variables

are often needed to connect activities together by temporal constraints. Notice that in
the non-preemptive case, set(Ai) = [start(Ai), end(Ai)), with the interval
[start(Ai), end(Ai)) closed on the left and open on the right so that
|set(Ai)| = end(Ai) − start(Ai) = processingTime(Ai).

lsti eeti

pi

ri di

30

In the following, capacity(R) denotes the constrained variable used to represent the
capacity of the resource R, the number of parallel identical machines that are available in
R. To model resources with variable profile, we can also introduce capacity(R, t), the
constrained variable that represents the capacity of the resource R available at time t. We
note CR the maximum capacity available, i.e., CR = ub(capacity(R)).
This model allows to represent a large variety of resource types. However, to handle the
case of overloaded resources, we introduce another variable reject(R) that represents the
number of activities among the n activities requiring the resource that can be
sub-contracted. Most often, a single resource will be considered at a time. Hence, to
simplify notations, the reference to R will be omitted.

A.3.2. Temporal and Resources-Constraints

Temporal relations between activities can be expressed by linear constraints between the
start and end variables of activities. For instance, a precedence between two activities Ai,
Aj is modeled by the linear constraint end(Ai) ≤ start(Aj). Such constraints can be easily
propagated using a standard arc-B-consistency algorithm [Lhomme, 1993]. In addition, a
variant of Ford's algorithm proposed in [Cesta and Oddi, 1996] is used to detect any
inconsistency between precedence and processing time constraints, in time polynomial in
the number of constraints (and independent of the domain sizes).
Resource constraints represent the fact that activities use some amount of resource
throughout their execution. Given an activity Ai and a resource R, capacity(Ai, R) is the
constrained variable that represents the amount of resource R required by activity Ai. ci,R is
the minimal amount of the capacity of the resource required by the activity, i.e.,
ci,R = lb(capacity(Ai, R)). A resource constraint states that at any time t, the resource
capacity is never exceeded by the sum of the resource requirements.
• In the non-preemptive case, this leads to

∀ R, ∀ t �
<≤)()(

),(
ii AendtAstart

i RAcapacity ≤ capacity(R, t).

• In the preemptive case, this leads to

∀ R, ∀ t �
<≤)()(

),(*),(
ii AendtAstart

ii RAcapacitytAW ≤ capacity(R, t).

31

Consider now the situation where the resource is overloaded. It is fairly natural to
introduce an extra binary constrained variable in(Ai, R) that states whether Ai is
• performed on the resource R, i.e., in(Ai, R) = 1
• or subcontracted, i.e., in(Ai, R) = 0.
When a single resource is considered, the index R will be omitted. The resource constraint
simply states that on-time activities must satisfy a usual resource constraint.
• In the non-preemptive case, this leads to

��

�
�

�

−≥

≤∀∀

�

�
<≤

)(),(

),(),(*),(,,
)()(
RrejectnRAin

tRcapacityRAcapacityRAintR

i

AendtAstart
ii

ii

• In the preemptive case, this leads to

��

�
�

�

−≥

≤∀∀

�

�
<≤

)(),(

),(),(*),(*),(,,
)()(
RrejectnRAin

tRcapacityRAcapacitytAWRAintR

i

AendtAstart
iii

ii

A.3.3. Modeling some Classical Scheduling Problems

We examine four well-known scheduling problems and we show how they can be
represented within the model described above. The decision variant of each of these
problems is NP-Complete in the strong sense [Garey and Johnson, 1979].

The Job-Shop Scheduling Problem (JSSP)
Instance. An instance of the decision variant of the Job-Shop Scheduling Problem is
described by (1) a number m of machines, (2) a set of n jobs and (3) an overall deadline D.
Each job Jl consists of a list Ll of activities. Each activity is given an integer processing
time and a machine on which it has to be processed.
Question. The problem is to find a non-preemptive schedule, i.e., an assignment of start
times to activities such that (1) each machine executes one activity at a time (2) activities
of the same job Jl are processed in the order induced by the list Ll and (3) all activities end
before time D.
Model. Each machine of the Job-Shop Scheduling Problem is modeled by a
non-preemptive disjunctive resource. Precedence constraints are imposed between
activities of the same jobs. The overall deadline D is imposed to all activities.

32

The preemptive Job-Shop Scheduling Problem (PJSSP)
Instance. Same data as those for the JSSP.
Question. The problem is to find a preemptive schedule, i.e., a set of execution times for
each activity such that (1) each machine executes one activity at a time (2) activities of the
same job Jl are processed in the order induced by the list Ll and (3) all activities end before
time D.
Model. Each machine of the Job-Shop Scheduling Problem is modeled by a preemptive
disjunctive resource. Precedence constraints are imposed between activities of the same
jobs. The overall deadline D is imposed to all activities.
Surprisingly, the preemptive version of the job-shop is “harder” than the non-preemptive
one. As shown in [Brucker et al., 1999], if the number of machines is fixed and equals 2
and if the number of jobs is fixed and equals to 3, the preemptive problem is NP-hard
while the corresponding non-preemptive one can be solved in polynomial time.

The Resource-Constrained Project Scheduling Problem (RCPSP)
Instance. An instance of the decision variant of the RCPSP consists of (1) a set of
resources of given capacities, (2) a set of non-interruptible activities of given processing
times, (3) an acyclic network of precedence constraints between the activities, (4) for each
activity and each resource the amount of the resource required by the activity over its
execution and (5) an overall deadline D.
Question. The problem is to find a start time assignment that satisfies the precedence and
resource capacity constraints, and whose makespan (i.e., the time at which all activities are
completed) is at most D.
Model. Each resource of the instance is modeled by a cumulative resource. Following the
structure of the network, precedence constraints are imposed between activities. The
overall deadline D is imposed to all activities.

33

Minimizing the number of late jobs on a single machine (1 | rj | ΣΣΣΣUj)
Instance. An instance of the decision-variant of this problem consists of a set of n jobs
described by a release date ri, a due-date3 di and a processing time pi (ri + pi ≤ di) and an
integer N.
Question. The problem is to find an assignment of start times to jobs such that (1) jobs do
not overlap in time, (2) each job starts after its release date and (3) the number of jobs that
end after their due-date is lower than or equal to N.
Model. Each job is modeled by an activity. Release dates, due dates and processing times
are imposed. A non-preemptive disjunctive overloaded resource R is used to model the
problem. Activities Ai such that in(Ai, R) = 1 are on-time, the other ones are late. The
upper-bound of the constrained variable reject(R) is set to N.

3 The term deadline di is used when an activity has to execute before di (otherwise the
schedule is not feasible). When activities can execute after di (in such a case these
activities are late), the term due-date is more appropriate than deadline. To keep the same
name “deadline” for di throughout the document, we make a slight misuse of language.

34

A.4. Summary of Results and Outline of the
Thesis

The model that has been provided in the previous section is very general. An exhaustive
study of all type of resource constraints would lead us to consider 8 types of resource
constraints (preemptive vs. non-preemptive, disjunctive vs. cumulative, strict vs.
overloaded). Up to now, we have only considered the following cases:
• Disjunctive resource constraint in the non-preemptive case. Following the work of

[Nuijten, 1994], most of the constraint-based scheduling tools have integrated variants
of the adjustments techniques of Carlier and Pinson, initially developed for the Job-
Shop Scheduling Problem. The basic consists of deducing that some activities from a
given set Ω must, can, or cannot, execute first (or last) in Ω. Such deductions lead to
new ordering relations and new time-bounds, i.e., strengthened release dates and
deadlines of activities. Several algorithms have been proposed to compute all the
possible adjustments due to deductions like “activity Ai must be the first (last) one to
execute among activities in Ω”. The deductive rules that allow to prove that an activity
cannot be the first (last) one to execute have been less studied. We provide the first
algorithm that is able to perform all the possible adjustments corresponding to this
rule. It runs in O(n2).

• Disjunctive resource constraint in the preemptive case. To our knowledge, such
constraints have never been studied. We propose several propagation algorithms. The
first one is based upon a time-tabling technique, the second one on a disjunctive
formulation of the problem, the third on a flow formulation of the problem and finally,
we show that the adjustments of Carlier and Pinson can be generalized to the
preemptive case.

• Cumulative resource constraint. In comparison with the disjunctive case, few work
has been carried in the Operations Research community on deductive techniques for
cumulative problems (except for the computation of lower-bound on some special
cases). The constraint programming community has paid more attention to this
constraint. Several attempts have been made to generalize the results obtained in the
disjunctive case (e.g., [Aggoun and Beldiceanu, 1993], [Nuijten, 1994], [Caseau and
Laburthe, 1996a]). We tackle the cumulative resource constraint through a particular
decision problem, namely the Cumulative Scheduling Problem (CuSP). We study two
relaxations of this problem: A fully elastic relaxation, which can be seen as a
preemptive one-machine problem, and a partially elastic relaxation. We also study a

35

set of necessary conditions based upon an energetic formulation [Lopez et al., 1992].
Each time, we propose some algorithms that are able to verify that some necessary
conditions of existence hold. On top of that we propose new algorithms to adjust
release dates and deadlines. We compare our results to some lower-bounds of the
literature for the m-machines problem, a special case of the CuSP. In particular, we
show that the partially elastic relaxation is equivalent to the subset bound [Perregaard,
1995], itself as good as the lower bound obtained by Carlier and Pinson through a
pseudo-preemptive relaxation of the m-machine Problem [Carlier and Pinson, 1996].
We also show that energetic reasoning strictly dominates all the other techniques cited
above.

• Disjunctive and overloaded resource constraint. As far as we know, such
constraints have never been studied in the constraint programming community. A large
amount of work has been carried, in the Operations Research field, on the
minimization of the number of late jobs on a single machine. Several particular case
are known to be solvable in polynomial time. In the appendices, we describe strongly
polynomial algorithms for two open problems that consist in minimizing in the
preemptive and in the non-preemptive case the weighted number of late jobs with
release dates and deadlines.
We propose several techniques to propagate the overloaded resource constraint. First,
we study its preemptive relaxation. We propose an O(n4) dynamic programming
algorithm for this problem; which improves the time and space complexities of a
previous algorithm of [Lawler, 1990]. We also propose a weaker relaxation that gives
a (weaker) bound which can be computed in a quadratic amount of time. On top of
that, this relaxation is the basis of an adjustment scheme that is able to deduce that
some activities have to be performed on the resource while some others have to be
sub-contracted.

Chapter B is dedicated to the study of these different constraint propagation algorithms.
To evaluate from an experimental point of view the efficiency of these algorithms, we
describe in Chapter C some branching schemes with constraint propagation to solve some
classical scheduling problems. The Preemptive Job-Shop Scheduling Problem, the
Resource Constrained Project Scheduling Problem and the problem of the minimization of
the number of late jobs are studied. On top of the propagation, we use several dominance
properties that allow to drastically reduce the search space. Experimental results are
provided for each problem and allow us to compare our approach to some well known
exact approaches of the literature.
• As far as we know, no exact approach has been proposed to solve the Preemptive Job-

Shop Scheduling Problem. We use a chronological branching scheme and we apply a
dominance property that imposes that the premptive schedules of each machine “look

36

like” Jackson Preemptive Schedules. This branching scheme, combined with the
adjustments that extend the work of Carlier and Pinson to the preemptive case, proves
to be efficient since all the 10*10 benchmark instances from the literature are solved.

• We propose several variants of the same branching scheme for the RCPSP. We show
that, these variants perform more or less well, depending on the type of instances. On
highly disjunctive instances (i.e., on instances that have a strong disjunctive
dimension), our procedure does not perform as well as other branch and bound
procedures based upon the dominance rule of [Demeulemeester and Herroelen, 1995].
However, on highly cumulative instances (i.e., on instances for which the disjunctive
dimension is not very important), we obtain very promising results, that have been
confirmed on the multi-processor Flow-Shop, a special case of the RCPSP [Néron et
al., 1998].

• Finally, we propose a branch and bound procedure to minimize the number of late jobs
on a single machine. Our branching scheme simply consists of deciding whether a
given job is late or on-time. At each node, we check that there is a feasible schedule of
the jobs that have to be on-time (this is an NP-hard problem, however, it is very well
solved thanks to a variant of the procedure of [Carlier, 1982]). On top of that, we use a
strong dominance property. Previous exact approaches ([Dauzère-Pérès, 1995])
relying on MIP formulation could not consider instances with more than 10 jobs
because of the size of the MIP. Our procedure is able to solve 90% of the 100-jobs
instances in less than one hour. Moreover, our results compare very well to the very
recent branch and bound of [Dauzère-Pérès and Sevaux, 1998b].

We draw some conclusions in Chapter D and we give some promising research directions.

37

Chapter B. Propagation of Resource
Constraints

The propagation of resource constraints is a purely deductive process that allows to
deduce inconsistencies and to tighten the characteristics of activities and resources. In the
simplest case, the release dates and the deadlines of activities are updated. When
preemption is allowed, modifications of earliest end times and latest start times also apply.
When resources are overloaded, the propagation process does not only aim at adjusting the
time-windows of activities but also at deducing automatically that some activities have to
be processed on the resource or have to be subcontracted.
In this chapter, we study four resource constraints that correspond to the disjunctive non-
preemptive case (Section B.1), the disjunctive preemptive case (Section B.2), the
cumulative case (Section B.3) and the disjunctive overloaded case (Section B.4). In the
last two cases, some remarks concerning the preemptive variant of the resource constraint
will be provided. Each time, several propagation algorithms are described and compared
from a theoretical point of view.

38

B.1. The Non-Preemptive Disjunctive Case

In the following sections, we study several methods to propagate the non-preemptive
disjunctive resource constraint. A set of n non-interruptible activities {A1, ..., An} require
the same resource of capacity 1. This resource constraint is an exact transposition of the
decision variant of the One-Machine Problem [Garey and Johnson, 1979]: Is there a
feasible schedule, i.e., a start-time assignment such that activities are scheduled between
their release dates and their deadlines and such that they do not overlap in time? Given an
instance of this problem, our aim is (1) to detect some cases in which we can prove that
there is no feasible schedule and (2) to adjust release dates and deadlines of the activities.
The adjustments consist of removing from the domain of each activity Ai values t for
which we can prove that there is no feasible schedule on which Ai starts at t.
First we consider the simple Time-Table mechanism, widely used in constraint based
scheduling tools, that allows to propagate the resource constraint in an incremental
fashion. We then consider the disjunctive constraint that compares the temporal
characteristics of pairs of activities. In the third part, we describe the edge-finding
propagation technique, which has been shown to be extremely efficient for solving
disjunctive problems like the Job-Shop problem. In the last section of this chapter, we
present a mechanism that extends the basic edge-finding mechanism and that allows to
make some additional deductions. For this mechanism, known as Not-First / Not-Last, we
propose a quadratic algorithm that overcomes, in terms of complexity, the previous known
algorithmic results.

B.1.1. Time-Table Constraint

A simple mechanism to propagate resource constraints in the non-preemptive case relies
on an explicit data structure called “timetable” to maintain information about resource
utilization and resource availability over time. Resource constraints are propagated in two
directions: from resources to activities, to update activity time bounds (release dates and
deadlines) according to the availability of resources; and from activities to resources, to
update the timetables according to the time bounds of activities. Although several variants
exist [Le Pape, 1988], [Fox, 1990], [Le Pape, 1995], [Smith, 1994], [Caseau and Laburthe,
1996a], [Lock, 1996], the propagation mainly consists of maintaining arc-B-consistency
[Lhomme, 1993] on the formula:

�i [W(Ai, t) * capacity(Ai)] ≤ capacity(t)

39

where capacity(Ai) denotes the capacity of the resource required by activity Ai, capacity(t)
denotes the capacity available at time t, and W(Ai, t) is an implicit 0-1 variable
representing the Boolean value W(Ai, t) = (start(Ai) ≤ t) ∧ (t < end(Ai)).

Before Propagation ri di pi 0 1 2 3 4 5

A1 0 3 2
A2 0 4 2

Propagation 1 ri di pi
A1 0 3 2
A2 2 4 2

Propagation 2 ri di pi
A1 0 2 2
A2 2 4 2

Figure B-1. Propagation of the timetable constraint.

Example.
Figure B-1 displays two activities A1 and A2 which require the same resource of capacity
1. The latest start time (d1 - p1 = 1) of A1 is smaller than its earliest end time (r1 + p1 = 2).
Hence, it is guaranteed that A1 will execute between 1 and 2. Over this period, W(A1, t) is
set to 1 and the corresponding resource amount is no longer available for A2. Since A2
cannot be interrupted and cannot be finished before 1, the release date of A2 is updated to
2 (propagation 1). Then, W(A2, t) is set to 1 over the interval [2, 4), which results in a new
propagation step, where the deadline of A1 is set to 2 (propagation 2).

B.1.2. Disjunctive Constraint Propagation

In non-preemptive disjunctive scheduling, two activities Ai and Aj which require a
common resource R cannot overlap in time: either Ai precedes Aj or Aj precedes Ai. If n
activities A1 … An require R, the resource constraint can be implemented as n∗ (n - 1) / 2
(explicit or implicit) disjunctive constraints. As for timetable constraints, variants exist in
the literature [Erschler, 1976], [Carlier, 1984], [Esquirol, 1987], [Le Pape, 1988], [Smith
and Cheng, 1993], [Varnier et al., 1993], [Baptiste and Le Pape, 1995a], but in most cases
the propagation consists of maintaining arc-B-consistency on the formula

(end(Ai) ≤ start(Aj)) ∨ (end(Aj) ≤ start(Ai)).

40

Enforcing arc-B-Consistency on this formula is done as follows: Whenever the smallest
possible value of end(Ai) (earliest end time of Ai) exceeds the greatest possible value of
start(Aj) (latest start time of Aj), Ai cannot precede Aj; hence Aj must precede Ai; the time-
bounds of Ai and Aj are consequently updated with respect to the new temporal constraint
end(Aj) ≤ start(Ai). Similarly, when the earliest possible end time of Aj exceeds the latest
possible start time of Ai, Aj cannot precede Ai. When neither of the two activities can
precede the other, a contradiction is detected.
Disjunctive constraints provide more precise time bounds than the corresponding
timetable constraints. Indeed, if an activity Aj is known to execute at some time t between
the release date ri and the earliest end time ri + pi of Ai, then the first disjunct of the above
formula is false and thus, Aj must precede Ai and the propagation of the disjunctive
constraint implies start(Ai) ≥ rj + pj > t.
The following example shows that, in some cases, disjunctive constraints propagate more
than time-table constraints.

Before Propagation ri di pi 0 1 2 3 4 5 6

A1 0 4 2
A2 1 5 2

Propagation ri di pi
A1 0 3 2
A2 2 5 2

Figure B-2. Propagation of the disjunctive constraint (non-preemptive case)

Example.
Figure B-2 displays two activities A1 and A2 which require the same resource of capacity
1. The earliest end time of each activity does not exceed its latest start time, so the
timetable constraint cannot deduce anything. On the contrary, the propagation of the
disjunctive constraint imposes end(A1) ≤ start(A2) which, in turn, results in updating both
d1 and r2.

B.1.3. Edge-finding

The term “edge-finding” is often used in non-preemptive disjunctive scheduling
[Applegate and Cook, 1991]. It denotes both a “branching” and a “bounding” technique.
The branching technique consists of ordering activities that require the same resource. At
each node, a set of activities Ω is selected and, for each activity Ai in Ω, a new branch is
created where Ai is constrained to execute first (or last) among the activities in Ω. The

41

bounding technique consists of deducing that some activities from a given set Ω must, can,
or cannot, execute first (or last) in Ω. Such deductions lead to new ordering relations
(“edges” in the graph representing the possible orderings of activities) and new time-
bounds, i.e., strengthened release dates and deadlines of activities.
In the following, let rΩ denote the smallest of the release dates of the activities in Ω, let dΩ
be the greatest of the deadlines of the activities in Ω, and let pΩ be the sum of the minimal
processing times of the activities in Ω. Let Ai « Aj (Ai » Aj) mean that Ai executes before
(after) Aj and Ai « Ω (Ai » Ω) mean that Ai executes before (after) all the activities in Ω.
Once again, variants exist [Pinson, 1988], [Carlier and Pinson, 1990], [Carlier and Pinson,
1994], [Caseau and Laburthe, 1994], [Nuijten, 1994], [Brucker and Thiele, 1996], [Lévy,
1996], [Martin and Shmoys, 1996], [Péridy, 1996] but the following rules capture the
“essence” of the edge-finding bounding technique:

 [∀Ω , ∀ Ai ∉ Ω, dΩ∪ {Ai} – rΩ < pΩ + pi] � Ai « Ω
 [∀Ω , ∀ Ai ∉ Ω, dΩ – rΩ∪ {Ai} < pΩ + pi] � Ai » Ω
 Ai « Ω � [end(Ai) ≤ minΩ’⊆Ω (dΩ’ – pΩ’)]
 Ai » Ω � [start(Ai) ≥ maxΩ’⊆Ω (rΩ’ + pΩ’)]

If n activities require the resource, there are a priori O(n ∗ 2n) pairs (A, Ω) to consider. An
algorithm that performs all the time-bound adjustments in O(n2) is presented in [Carlier
and Pinson, 1990]. It consists of a “primal” algorithm to update release dates and a “dual”
algorithm to update deadlines. The primal algorithm runs as follows:
• Compute “Jackson’s preemptive schedule” (JPS) for the resource under consideration.

JPS is the preemptive schedule obtained by applying the following priority rule:
whenever the resource is free and one activity is available, schedule the activity Ai for
which di is the smallest. If an activity Aj becomes available while Ai is in process, stop
Ai and start Aj if dj is strictly smaller than di; otherwise continue Ai.

• For each activity Ai, compute the set Ψ of the activities which are not finished at t = ri
on JPS. Let pj* be the residual processing time on the JPS of the activity Aj at time t.
Take the activities of Ψ in decreasing order of due dates and select the first activity Ak
such that:

ri + pi + �Aj ∈Ψ −{Ai} | dj ≤ dk (pj*) > dk

If such an activity Ak exists, then post the following constraints:
Ai » {Aj ∈Ψ− {Ai} | dj ≤ dk}

start(Ai) ≥ max Aj ∈Ψ −{Ai} | dj ≤ dk (JPS(Aj))

where JPS(Aj) is the completion time of activity Aj in JPS.

42

Example.
Figure B-3 presents the JPS of a resource of capacity 1 required by 3 activities. On this
example, the edge-finding propagation algorithm deduces start(Ai) ≥ 8, when the timetable
and the disjunctive constraint propagation algorithms deduce nothing.

 ri di pi 0 2 4 6 8 10 12 14 16

A1 0 17 6
A2 1 11 4
A3 1 11 3

Schedule A1 A2 A2 A2 A2 A3 A3 A3 A1 A1 A1 A1 A1

Figure B-3. The JPS of 3 activities.

[Nuijten, 1994] and [Martin and Shmoys, 1996] present variants of this algorithm, which
also run in O(n2), but do not require the computation of Jackson’s preemptive schedule.
[Carlier and Pinson, 1994] presents another variant, which runs in O(n∗ log(n)) but
requires much more complex data structures. [Caseau and Laburthe, 1994] presents
another variant, based on the explicit definition of “task intervals.” This variant runs in
O(n3) in the worst case, but works in an incremental fashion and allows the performance
of additional deductions (cf., Section B.1.4). Finally, [Brucker and Thiele, 1996] proposes
several extensions to take setup times into account. [Baptiste, 1995] and [Martin and
Shmoys, 1996] establish an interesting property of the edge-finding technique: considering
only the resource constraint and the current time bounds of activities, the algorithm
computes the smallest release date at which each activity Ai could start if all the other
activities were interruptible.
As shown in [Lévy, 1996], the edge-finding algorithms above may perform different
deductions from the more standard disjunctive constraint propagation algorithms.
Examples given in [Lévy, 1996] show that each of the two techniques (edge-finding and
disjunctive constraint propagation) performs some deductions that the other technique
does not perform. Examples given in [Baptiste, 1995] show that the same result applies to
the edge-finding rules and the energetic reasoning rules of [Erschler et al., 1991]. In
practice, an edge-finding algorithm is often coupled with a disjunctive constraint
propagation algorithm to allow a maximal amount of constraint propagation to take place.

43

B.1.4. Not-First, Not-Last4

The algorithm presented in the preceding section mostly focuses on determining whether
an activity Ai must execute before (or after) a set of activities Ω requiring the same
resource. A natural complement consists of determining whether Ai can execute before (or
after) Ω. In the non-preemptive disjunctive case, this leads to the following rules [Pinson,
1988], [Carlier and Pinson, 1990], [Caseau and Laburthe, 1994]:

 ∀Ω , ∀ Ai ∉ Ω, dΩ - ri < pΩ + pi � ¬ (Ai « Ω)
 ∀Ω , ∀ Ai ∉ Ω, di - rΩ < pΩ + pi � ¬ (Ai » Ω)
 ¬ (Ai « Ω) � start(Ai) ≥ minAj∈Ω (rj + pj)

 ¬ (Ai » Ω) � end(Ai) ≤ max Aj∈Ω (dj - pj)

The problem which consists of performing all the time-bound adjustments corresponding
to the first and third rules can be called the “not-first” problem, since it consists of
updating the release date of every activity Ai which cannot be first to execute in a set
Ω ∪ {Ai}. Similarly, the problem which consists of performing all the time-bound
adjustments corresponding to the second and fourth rules can be called the “not-last”
problem (it consists of updating the deadline of every activity Ai which cannot be last to
execute in a set Ω ∪ {Ai}).
Most researchers who have been working on edge-finding techniques have considered the
“not-first” and “not-last” rules above [Pinson, 1988], [Carlier and Pinson, 1990], [Caseau
and Laburthe, 1994], [Nuijten, 1994], [Baptiste and Le Pape, 1995b], [Lévy, 1996], but in
the absence of low-polynomial algorithms for solving the complete “not-first” problem,
the rules had to be applied in an incomplete way, allowing only some but not all of the
possible time-bound adjustments. In this section, we present an O(n2) time and O(n) space
algorithm to solve the “not-first” problem. The “not-last” problem is solved in a
symmetric fashion. To our knowledge, this is the first reported algorithm to perform all
the deductions allowed by the rules above in quadratic time.

Let us first introduce some assumptions and notations. We assume that the relation ri + pi
≤ di holds for every activity Ai. Otherwise, the scheduling problem clearly allows no
solution and the constraint propagation process can stop. We also assume that the
activities A1, ..., An which require the resource under consideration are sorted in non-
decreasing order of deadlines (this can be done in O(n ∗ log(n)) time). Hence, i ≤ j implies
di ≤ dj. For a given j and a given k, Ω(j, k) denotes the set of indices m in {1 ... k} such that

4 Most of the results presented in this section come from [Baptiste and Le Pape, 1996b].

44

rj + pj ≤ rm + pm and Ω(i, j, k) denotes Ω(j, k) – {i}. Hence, if i does not belong to Ω(j, k),
Ω(i, j, k) is equal to Ω(j, k). Let Sj, k = pΩ(j, k) if j ≤ k and Sj, k = -∞ otherwise. Let
δj, k = minl ≤ k (dl – Sj, l).

Proposition B-1.
For a given j, the values δj, 1, ..., δj, n can be computed in O(n) time.

Proof.
Indeed, the values of Sj, k and δj, k can be computed in constant time from the values of
Sj, k-1 and δj, k-1. One just has to test whether k verifies rj + pj ≤ rk + pk or not. �

Proposition B-2.
If the “not-first” rules applied to activity Ai and set Ω allow to update the release date of Ai
to rj + pj then there exists an index k ≥ j such that the “not-first” rules applied to activity Ai
and set Ω(i, j, k) allow to update the release date of Ai to rj + pj.

Proof.
Let k be the maximal index of the activities in Ω. Ω is included in Ω(i, j, k) and dΩ is equal
to dΩ(i, j, k). Hence the rules can be applied to Ai and Ω(i, j, k) and provide the conclusion
that Ai cannot start before rj + pj since every m in Ω(i, j, k) satisfies rj + pj ≤ rm + pm. �

Proposition B-3.
Let i and j be such that ri + pi < rj + pj. In this case, the “not-first” rules allow to update the
release date of Ai to rj + pj if and only if ri + pi > δj, n.

Proof.
Necessary condition.

Let us assume that the rules allow to update the release date of Ai to rj + pj.
According to Proposition B-2, there exists k ≥ j such that Ω(i, j, k) is not empty and
dk - ri < pΩ(i, j, k) + pi. Since ri + pi < rj + pj implies that i does not belong to Ω(j, k),
this implies ri + pi > dk - Sj, k ≥ δj, n.

Sufficient condition.
Let us assume that ri + pi > δj, n. δj, n is finite, so there exists an index k ≥ j such that
δj, n = dk – Sj, k. Since i does not belong to Ω(j, k), we have dk - ri < pΩ(i, j, k) + pi. So,
the rules allow to update the release date of Ai to the value rj + pj. �

45

Proposition B-4.
Let i and j be such that ri + pi ≥ rj + pj. In this case, the “not-first” rules allow to update the
release date of Ai to rj + pj if and only if either ri + pi > δj, i-1 or ri > δj, n.

Proof.
Necessary condition.

Let us assume that the rules allow to update the release date of Ai to rj + pj.
According to Proposition B-2, there exists k ≥ j such that Ω(i, j, k) is not empty and
dk - ri < pΩ(i, j, k) + pi. Two cases, k < i and i < k, can be distinguished. If k < i, i does
not belong to Ω(j, k). This implies that ri + pi > dk - Sj, k ≥ δj, i-1. On the contrary, if
i < k, i belongs to Ω(j, k). Then pΩ(j, k) = pΩ(i, j, k) + pi and ri > dk – Sj, k ≥ δj,n.

Sufficient condition.
If ri + pi > δj, i-1, δj, i-1 is finite, so there exists an index k, not greater than i, such
that δj, i-1 = dk - Sj, k. Since i does not belong to Ω(j, k), we have dk - ri < pΩ(i, j, k) + pi.
So, the rules allow to update the release date of Ai to rj + pj. Let us now assume that
ri + pi ≤ δj, i-1 and ri > δj, n. Then there exists an index k ≥ j such that δj, n = dk – Sj, k.
Note that k ≥ i (otherwise, δj, n = δj, i-1 < ri contradicts ri + pi ≤ δj, i-1). Consequently,
i belongs to Ω(j, k). In addition, Ω(j, k) is not reduced to {i}, otherwise we would
have ri > δj, n = dk – Sj, k = dk – pi ≥ di – pi which contradicts the initial assumption
that ri + pi ≤ di for all i. Hence, Ω(i, j, k) ≠ ∅ satisfies dk – ri < pΩ(i, j, k) + pi. So, the rules
allow to update the release date of Ai to rj + pj. �

We now introduce Algorithm B-1 that performs the same time-bound adjustments as the
“not-first” rules.

46

Algorithm B-1.
1 For i = 1 To i = n

2 ri' = ri
3 End For

4 For j = 1 To j = n

5 compute deltaj, 1, ..., deltaj, n

6 For i = 1 To i = n

7 If ri + pi < rj + pj Then

8 If ri + pi > deltaj, n Then

9 ri' = max(ri', rj + pj)

10 End If

11 Else

12 If ri + pi > deltaj, i – 1 or ri > deltaj, n Then

13 ri' = max(ri', rj + pj)

14 End If

15 End If

16 End For

17 End For

18 For i = 1 To i = n

19 ri = ri'

20 End For

Proposition B-5.
Algorithm B-1 performs the same time-bound adjustments as the “not-first” rules. It runs
in O(n2) time and O(n) space.
Proof.
Propositions B-3 and B-4 imply that the algorithm performs exactly the deductions
implied by the rules. Thanks to the introduction of the variables ri', one does not need to
resort activities inside the loops. The algorithm runs in O(n2) steps since for each j in the
outer loop, O(n) steps are required to compute δj, 1 ... δj, n and for each i in the inner loop,
O(1) steps are required to perform the relevant tests. In addition, the algorithm requires
a linear amount of memory space since only the values δj, 1 ... δj, n for a given j are
required. �

Let us note that when the processing times of activities are fixed, the “not-first” and “not-
last” rules subsume the disjunctive constraint propagation technique mentioned in Section
B.2.2. Hence, no disjunctive constraint propagation algorithm is needed when the “not-
first” algorithm above and its dual “not-last” algorithm are applied.

47

B.2. The Preemptive Disjunctive Case, the Mixed
Case5

In the following sections, we study several methods to propagate the preemptive
disjunctive resource constraint. A set of n interruptible activities {A1, ..., An} require the
same resource of capacity 1. This resource constraint can be seen as the decision variant of
the preemptive One-Machine Problem: Is there a preemptive feasible schedule, i.e., an
assignment of execution times such that activities are scheduled between their release
dates and their deadlines, and such that they do not overlap in time? Like for the
non-preemptive case, our aim is to detect some cases in which we can prove that there is
no feasible schedule, and to tighten the temporal characteristics of each activity.
It is well-known that the preemptive One-Machine Problem can be solved in polynomial
time by Jackson’s algorithm. However, we consider this problem as a relaxation of
another more complex problem (e.g., the preemptive Job-Shop Scheduling Problem) and it
is of great interest to study some algorithms that are able to tighten the temporal
characteristics of activities.
We study several methods to propagate the preemptive one-machine resource constraint.
First, we show that both the Time-Table mechanism and the disjunctive constraint can be
extended. We then propose a resource-constraint based on network-flows. In the last
section, we present a mechanism that extends the edge-finding mechanism. In particular,
we show that this last resource constraint propagation scheme is able to handle the mixed
case, i.e., the case in which both interruptible and non-interruptible activities are mixed.

B.2.1. Time-Table Constraint

At the first glance, it seems that the main principle of the timetable mechanism directly
applies to both the preemptive and the mixed case. However, an important difference
appears in the relation between the five variables W(Ai, t), set(Ai), start(Ai), end(Ai), and
processingTime(Ai). The earliest start time ri can easily be set to “the first time t at which
W(Ai, t) can be 1.” Similarly, the deadline di can easily be set to 1 + “the last time t at
which W(Ai, t) can be 1.” However, the earliest end time eeti must be computed so that
there possibly exist processingTime(Ai) time points in set(Ai) ∩ [ri, eeti), and the latest start
time lsti must be computed so that there possibly exist processingTime(Ai) time points in

5 Most of the results presented in this section come from [Baptiste, 1995], [Le Pape and
Baptiste, 1996] and [Le Pape and Baptiste, 1998a].

48

set(Ai) ∩ [lsti, di). These additional propagation steps make the overall propagation
process far more complex.
In the reverse direction, it is important to notice that W(Ai, t) cannot be set to 1 as soon as
lsti ≤ t < eeti. The only situation in which W(Ai, t) can be deduced to be 1 is when no more
than processingTime(Ai) time points can possibly belong to set(Ai). This is unlikely to
occur before decisions (choices in a search tree) are made to instantiate set(Ai). Therefore,
constraint propagation cannot prune much.

Before Prop. ri eeti lsti di pi 0 1 2 3 4 5
A1 (non-int.) 0 2 1 3 2

A2 (int.) 0 2 2 4 2
Prop. 1 ri eeti lsti di pi
A1 (non-int.) 0 2 1 3 2

A2 (int.) 0 3 2 4 2

Figure B-4. Propagation of the time-table constraint (mixed case)

Example.
Given the data of Figure B-1, the timetable mechanism cannot deduce anything if both
activities can be interrupted. Figure B-4 shows what happens when only A2 can be
interrupted. As in Figure B-1, it is guaranteed that A1 will execute between lst1 = 1 and
eet1 = 2. Over this period, the corresponding resource amount is no longer available for A2.
The earliest end time of A2 is then set to 3. Then the propagation process stops since there
is no time point at which A2 is guaranteed to execute.

Both costly and in most cases ineffective, the timetable mechanism appears far from
satisfactorily applicable to preemptive problems. Several researchers incorporated some
possibilities of preemption in their constraint-based algorithms or applications
(e.g., interrupt a machining operation in favor of a planned machine maintenance but not
in favor of another machining operation, interrupt an activity at most once or twice
[Zweben et al., 1993], [Smith, 1994], [Le Pape, 1996], [Pegman et al., 1997]). Few did
attack the general problem of preemptive and mixed scheduling. [Demeulemeester, 1992]
presents a branch and bound algorithm for a particular preemptive cumulative scheduling
problem: the preemptive Resource-Constrained Project Scheduling Problem. This
algorithm relies on memorizing states rather than on constraint propagation to prune the
search space. [Baptiste, 1994] reports on a tentative implementation, in ILOG SOLVER
[Puget, 1994], [Puget and Leconte, 1995], of preemptive time-table constraints. The
reported results confirm that even on simple problems the propagation process is rather

49

slow. Let us note, however, that the timetable mechanism can easily be generalized to
other types of resources, such as resources of capacity m > 1, or resources which must be
in a specific state for an activity to execute [Le Pape, 1994]. Such is not the case for the
techniques described in the following sections.

B.2.2. Disjunctive Constraint Propagation

In the preemptive disjunctive case, the fact that activities Ai and Aj cannot overlap is most
naturally represented by two alternative formulas:

set(Ai) ∩ set(Aj) = ∅ or ∀ t, [W(Ai, t) = 0 or W(Aj, t) = 0].
When one of these formulas is adopted, the preemptive disjunctive constraints and the
corresponding preemptive timetable constraints deduce the same time bounds. However, a
simple rewriting of the non-preemptive disjunctive constraint

 [start(Ai) + processingTime(Ai) ≤ end(Aj) – processingTime(Aj)]
or [start(Aj) + processingTime(Aj) ≤ end(Ai) – processingTime(Ai)]

suggests an additional preemptive disjunctive constraint:
 [start(Ai) + processingTime(Ai) + processingTime(Aj) ≤ end(Ai)]
or [start(Ai) + processingTime(Ai) + processingTime(Aj) ≤ end(Aj)]
or [start(Aj) + processingTime(Ai) + processingTime(Aj) ≤ end(Ai)]
or [start(Aj) + processingTime(Ai) + processingTime(Aj) ≤ end(Aj)]

which can serve as a complement to set(Ai) ∩ set(Aj) = ∅ . Arc-B-Consistency is achieved
on this additional constraint. Note that in the mixed case, the first (fourth) disjunct can be
removed from the disjunction if Ai (respectively, Aj) cannot be interrupted.

Before Prop. ri eeti lsti di pi 0 1 2 3 4 5 6

A1 (int.) 0 4 2 6 4
A2 (int.) 2 3 3 4 1

Prop. 1 ri eeti lsti di pi
A1 (int.) 0 5 1 6 4
A2 (int.) 2 3 3 4 1

Figure B-5. Propagation of the disjunctive constraint (preemptive case)

Example.
In the example of Figure B-5, the propagation of the redundant constraint provides
start(A1) ≤ 1 and end(A1) ≥ 5.

50

B.2.3. Network-Flow based Constraints

[Régin, 1994] describes an algorithm, based on matching theory, to achieve the global
consistency of the “all-different” constraint. This constraint is defined on a set of variables
and constrains these variables to assume pairwise distinct values. Régin’s algorithm
maintains arc-consistency on the n-ary “all-different” constraint, which is shown to be
more powerful than achieving arc-consistency for the n∗ (n - 1) / 2 corresponding binary
“different” constraints.
Basically, Régin’s algorithm consists of building a bipartite graph G(X, Y, E) where X is a
set of vertices corresponding to the variables of the “all-different” constraint, Y is a set of
vertices corresponding to the possible values of these variables, and E is a set of edges
(x, y), x ∈ X, y ∈ Y, such that (x, y) ∈ E if and only if y is a possible value for x. As a
result, the “all-different” constraint is satisfiable if and only if there exists a 0-1 function f
on E such that:

 ∀ x ∈ X, Σ(x, y)∈ E f(x, y) = 1
 ∀ y ∈ Y, Σ(x, y)∈ E f(x, y) ≤ 1

In addition, a given value yj is a possible value for a given variable xi if and only if there
exists a 0-1 function fij such that:

 ∀ x ∈ X, Σ(x, y)∈ E fij(x, y) = 1
 ∀ y ∈ Y, Σ(x, y)∈ E fij(x, y) ≤ 1

 fij(xi, yj) = 1

The problem of finding such a function (flow) f or fij can be solved in polynomial time. In
addition, the current value of f can be used to generate fij at low cost, and to compute the
new value of f when the domain of a variable changes. See [Régin, 1994], [Régin, 1995],
[Régin, 1996] for details and extensions.
Notice that when all activities have unitary processing times, Régin’s algorithm can be
directly applied. In the preemptive case, this can be generalized to activities of arbitrary
processing times by seeing each activity Ai as processingTime(Ai) sub-activities of unitary
processing times 1. Then, each sub-activity has to pick a value (the time at which the sub-
activity executes) and the values of the sub-activities that require a given resource have to
be pairwise distinct. However, under this naive formulation, both the number of variables
and the number of values would be too high (dependent on the sum of the processing
times of the activities) for practical use. This led us to another formulation where the
nodes x in X correspond to activities, and the nodes y in Y correspond to a partition of the
time horizon in n disjoint intervals I1 = [s1, e1) ... In = [sn, en) such that [s1, en) represents

51

the complete time horizon, ei = si+1 (1 ≤ i < n), and {s1, ..., sn, en} includes all the time
points at which the information available about W(A, t) changes (Figure B-6 illustrates this
formulation on a small example). In particular, {s1, ..., sn, en} includes all the earliest start
times and latest end times of activities, but it can also include bounds of intervals over
which W(A, t) is constrained to be true or false (in this sense, the flow model is more
general than preemptive edge-finding described in B.2.4, but it does not generalize to the
mixed case). E is defined as the set of pairs (x, y) such that activity x can execute during
interval y. The maximal capacity cmax(x, y) of edge (x, y) is set to length(y), and the
minimal capacity cmin(x, y) of edge (x, y) is set to length(y) if x is constrained to execute
over y and to 0 otherwise. As a result, the preemptive resource constraint is satisfiable if
and only if there exists a function f on E such that:

 ∀ x ∈ X, Σ(x, y)∈ E f(x, y) = processingTime(x)
 ∀ y ∈ Y, Σ(x, y)∈ E f(x, y) ≤ length(y)
 ∀ e ∈ E, cmin(e) ≤ f(e) ≤ cmax(e)

 ri di pi 0 1 2 3 4 5 6 7 8 9 10
A1 0 10 5
A2 2 4 1
A3 4 6 1
A4 6 8 1

Figure B-6. A particular network flow. Arrows have been omitted, they all go from left to
right.

[0 2)

[4 6)

[8 10)

[6 8)

[2 4)
A1

A3

A4

A2

≤ 2

≤ 2

= 5

= 1

= 1

= 1

≤ 2

≤ 2

≤ 2

Y
X

52

Similar models are commonly used in Operations Research. For example, [Federgruen and
Groenevelt, 1986] use a more general model to solve particular polynomial scheduling
problems with multiple parallel resources operating at different speeds. Following [Régin,
1994], what we propose below is to use network flow techniques, not only to find
solutions to polynomial sub-problems, but also to update the domains of the variables.
[Baptiste, 1995] provides two algorithms for the search of a compatible flow f (SCF). The
first algorithm uses Herz’s algorithm, as described in [Gondran and Minoux, 1995], to
construct the compatible flow, starting from f(x, y) = 0 for all x and all y. It runs in
O(|X| ∗ |Y| ∗ Σx∈ X processingTime(x)). The second algorithm builds a variant of Jackson’s
preemptive schedule which respects the intervals during which activities are required to
execute. This can be done in O(|Y| ∗ log(|Y|)). This schedule is then used as an initial
(possibly incompatible) flow, repaired by Herz’s algorithm in O(|X| ∗ |Y| ∗ F), where F
denotes the sum, over the activities, of the sizes of the intervals included in [ri, di] during
which the activity Ai is not allowed to execute (for reasons that are not directly related to
the use of the resource by other activities).
To reduce variable domains, the most natural generalization of Régin’s algorithm consists
of varying cmin(e) and cmax(e) for each edge e in turn. The following algorithm updates the
minimal flow cmin(x, y) that can pass through an edge (x, y). The maximal flow cmax(x, y) is
obtained in a similar fashion.

• Set u = cmin(x, y) and v = cmax(x, y).
• While (u ≠ v)
• Set w = �(u + v) / 2�
• Search for a compatible flow f with f(x, y) ≤ w.
• If such a flow f exists, set v = w, otherwise set u = w + 1.
• Set cmin(x, y) = u.

It is proven in [Baptiste, 1995] that this adjustment of edge capacities (AEC) can be done
for all edges (x, y) in O(|X|2 ∗ |Y| ∗ H), where H denotes the overall time horizon en − s1.
This complexity is reached by systematically reusing the previous flow as a start point
when computing the flow f with the new constraint f(x, y) ≤ w.
Then the following rules can be applied:

 cmax(x, y) = 0 � ∀ t∈ y, W(x, t) = 0
 cmin(x, y) = length(y) � ∀ t∈ y, W(x, t) = 1
 cmin(x, [si ei)) ≠ 0 � [start(x) ≤ ei – cmin(x, [si ei))]
 cmin(x, [si ei)) ≠ 0 � [end(x) ≥ si + cmin(x, [si ei))]

53

However, SCF and AEC are not sufficient to determine the best possible time bounds for
activities. Let us consider, for example, the four activities A1, A2, A3, A4 defined on Figure
B-6. In this case, cmin(A1, I) remains equal to 0 for all I; yet A1 cannot start after 3 and
cannot end before 7. However, the flow model can be used to compute the best possible
earliest end times. First, given x and the intervals y1 … yn (sorted in reverse chronological
order) to which x is connected, one can find the maximal integer k such that there exists a
compatible flow f with f(x, yi) = 0 for 1 ≤ i < k. Then, one can compute the minimal flow
fmin(x, yk) through (x, yk), under the constraints f(x, yi) = 0 for 1 ≤ i < k. Under these
conditions, end(x) ≥ sk + fmin(x, [sk, ek)) provides the best possible earliest end time for x. It is
shown in [Baptiste, 1995] that this global update of time bounds (GUTB) can be done for
all activities x in O(|X|2 ∗ |Y| ∗ H). As for AEC, this complexity is reached by systematically
reusing the previous flow as a start point for computing the new flow when an additional
capacity constraint is added.
Let us remark that the incrementality of Herz’s algorithm is a key factor for both the
worst-case and the practical complexity of SCF, AEC and GUTB. Of course, strongly
polynomial algorithms (with complexity independent of the schedule duration) could also
be used for the search of a compatible flow [Gondran and Minoux, 1995].

B.2.4. Edge-Finding

The edge-finding algorithm detailed in Section B.1.3 can be extended to take into account
the preemptive case and also the mixed case (i.e., the case where interruptible and non-
interruptible activities are mixed). As mentioned in Section B.1.3., [Baptiste, 1995] and
[Martin and Shmoys, 1996] have established an interesting property of the non-preemptive
edge-finding technique. Considering only the resource constraint and the current time
bounds of activities, the algorithm computes the earliest start time at which each activity
Ai could start if all the other activities were interruptible. This suggests a logical extension
of the technique to preemptive and mixed cases: for each activity Ai requiring the resource,
if Ai is not interruptible, the non-preemptive edge-finding bound applies; if Ai is
interruptible then, considering only the resource constraint and the current time bounds, it
would be nice to determine the earliest start and end times between which Ai could execute
if all the activities were interruptible.
Let us define �� so that Ai �� Ω means “Ai ends after all activities in Ω ” and substitute ��
for » in the rules of the primal algorithm.

 ∀Ω , ∀ Ai ∉Ω , [dΩ – rΩ∪ {Ai} < pΩ + pi] � Ai �� Ω
 Ai �� Ω � [start(Ai) ≥ maxΩ’⊆Ω (rΩ’ + pΩ’)]

54

When Ai cannot be interrupted, these two rules remain valid (even if other activities can be
interrupted) and the adjustment of ri is the same as in the non-preemptive case. When Ai
can be interrupted, the first rule is still valid but the second is not. However, the second
rule can be replaced by a weaker one:

 Ai �� Ω � [end(Ai) ≥ maxΩ’⊆Ω (rΩ’∪ {Ai} + pΩ’∪ {Ai})]

This leads to a more general primal edge-finding algorithm:
• Compute “Jackson’s preemptive schedule” for the resource under consideration.
• For each activity Ai, compute the set Ψ of the activities which are not finished at t = ri

on JPS. Let pj* be the residual processing time on the JPS of the activity Aj at time t.
Take the activities of Ψ in decreasing order of deadlines and select the first activity Ak
such that:

ri + pi + �Aj ∈Ψ −{Ai} | dj ≤ dk (pj*) > dk

If such an activity Ak exists, then post the following constraints:
• Ak �� {Aj ∈Ψ − {Ai} | dj ≤ dk}

• start(Ai) ≥ max Aj ∈Ψ −{Ai} | dj ≤ dk
 (JPS(Aj)) if Ai cannot be interrupted

• end(Ai) ≥ ri + pi + �Aj ∈Ψ −{Ai} | dj ≤ dk
 (pj*) if Ai can be interrupted

Example.
In the example of Figure B-3, the algorithm above deduces start(A1) ≥ 8 if A1 cannot be
interrupted. It deduces end(A1) ≥ 13 if A1 can be interrupted.
It is proven in [Baptiste, 1995] that considering only the resource constraint and the
current time bounds of activities, this algorithm computes,
• when Ai is not interruptible: the earliest time at which Ai could start if all the other

activities were interruptible.
• when Ai is interruptible: the earliest time at which Ai could end if all the other activities

were interruptible.
Nuijten’s edge-finding algorithm can be modified in a similar fashion. The following
algorithm B-2 is equivalent to the algorithm sketched above. We assume that activities are
sorted in increasing order of release dates.

55

Algorithm B-2.
1 For k = 1 To k = n

2 P = 0, C = -∞, H = -∞,
3 For i = n Down To i = 1

4 If di ≤ dk Then

5 P = P + pi
6 C = max(C, ri + P)

7 If C > dk Then

8 there is no feasible schedule, exit

9 End If

10 End If

11 Ci = C

12 End For

13 For i = 1 to i = n

14 If di ≤ dk Then

15 H = max(H, ri + pi)

16 P = P - pi
17 Else

18 If ri + P + pi > dk Then

19 If Ai can be interrupted Then

20 eeti = max(eeti, ri + P + pi)

21 Else

22 ri = max(ri, Ci)

23 End If

24 End If

25 If H + pi > dk Then

26 If Ai can be interrupted Then

27 eeti = max(eeti, H + pi)

28 Else

29 ri = max(ri, C)

30 End If

31 End If

32 End If

33 End For

34 End For

Release dates and earliest end times are adjusted inside the inner loop (lines 20, 27 and 22,
29). Actually, the adjusted values should be stored and applied at the end to avoid the
resorting of the activities (cf., Algorithm B.1.). The proof that this algorithm is equivalent
to the JPS-based algorithm follows the proof of Nuijten’s algorithm in [Nuijten, 1994].

56

First, if Ai cannot be interrupted, the new algorithm makes the same conclusions as
Nuijten’s algorithm, so the proof in [Nuijten, 1994] applies to the new algorithm. Let us
now assume that Ai can be interrupted. It is proven in [Baptiste, 1995] that the earliest time
at which Ai could end if all the other activities could be interrupted is equal to the maximal
value of rΩ∪ {Ai} + pΩ∪ {Ai} for Ω triggering the edge-finding rules. The earliest end times
computed by the new algorithm are, when they are used, equal to rΩ∪ {Ai} + pΩ∪ {Ai} for such
Ω. To prove that the best possible bound is reached, consider the two cases distinguished
in [Nuijten, 1994]: if all activities Au in Ω are such that i < u then, either Ω or a superset of
Ω is detected by the first test (ri + P + pi > dk); if some activity Au of Ω is such that u < i
then, either Ω or a superset of Ω is detected by the second test (H + pi > dk). In both cases,
a bound greater than or equal to rΩ∪ {A} + pΩ∪ {A} is found.
This algorithm can be further improved:
• When Ai can be interrupted and set(Ai) is known to contain a series of time intervals

I1 … Im, Ai can be replaced by (m + 1) activities Ai
1, …, Ai

m, Ai’, with each Ai
l forced to

execute over Il and Ai’ with the same release date and deadline as Ai and a processing
time equal to (pi – Σ1 ≤ l ≤ m length(Il)); where length(Il) denotes the length of the
interval Il.

• When Ai can be interrupted and either (ri + P = dk) or (H = dk) in the course of the
algorithm, it is certain that Ai cannot start before dk. Hence, the algorithm can also be
used to update the release date of interruptible activities.

Remark.
When activities have fixed processing times, the computation and the use of Ci and C to
compute maxΩ’⊆Ω (rΩ’ + pΩ’) serves only to avoid repeated iterations of the algorithm.
Indeed, suppose a purely preemptive edge-finding algorithm is used and suppose Ai is not
interruptible. The purely preemptive edge-finding algorithm uses the following rules:
 ∀Ω , ∀ A∉Ω , [dΩ – rΩ∪ {Ai} < pΩ + pi] � Ai �� Ω
 Ai �� Ω � [end(Ai) ≥ maxΩ’⊆Ω (rΩ’∪ {Ai} + pΩ’∪ {Ai})]
When constraint propagation stops, the earliest end time of Ai is set to a value eeti such that
if all activities were interruptible, there would be a schedule S of the resource such that
(1) Ai does not start before ri and (2) Ai ends at eeti. If the processing time of Ai is fixed,
the propagation of the constraint start(Ai) + processingTime(Ai) = end(Ai) guarantees that
when constraint propagation stops ri + pi = eeti. Consequently, Ai is not interrupted in S,
which implies that the non-preemptive edge-finding algorithm cannot find a better bound
for ri.

57

B.3. The Cumulative Case6

Our aim is to extend the results obtained on the One-Machine Problem to the cumulative
case. The Cumulative Scheduling Problem (CuSP) is the framework on which we are
going to work. An instance of the CuSP consists of (1) one resource with a given capacity
C and (2) a set of n activities {A1, ..., An}, together with a release date ri, a deadline di, a
processing time pi, and a resource capacity requirement ci for each activity Ai. We assume
that all data are integers and that ∀ i, ri + pi ≤ di and ci ≤ C. The problem is to decide
whether there exists a feasible schedule, i.e., a start time assignment that satisfies all
timing constraints and the resource constraint. The CuSP obviously belongs to NP. It is an
extension of the decision variant of both the One-Machine Problem (C = 1, ci = 1) and the
m-Machine Problem (C = m, ci = 1). Thus it is NP-complete in the strong sense [Garey
and Johnson, 1979].
The CuSP can be seen as a relaxation of the decision variant of the well-known Resource-
Constrained Project Scheduling Problem (RCPSP) [Garey and Johnson, 1979]: Given an
instance of the RCPSP, release dates and deadlines of activities can be derived from the
network of precedence constraints and from the overall deadline (for example using Ford's
algorithm [Gondran and Minoux, 1995]). The CuSP is then the relaxation in which
precedence constraints are relaxed and where a single resource is considered at a time.
As mentioned in the previous sections, a large amount of work has been carried out on the
One-Machine Problem. Similarly, lower bounds have been developed for the optimization
variant of the m-Machine Problem (e.g., [Carlier and Pinson, 1996], [Perregaard, 1995]).
Obviously, these lower bounds can be seen as necessary conditions of existence for the
decision variant of the m-Machine Problem. As far as we know, no specific algorithm for
adjusting release dates and deadlines has been proposed. On the CuSP itself, little work
has been done. Constraint propagation algorithms have been developed to adjust time-
bounds of activities (e.g., [Caseau and Laburthe, 1996a], [Lopez et al., 1992], [Nuijten,
1994], [Nuijten and Aarts, 1996]), but they tend to be less uniformly effective than the
algorithms available for the One-Machine Problem.

6 Most of the results presented in this section come from [Baptiste and Le Pape, 1997b]
and [Baptiste et. al., 1998b].

58

In the following sections, we study three necessary conditions of existence of a feasible
schedule for the CuSP.
• The first necessary condition is based on the resolution of the Fully Elastic CuSP, a

relaxation of the CuSP (cf. Figure B-7). An instance of the Fully Elastic CuSP is
described by the same data as an instance of the CuSP. The problem is to decide
whether there exists a feasible fully elastic schedule, i.e., an integer function fes(t, i)
representing the number of units of the resource assigned to Ai over the interval
[t, t + 1), such that:

∀ i, ∀ t ∉ [ri, di), fes(t, i) = 0
∀ i, �t fes(t, i) = pi * ci
∀ t, �i fes(t, i) ≤ C

• The second necessary condition is based on the resolution of the Partially Elastic
CuSP, a tighter relaxation of the CuSP (cf. Figure B-7). An instance of the Partially
Elastic CuSP is described by the same data as an instance of the CuSP. The problem is
to decide whether there exists a feasible partially elastic schedule, i.e., an integer
function pes(t, i) such that:

∀ i, ∀ t ∉ [ri, di), pes(t, i) = 0
∀ i, �t pes(t, i) = pi * ci
∀ t, �i pes(t, i) ≤ C
∀ i, ∀ t ∈ [ri, di), Σx<t pes(x, i) ≤ ci * (t - ri)
∀ i, ∀ t ∈ [ri, di), Σt≤x pes(x, i) ≤ ci * (di - t)

• The third necessary condition, called the “left-shift / right-shift” necessary condition,
is not based on a well-identified relaxation of the CuSP but on energetic reasoning as
defined in [Erschler et al., 1991], [Lopez et al., 1992].

For each of these necessary conditions, we propose a polynomial algorithm, running in
O(n * log(n)) for the fully elastic condition, and in O(n2) for the partially elastic and the
left-shift / right-shift conditions. In the particular case of the m-Machine Problem, these
necessary conditions can be theoretically compared with other results from the literature.
The subset bound [Perregaard, 1995] (seen as a necessary condition) is equivalent to the
partially elastic relaxation and the left-shift / right-shift necessary condition is strictly
stronger than the partially elastic relaxation.
We also propose three time-bound adjustment schemes for the CuSP.
• The first one is based on the fully elastic relaxation. An O(n2) algorithm is described.
• The second one is based on the partially elastic relaxation. An O(n2 * log(|{ci}|))

algorithm is described (where |{ci}| is the number of distinct resource capacity
requirements).

59

• The third one is based on the left-shift / right-shift necessary condition. An O(n3)
algorithm is described.

 ri di pi ci 0 1 2 3 4 5 6 7 8 9 10
A1 0 10 8 2

Figure B-7. Consider a resource of capacity 3 and an activity with release date 0,
deadline 10, processing time 8 and resource requirement 2. Both Gantt charts correspond
to feasible fully elastic schedules. The first one is not a feasible partially elastic schedule.
Indeed, 9 units of the resource are used in [0, 4), which is more than 2∗ (4-0). The second
one is a feasible partially elastic schedule.

B.3.1. Necessary Conditions for the Existence of a
Feasible Schedule

B.3.1.1. A Necessary and Sufficient Condition of existence for the
Fully Elastic CuSP

We exhibit in this section a strong link between the Fully Elastic CuSP and the decision
variant of the Preemptive One-Machine Problem. An instance of the Preemptive One-
Machine Problem is defined by a set of n activities {A1, ..., An}, together with a release
date ri, a deadline di and a processing time pi for each activity Ai. The problem is to decide
whether there exists a feasible preemptive one-machine schedule of the given activities.

Transformation F.
For any instance I of the Fully Elastic CuSP, let F(I) be the instance of the Preemptive
One-Machine Problem defined by n activities A1', ..., An' with ∀ i, ri' = C ∗ ri, di' = C ∗ di,
pi' = pi ∗ ci.

60

Proposition B-6
For any instance I of the Fully Elastic CuSP, there exists a feasible fully elastic schedule
of I if and only if there exists a feasible preemptive schedule of F(I).

Proof.
Let C be the capacity of the resource R of the instance I. Let R' be the resource of the
instance F(I). We first prove that if there is a feasible fully elastic schedule of I, then there
is a feasible preemptive schedule of F(I). Let fes(t, i) be the number of units of Ai executed
at t. We build a schedule of A1', ..., An' on R' as follows. For each time t and each activity
Ai, schedule fes(t, i) units of Ai' on R' as early as possible after time C ∗ t. It is obvious that
at any time t, for any activity Ai, the number of units of Ai executed at t on R is equal to the
number of units of Ai' executed between C ∗ t and C ∗ (t + 1) on R' since this algorithm
consists of cutting the schedule of A1, ..., An into slices of one time unit and rescheduling
these slices on R'. Consequently, for any activity Ai', exactly pi ∗ ci units of Ai' are
scheduled between C ∗ ri and C ∗ di and thus the release dates as well as deadlines are
met. A symmetric demonstration would prove that if there is a feasible preemptive
schedule of F(I) then there is a feasible fully elastic schedule of I. �
Consider now Jackson's Preemptive Schedule. JPS is feasible if and only if there exists a
feasible preemptive schedule. Moreover, JPS can be built in O(n ∗ log(n)) steps (see
[Carlier, 1984] for details). Consequently, thanks to Proposition B-6, we have an
O(n ∗ log(n)) algorithm to solve the Fully Elastic CuSP. In the following, Jackson’s Fully
Elastic Schedule (JFES) denotes the fully elastic schedule obtained (1) by applying JPS on
the transformed instance and (2) by rescheduling slices as described in the proof of
Proposition B-6.

B.3.1.2. A Necessary and Sufficient Condition of existence for the
Partially Elastic CuSP

The Partially Elastic CuSP is slightly more complex. We first introduce a pseudo-
polynomial algorithm to solve this problem. We then present the concept of required
energy consumption, which enables us to show that the Partially Elastic CuSP is
equivalent to another problem for which we can provide a quadratic algorithm. In the
following, “I” denotes an instance of the Partially Elastic CuSP. Let us first introduce a
new transformation.

61

Transformation G.
Consider the instance G(I) of the Fully Elastic CuSP defined by replacing every activity Ai
by pi activities Ai

1, …, Ai
pi, each having a resource requirement ci

j = ci, a release date
ri

j = ri + j - 1, a deadline di
j = di - (pi - j) and a processing time pi

j of 1 (the resource
capacity of G(I) is C as for I).

B.3.1.2.1. Jackson’s Partially Elastic Schedule

Jackson’s Partially Elastic Schedule (JPES) is the schedule built by scheduling each
activity Ai at the time points at which the activities Ai

j are scheduled on JFES of G(I).
Given the definition of G, it is easy to verify that if JFES is a feasible fully elastic
schedule of G(I) then JPES is a feasible partially elastic schedule of I.

Proposition B-7
There exists a feasible partially elastic schedule if and only if JPES is a feasible partially
elastic schedule.

Proof (sketch).
Consider a feasible partially elastic schedule S of an instance I. It is then possible to build
a feasible fully elastic schedule of G(I) obtained from S by a similar transformation as G
(i.e., for any activity Ai, schedule Ai

1 at the same place as the “first ci units” of Ai on S,
iterate ...). Since there is a feasible fully elastic schedule of G(I), JFES is also a feasible
fully elastic schedule of G(I) (Proposition B-6). Thus, JPES is a feasible partially elastic
schedule of I. �
Since transformation G is done in O(Σ pi) and since the fully elastic problem G(I) can be
solved in O(Σ pi * log(Σ pi)), Proposition B-7 leads to an O(Σ pi * log(Σ pi)) algorithm to
test the existence of a feasible partially elastic schedule.

B.3.1.2.2. Energetic Reasoning

We adapt the notion of “required energy consumption” defined in [Lopez, 1991] and
[Lopez et al., 1992] to partially elastic activities. The required energy consumption
WPE(Ai, t1, t2) of an activity over an interval [t1, t2] is defined as follows (cf. Figure B-8).

WPE(Ai, t1, t2) = ci ∗ max(0, pi - max(0, t1
 - ri) - max(0, di - t2))

To get an intuitive picture of the formula, notice that max(0, t1
 - ri) is an upper bound of

the number of time units during which Ai can execute before time t1 and max(0, di - t2) is
an upper bound of the number of time units during which Ai can execute after time t2.
Consequently, max(0, pi - max(0, t1

 - ri) - max(0, di - t2)) is a lower bound of the number of
time units during which Ai executes in [t1, t2].

62

 ri di pi ci 0 1 2 3 4 5 6 7 8 9 10
A1 0 10 7 2

WPE(A, 2, 7)

Figure B-8. The required energy consumption of A1 over [2, 7]. A1 must execute during at
least 2 time units in [2, 7]; i.e., WPE(A, 2, 7) = 2 ∗ (7 - (2 - 0) - (10 - 7)) = 4

We now define the overall required energy consumption WPE(t1, t2) over [t1, t2] as the sum
over all activities Ai of WPE(Ai, t1, t2). Note that for t1 = t2, WPE(t1, t2) is defined and, under
the assumption ri + pi ≤ di, is equal to 0.

Proposition B-8.
There is a feasible partially elastic schedule of I if and only if for any non-empty interval
[t1, t2], WPE(t1, t2) ≤ C ∗ (t2 - t1).

Proof.
The fact that WPE(t1, t2) ≤ C ∗ (t2 - t1) is a necessary condition is obvious. Suppose now
that there is no feasible partially elastic schedule of I. Then there is no feasible preemptive
schedule of F(G(I)). Consequently, there is a set of activities S of F(G(I)) such that
between the minimum release date of activities in S and the maximum deadline of
activities in S there is not enough “space” to schedule all activities in S [Carlier, 1984].
This leads to

)(* maxmin 12

*
*

2

1

ttCpdpr

tCd
tCr

j
i

j
i

SASA

j
i

j
i

SA
j

i

j
i

j
i

j
i

j
i

−>�>+ ��

�
�
�

≤
≥∈∈∈

where C * t1 is the minimum release date in S and C * t2 the maximum deadline in S
(recall that release dates and deadlines of activities in S are multiple of C). Then the
equation becomes:

)(* 12

*)(*C
)1(

: thatsuch]1[in

2

1

ttCc
i

tCjpd
tCjrC

, pj
i

ii

i

i

−>� �

≤+−
≥−+

For each i, let us now count the values of j in [1, pi] such that (1) C * (ri + j - 1) ≥ C * t1
and (2) C * (di - pi + j) ≤ C * t2, i.e., the number of integers in [max(1, t1 + 1 - ri), min(pi, t2
+ pi - di)]. This number is equal to:

 max(0, 1 + min(pi, t2 + pi - di) - max(1, t1 + 1 - ri))
= max(0, pi + min(0, t2 - di) - max(0, t1 - ri))
= max(0, pi - max(0, di - t2) - max(0, t1 - ri)).

Therefore, the previous equation becomes).(*),,(1221 ttCttAW
i

iPE −>� �

63

B.3.1.2.3. A Quadratic Algorithm

We propose a quadratic algorithm to determine whether there exists a feasible partially
elastic schedule for a given instance of the Partially Elastic CuSP. This algorithm is
derived from the algorithm used in [Perregaard, 1995] to compute the subset bound of the
m-Machine Problem. It consists of computing the overall required energy consumption
over each interval [ri, dk] and to test whether this energy exceeds the energy provided by
the resource over this interval. We prove that such tests guarantee the existence of a
feasible partially elastic schedule. To achieve this proof, we study the slack function
SPE(t1, t2) = C ∗ (t2 - t1) - WPE(t1, t2).

Proposition B-9.
Let t1, t2 be two integer values such that t1 < t2.
• If t1 is not a release date, then

either SPE(t1 + 1, t2) < SPE(t1, t2) or SPE(t1 - 1, t2) ≤ SPE(t1, t2).
• If t2 is not a deadline, then

either SPE(t1, t2 - 1) < SPE(t1, t2) or SPE(t1, t2 + 1) ≤ SPE(t1, t2).

Proof.
The two items of the proposition being symmetric, we only prove the first item. Suppose
that SPE(t1, t2) ≤ SPE(t1 + 1, t2) and SPE(t1, t2) < SPE(t1 - 1, t2). Let us then define the sets
Ψ = {i | pi - max(0, t1 - ri) - max(0, di - t2) > 0} and Φ = {i | ri ≤ t1}.
The equation SPE(t1, t2) ≤ SPE(t1 + 1, t2) can be rewritten

-C +
i∈
�

Ψ
ci ∗ (-max(0, t1 - ri) + max(0, t1 + 1 - ri)) ≥ 0.

Since ∀ i∉Φ , max(0, t1 - ri) = 0 and max(0, t1 + 1 - ri) = 0, the previous equation becomes:

�
Φ∩Ψ∈i

ci ∗ (-max(0, t1 - ri) + max(0, t1 + 1 - ri)) ≥ C � �
Φ∩Ψ∈i

 ci ≥ C.

The equation SPE(t1, t2) < SPE(t1 - 1, t2) can be rewritten as follows:

 �
i

 ci ∗ max(0, pi - max(0, t1 - 1 - ri) - max(0, di - t2))

 - �
i

ci ∗ max(0, pi - max(0, t1 - ri) - max(0, di - t2)) < C

 � �
Ψ∈i

ci ∗ (-max(0, t1 - 1 - ri) + max(0, t1 - ri))

 + �
Ψ∉i

ci ∗ max(0, pi - max(0,t1 - 1 - ri) - max(0, di - t2)) < C

 � �
Ψ∈i

ci ∗ (-max(0, t1 - 1 - ri) + max(0, t1 - ri)) < C

64

Consider now two cases.
• If i ∈ Φ then t1 - ri ≥ 0. Moreover, t1 - ri - 1 ≥ 0 since t1 is not a release date.
• If i ∉ Φ then t1 - ri < 0 and t1 - ri - 1 < 0.

Previous equation then becomes �
Φ∩Ψ∈i

ci < C, which contradicts �
Φ∩Ψ∈i

ci ≥ C. �

Proposition B-10.
[∀ rj, ∀ dk > rj, SPE(rj, dk) ≥ 0] ⇔ [∀ t1, ∀ t2 > t1, SPE (t1, t2) ≥ 0]

 ⇔ [There exists a feasible partially elastic schedule]

Proof.
Note that if t1 < mini(ri), the slack strictly increases when t1 decreases, and if t2 > maxi(di),
the slack strictly increases when t2 increases. Hence, the slack function assumes a minimal
value over an interval [t1, t2] with mini(ri) ≤ t1 ≤ t2 ≤ maxi(di). We can assume that both t1
and t2 are integers (if t1 is not, the function t → SPE(t, t2) is linear between �t1� and �t1�;
thus either SPE(�t1�, t2) ≤ SPE(t1, t2) or SPE(�t1�, t2) ≤ SPE(t1, t2)). Among the pairs of integer
values (t1, t2) which realize the minimum of the slack, let (u1, u2) be the pair such that u1 is
minimal and u2 is maximal (given u1).
We can suppose that SPE(u1, u2) < 0 (otherwise the proposition holds). Consequently,
u1 < u2 and thus, according to Proposition B-9, either u1 is a release date or SPE(u1 + 1, u2)
< SPE(u1, u2) or SPE(u1 - 1, u2) ≤ SPE(u1, u2). Since SPE(u1, u2) is minimal, the previous
inequalities lead to SPE(u1 - 1, u2) = SPE(u1, u2); which contradicts our hypothesis
on u1. Consequently, u1 is a release date. A symmetric demonstration proves that u2 is a
deadline. �

This proposition is of great interest since it allows us to restrict the computation of WPE to
intervals [t1, t2] where t1 is a release date and t2 is a deadline. Before describing the
algorithm, we introduce the notation pi

+(t1) which denotes the minimal number of time
units during which Ai must execute after t1, i.e.,

pi
+(t1) = max(0, pi - max(0, t1 - ri)).

Algorithm B-3 computes WPE(t1, t2) over all relevant intervals. The basic underlying idea
is that, for a given t1, the values of t2 at which the slope of the t → WPE(t1, t) function
changes are either of the form di or of the form di - pi

+(t1). The procedure iterates on the
relevant values of t1 and t2. Each time t2 is modified, WPE(t1, t2) is computed, as well as the
new slope (just after t2) of the t → WPE(t1, t) function. Each time t1 is modified, the set of
activities with relevant di - pi

+(t1) is incrementally recomputed and resorted.

65

Algorithm B-3.
1 procedure update(DP, old_t1, t1)

2 move = ∅ , no_move = ∅ // initialize two empty lists

3 for act in DP

4 if (p+act(t1) > 0) then

5 if (p+act(t1) = p+act(old_t1)) then add act to no_move

6 else add act to the list move

7 end if

8 end if

9 end for

10 DP = merge(move, no_move)

11

12 procedure energies

13 DD = activities sorted in increasing order of dact
14 DP = activities sorted in increasing order of dact - pact
15 old_t1 = mini(ri)

16 for t1 in the set of release dates (sorted in inc. order)

17 update(DP, old_t1, t1)

18 old_t1 = t1, iDD = 0, iDP = 0

19 W = 0, old_t2 = t1, slope = Σ act WPE(act, t1, t1 + 1)

20 while (iDP < length(DP) or iDD < n)

21 if (iDD < n) then t2_DD = dDD[iDD + 1]

22 else t2_DD = ∞
23 end if

24 if (iDP<length(DP)) then t2_DP=dDP[iDP+1]-p
+
DP[iDP+1](t1)

25 else t2_DP = ∞
26 end if

27 t2 = min(t2_DD, t2_DP)

28 if (t2 = t2_DP) then iDP = iDP + 1, act = DP[iDP]

29 else iDD = iDD + 1, act = DD[iDD]

30 end if

31 if (t1 < t2) then

32 W = W + slope * (t2 - old_t2)

33 WPE(t1, t2) = W // energy over [t1, t2]

34 old_t2 = t2

35 slope = slope + WPE(act, t1, t2 + 1)

36 - 2*WPE(act, t1, t2) + WPE(act, t1, t2 - 1)

37 end if

38 end while

39 end for

66

Let us detail the procedure energies.

• Lines 13 and 14 initialize DD and DP. DD is the array of activities sorted in increasing
order of deadlines and DP is the array of activities sorted in increasing order of di - pi.

• The main loop (line 16) consists in an iteration over all release dates t1. Notice that
old_t1 allows to keep the previous value of t1.

• The procedure update(DP, old_t1, t1) reorders the array DP in increasing
order of di - pi+(t1). This procedure will be described later on.

• Before starting the inner loop, a variable slope is initialized (line 19). It corresponds
to the slope of the function t → WPE(t1, t) immediately after the time point old_t2.
old_t2 and slope are initialized line 19 and updated lines 34 and 35.

• The inner loop on t2 (lines 20-38) consists in iterating on both arrays DD and DP at the
same time. Because both arrays are sorted, some simple operations (line 21 to 27)
determine the next value of t2. Notice that t2 can take at most 2 * n values and that t2
takes all the values which correspond to a deadline. The indices iDD and iDP
correspond to the current position in arrays DD and DP respectively.

• Lines 28 to 30 enable to increase one of the indices and to determine the activity act
which has induced the current iteration.

• To understand lines 31 to 36, consider the following rewriting of WPE(Ai, t1, t2).
WPE(Ai, t1, t2) = 0 If t2 ≤ di - pi

+(t1)
 = ci * (t2 - di + pi

+(t1)) If di - pi
+(t1) < t2 ≤ di

 = ci * pi
+(t1) If di < t2

Between two consecutive values of t2 in the inner loop, the function WPE is linear. The
required energy consumption between t1 and old_t2 is W, as computed at the end of
the previous iteration. In addition, the slope of t → WPE(t1, t) between old_t2 and t2
is slope. So, the required energy consumption between t1 and t2 is
W+slope*(t2- old_t2). Then, slope is updated to take into account the non-
linearity of the required energy consumption of activity Ai (act in the pseudo code) at
time t2. Notice that the algorithm may execute several times lines 31-36 for the same
values of t1 and t2 (e.g., if di = dj for some i and j). In such a case, the slope is modified
several times, with respect to all the activities inducing a non-linearity at time t2.

Let us now detail the procedure update. This procedure reorders the array DP in
increasing order of di - pi

+(t1). This is done in linear time. We rely on the fact that when we
move from old_t1 to t1, three cases can occur.
• Either pi

+(t1) is null and then the required energy consumption of Ai in [t1, t2] is null;
and Ai can be removed;

• Or pi
+(t1) = pi

+(old_t1) (line 5);

67

• Or pi
+(t1) = pi

+(old_t1) - (t1 - old_t1) (line 6).
Activities are taken in the initial order of DP and are stored in either the list no_move
(second item) or in the list move (third item). Notice that no_move is sorted in increasing
order of di - pi

+(old_t1) = di - pi
+(t1). Moreover, move is sorted in increasing order of

di - pi
+(old_t1) but move is also sorted in increasing order of di - pi

+(t1) since the difference
between pi

+(t1) and pi
+(old_t1) is constant for all activities in move. This means that we

only have to merge move and no_move to obtain the reordered array.

The overall algorithm runs in O(n2) since (1) the initial sort can be done in O(n * log(n)),
(2) the procedure update is basically a merging procedure which runs in O(n), (3) the
initial value of slope for a given t1 is computed in O(n), and (4) the inner and outer loops
of the algorithm both consist in O(n) iterations.

B.3.1.3. A “Left-Shift / Right-Shift” Necessary Condition of
existence for the CuSP

The required energy consumption as defined in Section B.3.1.2.2 is still valid if we
consider that activities can be interrupted. In fact, [Erschler et al., 1991] and [Lopez et al.,
1992] propose a sharper definition of the required energy consumption that takes into
account the fact that activities cannot be interrupted. Given an activity Ai and a time
interval [t1, t2], WSh(Ai, t1, t2), the “left-shift / right-shift” required energy consumption of
Ai over [t1, t2] is ci times the minimum of the three following durations.
• t2 - t1, the length of the interval;
• pi

+(t1) = max(0, pi - max(0, t1 - ri)), the number of time units during which Ai executes
after time t1 if Ai is left-shifted, i.e., scheduled as soon as possible;

• pi
-(t2) = max(0, pi - max(0, di - t2)), the number of time units during which Ai executes

before time t2 if Ai is right-shifted, i.e., scheduled as late as possible.
This leads to WSh(Ai, t1, t2) = ci * min(t2 - t1, pi

+(t1), pi
-(t2)) (cf. Figure B-9 for an example).

 ri di pi ci 0 1 2 3 4 5 6 7 8 9 10
A1 0 10 7 2

Left Shift

Right Shift

WSh(A1, 2, 7)

Figure B-9. The required energy consumption of A1 over [2, 7]. At least 4 time units of A
have to be executed in [2, 7]; i.e., WSh(A, 2, 7) = 2 ∗ min(5, 5, 4) = 8.

68

We can now define the left-shift / right-shift overall required energy consumption
WSh(t1, t2) over an interval [t1, t2] as the sum over all activities Ai of WSh(Ai, t1, t2). We can
also define the left-shift / right-shift slack over [t1, t2]: SSh(t1, t2) = C ∗ (t2 - t1) - WSh(t1, t2).
It is obvious that if there is a feasible schedule of an instance of the CuSP then ∀ t1,
∀ t2 ≥ t1, SSh(t1, t2) ≥ 0.

B.3.1.3.1. Characterization of relevant and irrelevant intervals

In Section B.3.2 we showed that for the partially elastic relaxation, it was sufficient to
calculate the slack only for those intervals [t1, t2] that are in the Cartesian product of the
set of release dates and of the set of deadlines. In this section we show that in the
left-shift / right-shift case, a larger number of intervals must be considered. On top of that,
we provide a precise characterization of set of intervals for which the slack needs to be
calculated to guarantee that no interval with negative slack exists.

Proposition B-11.
Let us define the sets O1, O2 and O(t).

O1 = {ri, 1 ≤ i ≤ n} ∪ {di - pi, 1 ≤ i ≤ n} ∪ {ri + pi, 1 ≤ i ≤ n}

O2 = {di, 1 ≤ i ≤ n} ∪ {ri + pi, 1 ≤ i ≤ n} ∪ {di - pi, 1 ≤ i ≤ n}

O(t) = {ri + di - t, 1 ≤ i ≤ n}
We claim that:
∀ t1, ∀ t2 ≥ t1 SSh(t1, t2) ≥ 0 ⇔ ∀ s ∈ O1, ∀ e ∈ O2, e ≥ s , SSh(s, e) ≥ 0

 and ∀ s ∈ O1, ∀ e ∈ O(s), e ≥ s, SSh(s, e) ≥ 0

 and ∀ e ∈ O2, ∀ s ∈ O(e), e ≥ s, SSh(s, e) ≥ 0

To prove Proposition B-11, we first need to prove some technical properties of WSh
(Propositions B-12, B-13 and B-14). In the following, we consider that WSh is defined on
ℜ 2 and equal to 0 when t2 ≤ t1.

Proposition B-12.
Let Ai be an activity and (t1, t2) ∈ ℜ 2

 with t1 < t2. If t1 ∉ {ri, di - pi, ri + pi} and if
t2 ∉ {di, di - pi, ri + pi}, then Φ(h) = WSh(Ai, t1 + h, t2 - h) is linear around 0.

Proof.
Φ(h) can be rewritten Φ(h) = ci * max(0, min(t2 - t1 - 2 * h, pi, ri + pi - t1 - h, t2 - di + pi - h)). Each of
the terms 0, t2 - t1 - 2 * h, pi, ri + pi - t1 - h, t2 - di + pi - h is linear in h and if for h = 0, one term only
realizes Φ(0), we can be sure that a small perturbation of h will have a linear effect.
Assume two terms are equal and realize Φ(0). Since there are five terms, this leads us to
distinguish ten cases.

69

1. Φ(0) = 0 = t2 - t1,
2. Φ(0) = 0 = pi,
3. Φ(0) = 0 = ri + pi - t1,
4. Φ(0) = 0 = t2 - di + pi,
5. Φ(0) = t2 - t1 = pi,
6. Φ(0) = t2 - t1 = ri + pi - t1,
7. Φ(0) = t2 - t1 = t2 - di + pi,
8. Φ(0) = pi = ri + pi - t1,
9. Φ(0) = pi = t2 - di + pi,
10. Φ(0) = ri + pi - t1 = t2 - di + pi.
According to our hypotheses, all cases are impossible except (5) and (10).
• We claim that case (5) cannot occur. Since t2 - t1 = pi and since this value is equal to

Φ(0), we have pi < ri + pi - t1 and pi < t2 - di + pi (equality cannot occur because of our
hypotheses). Thus, t2 - t1 = pi > di - ri; which contradicts ri + pi ≤ di.

• If (10) holds, then ri + pi - t1 - h = t2 - di + pi - h. We can moreover suppose that these
two terms are the only ones to realize Φ(0) (otherwise one of the previous cases would
occur). Around 0, Φ(h) can be rewritten ci * (ri + pi - t1 - h); which is linear. �

Proposition B-13.
Let Ai be an activity and (t1, t2) ∈ ℜ 2 such that t1 < t2 and t2 ∉ {di, di - pi, ri + pi, ri + di - t1}, then
Θ(h) = WSh(Ai, t1, t2 - h) is linear around 0.

Proof.
Θ(h) can be rewritten Θ(h) = ci * max(0, min(t2 - t1 - h, pi, ri + pi - t1, t2 - di + pi - h)). Each of the
terms is linear in h and if for h = 0, one term only realizes Θ(h), we can be sure that a
small perturbation of h will have a linear effect. Two terms are equal and realize Θ(0) if
either
1. Θ(0) = 0 = t2 - t1 or
2. Θ(0) = 0 = pi or
3. Θ(0) = 0 = ri +pi - t1 or
4. Θ(0) = 0 = t2 - di + pi or
5. Θ(0) = t2 - t1 = pi or
6. Θ(0) = t2 - t1 = ri + pi - t1 or
7. Θ(0) = t2 - t1 = t2 - di + pi or
8. Θ(0) = pi = ri + pi - t1 or
9. Θ(0) = pi = t2 - di + pi or
10. Θ(0) = ri + pi - t1 = t2 - di + pi.

70

According to our hypotheses, all cases are impossible except (3), (5), (7), (8).
• If t1 = ri + pi (3) then ∀ h, Θ(h) = 0.
• Case (5) cannot occur otherwise we would have pi ≤ ri + pi - t1 and pi < t2 - di + pi; which

contradicts ri + pi ≤ di.
• If t2 - t1 = t2 - di + pi (7) then ∀ h, Θ(h) = ci * max(0, min(t2 - t1 - h, pi, ri + pi - t1)). We

can moreover suppose that t2 - t1 is the only term in the new expression to realize Θ(0)
(otherwise case (1), (5) or (6) would occur) and thus Θ(h) = ci * (t2 - t1 - h) around 0.

• If pi = ri + pi - t1 realizes Θ(0) (8) then Θ(h) = ci * max(0, min(t2 - ri - h, pi, t2 - di + pi - h)). Since
Θ(0) = ci * pi > 0, around 0 we must have Θ(h) = ci * min(t2 - ri - h, pi, t2 - di + pi - h). Moreover,
since ri ≤ di - pi, around 0 we have Θ(h) = ci * min(pi, t2 - di + pi - h). Finally, we know that
t2 ≠ di thus, pi < t2 - di + pi. Consequently, around 0, Θ(h) = ci * pi. �

Proposition B-14.
Let (t1, t2) ∈ ℜ 2 such that t1 < t2.
• If t1 ∉ O1 and t2 ∉ O2, h → SSh(t1 + h, t2 - h) is linear around 0.
• If t2 ∉ O2 ∪ O(t1), h → SSh(t1, t2 - h) is linear around 0.
• If t1 ∉ O1 ∪ O(t2), h → SSh(t1 + h, t2) is linear around 0.

Proof (sketch).
We prove the first item. Since t1 ∉ O1 and t2 ∉ O2, ∀ i, h → WSh(Ai, t1 + h, t2 - h) is linear around
0 (Proposition B-12). Thus, h → SSh(t1 + h, t2 - h) is linear around 0. The same proof applies
for other items (Proposition B-13 and its symmetric counterpart are used). �

Proof of Proposition B-11.
The implication from left to right is obvious. Suppose now that the right hand side of the
equivalence holds and that there exists an interval [t1, t2] for which the slack is strictly
negative. As in the partially elastic case, we remark that when t1 is smaller than
rmin = min(ri), the slack strictly increases when t1 decreases. Similarly, when t2 is greater
than dmax = max(di), the slack strictly increases when t2 increases. Since the slack function
is also continuous, it assumes a minimal value over an interval [t1, t2] with
rmin ≤ t1 ≤ t2 ≤ dmax. Let us consequently select a pair (t1, t2) at which the slack is minimal.
In case several pairs (t1, t2) minimize the slack, an interval with maximal length is chosen.
Since this slack is strictly negative, we must have t1 < t2.
Case 1: If t1 ∉ O1 and t2 ∉ O2, then according to Proposition B-14, the function
ϕ(h) = SSh(t1 + h, t2 - h) is linear around 0. Since (t1, t2) is a global minimum of the slack,
ϕ(h) is constant around 0, which contradicts the fact that the length of [t1, t2] is maximal.
Case 2: If t1 ∈ O1 then t2 ∉ O2 ∪ O(t1), otherwise the slack is non-negative. According to
Proposition B-14, θ(h) = SSh(t1, t2 - h) is linear around 0. Since (t1, t2) is a global minimum

71

of the slack, θ(h) is constant around 0, which contradicts the fact that the length of [t1, t2]
is maximal.
Case 3: If t2 ∈ O2 then t1 ∉ O1 ∪ O(t2), otherwise the slack is non-negative. According to
Proposition B-14, θ(h) = SSh(t1 + h, t2) is linear around 0. Since (t1, t2) is a global minimum
of the slack, θ(h) is constant around 0, which contradicts the fact that the length of [t1, t2]
is maximal.
The combination of cases 1, 2 and 3 leads to a contradiction. �

Proposition B-11 provides a characterization of interesting intervals over which the slack
must be computed to ensure it is always non-negative over any interval. This
characterization is weaker than the one proposed for the partially elastic case where the
interesting time intervals [t1, t2] are in the Cartesian product of the set of the release dates
and of the set of deadlines. However, there are still only O(n2) relevant pairs (t1, t2) to
consider. Some of these pairs belong to the Cartesian product O1 ∗ O2. The example of
Figure B-10 proves that some pairs do not.

 Ri di Pi ci 0 1 2 3 4 5 6 7 8 9 10
A1 1 8 4 1
A2 1 8 4 1
A3 0 10 4 1
A4 0 10 4 1
A5 0 10 4 1

t2 \ t1 0 1 2
8 16 – 4 * 2 - 2 * 3 = 2 14 - 4 * 2 - 2 * 3 = 0 12 - 3 * 2 - 2 * 3 = 0
9 18 – 4 * 2 - 3 * 3 = 1 16 - 4 * 2 - 3 * 3 = -1 14 - 3 * 2 - 2 * 3 = 2
10 20 – 4 * 2 - 4 * 3 = 0 18 - 4 * 2 - 3 * 3 = 1 16 - 3 * 2 - 2 * 3 = 4

Figure B-10. Some interesting time intervals are outside the Cartesian product O1 ∗ O2. In
this example, (resource of capacity 2 and 5 activities A1, A2, A3, A4, A5), the pair (1, 9)
corresponds to the minimal slack and does not belong to {0, 1, 4, 5, 6} ∗ {4, 5, 6, 8, 10}. In this
interval, the slack is negative, which proves that there is no feasible schedule. Notice that
neither the fully elastic nor the partially elastic relaxation can trigger a contradiction.

72

B.3.1.3.2 A Quadratic Algorithm

We propose an O(n2) algorithm to compute the required energy consumption WSh over all
interesting pairs of time points. Actually, the algorithm first computes all the relevant
values taken by WSh over time intervals [t1, t2] with t1 ∈ O1, and then computes all the
relevant values taken by WSh over time intervals [t1, t2] with t2 ∈ O2. The characterization
obtained in the previous section ensures that all the interesting time intervals are examined
in at least one of these steps. For symmetry reasons, we will only describe the first
computation. It is achieved by the same type of technique than in the partially elastic case.
An outer loop iterates on all values t1 ∈ O1 sorted in increasing order. Then, we consider
the function t → WSh(Ai, t1, t). This function is linear on the intervals delimited by the
values di, ri + pi, di - pi and ri + di - t1. We rely on this property to incrementally maintain
the slope of the function t → WSh(Ai, t1, t).

73

Algorithm B-4.
1 DD = activities sorted in increasing order of dact
2 RP = activities sorted in increasing order of ract + pact
3 DP = activities sorted in increasing order of dact - pact
4 RD = activities sorted in increasing order of ract + dact
5 for t1 in the set O1 (sorted in increasing order)
6 iDD = 0, iRP = 0, iDP = 0, iRD = 0

7 W = 0, old_t2 = t1, slope = Σact WSh(act, t1, t1 + 1)
8 while (iDD < n or iRP < n or iDP < n or iRD < n)
9 if (iDD < n) then
10 t2_DD = dDD[iDD + 1]

11 else

12 t2_DD = ∞ end if
13 if (iRP < n) then
14 t2_RP = rRP[iRP + 1] + pRP[iRP + 1]

15 else

16 t2_RP = ∞ end if
17 if (iDP < n) then
18 t2_DP = dDP[iDP + 1] - pDP[iDP + 1]

19 else

20 t2_DP = ∞
21 end if
22 if (iRD < n) then
23 t2_RD = rRD[iRD + 1] + dRD[iRD + 1] - t1
24 else

25 t2_RD = ∞
26 end if
27 t2 = min(t2_DD, t2_RP, t2_DP, t2_RD)
28 if (t2 = t2_DD) then iDD = iDD + 1, act = DD[iDD]
29 else if (t2=t2_iRP) then iRP = iRP + 1, act = RP[iRP]
30 else if (t2=t2_iDP) then iDP = iDP + 1, act = DP[iDP]
31 else if (t2=t2_iRD) then iRD = iRD + 1, act = RD[iRD]
32 end if
33 if (t1 < t2) then
34 W = W + slope * (t2 - old_t2)
35 WSh(t1, t2) = W // energy over [t1, t2] is computed
36 old_t2 = t2
37 slope = slope + WSh(act, t1, t2 + 1)
38 - 2*WSh(act, t1, t2) + WSh(act, t1, t2 - 1)
39 end if
40 end while
41 end for

74

There are some few differences with the partially elastic case.
• The computation of t2 is slightly more complex since there are more interesting

values to consider.
• One does not need to reorder any list: when t1 increases, none of the values di, ri + pi,

di - pi and ri + di - t1 changes except the last one; which corresponds to the list RD.
Since RD is initially sorted in increasing order of ri + di, it is also sorted in increasing
order of ri + di - t1.

• In line 37, one shall in fact be careful not to update the slope more than once for the
same tuple (t1, t2, act). This can be done easily by marking the activity act with t2. We
have not included this marking in the pseudo-code to keep it simple.

B.3.1.4. Synthesis of Theoretical Results

Figure B-11 summarizes the theoretical results related to the conditions described in
Sections B.3.1.1, B.3.1.2 and B.3.1.3. The most satisfactory results are obtained for the
Fully Elastic CuSP and for the Partially Elastic CuSP since the related problems are
polynomially solvable by either a reduction to a One-Machine Preemptive Problem or by
some simple and intuitive energetic computation. Less strong results are obtained for the
CuSP. No polynomial sufficient condition for the existence of a feasible schedule is
proposed (which seems reasonable since the CuSP is NP-complete). As for the Partially
Elastic CuSP, the left-shift / right-shift necessary condition relies on energetic reasoning,
but there are more time intervals to consider in practice and the structure of these intervals
is far more complex and poorly intuitive.
Needless to say, all relaxations can be used as part of the resolution of a non-preemptive
cumulative problem. However, it is easy to see that the necessary condition based on the
fully elastic relaxation is subsumed by the one based on the partially elastic relaxation,
which in turn is subsumed by the left-shift / right-shift necessary condition.

 Fully Elastic Partially Elastic Left-Shift / Right-Shift
Characterization Necessary and

sufficient
Necessary and

sufficient
Necessary

Complexity O(n * log(n)) O(n2) O(n2)
Method One-Machine

reduction
Slack computation Slack computation

Intervals [t1, t2] - O(n2) in a Cartesian
product

O(n2)

Figure B-11. A comparison of the 3 necessary conditions.

75

In the m-Machine case, i.e., when activities require exactly one unit of the resource, the
three necessary conditions can be compared to several results of the literature (these
results are discussed in [Perregaard, 1995]).
First, notice that the decision variant of the Preemptive m-Machine Problem is polynomial
and can be formulated as a maximum flow problem (similar techniques as those depicted
in Section B.2.3 for the One-Machine Problem are used), see for instance [Federgruen and
Groenevelt, 1986] or [Perregaard, 1995]. As shown in [Perregaard, 1995], solving this
maximum flow problem leads to a worst case complexity of O(n3). The preemptive
relaxation is strictly stronger than the fully and the partially elastic relaxations. However,
it is not stronger than the left-shift / right-shift necessary condition. Indeed, there exists a
feasible preemptive schedule of the m-Machine instance described on Figure B-10, while
the left-shift / right-shift necessary condition does not hold.
A comparison can also be made between the subset bound, a lower bound for the
optimization variant of the m-Machine Problem (see for example [Carlier, 1984], [Carlier
and Pinson, 1996], [Perregaard, 1995]) and the partially elastic relaxation. An instance of
the optimization variant of the m-Machine Problem consists of a set of activities
characterized by a release date ri, a tail qi and a processing time pi, and a resource of
capacity C = m. The objective is to find a start time assignment si for each activity Ai such
that (1) temporal and resource constraints are met and (2) maxi (si + pi + qi) is minimal.
The subset bound is the maximum among all subsets J of at least C activities of the
following expression, in which R(J) and Q(J) denote the sets of activities in J having
respectively the C smallest release dates and the C smallest tails.

�
�

�

�

�
�

�

�

++ ���
∈∈∈)()(

1

JQA
j

JA
j

JRA
j

jjj

qpr
C

[Perregaard, 1995] presents an algorithm to compute the subset bound in a quadratic
number of steps. Carlier and Pinson [Carlier and Pinson, 1996] describe an
O(n ∗ log(n) + n ∗ C ∗ log(C)) algorithm which relies on a “pseudo-preemptive”
relaxation of the m-Machine Problem. Notice that the subset bound can apply, thanks to a
simple transformation, as a necessary condition of existence for the decision variant of the
m-Machine Problem:

{ } ���
∈∈∈

≤+≥⊆∀
)()(

1 , that such ,,
JDA

j
JA

j
JRA

jn
jjj

dprCJAAJ Λ

where D(J) denotes the set of activities in J having the C largest deadlines.

76

Proposition B-15.
In the m-Machine case, there exists a feasible partially elastic schedule if and only if the
subset bound necessary condition holds.

Proof.
• First, assume that there exists a feasible partially elastic schedule. Let J be any subset

of at least C activities. Let ρ1, ρ2, ..., ρC be the C smallest release dates of activities in
J, and δ1, δ2, ..., δC be the C largest deadlines of activities in J. Since before ρC, at most
C activities execute, and since for each of these activities Ai at most (ρC - ri) units are
executed before ρC, the schedule of these activities can be reorganized so that pes(t, i)
is at most 1 for every t ≤ ρC. Let us now replace each activity Ai in R(J) with a new
activity of release date ρ1, deadline di, and processing time pi + (ri - ρ1). A feasible
partially elastic schedule of the new set of activities is obtained as a simple
modification of the previous schedule, by setting pes(t, i) = 1 for every Ai in R(J) and t
in [ρ1 ri). The same operation can be done between δC and δ1 for activities in D(J). We
have a partially elastic schedule requiring ΣAi ∈ J pi + ΣAi ∈ R(J) (ri - ρ1) + ΣAi ∈ D(J) (δ1 - di) units
of energy between ρ1 and δ1.
Hence, ΣAi∈ J pi + ΣAi ∈ R(J) (ri - ρ1) + ΣAi ∈ D(J) (δ1 - di) ≤ C * (δ1 - ρ1). This is equivalent to the
subset bound condition for J.

• We now demonstrate the other implication. Assume that the slack SPE is strictly
negative for some interval. Let then [t1, t2] be the interval over which the slack is
minimal and let us define J as the set of activities Ai such that WPE(Ai, t1, t2) > 0.
Notice that there are at least C activities in J because ri + pi ≤ di implies that
WPE(Ai, t1, t2) ≤ t2 - t1. In addition, at most C activities Ai in J are such that ri < t1.
Otherwise, when t1 is replaced by t1 - 1, the slack decreases. Similarly, there are at
most C activities Ai in J are such that t2 < di. Let us define X = {Ai ∈ J | ri < t1} and
Y = {Ai ∈ J | t2 < di}. According to the previous remark, we have |X| ≤ C and |Y| ≤ C.
Now notice that for any activity Ai in J, WPE(Ai, t1, t2) > 0. Thus, we have
WPE(Ai, t1, t2) = ΣAi∈ J (pi - max(0, t1 - ri) - max(0, di - t2)). This can be rewritten:

WPE(Ai, t1, t2) = ΣAi∈ J pi + ΣAi∈ X ri - |X| * t1 - ΣAi∈ Y di + |Y| * t2.
Since SPE(t1, t2) is strictly negative, we have

ΣAi∈ X ri + (C - |X|) * t1 + ΣAi ∈ J pi > ΣAi∈ Y di + (C - |Y|) * t2.
Moreover, because of the definition of R(J) (resp. D(J)), and because |X| ≤ C and
|Y| ≤ C, we have ΣAi∈ R(J) rj ≥ ΣAi∈ X rj + (C - |X|) * t1 and ΣAi∈ D(J) dj ≤ ΣAi∈ Y dj + (C - |Y|) * t2. As a
consequence, ΣAi∈ R(J) rj + ΣAi∈ J pi > ΣAi∈ D(J) dj, which is exactly the subset bound
necessary condition for the set J. �

77

B.3.2. Time-Bound Adjustments for the CuSP

The following sections describe three time-bound adjustment schemes for the CuSP.
These techniques extend the time-bound adjustments, also called edge-finding, initially
proposed for the One-Machine Problem [Applegate and Cook, 1991], [Baptiste and Le
Pape, 1995b], [Carlier and Pinson, 1990], [Carlier and Pinson, 1994], [Caseau and
Laburthe, 1995], [Nuijten, 1994], [Pinson, 1988].

B.3.2.1. Time-Bound Adjustments for the Fully Elastic CuSP

In the fully elastic case, we rely on the reduction of the Fully Elastic CuSP to the
Preemptive One-Machine Problem. We then use the time-bound adjustment algorithm for
the Preemptive One-Machine Problem described in Section B.2.4.
More precisely, the adjustment scheme is:
1. Build the One-Machine Preemptive Problem instance F(I) corresponding to the Fully

Elastic CuSP instance I.
2. Apply the preemptive edge-finding algorithm on activities A1', ..., An' of the instance

F(I). As explained in Section B.2.4., for each activity Ai', four time-bounds can be
sharpened: the release date ri', the latest possible start time lsti', the earliest possible end
time eeti', and the deadline di'.

3. Update the four time-bounds of each Ai. ri = �ri' / C�, lsti = �lsti' / C�, eeti = �eeti' / C� and
di = �di' / C�.

This algorithm runs in a quadratic number of steps since (1) and (3) are linear and (2) can
be done in O(n2) as detailed in Section B.2.4.

Proposition B-16.
The time-bound adjustments made by the algorithm above are the best possible ones, i.e.,
the lower and upper bounds for the start and end time of activities can be reached by some
feasible fully elastic schedules.

Proof (sketch).
The same proof applies for each of the four time-bounds. We focus on the earliest end
time. The basic idea is to prove that for any Ai, (1) there is a fully elastic schedule on
which Ai can end at the earliest end time computed by the fully elastic time-bound
adjustment algorithm and (2) there is no fully elastic schedule on which Ai can end before
the earliest end time computed by the algorithm. Both steps can be proven thanks to the
reduction F, and to the fact that the preemptive edge-finding algorithm computes the best
possible time-bounds for the Preemptive One-Machine Problem (cf., Section B.2.4.). �

78

B.3.2.2. Time-Bound Adjustments for the CuSP Based on the Partially
Elastic Relaxation

In this section, we provide an adjustment scheme for the CuSP which relies on the
required energy consumptions computed in the partially elastic case. From now on, we
assume that ∀ rj, ∀ dk, WPE(rj, dk) ≤ C ∗ (dk - rj). If not, we know that there is no feasible
partially elastic schedule. As for other adjustments techniques, our basic idea is to try to
order activities. More precisely, given an activity Ai and an activity Ak, we examine
whether Ai can end before dk.

Proposition B-17.7
If ∃ Aj | rj < dk and WPE(rj, dk) - WPE(Ai, rj, dk) + ci ∗ max(0, pi - max(0, rj - ri)) > C ∗ (dk - rj) then a
valid lower bound of the end time of Ai is:

d
W r d W A r d c p r r C d r

ck
PE j k PE i j k i i j i k j

i
+

− + − − − −(,) (, ,) * max(, max(,)) *()0 0

Proof.
Notice that WPE(rj, dk) - WPE(Ai, rj, dk) + ci ∗ max(0, pi - max(0, rj - ri)) is the overall required
energy consumption over [ri dk] when di is set to dk. If this quantity is greater than
C ∗ (dk - rj) then Ai must end after dk. To understand the lower bound of the end time of Ai,
simply notice that the numerator of the expression is the number of energy units of Ai
which have to be shifted after time dk. We can divide this number of units by the amount
of resource required by Ai to obtain a lower bound of the processing time required to
execute these units. �

As all values WPE(rj, dk) can be computed in O(n2), this mechanism leads to a simple O(n3)
algorithm. For any tuple (Ai, Aj, Ak) (1) check wether Ai can end before dk and (2) in such a
case compute the corresponding time-bound adjustment. The issue is that O(n3) is a high
complexity. This led us to further investigation. In the following, we show that the same
adjustments can be made in O(n2 * log(|{ci}|)), through successive transformations and
decompositions of the adjustment scheme.
Given Ai and Ak, our goal is to find the activity Aj which will produce the best possible
adjustment. Notice that if di ≤ dk, WPE(Ai, rj, dk) = ci ∗ max(0, pi - max(0, rj - ri)) and then no

7 Note that the lower bound proposed in this proposition only holds for the CuSP and does
not hold for the Partially Elastic CuSP. Indeed, in the partially elastic case, nothing
prevents Ai from using more than ci units of the resource at a given time point. To get a
valid lower bound, one has to divide the numerator by C instead of ci. In practice, we use
only the Partially Elastic CuSP as a relaxation of the CuSP, which justifies the use of ci to
get a better bound.

79

adjustment can be achieved since ∀ rj, ∀ dk, WPE(rj, dk) ≤ C ∗ (dk - rj). In the following, we only
consider the case in which di > dk. This can be written as a mathematical optimization
problem (P).

max
(,) (, ,) * max(, max(,)) *()

(,) (, ,) * max(, max(,)) *()
j k

PE j k PE i j k i i j i k j

i

PE j k PE i j k i i j i k j

j k

d
W r d W A r d c p r r C d r

c
W r d W A r d c p r r C d r
r d

+
− + − − − −�

�
�

�

�
�

− + − − > −
<

�
�
	

0 0

0 0
u.c.

Let Wj, k = WPE(rj, dk) if rj < dk, and -∞ otherwise. Note that the Wj, k can be pre-computed
in O(n2) as shown in Section B.3.1.2.3. Then, P can be reduced to the following problem.

()()
()

max max(, max(,)) max(, max(,) max(,))

. . max(, max(,)) max(, max(,) max(,))

,

,

j j k i i j i i j i i k j

j k i i j i i j i i k j k

W c p r r p r r d d C r

u c W c p r r p r r d d r C d

 + C

+ − − − − − − − +

+ − − − − − − − >

0 0 0 0 0

0 0 0 0 0

As C ∗ dk does not depend on j, we can first compute the maximum of the expression
Wj, k + ci ∗ (max(0, pi - max(0, rj - ri)) - max(0, pi - max(0, rj - ri) - max(0, di - dk))) + C ∗ rj and then
check whether it is greater than C ∗ dk.

For all j such that pi ≤ max(0, rj - ri), pi - max(0, rj - ri) is smaller than or equal to
max(0, pi - max(0, rj - ri)) and f(j) = Wj, k + C ∗ rj which, under our hypothesis does not
exceed C ∗ dk. Consequently, we can replace max(0, pi - max(0, rj - ri)) by pi - max(0, rj - ri) in
the expression above.
Thus, we seek to maximize

Wj, k + ci ∗ (pi - max(0, rj - ri) - max(0, pi - max(0, rj - ri) - di + dk)) + C ∗ rj
which is equivalent to

maxj (Wj, k + ci ∗ (pi - max(0, rj - ri, pi - di + dk)) + C ∗ rj).
This problem can be split into two sub-problems P1 and P2 by adding respectively the
constraint rj ≤ ri + max(0, pi - di + dk) and the constraint rj ≥ ri + max(0, pi - di + dk). Indeed, an
optimal solution j* of the original problem is either an optimal solution j1

* for P1 or an
optimal solution j2

* for P2.

()max *
max(,)

,j j k j

j i i i k

W C r
r r p d d
+
≤ + − +u.c. 0

 (P1)

()max ()*
max(,)

,j j k i j

j i i i k

W C c r
r r p d d
+ −
≥ + − +u.c. 0

 (P2)

80

B.3.2.2.1. Resolution of P1 for all i

We propose an O(n2) algorithm to compute the optima of P1 for all pairs of activities
(Ai, Ak). The basic idea consists of rewriting the constraint of P1. In particular,
rj ≤ ri + max(0, pi - di + dk) is equivalent to rj ≤ rf(k, i), where Af(k, i) is the activity with the largest
release date such that either rf(k, i) ≤ ri or rf(k, i) ≤ ri + pi - di + dk. Let now Ωk, u denote the optimum
of Wj, k + C * rj under the constraint rj ≤ ru, then the optimum of P1 is Ωk, f(k, i). This rewriting
is of great interest since computing the values of Ωk, u and f(k, i) can be done in linear time
for a given k.

Algorithm B.5.
1 R = activities sorted in increasing order of ract
2 RPD = activities sorted in inc. order of ract + pact - dact
3 for any activity act_k

4 let Ω be an array of integers (convention: Ω[0] = -∞)
5 for iR = 1 to iR = n

6 Ω[iR] = max(Ω[iR - 1], WPE(rR[iR], dact_k))

7 end for

8 for iR = 1 to iR = n

9 fR[iR] = iR

10 end for

11 iR = 0, iRPD = 0

12 while (iR < n or iRPD < n)

13 if (iR < n) then Rval = rR[iR + 1]

14 else Rval = ∞ end if

15 if (iRPD < n) then

16 RPDval = rRPD[iRPD + 1] + pRPD[iRPD + 1] - dRPD[iRPD + 1] + dact_k
17 else

18 RPDval = ∞
19 end if

20 if (Rval ≤ RPDval) then

21 iR = iR + 1

22 else

23 iRPD = iRPD + 1

24 fRPD[iRPD] = max(fRPD[iRPD], iR)

25 end if

26 end while

27 end for

81

Let us comment the algorithm.
• Lines 1 and 2 achieve two initial sorts of activities. Notice that since RPD is sorted in

increasing order of ri + pi - di, it is also sorted in increasing order of ri + pi - di + dk for
any value of dk.

• Lines 4 to 7 compute the values of Ω. We rely on the fact that activities are taken in
increasing order of release dates and thus, the recurrence property of line 6 holds.

• Lines 11 to 26 compute the values of f(k, i). Since k is fixed, we use the notation fAi to

denote the index of the activity in R such that its release date is equal to rf(k, i). Since
Af(k, i) is the activity with the largest release date such that either rf(k, i) ≤ ri or

rf(k, i) ≤ ri + pi - di + dk, we first initialize fR[iR] = iR (lines 8 to 10) and then iterate
over both lists R and RPD at the same time. Rval and RPDval correspond
respectively to the release date of the current activity in R and to the “ri + pi - di + dk” of
the current activity in RPD. If it comes that Rval > RPDval, then the value of
fRPD[iRPD] can be updated (line 24) since there the release date of the iRth activity in R
has the largest release date lower than or equal to ri + pi - di + dk.

Notice that this algorithm runs in O(n2) since it consists in two initial sorts and in one
outer loop over the n activities and one inner loop (2 * n iterations).

B.3.2.2.2. Resolution of P2 for all i

For each different value λ of ci, the problem P2 can be solved with a similar algorithm. C
is replaced by C - λ which is taken as a constant, and the optima for all pairs of activities
(Ai, Ak) with ci = λ are computed (with a simple transformation needed to accommodate
the direction of the inequality rj ≥ ri + max(0, pi - di + dk)). We then have an O(n2

 * |{ci}|)
algorithm to solve P2. Notice that in the m-Machine case, this reduces to a simple O(n2).
We now show that this worst case complexity can be brought down to O(n2 * log(|{ci}|)).
To simplify notations, we suppose that (1) activities are sorted in increasing order of
release dates and (2) all release dates are distinct. The basic idea of the algorithm is to fix
the value of k and then to solve the problem P2 for all values of i at the same time.
First, we introduce g(k, i), the first index j such that rj ≥ ri + max(0, pi- di + dk). For the
values of i for which g(k, i) is not defined, the problem P2 has no solution. As for f(k, i)
(cf. Section B.3.2.2.1), the values of g(k, i) can be computed in linear time. For each
activity Au a list Su of activities Ai such g(k, i) = u can be built in linear time.
We introduce some more notations:
• For l ≠ m, let slope(Al, Am) = (Wl, k - Wm, k) / (rm - rl).
• Let h(x) = min({C - cu, C - cu ≥ x} ∪ {+∞}).

82

The algorithm builds and maintains a list Q of activities initialized to Q = (An). As we will
see later on, Q contains, throughout the algorithm, the activity Aj which leads to the
optimum of P2 for some values of i.

The structure of the algorithm is the following one. We iterate from l = n down to l = 1
(i.e., activities are taken in decreasing order of release dates). For each activity Al, we
make the following computations:
1. Compute the activity Au in Q such that slope(Al, Au) is minimum, i.e.,

slope(Al, Au) = min{slope(Al, Ax), Ax ∈ Q}, with ties broken by taking u maximal (see
Figure B-12).

2. Add Al to the beginning of Q, i.e., set Q = (Al, Q(Au)). Where Q(Au) denotes the tail of
the list Q after Au (Au included).

3. If Au has a successor Au+ in Q and if h(slope(Al, Au)) = h(slope(Au, Au+)), remove Au
from Q.

4. For each activity Ai in the list Sl, compute the maximum of Wj,k + (C – ci) * rj over all
activities Aj in Q.

Procedures 1 and 4 will be described later on.

Figure B-12. Selection of Au in Q. Notice that the values of slope(Ax, Ax+) and of
h(slope(Ax, Ax+)) are strictly increasing when Ax goes through Q.

Proposition B-18.
The values computed in step 4 of the algorithm are optimal values of fi.

Proof.
We rely on the fact that Q is dominant i.e., if at a step l of the algorithm, an activity Aq has
been removed from Q, and if Aq is an optimal solution of (P2) for a given i (such that
g(k, i) ≤ q), then there exists an optimal solution of (P2) in Q for the same i. Aq can be
"removed" from Q for two reasons. Either in step (2) or in step (3). We prove that in both
cases, the dominance property holds when exiting respectively step 2 and step 3. To
simplify notations, we introduce fi(Aj) = Wj,k + (C – ci) * rj
• If Aq is removed in step 2. There exists Am ∈ Q such that

(a) slope(Al, Aq) ≥ slope(Al, Am) and (b) rq ≤ rm. Let us compute fi(Am) - fi(Aq).

Minimal slope

rl ru- ru ru+
rx

Wx, k

Activities in Q

83

 fi(Am) - fi(Aq) = fi(Al) - fi(Aq) - (fi(Al) - fi(Am))
= (rq - rl) ∗ slope(Al, Aq) - (rm - rl) ∗ slope(Al, Am) + (C - ci) ∗ (rm - rq)
≥ (rq - rl) ∗ slope(Al, Am) - (rm - rl) ∗ slope(Al, Am) + (C - ci) ∗ (rm - rq)
≥ (rm - rq) ∗ (C - ci - slope(Al, Am)) ≥ (rm - rq) ∗ (C - ci - slope(Al, Aq))

If slope(Al, Aq) > C - ci then it would be easy to prove that fi(Aq) < fi(Al); which is
impossible since Aq is optimal. Thus, we can suppose that slope(Al, Aq) ≤ C - ci. This
leads to fi(Am) - fi(Aq) ≥ 0. Consequently, Am is also optimal, which concludes the
proof.

• If Aq is removed in step 3. In such a case, when entering step 3, Aq had one predecessor
and one successor in Q. Let Al and Aq+ be respectively its predecessor and its successor
in Q. Aq is optimal for (P2).
Thus, fi(Aq) ≥ fi(Al) consequently, Wq, k + (C - ci) ∗ rq ≥ Wl, k + (C - ci) ∗ rl. This leads to
slope(Al, Aq) ≤ C - ci. But we know that h(slope(Al, Aq)) = h(slope(Aq, Aq+)), thus
slope(Aq, Aq+) cannot be strictly greater than C - ci. As a conclusion,
slope(Aq, Aq+) ≤ C - ci. This directly implies fi(Aq+) ≥ fi(Aq). �

An interesting property of this algorithm is that the length of Q is always lower than or
equal to |{ci}| + 1, where |{ci}| is the number of distinct values of ci in the instance
(cf. step 3). Let us describe steps 1 and 4 of the algorithm. In both cases, a simple loop
over activities in Q could solve the optimization problems of steps 1 and 4. This would
lead to an overall complexity (for a given k) of O(n ∗ |{ci}|), to compute for all i, an
optimal solution of (P2). However, this complexity can be sharpened. Notice that the
values of slope(Ax, Ax+) and of h(slope(Ax, Ax+)) are strictly increasing when Ax goes
through Q, and that Q can be implemented as a stack embedded in an array.
• Au as defined in step 1 is the activity of Q such that slope(Al, Au) is lower than or equal

to slope(Al, Au-) and strictly lower than slope(Al, Au+) if Au- (the predecessor of Au in Q)
and/or Au+ exist. Thus, a dichotomic search for Au can be performed on Q.

• Step 4 is slightly more complex. Notice that fi increases over a first part of the list Q
and decreases in the remaining part (the value of slope(Al, Al+) becomes strictly greater
than C - ci). As a consequence, a dichotomic search for the activity Aj that leads to the
optimum can be performed on Q again.

This leads to a complexity (for a given k) of O(n ∗ log(|{ci}|)), to compute for all i, an
optimal solution of (P2). The overall complexity of the constraint propagation algorithm is
then O(n2 ∗ log(|{ci}|)). Obviously, this complexity becomes quadratic when the algorithm
is applied to an instance of the m-Machine Problem.

84

B.3.2.3. “Left-Shift / Right-Shift” Time-Bound Adjustments for the
CuSP

As in Section B.3.2.2, the values of WSh can be used to adjust time-bounds. Given an
activity Ai and a time interval [t1 t2] with t2 < di, we examine whether Ai can end before t2.

Proposition B-19.
If ∃ t1 | t1 < t2 and WSh(t1, t2) - WSh(Ai, t1, t2) + ci ∗ min(t2 - t1, pi

+(t1)) > C ∗ (t2 - t1) then a
valid lower bound of the end time of Ai is

i

iiShSh

c
ttCtpttcttAWttW

t i)(*))(,min(*),,(),(
 1211221

2
21

−−−+−
+

+

.

Proof.
Similar to proof of Proposition B-17. �

There is an obvious O(n3) algorithm to compute all the adjustments which can be obtained
on the intervals [t1, t2] which correspond to potential local minima of the slack function.
There are O(n2) intervals of interest and n activities which can be adjusted. Given an
interval and an activity, the adjustment procedure runs in O(1). The overall complexity of
the algorithm is then O(n3).
In spite of our efforts, we were unable to exhibit a quadratic algorithm to compute all the
adjustments on the O(n2) intervals under consideration.

B.3.2.4. Synthesis of Theoretical Results

The most satisfactory result is obtained for the Fully Elastic CuSP. Indeed, time-bound
adjustments are perfectly characterized (Proposition B-16).
It is easy to see that the deductions made by the fully elastic techniques (both necessary
condition and time-bound adjustment) are subsumed by partially elastic techniques which
are in turn subsumed by left-shift / right-shift techniques. However, the weaker the
relaxation, is the cheaper the complexity is.

 Fully Elastic Partially Elastic Left-Sh. / Right-Sh.
Characterization Perfect - -
Complexity O(n2) O(n2 * log|{ci}|) O(n3)
Method One-Mac. reduction Slack computation Slack computation

Figure B-13. A brief comparison of the three adjustment techniques

Three necessary conditions for the existence of a feasible schedule for a given instance of
the Cumulative Scheduling Problem, and three deductive algorithms to adjust the

85

time-bounds of activities have been presented. Two of the three proposed techniques
correspond to well-defined relaxations of the Cumulative Scheduling Problem: the fully
elastic relaxation and the partially elastic relaxation. These techniques can be used not
only for standard scheduling problems, but also for preemptive scheduling problems. In
addition to that, the fully elastic relaxation also applies when an activity requires an
amount of resource capacity that is not fixed (e.g., because the same activity can be done
either by 2 people in 3 days or by 3 people in 2 days) or even allowed to vary over time
(e.g., 2 people on day 1 and 4 people on day 2). The third technique (left-shift / right-shift),
which is the most powerful but also the most expensive, only applies to “non-elastic
non-preemptive problems.” Notice that the satisfiability tests are such that they provide
the same answers when an activity Ai, which requires ci units of the resource, is replaced
by ci activities Ai

j, each of which requires one unit of the resource. This is not true for the
time-bound adjustments.
Several questions are still open at this point.
• First, for the left-shift / right-shift technique, we have shown that the energetic tests can

be limited to O(n2) time intervals. We have also provided a precise characterization of
these intervals. However, it could be that this characterization can be sharpened in
order to eliminate some intervals and reduce the practical complexity of the
corresponding algorithm.

• Second, it seems reasonable to think that our time-bound adjustments could be
sharpened. Even though the energetic tests can be limited (without any loss) to a given
set of intervals, it could be that the corresponding adjustment rules cannot. A related
open question is whether the time-bound adjustment schemes proposed in the previous
sections subsume the rules already presented in [Caseau and Laburthe, 1996a], [Lopez
et al., 1992], [Nuijten, 1994], [Nuijten and Aarts, 1996]. A partial but positive answer
to this question is provided in [Le Pape and Baptiste, 1998c].

86

B.4. Over-loaded Resources8

As shown in the previous sections, various classes of strict resource constraints have been
developed in the literature to enable the resolution of computationally demanding
problems. These global constraints have enabled the development of many industrial
applications based on constraint programming. Overloaded resources, i.e., resources that
can sub-contract a given amount of activities, have been less studied. The problem
induced by these resources can be seen as an over-constrained problem (the strict resource
constraint cannot be satisfied and one tries to satisfy it as “much” as possible). A lot of
academic work has been performed on over-constrained problems, and many extensions
of the constraint satisfaction paradigm have been proposed (see, e.g., [Freuder and
Wallace, 1992], [Bistarelli et al., 1995], [Schiex et al., 1995]). It appears that such
extensions could be highly useful in practice. Indeed, industrial problems tend to include
many “preference” constraints, that cannot be all satisfied at the same time.
In this section, we develop a resource constraint propagation algorithm that can be used
for overloaded resources. If we consider this resource constraint alone (i.e., without taking
care of the other components of the scheduling problem), it appears that we study the
decision variant of the (1 | rj | ΣUj) problem. Following the classical terminology for this
problem, an activity is late if it is scheduled after its due-date. It is on-time otherwise. For
our resource constraint, “late” corresponds to “sub-contracted” and “on-time” corresponds
to “performed on the resource”. We refused to use the terminology late / on-time when
defining, in the introductory chapter, the resource constraint because we think it is much
more restrictive than the other one. In this technical section, we come back to the classical
terminology.
Recall that the number of sub-contracted (late) activities is represented by a constrained
variable reject whose domain is [0, n]. Each activity Ai is described by a binary variable
in(Ai) that states whether the activity is performed on the resource (on-time) in(Ai) = 1 or
sub-contracted (late) in(Ai) = 0, and by an integer variable start(Ai) (the start time), whose
domain is [ri, di - pi]. The first constraint to satisfy is Σ(1 - in(Ai)) = reject. Simple arc-
consistency techniques can be used to propagate this constraint. The “classical” resource
constraint is modified to work not only on the domains of the start time variables start(Ai),
but also on the activity status variables in(Ai). It states that activities which must be on-
time cannot overlap in time and that there are reject late activities:

8 Most of the results presented in this section come from [Baptiste, 1998a], [Baptiste et al.,
1998c].

87

• ∀ t, |{Ai such that in(Ai) = 1 and start(Ai) ≤ t < start(Ai) + pi}| ≤ 1,
• Σ(1 - in(Ai)) = reject.
To allow further pruning, the maximal value of reject and dominance relations between
the activity status variables (of the form in(Ai) � in(Aj)) can also be optionally taken into
account in this constraint (such dominance properties apply for the (1 | rj | ΣUj), cf., Section
C.4.1.3). Constraint propagation reduces the domains of both the start(Ai) and in(Ai)
variables. O denotes the set of activities that have to be on-time (in(Ai) has been bound to
1) and L denotes the set of activities that have to be late (in(Ai) = 0).
The propagation of the modified resource constraint consists of four interrelated parts.
1. In the first part, classical resource constraint propagation techniques are used on the

on-time activities: disjunctive constraint propagation and edge-finding are applied on
O (cf., Section B.1.2. and Section B.1.3).

2. In the second part, for each activity Ai such that in(Ai) is unbound, we try to add to the
set O of activities that must be on-time (1) the activity Ai and (2), according to our
dominance property, all the activities Aj such that in(Ai) � in(Aj). The resource
constraint is propagated as described in part 1. If an inconsistency is triggered, then
in(Ai) can be set to 0. If the propagation of the disjunctive resource constraint does not
trigger a contradiction then the release date r’i and the due date d’i obtained after the
propagation can be kept and imposed as the new release (ri = r’i) and as the new due
date (di = d’i) of the activity9. Notice that one pass of such a propagation scheme runs
in O(n3) since for each activity the edge-finding algorithm, itself running in O(n2), is
called.

3. The third part determines a lower bound for reject (Section B.4.1). Two techniques are
proposed. The first one relies on the preemptive relaxation of the (1 | rj | ΣUj) problem.
An O(n4) dynamic programming algorithm is proposed (Section B.4.1.1.). It improves
the O(n5) algorithm described in [Lawler, 1990]. The second lower bound is itself a
relaxation of the preemptive relaxation (Section B.4.1.2.). It can be computed in O(n2)
and is very useful in the remaining parts of the constraint propagation.

4. The fourth part focuses on the in(Ai) variables (Section B.4.2).

9 A drawback of this mechanism is that it may strengthen the time-bounds of activities that
won’t execute on the machine i.e., activities that will be sub-contracted. To avoid this
drawback and to keep the generality of the propagation mechanism, one should introduce
fictive release dates and deadlines associated to the given activity on the given machine.
These release dates and deadlines would then be adjusted as described above and would
be propagated to the “true” release dates and to the deadlines of activities as soon it is
would be known that a given activity is on-time.

88

Of course, when the domain of a variable is modified by one of the four parts above, the
overall propagation process restarts.

B.4.1. Lower Bound Computation

Any lower bound of the (1 | rj | ΣUj) problem is a valid lower bound of the constrained
variable reject. Some special cases of the (1 | rj | ΣUj) problem are solvable in polynomial
time. Moore's well-known algorithm [Moore, 1968] solves in O(n log(n)) steps the special
case where release dates are equal. Moreover, when release and due dates of activities are
ordered similarly (ri < rj � di ≤ dj), the problem is solvable in a quadratic amount of steps
([Kise et al., 1978]). This result has been extended by [Dauzère-Peres and Sevaux, 1998a]
to the case where [ri < rj] � [di ≤ dj or rj + pj + pi > di]. A simple way to obtain a lower
bound of the (1 | rj | ΣUj) problem is to relax some release dates (respectively due dates) so
that the relaxed problem fits in one of the above special cases. Another special case, the
(1 | rj, pj = p| Σ Uj) problem is solvable in O(n3 log(n)) [Carlier, 1984]10.
Lower bounding techniques have also been developed for the general problem. [Dauzère-
Pérès, 1995] and [Dauzère-Peres and Sevaux, 1998a] propose several linear programming
formulations of the (1 | rj | ΣUj) problem. The resolution of the relaxed linear programs
allows to obtain lower bounds of the number of late activities. [Péridy et al., 1998]
propose to use a MIP formulation of the preemptive problem. Surrogate duality is used to
compute a lower bound of this MIP. [Lawler, 1990] has proposed a strongly polynomial
algorithm for the preemptive problem (1 | pmtn, rj | Σ Uj). Time and space bounds of this
algorithm are respectively O(n3k2) and O(n k2), where k is the number of distinct release
dates. So, O(n5) and O(n3) if all release dates are distinct. Notice that Lawler's algorithm
also applies for minimizing the weighted number of late activities (1 | pmtn, rj | Σ wj Uj). It
then becomes pseudo-polynomial in the sum W of the weights of the activities; the bounds
being respectively O(n k2W2) and O(k2W).
In this section, we first show that the preemptive lower bound can be reached in O(n4)
(Section B.4.1.1). Despite this improvement, such a complexity remains high and we
propose in Section B.4.1.2 to use a weaker lower bound that can be obtained
in O(n2 log(n)).

10 Notice that an O(n10) algorithm is provided in Appendix 2 for solving the special case of
the weighted preemptive problem where processing times are equal. The non-preemptive
problem can be solved in O(n7) (Appendix 3).

89

B.4.1.1. The Preemptive Lower Bound

B.4.1.1.1. Reformulation of the Problem

As noticed in [Lawler, 1990], the preemptive problem reduces to finding a maximum
subset of activities that is feasible, i.e., which can be preemptively scheduled on a single
machine. It is well known that testing the feasibility of a subset O of activities can be
achieved by computing JPSO, the Jackson Preemptive Schedule of O. We recall some
fundamental properties of Jackson Preemptive Schedule (for a proof, see for instance
[Carlier, 1984]).
• If an activity is scheduled on JPSO after its due date, O is not feasible.
• The makespan CO (i.e., the time at which all activities are finished) of JPSO is minimal

among all preemptive schedules.
From now on, we assume that activities are sorted in increasing order of their due dates
(d1 ≤ d2 ≤ ... ≤ dn). For any integer a and any activity Ak, let Sk(a) be the set of activities Ai
such that a ≤ ri and i ≤ k. Given an interval [a, b] and a set of activities O, slack(O, a, b)
denotes the time during which JPSO is idle over [a, b]. By convention, C∅ = -∞.
Let a and b be any values such that a ≤ b. We introduce three definitions. As we will see
later on, we will be mainly interested in the values of a and b that are release dates.

Definition.
Let Ck(a, m) be the minimal time at which m activities in Sk(a) can be completed.

Ck(a, m) = min{{∞} ∪ {CO | O ⊆ Sk(a), O feasible and |O| = m}}

Definition.

Let πk(a, b) be the maximal number of activities in Sk-1(a) that can be scheduled before b.
πk(a, b) = max{|O| | O ⊆ Sk-1(a), O feasible and CO ≤ b}

Definition.

For any b ≥ rk, let µk(a, b) be the largest possible slack over the interval [rk, b] among sets
that realize πk(a, b).

µk(a, b) = max{slack(O, rk, b) | O ⊆ Sk-1(a), O feasible, |O| = πk(a, b), CO ≤ b}

B.4.1.1.2. Some Fundamental Properties

We prove three propositions that exhibit a strong link between the values of C, π and µ.
We first show that Ck can be computed in function of Ck-1, π k and µ k. To write a compact
formula, we introduce fk(x) which is equal to x if x ≤ dk and to +∞ otherwise.

90

Proposition B-20.

If Ak ∉ Sk(a) (i.e., rk < a) then Ck(a, m) = Ck-1(a, m). If Ak ∈ Sk(a) then
 Ck(a, m)= fk(min(Ck-1(a, m),
 max(rk, Ck-1(a, m - 1)) + pk,

ku rr ≥

min (Ck-1(ru, m - 1 - πk(a, ru)) + max(0, pk - µk(a, ru)))))

Proof.
The first part of the proposition is obvious. Consider now that Ak ∈ Sk(a). Let C' be the
value corresponding to the right term in the equation above.
We first prove that C' ≤ Ck(a, m). We can suppose that Ck(a, m) has a finite value (if not,
the result is obvious). Several cases can occur:
• Either there is a set O that realizes Ck(a, m) such that Ak ∉ O. Then Ck(a, m) is equal to

Ck-1(a, m). Consequently, C' ≤ Ck(a, m).
• Or Ak belongs to all the sets that realize Ck(a, m) but there is one, say O, such that Ak is

fully executed on JPSO after all other activities. Then, we have
Ck(a, m) = max(CO - {Ak}, rk) + pk. Moreover, CO - {Ak} ≥ Ck-1(a, m - 1). Thus,
Ck(a, m) ≥ max(rk, Ck-1(a, m - 1)) + pk ≥ C'.

• Or Ak belongs to all the sets that realize Ck(a, m) and Ak is never fully executed after all
the other activities. Let O be a set that realizes Ck(a, m) and let t be the maximal time
point such that (a) Ak executes in [t - 1, t] on JPSO and (b) another activity executes
after time t on JPSO. Given our hypothesis, such a time point exists. Moreover, because
of the particular structure of Jackson Preemptive Schedules, the first time point at
which an activity executes after t is the release date ru of an activity Au (with ru ≥ rk).

Consider now an activity Ai (i ≠ k) which starts on JPSO before ru. Since di < dk, Ai ends
before ru (otherwise Ai would be scheduled at time t - 1 on JPSO instead of Ak). Let then
O1 be the set of activities in O - {Ak} that end before ru on JPSO. Let O2 be the set of
activities in O - {Ak} that start after or at ru.
If O1 is not maximal (i.e., |O1| < πk(a, ru)), then consider the set O'1 that realizes
πk(a, ru). It is obvious that O'1 ∪ O2 is feasible and that it contains as many activities as
O. Moreover, CO'1 ∪ O2 is lower than or equal to CO; which contradicts our hypothesis
that Ak is in all the sets that realize Ck(a, m). We know that O1 contains πk(a, ru)
activities, moreover slack(O1, rk, ru) time units are available before ru to schedule Ak.
Thus,

CO = max(0, pk - slack(O1, rk, ru)) + CO2
 ≥ Ck-1(ru, m - 1 - πk(a, ru)) + max(0, pk - µk(a, ru)) ≥ C'

91

We now prove that C' ≥ Ck(a, m). Notice that if C' = ∞, the result is obvious. We can then
suppose that C' is the minimum of one of the three terms.
• If C' = Ck-1(a, m). Since Ck(a, m) ≤ Ck-1(a, m), C' ≥ Ck(a, m).
• If C' = max(rk, Ck-1(a, m-1)) + pk. Let O be the set that realizes Ck-1(a, m-1). Ak is not

late if it is “added” at the end of JPSO (because C' is finite). Thus, the set O ∪ {Ak}
contains m activities and is feasible. Moreover, it is a subset of Sk(a). As a
consequence, C' ≥ CO ∪ {Ak} ≥ Ck(a, m).

• If ∃ ru ≥ rk | C' = Ck-1(ru, m - 1 - πk(a, ru)) + max(0, pk - µk(a, ru)). Let O1 be the set that
realizes µk(a, ru) and O2 be the set that realizes Ck-1(ru, m - 1 - πk(a, ru)). First, notice
that O1 ∪ O2 ∪ {Ak} obviously belongs to Sk(a). Second, notice that O1 ∪ O2 ∪ {Ak}
is feasible. Indeed, on JPSO1 ∪ O2, there are µk(a, ru) “holes” between rk and ru and thus,
the quantity Ck-1(ru, m - 1 - πk(a, ru)) + max(0, pk - µk(a, ru)) is the makespan of JPSO1 ∪ O2 on
which Ak has been scheduled as soon as possible in the “holes”. This makespan is
lower than dk (otherwise C' = ∞). Third, notice that there are m activities in
O1 ∪ O2 ∪ {Ak}. Indeed, according to the definition of µ, before ru, πk(a, ru) activities
are scheduled. After ru, m - 1 - πk(a, ru) activities are scheduled; which means that
m - 1 activities in O1 ∪ O2 are scheduled.

We have proven that C' ≥ CO1 ∪ O2 ∪ {Ak}; thus C' ≥ Ck(a, m). �

Proposition B-21.

For any a ≤ b, πk(a, b) = max{m | Ck-1(a, m) ≤ b}.

Proof.

Let π' = max{m | Ck-1(a, m) ≤ b}.
Let O be the set that realizes Ck-1(a, π'). O is a subset of Sk-1(a), O is feasible and
CO = Ck-1(a, π') ≤ b; consequently, π' ≤ πk(a, b).
Let O be the set that realizes πk(a, b). According to the definition of C, Ck(a, |O|) is lower
than or equal to CO. Consequently Ck(a, |O|) ≤ b and thus, π' ≥ πk(a, b). �

Proposition B-22.

∀ a, b and ∀ Ak such that a ≤≤≤≤ rk ≤ ≤ ≤ ≤ b,
 µk(a, b) = max(b - max(Ck-1(a, πk(a, b)), rk),

() () ()
()�

�

�
�

�

>
+=

<≤

0,
,,,

max

br
brraba

brr

vk

vkvkk

vk

π
πππ

(µk(a, rv) + b - Ck-1(rv, πk(rv, b))))

92

Proof.
Let µ' be the value corresponding to the right term in the previous equation.

We first prove that µ' ≥ µk(a, b). Let O be the set that realizes µk(a, b). The proof relies on
the fact that if there is a time point t ∈ [rk, b] such that JPSO is idle in [t - 1, t], the
computation of the maximal slack can be decomposed into the computation of the
maximal slack over [rk, t] and over [t, b]. In the following, we distinguish two cases.
• If CO ≤ rk, then slack(O, rk, b) = b - rk. Moreover, Ck-1(a, πk(a, b)) ≤ CO ≤ rk. Thus,

b - max(Ck-1(a, πk(a, b)), rk) is equal to b - rk. Consequently, µ' ≥ µk(a, b).
• If CO > rk, let t be the largest time point such that JPSO is idle immediately before t and

never idle in the interval [t, CO]. According to the structure of a Jackson Preemptive
Schedule, t is a release date; say rv. Two cases are distinguished.

First, if rv ≤ rk then slack(O, rk, b) = b - CO ≤ b - Ck-1(a, πk(a, b)); thus µ' ≥ µk(a, b).
Second, suppose that rv > rk. According to the definition of rv, πk(rv, b) > 0. We claim
that πk(a, b) = πk(a, rv) + πk(rv, b). Indeed, consider O1 the subset of O that consists of
the activities ending before or at rv on JPSO and O2 the subset of O that consists of the
activities ending after rv on JPSO. On the one hand, |O1| + |O2| = |O| = πk(a, b), on the
other hand, |O1| ≤ πk(a, rv) and |O2| ≤ πk(rv, b). Suppose that the first inequality is strict,
let then O'1 be the set that realizes πk(a, rv). It is easy to see that the set O'1 ∪ O2 is
included in Sk-1(a), that it is feasible and that its JPS ends before b. Moreover, O'1 ∪ O2
is larger than O, which contradicts the fact that O realizes πk(a, b); consequently,
|O1| = πk(a, rv). Similarly, we can prove that |O2| = πk(rv, b). Let us compute the slack of
O over [rk, b]. slack(O, rk, b) = slack(O1, rk, rv) + slack(O2, rv, b). As a consequence,
slack(O, rk, b) ≤ µk(a, rv) + b - Ck-1(rv, πk(rv, b)) ≤ µ'.

We now prove that µ' ≤ µk(a, b). Let us distinguish the two following cases:
• If µ' = b - max(rk, Ck-1(a, πk(a, b))), let then O be the set that realizes Ck-1(a, πk(a, b)). JPSO

is idle after Ck-1(a, πk(a, b)) and its makespan is lower than or equal to b, thus
slack(O, rk, b) ≥ b - max(Ck-1(a, πk(a, b)), rk). Moreover, O ⊆ Sk-1(a), O is feasible,
|O| = πk(a, b) and CO ≤ b; thus µk(a, b) ≥ slack(O, rk, b). Consequently, µ' ≤ µk(a, b).

• If there is a release date rv such that (1) rk ≤ rv < b, (2) πk(a, b) = πk(a, rv) + πk(rv, b),
(3) πk(rv, b) > 0 and (4) µ' = µk(a, rv) + b - Ck-1(rv, πk(rv, b)), let then O1 be the set that
realizes µk(a, rv) and let O2 be the set that realizes Ck-1(rv, πk(rv, b)). Notice that
slack(O1 ∪ O2, rk, b) ≥ µ' since the quantity µk(a, rv) + b - Ck-1(rv, πk(rv, b)) is the slack of O1
before rv plus a lower bound of the slack of O2 in [rv, b] (πk(rv, b) > 0 ensures that
Ck-1(rv, πk(rv, b)) is finite). Moreover, O1 and O2 are disjoint because ∀ Ai ∈ O1, ri < rv
and ∀ Ai ∈ O2, ri ≥ rv. Thus, |O1 ∪ O2| = πk(a, rv) + πk(rv, b) = πk(a, b). It is easy to

93

verify that O1 ∪ O2 ⊆ Sk-1(a), that O1 ∪ O2 is feasible and that CO1 ∪ O2 ≤ b; thus
µk(a, b) ≥ slack(O1 ∪ O2, rk, b). Consequently, µ' ≤ µk(a, b). �

Propositions B-20, B-21 and B-22 are the basis of the dynamic programming algorithm
that we propose in the following section.

B.4.1.1.3. Overall Algorithm

Our aim is to determine the largest value of m such that Cn(mini ri, m) is finite. The
variables of the dynamic programming algorithm correspond to Ck(a, m), πk(a, b) and
µk(a, b). They are stored in multi-dimensional arrays. Actually, it is easy to understand
that given Propositions 1 and 3, the relevant values of a and b are those corresponding to
release dates. Thus, the values of Ck(a, m), πk(a, b) and µk(a, b) are stored in indexed
arrays (e.g., Ck(rj, m) is stored in a 3-dimensional array at the “position” (k, A, m)).
The first step of the algorithm is the computation of C1(rj, m) for all release date rj and all
the values of m in [1, n].
• If m = 0, C1(rj, 0) = -∞
• If m = 1 and r1 < rj, C1(rj, 1) = ∞
• If m = 1 and r1 ≥ rj, C1(rj, 1) = r1 + p1
• If m > 1, C1(rj, m) = ∞
The second step is a loop on k from 2 to n.
• For each release date rj and each release date ru, compute πk(rj, ru). This computation is

done in O(n) thanks to Proposition B-21.
• For each release date rj and each release date ru (taken in increasing order), compute

the values of µk(rj, ru). This is done in O(n) thanks to Proposition B-22. Indeed, for a
given value of ru, we use the pre-computed values of µk(rj, rv) (with rv < ru). Moreover,
the tests rk ≤ rv < ru, πk(rj, ru) = πk(rj, rv) + πk(rv, ru) and πk(rv, ru) > 0 are computed in
constant time.

• For each release date rj and each value of m, compute Ck(rj, m). This is done in O(n)
thanks to Proposition B-20.

The overall algorithm then runs in O(n4). A rough analysis in terms of memory
consumption leads to an O(n3) bound. Indeed, three cubic arrays are needed to store the
values of Ck(rj, m), πk(rj, ru) and µk(rj, ru). However, notice that at each step of the outer
loop on k, one only needs the values of C computed at the previous step (k-1). Thus, the
algorithm can be implemented with 4 arrays of n*n size (one for π, one for µ, one for the
previous values of C and one for the current values of C); which leads to a space
complexity of O(n2).

94

This algorithm does not exhibit a set O that realizes the optimum of the problem. A
backward computation can be done to determine such a set. The space complexity then
increases to O(n3) since all values taken by C must be stored. Since we are mainly
interested in the computation of the optimum, which serves as a lower bound of the
non-preemptive problem, we do not provide the description of how O can be computed.

B.4.1.1.4. Minimizing the Weighted Number of Late Activities

At this point, an interesting question is whether our algorithm can be extended to solve the
weighted version of the problem (i.e., a version of the problem where each activity Ai has
a weight wi ≥ 0 and where the goal is to minimize the weighted number of late activities).
The definitions of the variables C, π and µ can be easily extended:
• Ck(a, w) is the minimal time at which a set of activities in Sk(a), whose weight is

greater than or equal to w, can be completed (if no such set exists, Ck(a, w) = ∞).
• πk(a, b) is the maximal weighted number of late activities in Sk-1(a) that can be

scheduled before b.
• µk(a, b) is the largest possible slack over [rk, b] among sets that realize πk(a, b).
Given these definitions, one could think that Proposition B-20 can be extended as follows:

If Ak ∉ Sk(a) (i.e., rk < a) then Ck(a, w) = Ck-1(a, w). If Ak ∈ Sk(a) then

 Ck(a, w)= fk(min(Ck-1(a, w),
 max(rk, Ck-1(a, w - wk)) + pk,

ku rr ≥

min (Ck-1(ru, w - wk - πk(a, ru)) + max(0, pk - µk(a, ru)))))

Unfortunately, this extension does not hold. Intuitively, this comes from the fact that, in
Proposition B-20, the expression

ku rr ≥
min (Ck-1(ru, m - 1 - πk(a, ru)) + max(0, pk - µk(a, ru)))

means that it is worth scheduling between a and ru a maximum number of activities in Sk-

1(a). On the contrary, if activities are weighted, it can be of interest to schedule a smaller
amount of activities (in term of weights) between a and ru to increase the slack and thus to
leave more space to schedule Ak.

95

The following counter-example illustrates this phenomenon. Consider five weighted
activities A1 (r1 = 0, p1 = 3, d1 = 6, w1 = 2), A2 (r2 = 0, p2 = 3, d2 = 6, w2 = 2), A3 (r3 = 0, p3
= 2, d3 = 6, w3 = 1), A4 (r4 = 6, p4 = 1, d4 = 7, w4 = 2), and A5 (r5 = 0, p5 = 3, d5 = 9,
w5 = 10). It is easy to prove by hand that C5(0, 15) = 9. This is not the result obtained
when applying the weighted version of Proposition B-20:

C5(0, 15) = f5(min(C4(0, 15),
 max(0, C4(0, 15 - 10)) + 3,
 C4(6, 15 - 10 - π4(0, 6)) + max(0, 3 - µ4(0, 6)))
 = f5(min(∞, max(0, 7) + 3, C4(6, 1) + max(0, 3)))

 = f5(min(∞, 10, 7 + 3)) = ∞

B.4.1.2. The Relaxed Preemptive Lower Bound

The One-Machine Problem [Carlier, 1982] is a special case of the (1 | rj | ΣUj) in which all
activities must be on-time. Its preemptive relaxation is polynomial. It is well known that
there exists a feasible preemptive schedule if and only if over any interval [rj, dk], the sum
of the processing times of the activities in S(rj, dk) = {Ai | rj ≤ ri and di ≤ dk} is lower than
or equal to dk – rj. As a consequence, the optimum of the following MIP is the minimum
number of activities that must be late on any preemptive schedule of the machine (hence,
this optimum is a lower bound of the variable reject). The binary variable xi is equal to 1
when an activity is on-time, to 0 otherwise.

)(

,1}0{,},,1{
0, and 1,

,,

)1(min

),(

},,1{

P

xni
xLJxOJ

rdxprdr

x

i

iiii

drSJ
jkiijkj

ni
i

kji

∈∈∀
=∈∀=∈∀

−≤>∀∀

−

�

�

∈

∈

Λ

Λ

The first set of constraints of P represents the resource constraints. The notation (rj, dk)
refers to the resource constraint over the interval [rj, dk]. In the following, we focus on the
continuous relaxation CP of P. We claim that CP can be solved in O(n2log(n)) steps. To
achieve this result, we first provide a characterization of one vector that realizes the
optimum (Proposition B-23). From now on, we suppose that activities are sorted in
increasing order of processing times.

Proposition B-23.
The largest vector (according to the lexicographical order) satisfying all the constraints of
CP realizes the optimum of CP.

96

Proof.
Let Y = (Y1, …, Yn) be the largest vector (according to the lexicographical order) satisfying
all the constraints of CP, i.e., Y1 is maximal, Y2 is maximal (given Y1), Y3 is maximal
(given Y1 and Y2), …, Yn is maximal (given Y1, …, Yn-1). Moreover, let X = (X1, …, Xn) be
the largest (according to the lexicographical order) optimal solution of CP. Suppose that
X ≠ Y; let then u be the first index such that Xu < Yu. Consider the set C of constraints that
are saturated at X.

C = {(rj, dk) | Au ∈ S(rj, dk) and �
∈),(kji drSA

ii Xp = dk – rj}

If C is empty, then none of the constraints containing the variable xu is saturated at the
point X (Xu < Yu ensures that Xu < 1 and that xu is not constrained to be equal to 0) and
thus, X is not an optimum of CP. Hence C is not empty. Let then (ρ1, δ1) ∈ C be the pair
such that ρ1 is maximum and δ1 is minimum (given ρ1). Let (ρ2, δ2) ∈ C be the pair such
that δ2 is minimum and ρ2 is maximum (given δ2).
Suppose that ρ2 < ρ1. It is then obvious that ρ2 < ρ1 ≤ ρu < δu ≤ δ2 < δ1. Let
A = S(ρ2, δ2) - S(ρ1, δ2) and let B = S(ρ1, δ1) – S(ρ1, δ2). Because both (ρ1, δ1) and
(ρ2, δ2) ∈ C, we have:

�
�
�

��
�

�

−=+

−=+

��

��

∈∈

∈∈

11
),(

22
),(

21

21

ρδ

ρδ

δρ

δρ

BA
ii

SA
ii

SA
ii

AA
ii

ii

ii

XpXp

XpXp

Since the sets A, B and S(ρ1, δ2) are disjoint and since A ∪ B ∪ S(ρ1, δ2) ⊆ S(ρ2, δ1),

21
),(

1122
),(2112

ρδρδρδ
δρδρ

−≥−−+−≥ ��
∈∈ SA

ii
SA

ii
ii

XpXp

The inequality above cannot be strict hence (ρ1, δ2) belongs to C. This, together with
ρ2 < ρ1, contradicts our hypothesis on the choice of δ1.
Now suppose that ρ1 = ρ2 = ρ and δ1 = δ2 = δ. The pair (ρ, δ) is the unique minimal
saturated constraint containing the variable xu. We claim that among activities in S(ρ, δ),
there is one activity, say Av, such that v > u and Xv > 0 and Av ∉ O (otherwise we could
prove, because Xu < Yu, that Xu can be increased; which contradicts the fact that X is
optimal). Consider now X’ the vector defined as follows. ∀ i ∉ {u, v}, X’i = Xi and
X’u = Xu + ε / pu and X’v = Xv - ε / pv. Where ε > 0 is a small value such that ε ≤ pu (1 – Xu),
ε ≤ pv Xv and such that

∀ (rj, dk), �
∈

−−≤
),(kji drSA

iijk Xprdε

97

Since activities are sorted in increasing order of processing times, ε / pu - ε / pv ≥ 0 and
thus, Σ (1 – X’i) ≤ Σ (1 – Xi). Moreover, X’ is “better” for the lexicographical order than X.
Second, because of the definition of ε, the constraints that were not saturated for X are not
violated for X’. Third, the saturated constraints (for the vector X) that contain the variable
xu all contain the variables in (ρ, δ). In particular, they contain both xu and xv. As a
consequence they are also saturated for the vector X’. We have proven that all constraints
are satisfied. This contradicts our hypothesis on X. �

Proposition B-23 induces a simple algorithm (Algorithm B-6) to compute the optimum X
of CP. Activities Ai that do not have to be late or on-time are considered one after another.
Each time, we compute the maximum resource constraint violation if the activity is fully
on-time (lines 4-11). Given this violation, the maximum value Xi that the variable xi can
take is computed (line 12). This algorithm runs in O(n4) since there are n activities Ai and
since for each of them O(n2) violations are computed, each of them in linear time.

Algorithm B-6.
1 ∀ Ai, initialize Xi to 1.0 if Xi ∈ O, to 0.0 otherwise

2 for i = 1 to n

3 if Ai ∉ O and Ai ∉ L

4 Xi = 1.0, Violation = 0

5 for all constraint (rj, dk) such that Ai ∈ S(rj, dk)

6 sum = 0.0

7 for Al ∈ S(rj, dk)

8 sum = sum + pl * Xl

9 end for

10 Violation = max(Violation, sum – dk + rj)

11 end for

12 Xi = (pi – Violation) / pi

13 end if

14 end for

We improve this algorithm thanks to Jackson’s Preemptive Schedule (JPS), the
One-Machine preemptive schedule obtained by applying the Earliest Due Date priority
dispatching rule [Carlier and Pinson, 1990]. A fundamental property of JPS is that it is
feasible (i.e., each activity ends before its due date) if and only if there exists a feasible
preemptive schedule.
The procedure “ComputeJPS” of Algorithm B-7 is called for several values of i. It
computes the JPS of the activities, assuming that the processing time of Al (l ≠ i) is pl Xl

98

and that the processing time of Ai is pi. “EndTimeJPS[k]” is the end time of Ak on JPS.
JPS can be built in O(n log(n)) [Carlier, 1982]. Algorithm B-7 then runs in O(n2 log(n)).

Algorithm B-7.
1 ∀ Ai, initialize Xi to 1.0 if Xi ∈ O, to 0.0 otherwise

2 for i = 1 to i = n

3 if Ai ∉ O and Ai ∉ L

4 ComputeJPS

5 ViolationJPS = 0

6 for all k such that Xk > 0

7 ViolationJPS=max(ViolationJPS,EndTimeJPS[k] – dk)

8 end for

9 Xi = (pi – ViolationJPS) / pi

10 end if

11 end for

Proof of the correctness of Algorithm B-7.
By induction. Suppose that at the beginning of iteration i (line 2), the first coordinates X1,
..., Xi-1 are exactly equal to those of Y, the maximal vector (according to the
lexicographical order) satisfying the constraints of CP. Consider the case Yi = 1 then,
because of the structure of CP, there exists a feasible preemptive schedule of A1, …, An
(the processing time of activity Au being pu Yu) and thus, the JPS computed line 4 is also
feasible; which means that no violation occurs. Hence, Xi = 1 (line 9). Consider now the
case Yi < 1.
We first prove that Xi ≤ Yi. Since Yi < 1, the violation computed by Algorithm B-6 at step i
is positive. Let then (rj, dk) be the constraint that realizes this violation. We then have

)(11
),,(

kj
ildrSA

lli
i

i drYpp
p

Y
kjl

−++−= �
≠∈

.

Moreover, at step i of Algorithm B-7,
EndTimeJPS[k] ≥ j

ildrSA
lli rXpp

kjl

++ �
≠∈),,(

.

Hence Xi ≤ Yi (line 9).

We now prove that Yi ≤ Xi. Let k be the index of the activity such that the maximum
violation on JPS is “EndTimeJPS[k] – dk”. Such an index exists because we have

proven that Xi ≤ Yi < 1 and thus, “ViolationJPS” is strictly positive. Let t be the
largest time point lower than or equal to the end time of this activity such that immediately
before t, JPS is either idle or executing an activity with a larger due date than dk.
According to the particular structure of JPS, t is a release date, say rj. Notice that between

99

rj and dk, JPS is never idle and the activities that are processed are exactly those whose
release date is greater than or equal to rj and whose due date is lower than or equal to dk.
As a consequence, the end time of the kth activity is

i

il
drSA

llj pXpr
kjl

++ �

≠
∈),(

.

Hence, iki

il
drSA

llj
i

i YdpXpr
p

X
kjl

≥−++−= �

≠
∈

)(11
),(

. �

The following table displays the characteristics of four activities A1, A2, A3 and A4. The
last column X is the value of the activity variable at the end of Algorithm B-7. The Gantt
charts display the JPS computed at each step of Algorithm B-7.

Activity r p d X
A1 7 2 10 2/2
A2 4 3 9 3/3
A3 1 5 6 4/5
A4 4 7 12 2/7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 A1
 A2 A1
 A3 A2 A1
 A3 A2 A1 A4

Figure B-14. The JPS computed at each step of the algorithm

B.4.2. Resource Constraint Propagation

In this section, we propose an algorithm which is able to detect that, given the domain of
reject, some activities must be on time while some others must be late. A constraint
propagation process is purely deductive, i.e., it deduces some characteristics that any
schedule satisfying all constraints must satisfy. For some problems, it happens that a
particular dominance property holds. Such a dominance property can be “integrated” into
the resource constraint propagation. However, it makes the propagation less generic, i.e.,

Violations

100

if new constraints are added, the dominance property may not hold and thus the
propagation process must be changed.
Concerning the (1 | rj | ΣUj) problem, a strong dominance property holds. It states that for
any activity Ai,
• a set O(Ai) of activities that have to be on-time if Ai is on-time
• and a set L(Ai) of activities that have to be late if Ai is late
can be computed. This dominance property is detailed in Section C.4.1.3. In the following
we present a constraint propagation algorithm that exploits this dominance. It can be
ignored to make the constraint propagation process more generic.

B.4.2.1. Late Activity Detection

From now on, we suppose that the optimum X of CP has been computed as described in
the previous section. Consider an activity Aj such that Aj ∉ O and Aj ∉ L. Our objective is
to compute efficiently a lower bound of the number of late activities if Aj and O(Aj) are
on-time. If this lower bound is greater than the maximal value in the domain of reject,
then, Aj must be late. Algorithm B-7 could be used to compute such a lower bound.
However, this would lead to a high overall complexity of O(n3 log(n)). We propose to use
a slightly weaker lower bound that can be computed in linear time, for a given activity Aj.
The overall filtering scheme then runs in O(n2).
Let CPo be the linear program CP to which the constraints ∀ Ai ∈ O(Aj), xi = 1 have been
added. Moreover, let Xo be the optimal vector of CPo obtained by Algorithm B-7 (CPo
has a solution, otherwise part 2 of the propagation described at the beginning of Section
B-4 would have detected that Ai ∈ L). Propositions B-24 and B-25 exhibit two relations
that X and Xo satisfy. These relations are used to compute a lower bound of � Xoi.

Proposition B-24.
� piXoi ≤ � piXi

Proof.
Let G(Activities, Time, E) be a bipartite graph, where Activities = {Job1, …, Jobn} is a set
of vertices corresponding to the activities, where Time = {Tt, mini ri ≤ t < maxi di} is a set of
vertices corresponding to all the “relevant” time-intervals [t, t + 1] and where an edge
(Jobi, Tt) belongs to E if and only if Ai can execute in [t, t + 1] (i.e., ri ≤ t < di). Consider the
network flow (cf. Figure B-15) built from G by adding:
• two vertices S, P and an edge (P, S),
• for each node Jobi an edge (S, Jobi) whose capacity is (1) upper bounded by either 0 if

Ai ∈ L or by pi otherwise and (2) lower bounded by either pi if Ai ∈ O or by 0
otherwise,

101

• for each node Tt an edge (Tt, P) whose capacity is upper bounded by 1.
For any feasible flow, a vector satisfying all constraints of CP can be built (the
ith coordinate of the vector is the value of the flow on (S, Jobi) divided by pi). Since
∀ i, Xi * pi is integer, a feasible flow can be derived from the JPS associated to the vector X
(when Ai executes in [t, t + 1] on JPS, set the value of the flow to 1 on the edge (Jobi, Tt)).
Suppose that � piXoi > � piXi, then the flow corresponding to X is not maximal in G, and
thus there is an augmenting path from S to P. Let then X+ be the vector corresponding to
the augmented flow. Because of the structure of G, ∀ i, X+

i ≥ Xi. On top of that there exists
l such that X+

l > Xl. This contradicts Proposition B-23. �

Figure B-15. The network flow built from G

Proposition B-25.
∀ Ai ∉ O(Aj), Xoi ≤ Xi

Proof (sketch).
Suppose the proposition does not hold. Let i be the first index such that Ai ∉ O(Aj) and Xoi
> Xi . We modify the instance of the problem by removing the activities Au with u > i that
do not belong to O nor to O(Aj). The activities that have been removed do not influence
Algorithm B-7 when computing the i first coordinates of X and of Xo (i.e., for the
modified instance, the i first coordinates of the optimum vector are exactly those of X).
Now, consider the modified instance. We still have Ai ∉ O(Aj) and Xoi > Xi. Moreover, the
activities that have a greater index than i belong to O ∪ O(Aj). Consider the modified
network (Figure B-16) built from the bipartite graph G by adding:
• three vertices S, S’, P, and two edges, (S, S’) and (P, S),

P
S

Job2

Job1

Jobn

T2

T1

T...

102

• for each node Jobu (u ≠ i) an edge (S’, Jobu) whose capacity is (1) upper bounded by
either 0 if Au ∈ L or by pu otherwise and (2) lower bounded by either pu if Au ∈ O or
by 0 otherwise,

• an edge (S, Jobi) whose capacity is upper bounded by pi and lower bounded by 0,
• for each node Tt an edge (Tt, P) whose capacity is upper bounded by 1.
For any feasible flow, a vector satisfying all constraints of CP can be built. Conversely,
for any vector satisfying all constraints of CP, a feasible flow can be built. The flow
corresponding to Xo is obviously feasible. Moreover the flow on (P, S) for vector X is
greater than or equal to the one for Xo (see Proposition B-24). Moreover, the flow on
(S, Jobi) for Xo is greater than the one for X. Hence, because of the conservation law at S,
the flow that goes over (S, S’) is not maximal for Xo. As a consequence, there is an
augmenting path from S’ to S for the flow corresponding to Xo. Let then Xo+ be the vector
corresponding to the augmented flow. Because of the structure of G, ∀ u ≠ i, Xo+

u ≥ Xou.
Hence, ∀ Au ∈ O ∪ O(Aj), Xo+

u = 1 and then, Xo+ satisfies all the constraints of CPo.
Moreover it is better than Xo because:
• If the edge (P, S) is in the augmenting path then � piXo+

i > � piXoi.
• If the edge (Jobi, S) is in the augmenting path then we claim that Xo+ is greater, for the

lexicographical order, than Xo. Indeed, there is an edge from S’ to an activity, say
Jobu, in the augmenting path. Hence, Au neither belongs to O nor to O(Aj) (otherwise,
the edge would be saturated for Xo and it could not belong to the augmenting path).
Consequently, u < i and then Xo+

u > Xou.
This contradicts the fact that Xo is optimal. �

Figure B-16. The modified network flow

S P

Jobi-1

Job1

Jobn

T2

T1

T...

S’

Jobi

Jobi+1

103

Thanks to Propositions B-24 and B-25, we can add the constraints � piXoi ≤ � piXi and
∀ Ai ∈ O(Aj), xi ≤ Xi to the linear program CPo. Since we are interested in a lower bound
of CPo, we can also relax the resource constraints. As a consequence, we seek to solve the
following program. It is solved in linear time by Algorithm B-8.

[0,1] ,},,1{

0, and 1),(
,

)1(min

∈∈∀

=∈∀=∪∈∀
≤∉∀

≤
−

� �
�

i

iiiji

iii

iiii

i

xni

xLJxJOOJ
XxoJ

Xpxp
x

Λ

Algorithm B-8.
1 ∀ Ai set Xoi to 1.0 if Ai ∈ O ∪ O(Aj), to 0.0 otherwise

2 MaxVal = Σ pi Xi - Σ pi Xoi
3 for all activity Ai ∉ O ∪ O(Aj)

4 Xoi = min(Xi, MaxVal / pi)

5 MaxVal = MaxVal - pi * Xoi

6 End for

B.4.2.2. On-Time Activity Detection

Let Aj be an activity that is neither late nor on-time. We want to compute a lower bound of
the number of late activities if all activities in L(Aj) are late. Let Xl be the optimal vector of
CPl, the linear program CP to which the constraints ∀ Ai ∈ L(Aj), xi = 0 have been added.
We claim that Σ pi Xli ≤ Σ pi Xi and that ∀ Ai ∉ L(Aj), Xli ≥ Xi (proofs are similar to the
proofs of propositions B-24 and B-25). The same mechanism as for the late activity
detection then applies: The new constraints are entered in CPl while the resource
constraints are removed. The resulting linear program can be also solved in linear time.

104

Chapter C. Problem Solving and
Experimental Results

In this chapter, we perform an experimental evaluation of the efficiency of the resource
constraint propagation algorithms proposed in Chapter B. Exact problem solving
procedures have been built to tackle the four problems outlined in the introductory
chapter, namely
• the Job-Shop Scheduling Problem (Section C.1),
• the Preemptive Job-Shop Scheduling Problem (Section C.2),
• the Resource-Constrained Project Scheduling Problem (Section C.3),
• the minimization of the number of late jobs on a single machine (Section C.4).
The branch and bound procedures that have been designed rely not only on the resource
constraints of Chapter B but also on dominance properties that allow to restrict the search
space, and on more or less complex branching schemes.
Experimental results are provided for each problem. They allow us to compare the
efficiency of different resource constraint propagation algorithms on the same problem. In
particular, we will see that for some problems, the efficiency varies a lot from a “type” of
instance to another. We also compare our approaches to the most efficient procedures of
the literature.

105

C.1. The Job-Shop Scheduling Problem

The aim of this section is to very briefly recall a widely used branching scheme for the
non-preemptive Job-Shop Scheduling Problem. We will rely on this mechanism as part of
the resolution of several other combinatorial problems such as the Resource-Constrained
Project Scheduling Problem (Section C.3) and the problem of minimizing the number of
late activities on a single machine (Section C.4). A rather comprehensive review of the
most common techniques used for solving the JSSP can be found in [Blazewicz et al.,
1996].
Several successful exact (branch and bound) approaches for the non-preemptive JSSP rely
on successive resolutions of the decision variant of this problem:
1. Compute an obvious upper bound of the makespan variable and an initial lower bound.
2. Select a value V in the domain of makespan.
3. Constrain the makespan to be lower than or equal to V and run the branching procedure.

If a solution is found, set ub(makespan) to the makespan of the solution; otherwise, i.e.,
if the search procedure fails, set lb(makespan) to V + 1.

4. Iterate steps 2 and 3 until makespan is bound.
The branching procedure (step 3) often consists of ordering successively the set of
activities ACTS(M) which require the same machine M [Carlier and Pinson, 1990],
[Carlier and Pinson, 1994], [Brucker at al., 1994], [Baptiste and Le Pape, 1995b]. At each
node, a machine M and a set Ω ⊆ ACTS(M) are selected. For each activity A in Ω, a new
branch is created where A is constrained to execute first (or last) among the activities in Ω.
The set of candidates to be first (or last) is drastically reduced by the edge finding rules
applied to the set of unordered activities. The decision is then propagated, through one of
the variant of the edge-finding bounding technique described in Section B.1. Such a
branching scheme is known as the edge-finding branching technique [Applegate and
Cook, 1991].
Its efficiency depends on the heuristic used to select the machine to schedule first, and on
the heuristic used to select the unordered activity that is to be first (or last). In our
experiments, we used the following heuristics:
• The machine to schedule first is the one whose slack is minimal. The slack is defined

as the minimal difference between supply and demand over each time interval [ri, dk]
(release date / deadline). The resource supply over [ri, dk] is dk - ri, which reflects the
fact that the resource can perform only one activity at a time. The demand over
interval [ri, dk] is the sum of the processing times of the activities that must execute
between ri and dk.

106

• The activity to schedule first is selected according to the following rule: The activity
with the smallest release date is chosen; in case of ties, the activity with the smallest
latest start time (lsti = di – pi) is chosen.

The following table C-1 provides the results reported in [Baptiste, 1995] that have been
obtained with the ILOG SCHEDULE scheduling tool (version 2.0) [Le Pape, 1995] on the ten
10x10 (10 machines, 10 jobs, 100 activities) instances of the JSSP used by Applegate and
Cook in their computational study of the JSSP [Applegate and Cook, 1991]. In this table,
column “MAK” provides for each instance the optimal makespan, i.e., the minimal total
duration of the schedule. Columns “BT” and “CPU” provide the total number of
backtracks and CPU time needed to find an optimal solution and prove its optimality.
Columns “BT(pr)” and “CPU(pr)” provide the number of backtracks and CPU time
needed for the proof of optimality. CPU times are expressed in seconds on an RS6000
workstation, rounded to the closest tenth of a second.

 MAK BT CPU BT(pr) CPU(pr)
MT10 930 69758 1076.4 7792 126.8
ABZ5 1234 17636 218.1 5145 62.6
ABZ6 943 898 15.2 291 4.7
LA19 842 21910 293.3 5618 75.8
LA20 902 74452 845.9 22567 249.2
ORB1 1059 13944 222 5382 84.7
ORB2 888 114715 1917.2 30519 500.9
ORB3 1005 190117 3193.8 25809 449
ORB4 1005 64652 1131.2 22443 395.2
ORB5 887 11629 172.8 3755 55

Table C-1. Experimental results obtained on 10 instances of the JSSP used by Applegate
and Cook in their computational study.

A large amount of research has been carried on extensions or on variants of such a
branching scheme. In particular, global operations also called “shaving” have been used
by [Carlier and Pinson, 1994] and by [Martin and Shmoys, 1996]) to reduce the search
space. The basic idea is very simple. At each node of the search tree and for each activity
Ai, the earliest date xi at which the activity can be scheduled without triggering a
contradiction is computed. This basically consists of (1) iteratively trying a start time for
the activity Ai, (2) propagating the consequence of this decision thanks to the edge-finding
bounding technique and (3) verifying that no contradiction has been detected. The earliest
date xi is of great interest since it can serve to adjust the release date of the activity. A
dichotomizing procedure can be used to determine the date xi. It decreases both the
theoretical and the practical complexities of the algorithm. Several extensions of this

107

mechanism are proposed in [Péridy, 1996]. The underlying idea is to impose a decision
(e.g., a starting time for a given activity) and to exploit the consequences of this decision
in more or less complex algorithms to obtain a global information on the instance. We
think that using such mechanisms is a very promising research direction.
Another promising research direction is to build approximation algorithms that exploit the
extensive propagation of resource constraints. [Applegate and Cook, 1991], [Nuijten,
1994], [Baptiste et al., 1995b] and [Nuijten and Le Pape, 1998] report experimental results
on the job-shop scheduling problem. It is shown that very good solutions can be reached
in a short amount of time.
Finally, one can also use an approximation algorithm for a given number of iterations and
then proceed with an exact algorithm. The following table displays the results that have
been obtained with such an approach [Baptiste et al., 1995b].

 BT CPU BT(pr) CPU(pr)
MT10 13684 235.8 4735 67.3
ABZ5 19303 282.1 4519 61.3
ABZ6 6227 100.6 312 4.7
LA19 18102 269.5 6561 91
LA20 40597 496.7 20626 227.2
ORB1 22725 407.3 6261 108
ORB2 31490 507.1 14123 228.7
ORB3 36729 606.1 22138 342.6
ORB4 13751 213.7 1916 23.7
ORB5 12648 210.9 2658 36.5

108

C.2. The Preemptive Job-Shop Scheduling
Problem11

To evaluate the constraint propagation algorithms presented in Section B.2, we developed
a branch and bound procedure for the preemptive Job-Shop Scheduling Problem (PJSSP),
the variant of the Job-Shop Scheduling Problem (JSSP) in which all activities are
interruptible.
For the PJSSP, the classical edge-finding branching scheme (Section C.1) is not valid
since activities are interruptible, and thus cannot just be ordered. However, the dominance
criterion introduced below allows the design of branching schemes which in a sense
“order” the activities that require the same machine.

C.2.1. A dominance property

Definition.
For any schedule S and any activity Ai, we define the “due date of Ai in S” dS(Ai) as:
• the makespan of S if Ai is the last activity of its job;
• the start time of the successor of Ai otherwise.

Definition.
For any schedule S, an activity Ak has priority over an activity Al in S (Ak <S Al) if and only
if either dS(Ak) < dS(Al) or dS(Ak) = dS(Al) and k ≤ l. Note that <S is a total order.

Proposition C-1.
For any schedule S, there exists a schedule J(S) such that:
1. J(S) meets the due dates: ∀ A, the end time of A in J(S) is at most dS(A).
2. J(S) is “active”: For any machine M at any time point t, if some activity A that belongs

to ACTS(M) (the set of activities that execute on M), is available at time t, then M is not
idle at time t (where “available” means that the predecessor of A is finished and A is not
finished).

3. J(S) follows the <S priority order: ∀ M, ∀ t, ∀ Ak ∈ ACTS(M), ∀ Al ∈ ACTS(M), Al ≠ Ak, if Ak
executes at time t, either Al is not available at time t or Ak <S Al.

11 Most of the results presented in this section come from [Baptiste, 1995], [Baptiste and
Le Pape, 1996a] and [Le Pape and Baptiste, 1998a]

109

Proof.
We construct J(S) chronologically. At any time t and on any machine M, the available
activity that is the smallest (according to the <S order) is scheduled. J(S) satisfies
properties 2 and 3 by construction. Let us suppose J(S) does not satisfy property 1. Let A
denote the smallest activity (according to <S) such that the end time of A in J(S) exceeds
dS(A). We claim that:
• the schedule of A is not influenced by the activities Ak with A <S Ak (by construction);
• for every activity Ak <S A, the time at which Ak becomes available in J(S) does not

exceed the time at which Ak starts in S (because the predecessor of Ak is smaller
than A).

Let M be the machine on which A executes. In J(S), the activities Ak ∈ ACTS(M) such that
Ak <S A are scheduled in accordance with Jackson’s rule, applied to the due dates dS(Ak).
Since dS(A) is not met, and since Jackson’s rule is guaranteed to meet due dates whenever
it is possible to do so (cf. [Carlier and Pinson, 1990]), we deduce that it is impossible to
schedule the activities Ak ∈ ACTS(M) such that Ak <S A between their start times in S and
their due dates in S. This contradicts the fact that in S these activities are scheduled
between their start times and their due dates. So, the hypothesis that J(S) violates property
1 is contradicted. �

Figure C-1. A preemptive schedule and its Jackson derivation.

C.2.2. Branching scheme

We call J(S) the “Jackson derivation” of S. Since the makespan of J(S) does not exceed the
makespan of S, at least one optimal schedule is the Jackson derivation of another schedule.
Thus, in the search for an optimal schedule, we can impose the characteristics of a Jackson

Job 3: executes on M2 (p = 5), on M1 (p = 2) and finally on M3 (p = 1)
Job 2: executes on M1 (p = 2), on M3 (p = 1) and finally on M2 (p = 2)
Job 1: executes on M1 (p = 3), on M2 (p = 3) and finally on M3 (p = 5)

M1
M2
M3

Schedule S

Schedule J(S)
M1
M2
M3

110

derivation to the schedule under construction. In this section, we present two branching
procedures in which this result is used to solve the PJSSP.
Each of them is integrated in the following makespan minimization algorithm:
1. Compute an obvious upper bound of the makespan variable and an initial lower bound.
2. Select a value V in the domain of makespan.
3. Constrain the makespan to be lower than or equal to V and run the branching

procedure. If a solution is found, set ub(makespan) to the makespan of the solution;
otherwise, i.e., if the search procedure fails, set lb(makespan) to V + 1.

4. Iterate steps 2 and 3 until makespan is bound.
The first branching scheme consists of ordering the activities according to an hypothetical
<S order. For each machine M, an ordered list LM of activities, initially empty, is developed
as follows:
1. Select a machine M such that the set KM = ACTS(M) − LM is not empty.
2. Select an activity Ak in KM (e.g., the one with the smallest latest end time). Add Ak to

the end of the list LM. Use Jackson’s rule to schedule the activities of LM according to
the LM priority order and impose the resulting earliest end times. Keep the other
activities of KM as alternatives to be tried upon backtracking.

3. Iterate until all the activities are ordered or until all alternatives have been tried.
This branching scheme is attractive since it mimics the edge-finding branching technique
that is often used in non-preemptive disjunctive scheduling. Yet, our first experiments
have been disappointing. This led us to develop another branching scheme which more
heavily exploits the dominance criterion.
1. Let t be the earliest date such that there is an activity A available (and not scheduled

yet!) at t.
2. Compute K, the set of activities available at t on the same machine as A.
3. Compute NDK, the set of activities which are not “dominated” in K (as explained

below).
4. Select an activity Ak in NDK (e.g., the one with the smallest latest end time). Schedule

Ak to execute at t. Propagate the decision and its consequences according to the
dominance criterion. Keep the other activities of NDK as alternatives to be tried upon
backtracking.

5. Iterate until all the activities are scheduled or until all alternatives have been tried.
Needless to say, the power of this branching scheme highly depends on the rules that are
used to (a) eliminate “dominated” activities in step 3 and (b) propagate “consequences” of
the choice of Ak in step 4. The dominance criterion is exploited as follows:
• Whenever Ak ∈ ACTS(M) is chosen to execute at time t, it is set to execute either up to

its earliest end time or up to the earliest start time of another activity Al ∈ ACTS(M)
which is not available at time t.

111

• Whenever Ak ∈ K is chosen to execute at time t, any other activity Al ∈ K can be
constrained not to execute between t and the end of Ak. At times t’ > t, this reduces the
set of candidates for execution: Al is dominated by Ak, hence not included in NDK. In
step 4, redundant constraints can also be added:

end(Ak) + rpt(Al) ≤ end(Al),
where rpt(Al) is the remaining processing time of Al at time t; end(Ak) ≤ start(Al) if Al is
not started at time t.

• If Ak ∈ ACTS(M) is the last activity of its job, Ak is not candidate for execution at time t
if another activity Al ∈ ACTS(M), which is not the last activity of its job, or such that l <
k, is available at time t (Ak is dominated by Al).

The proof that these reductions of the search space do not eliminate all optimal schedules
follows from the fact that J(S) schedules are dominant. Indeed, in a J(S) schedule, (1) an
activity cannot be interrupted unless a new activity becomes available on the same
resource, (2) an activity Ak cannot execute when another activity Al is available, unless Ak
<S Al, and (3) we cannot have Ak <S Al if Ak is the last activity of its job and either Al is not
the last activity of its job or l < k.
An open question at this point is whether there exists an optimal solution S such that
J(S) = S. This would allow us to constrain the search even more. For example, as soon as
an activity Ak would be given priority over an activity Al, we could constrain the successor
of Al not to start before the successor of Ak. This could have a dramatic impact on the
search space.

C.2.3. Experimental Results

The second branching scheme was used to evaluate the various constraint propagation
techniques developed in Section B.2. The disjunctive constraint set(A) ∩ set(B) = ∅ and
the flow-based algorithms, SCF, AEC, and GUTB, were implemented in ILOG SOLVER
[Puget, 1994] on a RS6000 workstation. The mixed edge-finder was implemented in
CLAIRE [Caseau and Laburthe, 1996b] on a PC Dell 200MHz running Windows NT.
Table C-2 summarizes the results on 20 well-known instances of the Job-Shop Scheduling
Problem. The first two columns indicate the version of the resource constraint that was
used and the problem instance(s) under consideration. This can be a unique instance like
“FT06” or, for “easy” instances, a series of instances similar in size and toughness, like
“LA01 to LA10.” In the latter case, the table provides average results over the whole
series. All the instances we use are available from the job-shop directory in the OR
benchmark library (http://www.ms.ic.ac.uk/info.html), except the CAR instances which
can be found in the flow-shop directory.

112

Column “BT” provides the total number of backtracks needed to solve the problem.
Column “CPU” provides the total CPU time in seconds, on a PC for the mixed edge-
finder, and on an RS6000 for the other algorithms. Columns “BT(pr)” and “CPU(pr)”
provide the number of backtracks and CPU time spent in proving that the optimal solution
is, indeed, optimal. Results appear only when the considered version of the resource
constraint enabled the branch and bound algorithm to solve the considered instance(s) in a
reasonable amount of time. (For the smallest problems (FT06 to CAR4), at most 5000
backtracks were allowed for each iteration of the makespan minimization procedure.)
Table C-2 shows that both the mixed edge-finder and the GUTB algorithm allow the
resolution of “tough” problems like CAR5 (with optimal makespan 7667) and FT10 (900).
Part of the differences between the edge-finder and the GUTB algorithm are due to
differences in implementation, e.g., different computers and different sorting functions, so
further comparison is not possible. Interestingly enough, the instances that appear the most
difficult in the non-preemptive case, CAR5 and FT10 [Baptiste, 1994], are also the most
difficult in the preemptive case.
Table C-3 shows the results obtained by GUTB on the ten 10∗ 10 (i.e., 10 machines ∗ 10
jobs = 100 activities) instances used by [Applegate and Cook, 1991] in their computational
study of the (non-preemptive) Job-Shop Scheduling Problem. Five of these instances
(ABZ6, LA19, LA20, ORB2, and ORB5) were solved to optimality in a few hours of CPU
time, one (FT10) was allowed more time to terminate, and four (ABZ5, ORB1, ORB3,
and ORB4) remained open. For these instances, column “OPT” provides the best lower
and upper bound that have been achieved. Otherwise, column “OPT” provides the value of
the optimal makespan.

113

Constraint Instances BT CPU BT(pr) CPU(pr)
Disjunctive FT06 6353 3.5 4775 2.6
Edge-finder FT06 3 0.1 2 0.0

 LA01-10 1 0.2 1 0.0
 CAR1-4 9 0.2 1 0.0
 CAR5 97927 582.6 26034 155.3
 CAR6-8 2870 23.4 937 7.5
 FT10 140903 2105.6 41255 624.0

SCF FT06 24 0.3 21 0.1
 LA01-10 1196 9.2 1 0.0

AEC FT06 5 0.5 2 0.1
 LA01-10 112 25.9 1 0.1
 CAR1-4 461 61.5 11 2.0
 CAR6-8 6947 1644.9 1403 351.3

GUTB FT06 6 0.4 2 0.0
 LA01-10 9 11.0 1 0.0
 CAR1-4 27 13.0 1 0.1
 CAR5 73135 10295.8 19265 2673.7
 CAR6-8 3593 663.6 819 146.5
 FT10 254801 97585.7 49817 19626.6

Table C-2. Results obtained on 20 instances of the preemptive Job-Shop Scheduling
Problem.

114

 OPT BT CPU BT(pr) CPU(pr)
FT10 900 254801 97585.7 49817 19626.6
ABZ5 1159 / 1219
ABZ6 924 17578 3955.5 10879 2268.3
LA19 812 39286 7150.1 14184 2482.4
LA20 871 5494 1483.6 1627 463.8
ORB1 991 / 1054
ORB2 864 56863 11199.2 20203 3835.3
ORB3 951 / 1254
ORB4 977 / 980
ORB5 849 16457 4721.3 4496 1296.6

Table C-3. GUTB results on ten 10∗ 10 instances of the preemptive Job-Shop Scheduling
Problem.

 OPT BT CPU BT(pr) CPU(pr)
FT10 900 140903 2105.6 41255 624.0
ABZ5 1203 1192553 15628.0 338597 4430.9
ABZ6 924 17699 307.8 8157 134.3
LA19 812 34637 564.3 10928 176.4
LA20 871 2779 59.4 998 22.7
ORB1 1035 347647 5182.4 85085 1278.3
ORB2 864 53127 709.4 16189 220.9
ORB3 973 6804127 96917.7 1947325 27884.2
ORB4 980 97654 1201.8 37122 461.3
ORB5 849 10380 158.6 4151 61.6

Table C-4. Edge-finding results on ten 10∗ 10 instances of the preemptive Job-Shop
Scheduling Problem.

Table C-4 provides the results obtained with the edge-finding algorithm on the same ten
instances. All of these instances have been solved to optimality. Other instances we have
solved include FT20 (in 0.4 second), LA11 to LA15 (0.4 second), LA16 (145 minutes),
LA17 (1 second), LA18 (4 minutes), LA21 (65 hours), LA22 (4 seconds), LA23
(1 second), LA24 (44 hours), LA26 (1 second), LA28 (1 second), LA30 (1 second), LA31
to LA35 (4 seconds), LA37 (110 minutes), ORB6 (39 minutes), ORB7 (10 minutes),
ORB8 (1 second), ORB9 (3 minutes), and ORB10 (1 minute). Let us note that, in the non-

115

preemptive case, ORB3 also appears to be one of the most difficult 10∗ 10 instances
[Applegate and Cook, 1991], [Baptiste and Le Pape, 1995b], [Caseau and Laburthe,
1995], [Colombani, 1996], [Colombani, 1997]. Such is not the case for LA16 (also a
10∗ 10 instance) which is considered “easy” in the non-preemptive case.
Experimental results have shown that two of these techniques, (1) edge-finding and (2)
global update of time bounds (GUTB), allow the resolution of hard instances such as the
preemptive variant of the famous FT10. Let us remark that a combination of the two
techniques is not likely to be useful when all the activities are interruptible and only time-
bound constraints are imposed. Indeed, the characterization of the preemptive edge-
finding algorithm proves that the best possible bounds are obtained. A combination might
however be useful in more complex situations: on the one hand, the mixed edge-finding
algorithm explicitly deals with non-interruptible activities, and thus can be more
efficiently applied to the mixed case; on the other hand, if an interruptible activity cannot
execute during some time intervals, the GUTB algorithm can take these intervals into
account.
These results encouraged us to pursue work in the application of constraint programming
to preemptive and mixed scheduling problems. [Le Pape and Baptiste, 1997b] and
[Le Pape and Baptiste, 1998b] evaluate the interest of different heuristics and branching
strategies to reach very good solutions of the PJSSP in a few amount of time. We think
that several other research directions are of great interest for mixed scheduling problems.
• Based on our results, the PJSSP currently appears to be much harder than the non-

preemptive JSSP. An important reason for this is that we have not been able to reuse
the concept of “bottleneck resource” in an efficient way. An open question is how the
“bottleneck” concept can be used, without throwing away the dominance criterion
which appears crucial in reducing the size of the search tree.

• Most of the results presented in the preceding sections concern resources of capacity 1.
More work is needed to generalize these techniques to resources of arbitrary capacity.

• Other constraint propagation techniques, such as shaving [Carlier and Pinson, 1994],
[Martin and Shmoys, 1996], [Péridy, 1996] can be worth investigating.

116

C.3. The Resource-Constrained Project
Scheduling Problem. 12

Many industrial scheduling problems are variants, extensions or restrictions of the
“Resource-Constrained Project Scheduling Problem” (RCPSP). Given (1) a set of
resources of given capacities, (2) a set of non-interruptible activities of given processing
times, (3) a network of precedence constraints between the activities, and (4) for each
activity and each resource the amount of the resource required by the activity over its
execution, the goal of the RCPSP is to find a schedule meeting all the constraints whose
makespan (i.e., the time at which all activities are finished) is minimal. The decision
variant of the RCPSP, i.e., the problem of determining whether there exists a schedule of
makespan smaller than a given deadline, is NP-hard in the strong sense [Garey and
Johnson, 1979].
The aim of this experimental study is to test the efficiency of the constraint propagation
schemes proposed in Section B.3 and also to investigate one particular dimension along
which problems differ. Within the cumulative scheduling class, we distinguish between
highly disjunctive and highly cumulative problems: a scheduling problem is highly
disjunctive when many pairs of activities cannot execute in parallel on the same resource;
conversely, a scheduling problem is highly cumulative when many activities can execute
in parallel on the same resource. To formalize this notion, we introduce the disjunction
ratio, i.e., the ratio between a lower bound of the number of pairs of activities which
cannot execute in parallel and the overall number of pairs of distinct activities. A simple
lower bound of the number of pairs of activities which cannot execute in parallel can be
obtained by considering pairs {Ai, Aj} such that either there is a chain of precedence
constraints between Ai and Aj, or there is a resource constraint which is violated if Ai and
Aj overlap in time. The disjunction ratio can be defined either globally (considering all the
activities of a given problem instance) or for each resource R by limiting the pairs of
activities to those that require at least one unit of R. The disjunction ratio of a disjunctive
resource is equal to 1. The disjunctive ratio of a cumulative resource varies between 0 and
1, depending on the precedence constraints and on the amounts of capacity that are
required to execute the activities. In particular, the ratio is equal to 0 when there is no
precedence constraint and no activity requires more than half of the resource capacity.

12 Most of the results presented in this section come from [Baptiste and Le Pape, 1997a]
and [Baptiste et al., 1998b].

117

Needless to say, the disjunction ratio is only one of a variety of indicators that could be
associated with scheduling problem instances. For example, the precedence ratio (also
known as order strength [Mastor, 1970], flexibility ratio, and density [De Reyck and
Herroelen, 1995]), i.e., the ratio between the number of pairs of activities which are
ordered by precedence constraints and the overall number of pairs of distinct activities, is
also important (a high precedence ratio makes the problem easier). Although some
researchers, e.g., [Kolisch et al., 1995], have worked on such indicators, we believe much
more work is necessary to discover which indicators are appropriate for designing,
selecting, or adapting constraint programming techniques with respect to the
characteristics of a given problem.
In the following, we explore the hypothesis that the disjunction ratio is an important
indicator of which techniques shall be applied to a cumulative scheduling problem. With
this distinction in mind, we introduce several new techniques to solve the RCPSP.
Section C.3.1 presents our general approach to the resolution of the RCPSP; Section C.3.2
presents the constraint propagation techniques we use (including a redundant constraint
generation scheme); Section C.3.3 presents dominance rules, which are used to
dynamically decompose an instance of the RCPSP; Section C.3.4 presents experimental
results, which confirm that the techniques we use exhibit different behaviors on problems
with different disjunction ratios.

C.3.1. General Framework

The aim of this section is to present our general approach and establish a list (by no means
exhaustive) of possible “ingredients” that can be incorporated in a constraint programming
approach to the RCPSP. We limit the discussion to the standard RCPSP. However, some
of the techniques we propose also apply to extensions of the RCPSP, such as problems
with interruptible activities.
First, the RCPSP is an optimization problem. The goal is to determine a solution with
minimal makespan and prove the optimality of the solution. As usual, we represent the
makespan as an integer variable constrained to be greater than or equal to the end of any
activity. Several strategies can be considered to minimize the value of that variable, e.g.,
iterate on the possible values, either from the lower bound of its domain up to the upper
bound (until one solution is found), or from the upper bound down to the lower bound
(determining each time whether there still is a solution). In our experiments, a
dichotomizing algorithm is used:

118

1. Compute an obvious upper bound of the makespan variable and an initial lower bound.
2. Select a value V in the domain of makespan. (e.g., the middle of the domain)
3. Constrain the makespan to be lower than or equal to V and run the branching

procedure. If a solution is found, set ub(makespan) to the makespan of the solution;
otherwise, i.e., if the search procedure fails, set lb(makespan) to V + 1.

4. Iterate steps 2 and 3 until makespan is bound.
A branching procedure with constraint propagation at each node of the search tree is used
to determine whether the problem with makespan at most v accepts a solution. As shown
in the literature, there are many possible choices regarding the amount of constraint
propagation that can be made at each node. [Carlier and Latapie, 1991], as well as
[Demeulemeester and Herroelen, 1992], use simple bounding techniques compared to the
more complex constraint propagation algorithms described in Section B.3. Performing
more constraint propagation serves two purposes: first, detect that a partial solution at a
given node cannot be extended into a complete solution with makespan lower than or
equal to v; second, reduce the domains of the start and end variables, thereby providing
useful information on which variables are the most constrained. However, complex
constraint propagation algorithms take time to execute, so the cost of these algorithms
may not always be balanced by the subsequent reduction of search. The deductive
techniques for the CuSP have been tested on the RCPSP. Experimental results show that it
is worth using such techniques when the disjunction ratio is low.
Artificially adding “redundant” constraints, i.e., constraints that do not change the set of
solutions, but propagate in a different way, is another method for improving the
effectiveness of constraint propagation. For example, [Carlier and Latapie, 1991] and
[Carlier and Néron, 1996] present branch-and-bound algorithms for the RCPSP which rely
on the generation of redundant resource constraints. If S is a set of activities and m an
integer value, and if for any subset s of S such that |s| > m, the activities of s cannot all
overlap, then the following resource constraint can be added: “Each activity of S requires
exactly one unit of a new (artificial) resource of capacity m”. As detailed in Section
B.3.1.4, several lower-bounding techniques have been developed for this resource
constraint ([Perregaard, 1995], [Carlier and Pinson, 1996]). These techniques serve to
update the minimal value of the makespan variable, but do not update the domains of the
start and end time variables. We propose to generate artificial disjunctive resource
constraints, for which standard disjunctive resource constraint propagation algorithms can
be applied, resulting in a powerful update of earliest and latest start and end times.
Besides constraint propagation, a branching solution search procedure is also
characterized by:
• the types of decisions that are made at each node. Most search procedures for the

RCPSP chronologically build a schedule, from time 0 to time v. At a given time t,

119

[Demeulemeester and Herroelen, 1992] schedule a subset of the available activities;
other subsets are tried upon backtracking. The main interest of this strategy is that
some resource can be maximally used at time t, prior to proceed to a time t' > t.
However, there may be many subsets to try upon backtracking, especially if the
problem is highly cumulative. [Caseau and Laburthe, 1996a] schedule a single activity
and postpone it upon backtracking. The depth of the search tree increases, but each
(smaller) decision is propagated prior to the making of the next decision. An example
of non-chronological scheduling strategy is given by [Carlier and Latapie, 1991]. Their
strategy is based on dichotomizing the domains of the start variables: at each node, the
lower or the upper half of the domain of a chosen variable V is removed and the
decision is propagated. This strategy may work well if there are good reasons for
selecting the variable V, rather than another variable (e.g., when there is a clear
resource bottleneck at a given time).

• the heuristics that are used to select which possibilities to explore first. When a
chronological strategy is used, one can either try to “fill” the resources at time t (to
avoid the insertion of resource idle time in the schedule) or select the most urgent
activities among those that are available at time t. When a non-chronological strategy
is used, the best is to focus first on identified bottlenecks.

• the dominance rules that are applied to eliminate unpromising branches. Several
dominance rules have been developed for the RCPSP (see, for example,
[Demeulemeester and Herroelen, 1992]). These rules enable the reduction of the
search to a limited number of nodes, which satisfy the dominance properties. Section
C.3.3 proposes a new dominance rule that generalizes the “single incompatibility rule”
of Demeulemeester and Herroelen. When it is applied, this rule leads to a
decomposition of the remaining problem. As for constraint propagation, dynamically
applying complex dominance rules at each node of the search tree may prove more
costly than beneficial. Our generalization of the “single incompatibility rule” is worth
using when the disjunctive ratio is high.

• the backtracking strategy that is applied upon failure. Most constraint programming
tools rely on depth-first chronological backtracking. However, “intelligent”
backtracking strategies can also be applied to the RCPSP. For example, the cut-set
dominance rule of [Demeulemeester and Herroelen, 1992] can be seen as an intelligent
backtracking strategy, which consists of memorizing search states to avoid redoing the
same work twice. When backtracking, the remaining sub-problem is saved. In the
remainder of the search tree, the algorithm checks if the remaining sub-problem is not
already proved unfeasible. The advantage of such techniques is that the identified
impossible problem-solving situations are not encountered twice (or are immediately
recognized as impossible). However, such techniques may require large amounts of

120

memory to store the intermediate search results and, in some cases, significant time for
their application.

Our overall research agenda is to look at all these aspects of the problem-solving strategy
and determine (if at all possible) when to apply each technique. As a first step, we
designed some of the constraint propagation techniques and dominance rules mentioned
above with the intent of applying them either to highly disjunctive or to highly cumulative
problems. For this reason, we decided to fix the types of decisions to be made at each
node, the heuristics that are used to select which possibilities to explore first, and the
backtracking strategy (depth-first chronological backtracking). Our solution search
procedure slightly differs from the one proposed by [Caseau and Laburthe, 1996a]:
1. Select an unscheduled activity Ai of minimal release date. When several activities have

the same release date, select one of the most urgent, i.e., one with minimal latest start
time (lsti). Create a choice point.

2. Left branch: Schedule Ai from its release date ri to its earliest end time eeti (in other
terms, set start(Ai) to the smallest value in its domain). Propagate this decision. Apply
the dominance rules. Go to step 1.

3. Right branch: If step 2 causes a backtrack, compute the set S of activities that could
overlap the interval [ri eeti] (according to current variable domains). Post a delaying
constraint: “Ai executes after at least one activity in S”. Propagate this constraint.
Apply the dominance rules. Go to step 1.

4. If both branches fail, provoke a backtrack to the preceding choice point (chronological
backtracking).

This algorithm stops when all activities are scheduled (in step 1) or all branches have been
explored (no more preceding choice point in step 4).
Two points of flexibility remain in this procedure. The first concerns constraint
propagation. As shown in Section B.3, several constraint propagation algorithms can be
associated with each resource. Among these algorithms, the timetable mechanism, is
systematically applied. It guarantees that, at the end of the propagation, the earliest start
time of each unscheduled activity is consistent with the start and end times of all the
scheduled activities (i.e., activities with bound start and end times). This, in turn,
guarantees the correctness of the overall search procedure: adding the constraint
“Ai executes after at least one activity in S” upon backtracking is correct, because if Ai
could start before the end of all activities in S, then Ai could start at the release date ri
resulting from previous constraint propagation.
The second point of flexibility concerns the dominance rules. Several dominance rules can
be applied, which may lead to some decomposition of the problem (cf. Section C.3.3).

121

C.3.2. Constraint Propagation

The aim of this section is to review the constraint propagation techniques we use in the
context of the RCPSP. The constraints of the RCPSP and the decisions made in our
framework are of the following types:
1. 0 ≤ start(Ai), for every activity Ai;
2. start(Ai) + processingTime(Ai) = end(Ai), for every activity Ai;
3. end(Ai) ≤ makespan, for every activity Ai;
4. end(Ai) ≤ start(Aj), for every precedence constraint (Ai � Aj);
5. Σstart(Ai)≤t<end(Ai)(capacity(Ai, R)) ≤ capacity(R), for every resource R and time t

(cumulative constraint);
6. makespan ≤ v;
7. “Ai executes after at least one activity in S” i.e., minS(end(S)) ≤ start(Ai), where Ai is an

activity and S a set of activities.
Constraints 1, 2, 3, and 6, guarantee that each variable in the problem has a finite domain
(since we use integer variables). The initial domain of each variable is set to [0, UB] where
UB is an obvious upper bound of the optimum. As often in constraint programming, unary
constraints (1, 6) are propagated by reducing the domains of the corresponding variables.
Processing time constraints (2) and precedence constraints (3, 4) are propagated using a
standard arc-B-consistency algorithm [Lhomme, 1993].
The constraint “Ai executes after at least one activity in S” (7) is propagated as follows:
compute minAj∈ Seetj, the minimal earliest end time of all activities in S, and update ri to
max(ri, minAj∈ Seetj). Moreover, when there is only one activity Aj in S that can end before
lsti, then the deadline of Aj can be set to min(dj, lsti).
The resource constraints (5) are propagated with a timetable mechanism. Time bound
adjustments based on the CuSP (cf., Section B.3) are eventually applied (depending on the
variant of the algorithm).

Since some project scheduling problems are highly disjunctive, we considered the
generation of redundant disjunctive resource constraints as a mean to strengthen constraint
propagation (see also [Brucker et al., 1997]). The basic idea is simple: if a set S of activities
is such that any two activities in S cannot execute in parallel, a new (artificial) resource of
capacity 1 can be created, and all the activities in S can be constrained to require the new
resource. The disjunctive edge-finding constraint propagation algorithm (cf., Section
B.1.3) can then be applied to the new resource, in order to guarantee a better update of the
release dates and deadlines of these activities.

122

To detect the relevant sets S, we use a compatibility graph G = (X, E) where X is a set of
vertices corresponding to the activities of the RCPSP and E is a set of edges (Ai, Aj), such
that (Ai, Aj) ∈ E if and only if Ai and Aj are not compatible (i.e., cannot execute in
parallel). We distinguish three subsets Ecap, Eprec, and Etime of E. These subsets denote
respectively the incompatibilities due to resource capacity constraints, to precedence
constraints, and to time-bounds.
• (Ai, Aj) ∈ Ecap if and only if there is a resource R such that the sum of the capacities

required by Ai and Aj on R is greater than the overall capacity of R.
• (Ai, Aj) ∈ Eprec if and only if there is a precedence constraint between Ai and Aj (the

transitive closure of the precedence graph is computed for this purpose).
• (Ai, Aj) ∈ Etime if and only if either di ≤ rj or dj ≤ ri.
Any clique of the compatibility graph is a candidate disjunctive resource constraint.
However, since the edge-finding constraint propagation algorithm is costly in terms of
CPU time, very few redundant disjunctive constraints can be generated. Hence, we have to
heuristically select some of these cliques (otherwise, the cost of the disjunctive resource
constraint propagation would be too high to be compensated by the subsequent reduction
of search). Since the problem of finding a maximal clique (i.e., a clique of maximal size)
is NP-hard [Garey and Johnson, 1979], we use a simple heuristic which increases step by
step the current clique C: among the activities which are incompatible with all activities of
the current clique, we select one of maximal duration. Our hope is that the resulting
constraint will be tight since several activities with large processing times will require the
same disjunctive resource.
In our first experiments, we built one disjunctive resource per cumulative resource plus
one more “global” disjunctive resource (for the pot!). For each cumulative resource, we
arbitrarily put in the clique all the activities requiring more than half of the resource and
the clique was completed thanks to the heuristic described above. The extra disjunctive
resource was fully generated according to the heuristic rule. A careful examination of the
generated problems showed that many activities were added in the cliques because of
precedence and time-bound constraints. It is far more interesting to generate disjunctive
problems where most of the activities are incompatible because of resources. To achieve
this, the generation heuristic has been split in two different procedures:
1. build a maximal clique Ccap of (X, Ecap);
2. extend Ccap to a maximal clique C of G.

Example:
Let A, B, C, D, E be five activities requiring respectively 3, 2, 1, 4, 1 units of a resource of
capacity 4. These activities last respectively 3, 6, 3, 2 and 5 units of time. Moreover, there
are 4 precedence constraints (A � C), (A � E), (B � C), and (B � E). Let us build the

123

incompatibility graph of this instance (see Figure C-2). First, we add the edges
corresponding to the precedence constraints (dotted lines). Then we consider each pair of
activities and add an edge (solid line) between the corresponding vertices if and only if the
sum of the resource requirements of both activities exceed 4. In this example, there are
two maximal cliques: {A, B, D, E} and {A, B, D, C}. Our algorithm starts with {A, D} and
successively adds B (based on Ccap) and E (which is longer than C) to the clique.

Figure C-2. The incompatibility graph of the instance described in the example above.

C.3.3. Dominance Rules

Our search procedure incorporates several dominance rules. Each of them consists of
expressing additional constraints which do not impact the existence of a solution schedule
(if there exists a schedule satisfying all constraints posted so far, then at least one such
schedule satisfies also the additional constraints).

Immediate scheduling rule
Let Ai be an unscheduled activity of minimal earliest end time. Let O be the set of
activities which can be “partially” scheduled in the interval [ri eeti], i.e., O = {Aj | dj > ri
and eeti > rj}.

Proposition C-2:
If all activities in O can be scheduled in parallel, i.e., on each resource, the amount
required to execute all activities in O is lower than or equal to the resource capacity, then
Ai can be scheduled at ri.

Proof.
Suppose that there is a schedule S that satisfies all the constraints posted so far. Let us
examine S. All predecessors of Ai are scheduled before ri since the earliest end time of Ai
is minimal. Moreover, there is enough space on each resource to schedule Ai at ri since all
activities in O can execute in parallel. S can thus be modified by bringing Ai back to ri. �

E

C

A

B

D
E C A B D

Resource
Capacity

4

124

Single incompatibility rule [Demeulemeester and Herroelen, 1992]
Let tmin be the minimal release date among the release dates of unscheduled activities.

Proposition C-3:
If no activity is in progress at time tmin and if there is an activity Ai, available at tmin, such
that Ai cannot be scheduled together with any other unscheduled activity at any time
instant without violating precedence or resource constraints, then activity Ai can be
scheduled at time tmin.

Proof.
see [Demeulemeester and Herroelen, 1992]. �

Incompatible set decomposition rule
We propose an extension of the single incompatibility rule based on a directed
compatibility graph. Let tmin and tmax be respectively the minimal release date and the
maximal deadline among unscheduled activities. Consider the directed graph Γ = (X, U),
where X is a set of vertices corresponding to the activities Ai such that tmin < eeti and lsti <
tmax. U is the set of directed arcs such that (Ai, Aj) ∈ U if and only if either (Ai, Aj) ∉ E
(i.e., Ai and Aj are not incompatible as defined in Section C.3.2) or Ai precedes Aj in the
transitive closure of the precedence network. Let X1, X2, ..., Xm be the strongly connected
components of Γ, i.e., {X1, X2, ..., Xm} is a partition of X such that any two activities Ai and
Aj belong to the same Xi if and only if there is a directed path from Ai to Aj and from Aj to
Ai. Let γ be the quotient graph of Γ (the “strongly connected” relation is an equivalence
relation). γ is a directed acyclic graph and thus the strongly connected components can be
totally ordered. We suppose without any loss of generality that this total order
is X1, X2, ..., Xm.

Proposition C-4.
For all i in [1 m], all activities in Xi can be scheduled before all activities in Xi+1.

Proof.
We only prove that all activities in X1 can be scheduled before all activities in X − X1. The
remaining part of the proof can be achieved by induction. Suppose that there exists a
schedule satisfying all constraints posted so far. Let S be such a schedule, such that the
first time point ti at which an activity Ai of X1 is scheduled after an activity of X − X1 is
minimal. Let ti’ be the first time after ti such that no activity of X1 is scheduled at ti’. Let tj
be the minimal start time among start times of activities in X − X1 in S. Let us modify S
into S’ by exchanging the schedule blocks [tj ti] and [ti ti’] (cf. Figure C-3). The schedule
S’ satisfies precedence constraints, otherwise X1 would not be the first strongly connected
component. The resource constraints are also satisfied. Moreover, the activities are not
interrupted since at times tj, ti and ti’, there is no activity in progress on S (otherwise two

125

activities in different components would be compatible, which contradicts our
hypothesis). Thus, schedule S’ is a solution and contradicts the hypothesis that ti exists and
is minimal. �

Figure C-3. The relative positions of Ai and Aj

Ordering the subsets X1, ..., Xm is interesting for two reasons. First, additional precedence
constraints can be added. Second, the problem can be decomposed into m optimization
problems. Indeed, since subsets X1, ..., Xm are ordered, it is sufficient to find the optimal
solutions to the RCPSP restricted to each Xi.
The overall algorithm which implements this incompatible set dominance rule runs in
O(n2) since there are potentially O(n) vertices in X and thus, building the set U requires at
most a quadratic number of steps (we assume the transitive closure of the initial
precedence graph has been computed once and for all). Moreover, searching for the
strongly connected components of Γ can be done in O(|U|) thanks to the depth first
algorithm of Tarjan [Gondran and Minoux, 1995].

(S) Aj Ai

ti’ ti tj

(S’) AjAi

tj + ti’− ti tj ti’

126

Example.
Let A, B, C, D, E, F be 6 activities requiring respectively 2, 3, 1, 2, 1 and 2 units of a
resource of capacity 4 (cf. Figure C-4). Let us suppose that the following precedence
constraints apply: (A � D), (A � E), (B � E), (C � D), (C � E), and (E � F). To
simplify the example, we do not consider the time-bounds of activities and thus, the values
of the processing times are not necessary for the example.

Figure C-4. A simple instance of the RCPSP

The transitive closure of the precedence network consists of adding arcs (A � F), (B � F)
and (C � F). The pairs of activities which are incompatible because of resource
constraints are (A, B), (B, D), and (B, F). Consequently, the pairs of activities which are
not incompatible are (A, C), (B, C), (D, E), (D, F); which corresponds to the graph
depicted on Figure C-5. There are two strongly connected components {A, B, C} and {D,
E, F}. Our dominance rule states that there exists an optimal solution in which {A, B, C}
is scheduled before {D, E, F}.

Figure C-5. The directed graph associated with activities A, B, C, D, E and F.

A B C D E F

4

A

C

B

D

F

E

127

C.3.3. Experimental Results

The following tables provide the results obtained on different sets of benchmarks with
four different versions of our search procedure:
• with or without using the adjustments based on the Fully Elastic relaxation of the

CuSP (“FE” or “NO” in column E.F.),
• with or without the incompatible set decomposition rule (“YES” or “NO” in column

Dec.).
All versions of the algorithm use precedence constraint propagation, resource constraint
propagation based on timetables, edge-finding on redundant disjunctive resource
constraints, the immediate scheduling rule, the single incompatibility rule, and their
symmetric counterparts. In each of the tables, column "Solved" denotes the number of
instances solved to optimality (optimality proof included) within a limit of 4000
backtracks. Column "BT" provides the average number of backtracks over those problems
that have been solved by all algorithms. Column "CPU" provides the corresponding
average CPU time, in seconds on a PC Dell GXL 5133. Table C-5 provides the results
obtained on the highly disjunctive Patterson problem set (problems with 14 to 51
activities) [Patterson, 1984]. These results compare well to other constraint programming
approaches. For example, in [Caseau and Laburthe, 1996a] the overall Patterson set is
solved in an average of 1000 backtracks and 3.5 seconds. Our algorithm requires
approximately the same CPU time, but a much smaller number of backtracks. Using the
fully elastic adjustments and the incompatible set decomposition rule on this set decreases
the average number of backtracks needed to solve the problem to optimality. However, the
cost of these techniques is such that the overall CPU time increases.
We also applied the four algorithms to the 480 instances of [Kolisch et al., 1995] (KSD,
30 activities each). These instances are interesting because they are classified according to
various indicators, including the “resource strength,” i.e., the resource capacity,
normalized so that the “strength” is 0 when for each resource R,
capacity(R) = maxi(capacity(Ai, R)), and the “strength” is 1 when scheduling each activity
at its earliest start time (ignoring resource constraints) results in a schedule that satisfies
resource constraints as well. Table C-6 provides the results for the 120 instances of
resource strength (RS) 0.2, Table C-7 provides the results for the 120 instances of resource
strength 0.7, and Table C-8 provides the overall results. Clearly, the decomposition rule is
very useful for the highly disjunctive problems. Considering the overall set, the
decomposition rule allows the resolution of 14 additional instances, 13 of which are in the
most highly disjunctive set. Unfortunately, the instances of resource strength 0.7 are

128

“easy” (except one of them!), so for this subset the interest of the more complex
techniques does not appear.
Table C-10 provides the average precedence ratio, disjunctive ratio, and resource strength,
and their standard deviations on the different problem sets. It clearly appears that even
KSD instances with high resource strength have large disjunction ratios (0.53) due to large
precedence ratios. For experimental purposes, this led us to generate a new series of 40
highly cumulative problems (the BL set). More precisely, we generated 80 instances with
3 resources, and either 20 or 25 activities, and we kept the 40 most difficult of these
instances. Each activity requires the 3 resources, with a required capacity randomly chosen
between 0 and 60% of the resource capacity. 15 precedence constraints were randomly
generated for problems with 20 activities; 45 precedence constraints were generated for
problems with 25 activities. This simple parameter setting allowed us to generate
problems with average precedence and disjunctive ratios of 0.33, with a standard deviation
of 0.07, smaller than the standard deviation observed on the classical benchmarks from the
literature, and a relatively low resource strength (0.34 on average). Table C-9 provides the
results. It clearly shows that the fully elastic adjustment scheme is a crucial technique for
solving these instances. However, one may wonder whether the versions with no
cumulative adjustments could “catch up” if given more CPU time. To evaluate that, we
ran the BL instances again with a limit of 20000 backtracks. This led the versions with no
cumulative adjustments to solve only 4 additional instances in an average of 8173
backtracks and 146.7 seconds. With the fully elastic adjustments, these 4 instances are
solved in an average of 994 backtracks and 23.8 seconds.
Globally, these results show that highly disjunctive and highly cumulative problems
require different types of constraint propagation and problem decomposition techniques.

E.F. Dec. Solved BT CPU
NO NO 110 77 2.68
NO YES 110 71 3.75
FE NO 110 63 3.67
FE YES 110 58 4.65

Table C-5. Patterson (110 instances of average disjunctive ratio 0.67)

E.F. Dec. Solved BT CPU
NO NO 51 369 12.52
NO YES 64 253 11.70
FE NO 51 366 17.79
FE YES 64 251 14.82

Table C-6. KSD RS 0.2 (120 instances of average disjunctive ratio 0.65)

129

E.F. Dec. Solved BT CPU
NO NO 119 101 4.85
NO YES 119 101 7.33
FE NO 119 100 7.96
FE YES 119 100 10.64

Table C-7. KSD RS 0.7 (120 instances of average disjunctive ratio 0.53)

E.F. Dec. Solved BT CPU
NO NO 388 121 5.19
NO YES 402 105 7.03
FE NO 389 119 7.88
FE YES 403 104 9.56

Table C-8. KSD ALL (480 instances of average disjunctive ratio 0.56)

E.F. Dec. Solved BT CPU
NO NO 4 1241 29.5
NO YES 4 1241 47.0
FE NO 28 407 13.9
FE YES 28 407 20.1

Table C-9. BL (40 instances of average disjunctive ratio 0.33)

Precedence ratio Disjunction ratio Resource strength
Average Std Average Std Average Std

Patterson 0.64 0.10 0.67 0.11 0.50 0.21
KSD RS 0.2 0.52 0.09 0.65 0.11 0.20 0.02
KSD RS 0.5 0.52 0.09 0.53 0.09 0.52 0.03
KSD RS 0.7 0.52 0.08 0.53 0.08 0.70 0.03
KSD RS 1.0 0.52 0.09 0.52 0.09 1.00 0.00
BL 0.33 0.07 0.33 0.07 0.34 0.09

Table C-10. Average ratios and standard deviations for different problem sets

This algorithm has two drawbacks. First, it fails to detect bottleneck resources. Moreover,
it only relies on the propagation of the redundant disjunctive resource-constraints and does
not take advantage of the powerful branching schemes developed for such resource
constraints. We then developed a procedure which first focuses on the disjunctive
resources of the instance (i.e., the resources of capacity 1 that are either part of the data of

130

the instance or those that correspond to a redundant constraint). When all of them are
ordered with the edge-finding branching technique (cf., Section C.1), the previous
cumulative branching scheme is used to complete the schedule. In the following
experiments, we also evaluate the effect of using the more powerful time-bound
adjustment techniques described in Section B.3 (Partially Elastic adjustments and
Left-Shift / Right Shift adjustments).
Intuitively, the new branching scheme should benefit to highly disjunctive instances
(because for such instances, the redundant disjunctive resources are very loaded) while the
use of more powerful time-bound adjustment techniques should benefit to the less
disjunctive ones. Our initial experiments confirmed this hypothesis. In particular, it
happened that when using the edge-finding branching technique the incompatible-set
decomposition rule became ineffective. This is the reason why it is not considered in the
following of this experimental study.

One point of flexibility has been kept in the resulting algorithm, which corresponds to the
use of a necessary condition (Section B.3.1) and of a time-bound adjustment scheme
(Section B.3.2).
• The first version, NO, uses none of the necessary conditions and time-bound

adjustment techniques presented in Section B.3.
• The second version, FE, relies on the fully elastic relaxation, both for the necessary

condition for existence and for the time-bound.
• The third version, PE, relies on the partially elastic relaxation (Sections B.3.1.2 and

B.3.2.2), both for the necessary condition for existence and for the time-bound
adjustment. However, the results reported below rely on a straightforward O(n3)
algorithm instead of using the more complex algorithm described in Section B.3.2.2.

• The fourth version, LSRS, relies on the necessary condition and the time-bound
adjustments based on the left-shift / right-shift energy consumption (Sections B.3.1.3
and B.3.2.3). However, we quickly found out that this version was too time-consuming
for producing any useful result. This is quite understandable. Indeed, the number of
intervals to consider (cf. Proposition B-11) is multiplied by 3 ∗ 3 + 3 + 3 = 15 in
comparison to the partially elastic case! Consequently, we tried to determine a better
tradeoff, i.e., to reduce the number of intervals to examine without compromising too
much with respect to the effectiveness of the evaluation (detection of impossibilities
and time-bound adjustments). After a few trials, we decided to reduce the set of
intervals to the Cartesian product of O1' = {ri, 1 ≤ i ≤ n} ∪ {di - pi, 1 ≤ i ≤ n} and
O2' = {di, 1 ≤ i ≤ n} ∪ {ri + pi, 1 ≤ i ≤ n}.

131

The four versions were tested on the “Patterson” set, on the KSD set, on the BL set and
also on the “Alvarez” set [Alverez-Valdès and Tamarit, 1989], which includes 48
instances with 27 activities, 48 instances with 51 activities and 48 instances with 103
activities (the last 48 instances are ignored in this computational study); the average
disjunctive ratio for the Alvarez set being 0.82.

Each version of our branch and bound algorithm has been applied to each of the 726
instances, with a maximal CPU time of half an hour on a PC Dell OptiPlex GX Pro 200
MHz running Windows NT. Tables C-11, C-12, C-13 and C-14 present the results
obtained respectively on the Alvarez instances, the Patterson instances, the KSD instances
and the BL instances. For each version of the algorithm, each table provides the number of
instances solved (including proof of optimality), the average number of backtracks to
solve these instances, and the corresponding average CPU time, in seconds. For each set
of instances, the last columns of the corresponding table provide the average number of
backtracks and CPU time obtained on the subset of instances solved by all of the four
algorithms.

Algorithm Solved BT CPU BT over
73 instances

CPU over
73 instances

NO 80 4027 78.1 244 11.2
FE 78 1810 58.4 244 14.3
PE 76 990 88.1 244 39.1
LSRS 73 243 64.7 243 64.7
Table C-11. Experimental results on the 96 Alvarez instances (27 or 51 activities)

Algorithm Solved BT CPU BT over

110 instances
CPU over
110 instances

NO 110 143 1.6 143 1.6
FE 110 139 2.3 139 2.3
PE 110 128 7.7 128 7.7
LSRS 110 111 8.3 111 8.3
Table C-12. Experimental results on the 110 Patterson instances

132

Algorithm Solved BT CPU BT over
451 instances

CPU over
451 instances

NO 465 4612 26.1 1181 6.8
FE 461 2593 28.9 1101 12.8
PE 453 1455 52.9 909 47.2
LSRS 451 794 52.8 794 52.8
Table C-13. Experimental results on the 480 KSD instances

Algorithm Solved BT CPU BT over

31 instances
CPU over
31 instances

NO 31 84632 187.9 84632 187.9
FE 39 17171 80.9 4839 27.1
PE 40 3757 46.7 2177 30.4
LSRS 40 3400 38.4 1868 25.6
Table C-14. Experimental results on the 40 BL instances

The effect of the different satisfiability tests and time-bound adjustment algorithms clearly
depends on the set of instances. Considering only the instances solved by all algorithms,
the reduction in the average number of backtracks between NO and LSRS is almost null on
the Alvarez set, and equal to 22%, 33% and 98 % on the Patterson, KSD and BL sets
(respectively). On the Alvarez, Patterson and KSD sets, the cost of the more complex
time-bound adjustment algorithms is not balanced by the subsequent reduction of search,
and the CPU time increases. On the contrary, LSRS performs much better than NO on the
BL set. On the 31 instances solved by all algorithms, the number of backtracks is divided
by 45, and the overall CPU time by more than 7. Figures C-6 and C-7 illustrate the
behavior of NO and LSRS on the KSD instances and on the BL instances.

133

Figure C-6. The behavior of LSRS and NO on the KSD instance set. Each curve shows the
number of instances solved in a given amount of CPU time.

Figure C-7. The behavior of LSRS and NO on the BL instances.

The three resource constraint propagation schemes presented in Section B.3 prove to be
effective on some, but not all problem instances in the cumulative scheduling class.
Computational results have shown that, on “highly disjunctive” project scheduling
instances, the algorithms presented in Section B.3 induce an overhead that is not balanced
by the resulting reduction of search. On the other hand, the most expensive techniques

0

10

20

30

40

10-1 100 101 102 103 104

CPU (s)

Nb Instances
Solved

NO

LSRS

0

100

200

300

400

500

10-1 100 101 102 103

CPU (s)

Nb Instances
Solved

NO

LSRS

104

134

prove to be highly useful for the resolution of less highly disjunctive problems. These
results have been confirmed by another experimental study led on the Multi-Processor
Flow-Shop (see [Vignier, 1997] for an extensive study of this problem), a special case of
the RCPSP that is highly cumulative. As shown in [Néron et.al., 1998], the time-bound
adjustment techniques have shown to be extremely efficient for this problem. Our
procedure compares very well to the best known procedures for the Multi-Processor Flow-
Shop (e.g., [Portmann et al., 1997], [Vignier, 1997], [Carlier and Néron, 1998]).
We have not incorporated in our branch and bound procedure all the results obtained by
other researchers for the Resource-Constrained Project Scheduling Problem (RCPSP). In
particular, we have not used, until now, any “intelligent backtracking” rule such as the cut-
set rule of [Demeulemeester and Herroelen, 1992]. This may seem a little “strange” given
the excellent results reported in [Demeulemeester and Herroelen, 1995], in particular on
the KSD instances, even with a limited use of the cut-set rule. However, it appears that
many industrial scheduling problems include a variety of additional features (including,
for example, elastic activities [Caseau and Laburthe, 1996a]) which seem to require the
use of other techniques. Nevertheless, in the case of the pure RCPSP, it would be
interesting to determine how subsequent improvements of our procedure would influence
experimental results, and hence our conclusions on the usefulness of the various
adjustment techniques that have been proposed.

135

C.4. Minimizing the Number of Late Activities
on a Single Machine13

Few exact approaches have been made to solve the (1 | rj | ΣUj). [Dauzère-Pérès, 1995]
shows that the problem can be modeled by a Mixed Integer Program (MIP).
Unfortunately, instances with more than 10 jobs could not be considered because of the
size of the MIP. [Dauzère-Pérès and Sevaux, 1998b] describes a branch and bound
procedure that basically relies (1) on a dominance property stating that there exists an
optimal schedule of on-time jobs such that for any pair of jobs (Ji, Jj) successively
sequenced on the machine, either (ri < rj) or (di < dj) or (ri = rj and di = dj) and (2) on a set of
three lower bounds. The first lower bound is obtained by solving a relaxed MIP that
exploits the dominance property. The two other lower bounds are simply obtained by
relaxing the release dates or conversely the due dates. (When release dates are equal the
problem of minimizing the number of late jobs is polynomial.)
In this section we show that the constraint propagation methods developed in Section B.4
can be used in a branch and bound procedure for the (1 | rj | ΣUj) problem. Our experimental
results show that this branch and bound procedure outperforms all other approaches.

To reach an optimal solution, we solve several decision variants of the problem. More
precisely, we rely on the following scheme.
1. Compute an initial lower bound of (1 | rj | ΣUj); set the minimum of reject to this value

(recall that number of late activities is represented by the variable reject).
2. Try to bound reject to its minimal value N.
3. If there is a feasible schedule with N late activities then stop (N is the optimum).

Otherwise, backtrack and remove N from the domain of reject and go to step 2.
Beside the lower bound computation, our search strategy is based on three principles.
• First, at each node of the search tree, we verify that there exists a schedule of the

activities that have to be on-time (if not, a backtrack occurs). Such a verification is
NP-hard in the strong sense but it turns out to be “easy” in practice.

• Second, given the above verification, our branching scheme simply consists in
selecting an unbound variable in(Ai) to instantiate either to 1 or 0.

13 Most of the results presented in this section come from [Baptiste et. al., 1998c] and
[Péridy et al., 1998].

136

• Third, we use several dominance properties that allow us to generate constraints of the
form “if Ai is on-time then Aj is also on-time” (in(Ai) � in(Aj)), which are in turn
exploited as part of constraint propagation; for each activity Ai, O(Ai) denotes the set of
activities that have to be on time if Ai is on-time and, symmetrically, L(Ai) is the set of
activities that have to be late if Ai is late (Ai ∈ O(Ai) and Ai ∈ L(Ai)).

C.4.1. Search Strategy

The search tree is built as follows. While all variables in(Ai) are not instantiated,
1. select an activity Ai such that in(Ai) is not instantiated,
2. impose the fact that Ai must be on-time (if a backtrack occurs, Ai must be late), i.e.,

in(Ai) = 1,
3. apply dominance properties and propagate constraints
4. check that there exists a feasible One-Machine schedule of the activities that must be

on-time (if not, the problem is inconsistent and a backtrack occurs).
When the branch and bound succeeds, all variables in(Ai) are instantiated and at most
reject of these variables are equal to 0 (because arc-consistency is enforced on the
constraint Σ(1 - in(Ai)) = reject). Moreover there is a feasible One-Machine schedule of
the on-time activities (step 4). Since the late activities can be scheduled anywhere, a
solution schedule with less than reject late activities has been found. Let us detail the
heuristic used for the activity selection and the procedure that checks whether there is a
feasible One-Machine schedule of the activities that must be on-time.

C.4.1.1. Activity Selection

Let pmin be the minimum processing time among activities Ai such that in(Ai) is not
instantiated. Let then S be the set of activities Ai such that in(Ai) is not instantiated and
such that pi ≤ 1.1 * pmin. Among activities in S, we select an activity whose time window
is maximum (i.e., di - ri maximum). This heuristic “bets” that it is better to schedule small
activities with large time windows rather than large activities with tight time windows.

C.4.1.2. Solving the One-Machine Problem

A large amount of work has been carried on this problem (e.g., [Carlier, 1982]) because it
serves as the basis for the resolution of several scheduling problems (e.g., the Job-Shop
problem).
Since the One-Machine resolution procedure is called at each node of the search tree, it
has to be very fast. Following some initial experiments, it appeared that it is often easy to

137

find a feasible schedule of the activities in O. As a consequence, before starting an
exhaustive search, we use a simple heuristic (the Earliest Due Date dispatching rule) to
test whether the obtained schedule is feasible or not. [Carlier, 1982] proposes an
O(n log(n)) algorithm to implement this heuristic. It appears that over all our experiments,
this simple heuristic was able to find a feasible schedule for 97% of the One-Machine
instances that had to be solved. For the remaining instances, the branch and bound
procedure described below has been used.
To solve the One-Machine Problem we use the edge-finding branching technique
(cf, Section C.1) combined with classical resource constraint propagation techniques
(disjunctive constraint plus edge-finding bounding technique). However, this branching
scheme sometimes is inefficient. In particular, it is unable to focus early in the search tree
on bottlenecks that occur late in time. To avoid this drawback, and inspired by the ideas
proposed in [Carlier, 1982], we slightly modify the branching scheme as follows:
• If there are some time intervals [rj, dk] such that (1) the resource can never be idle in

[rj, dk] (because the sum of the processing times of the activities that have to execute
after rj and before dk is equal to dk – rj) and such that (2) there is an activity Ai that can
start before rj and that can end after dk, then we select among these intervals one
whose size is maximum. The branching decision is then: Either Ai ends before rj or Ai
starts after dk.

• Otherwise, the edge-finding branching scheme is applied.

C.4.1.3. Dominance Properties

Dominance properties allow to reduce the search space to schedules that have a particular
structure. The most important dominance property relies on the idea that “it is better to
schedule small activities with large time windows than large activities with small time
windows”. We also propose two other dominance rules that respectively fix the start times
of some activities and split the problem into distinct sub-problems.

C.4.1.3.1. Dominance of Small Activities with Large Time-Windows

We rely on the observation that on any solution, if a large activity Aj is on-time and is
scheduled inside the time window [ri, di] of a smaller activity Ai that is late, then the
activities Ai and Aj can be “exchanged”, i.e., Ai becomes on-time and Aj becomes late. We
suppose that jobs are sorted in non decreasing order of processing times. Our dominance
property is based upon the binary activity-relation “<” described as follows:

138

�
�

�
�

�

−≤−
+≤+

<
⇔<∀∀

iijj

jjiijiji
pdpd

prpr
ji

AAAA ,,

“<” is transitive and ∀ Ai, ∀ Aj, Ai < Aj � Ai ≠ Aj. Thus, it defines a strict partial order on
activities. Proposition C-5 is the theoretical basis of our dominance property.

Proposition C-5.
Recall that L is the set of activities that have to be late and that O is the set of activities
that have to be on-time. We claim that there is an optimal schedule such that

∀ Ai, ∀ Aj, (¬ (Ai < Aj)) ∨ (Aj ∈ L) ∨ (Ai ∈ O)

Proof (sketch).
Consider an optimal schedule such that the first index i, for which there exists an activity
Aj that violates the above equation, is maximum. We have

(Ai < Aj) ∧ (Aj ∈ O) ∧ (Ai ∈ L)
We build a new schedule obtained by “exchanging” Ai and Aj. More precisely, Ai is
scheduled at the date max(start(Aj), ri) and Aj is scheduled after all other activities (it then
becomes late). It is obvious to verify that the new schedule is still feasible and that Ai is
now on-time. Now, suppose that there exists a late activity Ak such that Ak < Ai. We then
have Ak < Ai < Aj. Moreover, Ak was also late on the initial schedule. Consequently, k > i
because of the choice of i. This contradicts our hypothesis on the choice of the initial
schedule. �

Proposition C-5 allows us to define for each activity Ai the sets
• L(Ai) = {Aj | Ai < Aj} ∪ {Ai} and
• O(Ai) = {Aj | Aj < Ai} ∪ {Ai}.
In addition, for any pair (Ai, Aj) with i < j, the following constraint can be added:
(ri + pi > start(Aj) + pj) ∨ (start(Aj) > di – pi) ∨ (in(Aj) = 0) ∨ (in(Ai) = 1).
Arc-B-consistency is achieved on this new constraint. It allows to prove that some
activities must be late or on-time and it tightens the domains of the start variables.

C.4.1.3.2. Straight Scheduling Rule

We propose a simple dominance property which schedules automatically a set of activities
if they “fit” in a particular interval.

Proposition C-6.
Given a time-interval [t1, t2], let J(t1, t2) = {Ai ∉ L | t1 < di and ri < t2} be the set of activities that
may execute (even partially) in [t1, t2]. Moreover, suppose that there exists a feasible

139

schedule SJ of J(t1, t2) that is idle before t1 and after t2. Then there exists an optimal overall
schedule S such that between t1 and t2 the schedules S and SJ are identical.

Proof.
Obvious. �
Consider now any time point t1 and let J(t1) be the set of activities Ai that do not have to be
late and that can end after t1 (t1 < di). We use the following algorithm to look for a time-
point t2 that satisfies the conditions of Proposition C-6. In this algorithm, we assume that
J(t1) is not empty.

Algorithm C-1.
1 S = J(t1), t2 = max(t1, min({ru, Au ∈ S}))

2 stop = false, success = false

3 while (S ≠ ∅ and stop = false)

4 Select Ai in S with ri ≤ t2 and with di minimal

5 S = S – Ai, t2 = t2 + pi

6 if (di < t2)

7 stop = true

8 else if (t2 ≤ min({ru, Au ∈ S})

9 stop = true, success = true

10 end if

11 end while

At the end of Algorithm C-1, if the Boolean “success” is true, the conditions of
Proposition C-6 hold for the points (t1, t2). Indeed, all activities in J(t1) that can start
strictly before t2 are scheduled and do not end after their due date on this schedule (lines
6-10). These activities are exactly those in J(t1, t2). For a given value of t1, Algorithm C-1
runs in O(n2) since there are O(n) activities in S and since each time,
“min({ru, Au ∈ S}” has to be computed (line 8). Now remark that if t1 is not a due
date of an activity then J(t1 – 1, t2) = J(t1, t2) and a schedule that can fit in [t1, t2] can also
fit in [t1 - 1, t2]. Hence we decided to apply Algorithm C-1 for t1 = mini(ri) and for t1 in
{d1, d2, …, dn}. This leads to an overall complexity of O(n3).

C.4.1.3.3. Decomposition Rule

The basic idea of the decomposition is to detect some cases in which the problem can be
split into two sub-problems. Each of them being solved independently.

140

Proposition C-7.
Let t1 be a time point such that ∀ Ai ∉ L, either di ≤ t1 or t1 ≤ ri. Any optimal schedule is
the “sum” of an optimal schedule of {Ai ∉ L | di ≤ t1} and of an optimal schedule
of {Ai ∉ L | t1 ≤ ri}

Proof.
Obvious because activities of {Ai ∉ L | di ≤ t1} and of {Ai ∉ L | t1 ≤ ri} do not compete for
the machine. �
We only consider the values of t1 that are release dates (if the problem can be decomposed
at time t1, it is easy to verify that it can also be decomposed at the next release date
immediately after t1). There are O(n) distinct release dates and the decomposition test (at a
given time point) obviously runs in linear time. Consequently, the overall decomposition
test runs in O(n2).
Once the problem has been decomposed, the optimum of each sub-problem is computed,
and we simply have to verify that the sum of these optima is lower than or equal to N.

C.4.2. Experimental Results

Our implementation of the branch and bound is based on CLAIRE SCHEDULE [Le Pape and
Baptiste, 1997a]. To test the efficiency of our branch and bound procedure, instances of
the (1 | rj | ΣUj) have been generated. Our intuition is that one shall pay attention to at least
three important characteristics:
• The distribution of the processing times.
• The overall “load” of the machine; where the load is the ratio between the sum of the

processing times of the activities and (max di – min ri).
• The margin mi = di – ri – pi of each activity.
Our generation scheme is based on 4 parameters: The number of activities n and the three
statistical laws followed by the release dates, the processing times and the margins (given
ri, pi and mi, the due date can be immediately computed di = mi + ri + pi).
• Processing times are generated from the uniform distribution [pmin, pmax].
• Release dates are generated from the normal distribution (0, σ).
• Margins are generated from the uniform distribution [0, mmax]
Given these parameters and relying on the fact that most of the release dates are in [-2σ,
2σ], the load is approximately equal to (0.5 n (pmin + pmax)) / (4σ + pmax + mmax). Given n,
pmin, pmax, mmax and load, this allows us to determine a correct value of σ.
One instance has been generated for each of the 960 combinations of the parameters
(n, (pmin, pmax), mmax, load) in the Cartesian product

{10, 20, 40, 60, …, 140} * {(0, 100), (25, 75)} * {50, 100, …, 500} * {0.5, 0.8, … , 2.0}.

141

Table C-15 reports the results obtained for different values of n; each line corresponding
to 120 instances. The column “%” provides the percentage of instances that have been
solved within one hour of CPU time on a PC Dell OptiPlex GX Pro 200 MHz running
Windows NT. The columns “Avg CPU” and “Max CPU” report respectively the average
and the maximum CPU time in seconds required to solve the instances of each group (n =
10, n = 20, …, n = 140) that could be solved within the time limit. Figure C-8 illustrates
the (reasonable) loss of efficiency of our algorithm when the number of activities
increases. Instances are solved within a few amount of backtracks (35 backtracks on the
average for n = 60, 154 for n = 100 and 259 for n = 140). The extensive use of pruning
techniques can explain the good behavior of the algorithm. The large time spent per node
is of course the drawback of such an approach.
Throughout our experiments, we discovered that the efficiency of the algorithm varies
from one instance to another (which is not very surprising for an NP-complete problem).
To characterize, from an experimental point of view, the instances that our algorithm
found too hard to solve, we generated 25 instances of 60 activities for each combination of
the parameters (pmin, pmax) ∈ {(0, 100), (25, 75)}, mmax ∈ {25, 50, …, 500} and load ∈ {0.2, 0.3,

0.4, …, 2.2}. 5 minutes have been allotted to each instance. Figures C-9 and C-10 report the
average CPU time required to solve the different group of instances (for the 2% of
instances that could not be solved within the time limit, we decided to count 5 minutes
when computing the average CPU time). The study of Figures C-9 and C-10 leads us to
the following remarks:
• The tighter the processing time distribution is, the harder the instance is.
• The hardest instances seem to be those for which the load ratio is between 0.7 and 1.2

and when the margin parameter mmax varies in [275, 475] (for an average processing
time of 50).

• When the load ratio becomes very high, instances are quite easy. An hypothesis is that
the search tree becomes small (because very few activities can be on-time and thus
very few decisions have to be taken). Conversely, when the load ratio is very low,
instances are easy (because few activities are late on an optimal solution).

• When both load and mmax are low, the behavior of the algorithm is somewhat
surprising. Further investigations have shown that for these instances the number of
backtracks is kept very small but the time spent per node increases a lot. This is, we
think, a side-effect of our current implementation: The decomposition rule is likely to
be triggered very often for such instances. Hence, a large amount of (small and easy)
sub-problems are solved one after another. This is a source of inefficiency, because in
the current implementation, the data structures representing each sub-problem have to
be initialized at each decomposition.

142

n % Avg CPU Max CPU
 10 100.0 0.0 0.1
 20 100.0 0.2 0.7
 40 100.0 3.1 27.5
 60 100.0 23.2 184.5
 80 96.7 117.3 2903.2
100 90.0 273.5 2395.3
120 84.2 538.2 3263.4
140 72.5 1037.3 3087.8

Table C-15. Behavior of the algorithm for several sizes of instances

Figure C-8. Number of instances solved within a time limit in seconds

0

20

40

60

80

100

120

0 1000 2000 3000 4000

CPU (s)

Solved n = 80
n = 100
n = 120
n = 140

143

Figure C-9. The behavior of the algorithm on 60-activities instances with different
characteristics (parameters pmin and and pmax kept to 0 and 100).

Figure C-10. The behavior of the algorithm on 60-activities instances with different
characteristics (parameters pmin and and pmax kept to 25 and 75).

Avg CPU(s)

[0, 25)
[25, 50)
[50, 75)

[75, 100)

500

450

400

350

100

50

300

250

200

150

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1 load

mmax

400

350

300

250

200

150

100

50

1.
1

1.
3

1.
5

1.
7

0.
3

0.
5

0.
7

0.
9

1.
9

2.
1

500

450

load

mmax

Avg CPU(s)

[0, 25)
[25, 50)
[50, 75)

[75, 100)

144

The branch and bound procedure has also been tested on four sets of 160 instances
(instances with 80, 100, 120 and 140 jobs) generated by Stéphane Dauzère-Pérès and
Marc Sevaux. Table C-16 reports the results obtained on these sets by our procedure and
by the procedure described in [Dauzère-Pérès and Sevaux, 1998b]. Column n provides the
number of jobs in each of the sets of 160 instances. Columns “%” provide the percentage
of problems solved for both methods. A time limit of one hour (with a Pentium 200) has
been set on our procedures. The branch and bound of [Dauzère-Pérès and Sevaux, 1998b]
has been stopped after 100000 nodes (which corresponds to 1000 seconds on a SUN
UltraSparc workstation for instances with 140 jobs). The columns “Avg CPU”, “Avg
Bck” and “Avg Nds” report respectively the average CPU time, the average number of
backtracks and the average number of nodes used to solve the instances that could be
solved by both methods.
At this point several remarks can be made.
• In terms of number of instances solved, our procedure compares very well to the one

of [Dauzère-Pérès and Sevaux, 1998b].
• The search tree that we explore is far smaller than the one of [Dauzère-Pérès and

Sevaux, 1998b].
• On “easy” instances, our procedure is significantly slower as its competitor.
This can be explained by the high amount of propagation that is performed at each node of
our branch and bound. Given the theoretical complexity of the propagation algorithms, it
appears that even the generation of an initial solution (where no backtrack occurs) can be
costly. However, the extensive use of propagation allows us to solve hard instances in a
very few amount of nodes.

 [Baptiste et al., 1998c] [Dauzère-Pérès and Sevaux, 1998b]
n % Avg CPU Avg Bck % Avg CPU Avg Nds
80 100.0 20.7 14 95.0 7.0 1631
100 97.5 55.0 35 88.1 27.5 4353
120 98.1 98.0 17 82.5 21.4 2467
140 93.1 121.2 5 80.6 63.8 4557

Table C-16. A comparison of two branch and bound procedures on four sets of instances.

We have proposed a set of techniques, including global constraint propagation, to solve a
particular partial CSP. This is of course a first step and a lot of work remains to adapt and
to develop global constraints in over-constrained frameworks. In particular, we think that
a large part of our results can be extended to the cumulative case. Studying more general
situations where activities do not have the same importance (i.e., each activity has a
weight) or where some activities have several due dates (with a different weight for each
due date) is another exciting research direction.

145

Chapitre D. Conclusion (en français)

Nous avons présenté dans ce mémoire un ensemble original de techniques de propagation
de contraintes de ressources. Pour chaque type de ressource étudié, nous avons mené une
comparaison théorique et expérimentale des différents algorithmes de propagation.
• Dans le cas préemptif comme dans le cas des ressources surchargées, les outils

déductifs que nous avons mis en place sont totalement originaux et ouvrent aux
systèmes de programmation par contraintes de nouveaux champs d’application en
ordonnancement.

• Dans le cas cumulatif, les méthodes déductives que nous avons proposées reprennent
en partie des résultats de la littérature. Nous avons particulièrement porté notre effort
sur la caractérisation théorique de ces méthodes ainsi que sur leur coût algorithmique.
Nous avons aussi cherché à comparer ces méthodes à des calculs de bornes inférieures
classiques de Recherche Opérationnelle.

L’efficacité des algorithmes de propagation a été démontrée sur un ensemble de problèmes
classiques de Recherche Opérationnelle : la procédure arborescente pour le Job-Shop
préemptif résout toutes les instances de la littérature de taille 10*10. La méthode exacte
pour le RCPSP est particulièrement efficace sur un ensemble d’instances. Enfin, les
résultats que nous obtenons sur le problème de la minimisation du nombre de jobs en
retard sont les meilleurs connus à ce jour.
Il nous semble que les travaux présentés dans ce mémoire peuvent être prolongés dans
plusieurs directions.
• Notons tout d’abord que les contraintes de ressources que nous avons décrites dans

l’introduction n’ont pas encore toutes été étudiées. En particulier, nous n’avons que
peu travaillé sur les problèmes ayant à la fois une dimension préemptive et
cumulative : si certains des algorithmes de propagation que nous avons proposés
s’adaptent bien à ce cas, il n’en est pas de même des schémas de séparation. Pour ce
type de problème, il faut bien avouer que nous sommes quelque peu démuni. D’autre
part, il nous semble important de généraliser les résultats obtenus dans le cas d’une
machine surchargée au cas de m-machines surchargées, et, pourquoi pas, en intégrant
une notion de poids sur chaque activité.

• Malgré nos efforts, la complexité des algorithmes de propagation que nous proposons
reste élevée (quadratique dans le meilleur des cas). Si cette complexité ne pèse pas

146

d’un poids trop lourd sur nos méthodes de résolution lorsque les instances sont de
taille raisonnable, il est évident que sur des instances de grande taille, une telle
approche est déraisonnable. Il ne nous reste alors plus qu’à décomposer de façon
heuristique le problème en sous problèmes de tailles plus modestes… Vaste champ de
recherche !

Nous espérons poursuivre nos recherches sur les problèmes d’ordonnancement, à la
frontière entre Recherche Opérationnelle et Intelligence Artificielle. La synergie qui existe
entre ces disciplines permet de résoudre dans un cadre flexible des problèmes
d’ordonnancement complexes dont la taille augmente chaque jour.

147

Chapter D. Conclusion

Along this thesis, we have presented a set of original techniques for the propagation of
resource constraints. For each type of resource, a theoretical and experimental comparison
of the propagation algorithms, has been performed.
• Both for the preemptive case and for overloaded resources, the deductive tools that we

have proposed are fully original. They could allow constraint based scheduling tools to
tackle some new classes of problem.

• For the cumulative case, the deductive techniques that we have proposed are based
upon several results of the literature. We have tried to characterize theoretically these
techniques and we have paid much attention to the worst case complexities of the
algorithms.

The efficiency of the propagation algorithms has been proven on a set of classical
problems of the literature. Both for the preemptive Job-Shop and for the minimization of
the number of late jobs, our results outperform the other approaches (if any) of the
literature. Concerning the RCPSP, we have shown that the set of techniques proposed is
very efficient for a particular class of instances, namely the highly cumulative class.

Following this thesis, it seems to us that several research directions could be of great
interest:
• First, notice that all types of resource constraints described in the introduction have not

been studied along this thesis. In particular, almost no work has been performed on
problems that have both a cumulative and a preemptive dimension. Some propagation
algorithms proposed in this thesis apply well to such problems. However, one must
admit that it not the case for the branching schemes. On top of that, it seems to us that
it could be of great practical interest to generalize the results obtained on a disjunctive
overloaded resource to cumulative resources.

• Second, we have seen that, despite our efforts, the theoretical complexities of the
algorithms we propose remains high (at least quadratic). A direct consequence is that
when increasing the size of instances, such an approach becomes inefficient. The time
spent per node being too high. One way to tackle the whole problem is to decompose it
heuristically in several problems of reasonable sizes.... Wide research area!

148

We hope that we will be able to pursue our research on scheduling problems, at the border
line between Operations Research and Artificial Intelligence. We believe that the synergy
between these disciplines will allow us to solve larger and larger complex problems.

149

Bibliography

Abderrahmane Aggoun and Nicolas Beldiceanu [1993]. Extending CHIP in Order to
Solve Complex Scheduling and Placement Problems. Mathematical and Computer
Modelling, 17(7):57-73, 1993.

R. Alvarez-Valdès and J.M. Tamarit [1989]. Heuristic Algorithms for Resource-
Constrained Project Scheduling: A Review and an Empirical Analysis. Chapter 5 in
Advances in Project Scheduling, R. Slowinski and J. Weglarz editors, Elsevier, 1989.

David Applegate and William Cook [1991]. A Computational Study of the Job-Shop
Scheduling Problem. ORSA Journal on Computing, 3(2):149-156, 1991.

Kenneth R. Baker [1974]. Introduction to Sequencing and Scheduling. John Wiley and
Sons, 1974.

Philippe Baptiste [1994]. Constraint-Based Scheduling: Two Extensions. MSc Thesis,
University of Strathclyde, 1994.

Philippe Baptiste [1995]. Resource Constraints for Preemptive and Non-Preemptive
Scheduling. MSc Thesis, University Paris VI, 1995.

Philippe Baptiste [1998a]. An O(n4) Algorithm for Preemptive Scheduling of a Single
Machine to Minimize the Number of Late Jobs. Technical Report 98-98, Université de
Technologie de Compiègne, 1998.

Philippe Baptiste [1998b]. Polynomial Time Algorithms for Minimizing the Weighted
Number of Late Jobs on a Single Machine when Processing Times are Equal. Technical
Report 98-138, Université de Technologie de Compiègne, submitted, 1998

Philippe Baptiste, Yves Caseau, Tibor Kökény, Claude Le Pape and Robert Rodosek
[1998a]. Creating and Evaluating Hybrid Algorithms for Inventory Management
Problems. Proceedings of the Fourth National Meeting on Practical Approaches to
NP-Complete Problems, Nantes, France, 1998.

Philippe Baptiste and Claude Le Pape [1995a]. Disjunctive Constraints for Manufacturing
Scheduling: Principles and Extensions. Proceedings of the Third International Conference
on Computer Integrated Manufacturing, Singapore, 1995. Also in: International Journal of
Computer Integrated Manufacturing, 9(4):306-310, 1996.

150

Philippe Baptiste and Claude Le Pape [1995b]. A Theoretical and Experimental
Comparison of Constraint Propagation Techniques for Disjunctive Scheduling.
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence,
Montréal, Québec, 1995.

Philippe Baptiste and Claude Le Pape [1996a]. A Constraint-Based Branch and Bound
Algorithm for Preemptive Job-Shop Scheduling. Proceedings of the International
Workshop on Production Planning and Control, Mons, Belgium, 1996.

Philippe Baptiste and Claude Le Pape [1996b]. Edge-Finding Constraint Propagation
Algorithms for Disjunctive and Cumulative Scheduling. Proceedings of the Fifteenth
Workshop of the U.K. Planning Special Interest Group, Liverpool, United Kingdom,
1996.

Philippe Baptiste and Claude Le Pape [1997a]. Constraint Propagation and
Decomposition Techniques for Highly Disjunctive and Highly Cumulative Project
Scheduling Problems. Proceedings of the Third International Conference on Principles and
Practice of Constraint Programming, Schloss Hagenberg, Austria, published in Lecture
Notes of Computer Science 1330, Springer-Verlag, 1997.

Philippe Baptiste and Claude Le Pape [1997b]. Adjustments of Release and Due Dates for
Cumulative Scheduling Problems. Proceedings of the Third International Conference on
Industrial Engineering and Production Management, Lyon, France, 1997.

Philippe Baptiste, Claude Le Pape and Wim Nuijten [1995a]. Incorporating Efficient
Operations Research Algorithms in Constraint-Based Scheduling. Proceedings of the First
International Joint Workshop on Artificial Intelligence and Operations Research,
Timberline Lodge, Oregon, 1995.

Philippe Baptiste, Claude Le Pape and Wim Nuijten [1995b]. Constraint-Based
Optimization and Approximation for Job-Shop Scheduling. Proceedings of the AAAI-
SIGMAN Workshop on Intelligent Manufacturing Systems, IJCAI, Montréal, Québec,
1995.

Philippe Baptiste, Claude Le Pape and Wim Nuijten [1998b]. Satisfiability Tests and
Time-Bound Adjustments for Cumulative Scheduling Problems. Technical Report 98-97,
Université de Technologie de Compiègne, 1998. To appear in Annals of Operations
Research.

Philippe Baptiste, Claude Le Pape and Laurent Péridy [1998c]. Global Constraints for
Partial CSPs: A Case Study of Resource and Due-Date Constraints. To appear in the
Proceedings of the Fourth International Conference on Principles and Practice of
Constraint Programming, Pisa, Italy, 1998.

Nicolas Beldiceanu and Evelyne Contejean [1994]. Introducing Global Constraints in
CHIP. Mathematical and Computer Modelling, 20(12):97-123, 1994.

151

Christian Bessière, Eugene Freuder and Jean-Charles Régin [1995]. Using Inference to
Reduce Arc Consistency Computation. Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, Montréal, Québec, 1995.

Stefano Bistarelli, Ugo Montanari and Francesca Rossi [1995]. Constraint Solving over
Semirings. Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, Montréal, Québec, 1995.

Jacek Blazewicz, Wolfgang Domschke and Erwin Pesch [1996]. The Job-Shop Scheduling
Problem: Conventional and New Solution Techniques. European Journal of Operational
Research, 93(1):1-33, 1996.

Peter Brucker, Bernd Jurisch and Bernd Sievers [1994]. A Branch and Bound Algorithm
for the Job-Shop Scheduling Problem. Discrete Applied Mathematics, 49(1):107-127,
1994.

Peter Brucker [1995]. Scheduling Algorithms. Springer Lehrbuch, 1995.

Peter Brucker and Olaf Thiele [1996]. A Branch and Bound Method for the General-Shop
Problem with Sequence-Dependent Setup Times. OR Spektrum, 18:145-161, 1996.

Peter Brucker, Sigrid Knust, Arno Schoo and Olaf Thiele [1998]. A Branch and Bound
Algorithm for the Resource-Constrained Project Scheduling Problem. European Journal
of Operational Research, 107:272-288, 1998.

Peter Brucker, Svetlana A. Kravchenko and Yuri N. Sotskov [1999], Preemptive Job-Shop
Scheduling Problems with a Fixed Number of Jobs. To appear in ZOR-Mathematical
Methods of OR, first issue of 1999.

Jacques Carlier [1982]. The One-Machine Sequencing Problem. European Journal of
Operational Research, 11(1):42-47, 1982.

Jacques Carlier [1984]. Problèmes d'ordonnancement à contraintes de ressources :
algorithmes et complexité. Thèse de Doctorat d'Etat, Université Paris VI, 1984.

Jacques Carlier and Philippe Chrétienne [1988]. Problèmes d'ordonnancement :
Modélisation / Complexité / Algorithmes. Masson, 1988.

Jacques Carlier and Eric Pinson [1989]. An Algorithm for Solving the Job-Shop Problem.
Management Science, 35(2):164-176, 1989.

Jacques Carlier and Eric Pinson [1990]. A Practical Use of Jackson's Preemptive Schedule
for Solving the Job-Shop Problem. Annals of Operations Research, 26:269-287, 1990.

Jacques Carlier and Bruno Latapie [1991]. Une méthode arborescente pour résoudre les
problèmes cumulatifs. RAIRO Recherche Opérationnelle, 25(3):311-340, 1991.

152

Jacques Carlier and Eric Pinson [1994]. Adjustment of Heads and Tails for the Job-Shop
Problem. European Journal of Operational Research, 78(2):146-161, 1994.

Jacques Carlier and Eric Pinson [1996]. Jackson’s Pseudo-Preemptive Schedule for the
Pm/ri,qi/Cmax Scheduling Problem. Technical Report, Université de Technologie de
Compiègne, 1996.

Jacques Carlier and Emmanuel Néron [1996]. A New Branch and Bound Method for
Solving the Resource-Constrained Project Scheduling Problem. Proceedings of the
International Workshop on Production Planning and Control, Mons, Belgium, 1996.

Jacques Carlier and Emmanuel Néron [1998]. An Exact Method for Solving the Multi-
Processor Flow-Shop. Submitted to RAIRO, 1998.

Yves Caseau [1996]. Contraintes et algorithmes, petit précis d’optimisation combinatoire
pratique. Notes de cours du Magistère de Mathématiques Fondamentales et Appliquées et
d’Informatique, Ecole Normale Supérieure, 1996.

Yves Caseau and François Laburthe [1994]. Improved CLP Scheduling with Task
Intervals. Proceedings of the Eleventh International Conference on Logic Programming,
Santa Margherita Ligure, Italy, 1994.

Yves Caseau and François Laburthe [1995]. Disjunctive Scheduling with Task Intervals.
Technical Report, Ecole Normale Supérieure, 1995.

Yves Caseau and François Laburthe [1996a]. Cumulative Scheduling with Task Intervals.
Proceedings of the Joint International Conference and Symposium on Logic
Programming, Bonn, Germany, 1996.

Yves Caseau and François Laburthe [1996b]. CLAIRE: A Parametric Tool to Generate
C++ Code for Problem Solving. Working Paper, Bouygues, Direction Scientifique, 1996.

Amedeo Cesta and Angelo Oddi [1996]. Gaining Efficiency and Flexibility in the Simple
Temporal Problem. Proceedings of the Third International Workshop on Temporal
Representation and Reasoning, Key West, Florida, 1996.

Edward G. Coffman Jr. (editor) [1976]. Computer and Job-Shop Scheduling Theory. John
Wiley and Sons, 1976.

Yves Colombani [1996]. Constraint Programming: An Efficient and Practical Approach
to Solving the Job-Shop Problem. Proceedings of the Second International Conference on
Principles and Practice of Constraint Programming, Cambridge, Massachusetts, 1996.

Yves Colombani [1997]. Un modèle de résolution de contraintes adapté aux problèmes
d’ordonnancement : un prototype et une application. Thèse de l’Université de la
Méditerranée Aix-Marseille II, 1997.

153

Stéphane Dauzère-Pérès [1995]. Minimizing Late Jobs in the General One-Machine
Scheduling Problem. European Journal of Operational Research, 81:134-142, 1995.

Stéphane Dauzère-Pérès and Marc Sevaux [1998a]. Various Mathematical Programming
Formulations for a General One Machine Sequencing Problem. Rapport de recherche
98/3/AUTO, Ecole des Mines de Nantes, 1998.

Stéphane Dauzère-Pérès and Marc Sevaux [1998b]. A Branch and Bound Method to
Minimize the Number of Late Jobs on a Single Machine. Rapport de recherche
98/5/AUTO, Ecole des Mines de Nantes, 1998.

B. De Reyck and W. Herroelen [1995]. Assembly Line Balancing by Resource-
Constrained Project Scheduling Techniques: A Critical Appraisal. Technical Report,
Katholieke Universiteit Leuven.

Erik Demeulemeester [1992]. Optimal Algorithms for Various Classes of Multiple
Resource-Constrained Project Scheduling Problems. PhD Thesis, Katholieke Universiteit
Leuven, 1992.

Erik Demeulemeester and Willy Herroelen [1992]. A Branch and Bound Procedure for the
Multiple Resource-Constrained Project Scheduling Problem. Management Science,
38(12):1803-1818, 1992.

Erik Demeulemeester and Willy Herroelen [1995]. New Benchmark Results for the
Resource-Constrained Project Scheduling Problem. Technical Report, Katholieke
Universiteit Leuven, 1995.

Jacques Erschler [1976]. Analyse sous contraintes et aide à la décision pour certains
problèmes d'ordonnancement. Thèse de Doctorat d'Etat, Université Paul Sabatier, 1976.

Jacques Erschler, Pierre Lopez and Catherine Thuriot [1991]. Raisonnement temporel sous
contraintes de ressource et problèmes d'ordonnancement. Revue d'Intelligence
Artificielle, 5(3):7-32, 1991.

Patrick Esquirol [1987]. Règles et processus d'inférence pour l'aide à l'ordonnancement
de tâches en présence de contraintes. Thèse de l'Université Paul Sabatier, 1987.

Patrick Esquirol, Pierre Lopez, Hélène Fargier and Thomas Schiex [1995], Constraint
Programming. Belgian Journal of Operations Research, Special Issue Constraint
Programming, 35(2):5-36, 1995.

A. Federgruen and H. Groenevelt [1986]. Preemptive Scheduling of Uniform Machines by
Ordinary Network Flow Techniques. Management Science, 32(3):341-349, 1986.

154

Barry R. Fox [1990]. Chronological and Non-Chronological Scheduling. Proceedings of
the First Annual Conference on Artificial Intelligence, Simulation and Planning in High
Autonomy Systems, Tucson, Arizona, 1990.

S. French [1982]. Sequencing and Scheduling: An Introduction to the Mathematics of the
Job-Shop. John Wiley and Sons, 1982.

Eugene C. Freuder and Richard J. Wallace [1992]. Partial Constraint Satisfaction.
Artificial Intelligence, 58(1):21-70, 1992.

Michael R. Garey and David S. Johnson [1979]. Computers and Intractability. A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

Michel Gondran and Michel Minoux [1995]. Graphes et algorithmes. Eyrolles, 1995.

GOThA (Groupe d’Ordonnancement Théorique et Appliqué) Jacques Carlier, Philippe
Chrétienne, Jacques Erschler, Claire Hanen, Pierre Lopez, Alix Munier, Eric Pinson,
Marie-Claude Portmann, Christian Prins, Christian Proust, Pierre Villon, [1993]. Les
problèmes d'ordonnancement. RAIRO-Recherche Opérationnelle, 27(1):77-150, 1993.

Hiroshi Kise, Toshihide Ibaraki and Hisashi Mine [1978]. A Solvable Case of the One-
Machine Scheduling Problem with Ready and Due Times. Operations Research,
26(1):121-126, 1978.

Rainer Kolisch, Arno Sprecher and Andreas Drexel [1995]. Characterization and
Generation of a General Class of Resource-Constrained Project Scheduling Problems.
Management Science, 41(10):1693-1703, 1995.

François Laburthe, Pierre Savéant, Simon de Givry and Jean Jourdan [1998]. Eclair, a
library of constraints over finite domains. Technical Report ATS 98-2, Thomson CSF,
Corporate Research Lab, 1998.

E. L. Lawler [1990]. A Dynamic Programming Algorithm for Preemptive Scheduling of a
Single Machine to Minimize the Number of Late Jobs. Annals of Operations Research,
26:125-133, 1990.

Claude Le Pape [1988]. Des systèmes d'ordonnancement flexibles et opportunistes. Thèse
de l'Université Paris XI, 1988.

Claude Le Pape [1994]. Implementation of Resource Constraints in ILOG SCHEDULE: A
Library for the Development of Constraint-Based Scheduling Systems. Intelligent Systems
Engineering 3:55-66, 1994.

Claude Le Pape [1995]. Three Mechanisms for Managing Resource Constraints in a
Library for Constraint-Based Scheduling. Proceedings of the INRIA/IEEE Conference on
Emerging Technologies and Factory Automation, Paris, France, 1995.

155

Claude Le Pape [1996]. Constraint-Based Scheduling: Principles and Application.
Proceedings of the IEE Colloquium on Intelligent Planning and Scheduling Solutions,
London, United Kingdom, 1996.

Claude Le Pape and Philippe Baptiste [1996]. Constraint Propagation Techniques for
Disjunctive Scheduling: The Preemptive Case. Proceedings of the Twelfth European
Conference on Artificial Intelligence, Budapest, Hungary, 1996.

Claude Le Pape and Philippe Baptiste [1997a]. A Constraint Programming Library for
Preemptive and Non-Preemptive Scheduling. Proceedings of the Third International
Conference and Exhibition on the Practical Application of Constraint Technology,
London, United Kingdom, 1997.

Claude Le Pape and Philippe Baptiste [1997b]. An Experimental Comparison of
Constraint-Based Algorithms for the Preemptive Job-Shop Scheduling Problem.
Proceedings of the CP Workshop on Industrial Constraint-Directed Scheduling, CP,
Schloss Hagenberg, Austria, 1997.

Claude Le Pape and Philippe Baptiste [1998a]. Resource Constraints for Preemptive Job-
Shop Scheduling. Constraints, to appear.

Claude Le Pape and Philippe Baptiste [1998b]. Heuristic Control of a Constraint-Based
Algorithm for the Preemptive Job-Shop Scheduling Problem. Journal of Heuristics,
submitted.

Claude Le Pape and Philippe Baptiste [1998c]. Constraint-Based Scheduling: A
Theoretical Comparison of Resource Constraint Propagation Rules. Proceedings of the
ECAI98 Workshop on Non Binary Constraints, 1998.

Marie-Luce Lévy [1996]. Méthodes par décomposition temporelle et problèmes
d’ordonnancement. Thèse de l’Institut National Polytechnique de Toulouse, 1996.

Olivier Lhomme [1993]. Consistency Techniques for Numeric CSPs. Proceedings of the
Thirteenth International Joint Conference on Artificial Intelligence, Chambéry, France,
1993.

Hendrik C. R. Lock [1996]. An Implementation of the Cumulative Constraint. Working
Paper, University of Karlsruhe, 1996.

Pierre Lopez [1991]. Approche énergétique pour l'ordonnancement de tâches sous
contraintes de temps et de ressources. Thèse de l'Université Paul Sabatier, 1991.

Pierre Lopez, Jacques Erschler and Patrick Esquirol [1992]. Ordonnancement de tâches
sous contraintes : une approche énergétique. RAIRO Automatique, Productique,
Informatique Industrielle, 26(6):453-481, 1992.

156

Alan K. Mackworth [1977]. Consistency in Networks of Relations. Artificial Intelligence,
8:99-118, 1977.

Paul D. Martin and David B. Shmoys [1996]. A New Approach to Computing Optimal
Schedules for the Job-Shop Scheduling Problem. Proceedings of the Fifth Conference on
Integer Programming and Combinatorial Optimization, Vancouver, British Columbia,
1996.

A. A. Mastor [1970]. An Experimental Investigation and Comparative Evaluation of
Production Line Balancing Techniques. Management Science 16(11):728-746, 1970.

Roger Mohr and Thomas C. Henderson, [1986]. Arc and Path Consistency Revisited.
Artificial Intelligence, 28:225-233, 1986.

Ugo Montanari [1974], Network of Constraints: Fundamental Properties and Applications
to Picture Processing. Information Sciences, 7:95-132, 1974.

J. Michael Moore [1968]. An n Job, One Machine Sequencing Algorithm for Minimizing
the Number of Late Jobs. Management Science, 15(1):102-109, 1968.

Emmanuel Néron, Philippe Baptiste, Jacques Carlier and Claude Le Pape, [1998]. Global
Operations for the Multi-Processor Flow-Shop. Proceedings of the 6th international
workshop on project management and scheduling, 1998.

W. P. M. Nuijten, E. H. L. Aarts, D. A. A. Van Erp Taalman Kip and K. M. Van Hee
[1993]. Randomized Constraint Satisfaction for Job-Shop Scheduling. Proceedings of the
AAAI-SIGMAN Workshop on Knowledge-Based Production Planning, Scheduling and
Control, IJCAI, Chambéry, France, 1993.

W. P. M. Nuijten [1994]. Time and Resource Constrained Scheduling: A Constraint
Satisfaction Approach. PhD Thesis, Eindhoven University of Technology, 1994.

W. P. M. Nuijten and E. H. L. Aarts [1996]. A Computational Study of Constraint
Satisfaction for Multiple Capacitated Job-Shop Scheduling. European Journal of
Operational Research, 90(2):269-284, 1996.

Wim Nuijten and Claude Le Pape [1998]. Constraint-Based Job-Shop Scheduling with
ILOG SCHEDULER. Journal of Heuristics, 3(4):271-286, 1998.

James H. Patterson [1984]. A Comparison of Exact Approaches for Solving the Multiple
Constrained Resource Project Scheduling Problem. Management Science, 30(7):854-867,
1984.

Mike Pegman, Nigel Forward, Brett King and Dave Teal [1997]. Mine Planning and
Scheduling at RTZ Technical Services. Proceedings of the Third International Conference
and Exhibition on the Practical Application of Constraint Technology, London, United
Kingdom, 1997.

157

Laurent Péridy [1996]. Le problème de job-shop : arbitrages et ajustements. Thèse de
l’Université de Technologie de Compiègne, 1996.

Laurent Péridy, Philippe Baptiste and Eric Pinson, [1998]. Branch and Bound Method for
the Problem 1 | ri | ΣUi. Proceedings of the 6th international workshop on project
management and scheduling, 1998.

Michael Perregaard [1995]. Branch and Bound Methods for the Multi-Processor Job-Shop
and Flow-Shop Scheduling Problems. MSc Thesis, University of Copenhagen, 1995.

Eric Pinson [1988]. Le problème de job-shop. Thèse de l'Université Paris VI, 1988.

Marie-Claude Portmann, Antony Vignier, David Dardilhac and David Dezalay [1997].
Branch and Bound Crossed with G.A. to Solve Hybrid Flowshop. European Journal of
Operational Research, to appear, 1997.

Patrick Prosser, [1993]. Hybrid Algorithms for the Constraint Satisfaction Problem,
Computational intelligence 9(3):268-299, 1993.

Jean-François Puget [1994]. A C++ Implementation of CLP. Technical Report, ILOG
S.A., 1994.

Jean-François Puget and Michel Leconte [1995]. Beyond the Glass Box: Constraints as
Objects. Proceedings of the Twelfth International Symposium on Logic Programming,
Portland, Oregon, 1995.

Jean-Charles Régin [1994]. A Filtering Algorithm for Constraints of Difference in CSPs.
Proceedings of the Twelfth National Conference on Artificial Intelligence, Seattle,
Washington, 1994.

Jean-Charles Régin [1995]. Développement d’outils algorithmiques pour l’intelligence
artificielle. Application à la chimie organique. Thèse de l’Université Montpellier II, 1995.

Jean-Charles Régin [1996]. Generalized Arc-Consistency for Global Cardinality
Constraint. Proceedings of the Thirteenth National Conference on Artificial Intelligence,
Portland, Oregon, 1996.

Jean-Charles Régin and Jean-François Puget [1997]. A Filtering Algorithm for Global
Sequencing Constraints. Proceedings of the Third International Conference on Principles
and Practice of Constraint Programming, Schloss Hagenberg, Austria, 1997.

Thomas Schiex, Hélène Fargier and Gérard Verfaillie [1995]. Valued Constraint
Satisfaction Problems: Hard and Easy Problems. Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence, Montréal, Québec, 1995.

158

Stephen F. Smith [1994]. OPIS: A Methodology and Architecture for Reactive Scheduling.
In: Monte Zweben and Mark Fox (editors), "Intelligent Scheduling," Morgan Kaufmann,
1994.

Stephen F. Smith and Cheng-Chung Cheng [1993]. Slack-Based Heuristics for Constraint
Satisfaction Scheduling. Proceedings of the Eleventh National Conference on Artificial
Intelligence, Washington, District of Columbia, 1993.

Pascal Van Hentenryck, Yves Deville and C. M. Teng [1992]. A General Arc-Consistency
Algorithm and its Specializations. Artificial Intelligence, 57(3):291-321, 1992.

Christophe Varnier, Pierre Baptiste and Bruno Legeard [1993]. Le traitement des
contraintes disjonctives dans un problème d'ordonnancement : exemple du Hoist
Scheduling Problem. Deuxièmes journées francophones de programmation logique,
Nîmes et Avignon, France, 1993.

Antony Vignier, [1997]. Contribution à la résolution des problèmes d’ordonnancement de
type monogamme, multimachine (“Flow-Shop hybride”). Thèse de l’université de Tours,
1997.

Monte Zweben, Eugene Davis, Brian Daun and Michael J. Deale [1993]. Scheduling and
Rescheduling with Iterative Repair. IEEE Transactions on Systems, Man, and
Cybernetics, 23(6):1588-1596, 1993.

159

Appendix 1. Summary of notations

Given an integer constrained variable x,
• d(x) denotes the domain of x,
• lb(x) denotes the minimal value in d(x),
• ub(x) denotes the maximal value in d(x).
Given an activity Ai,
• start(Ai) denotes the constrained variable that represents the start time of Ai,
• end(Ai) denotes the constrained variable that represents the end time of Ai,
• processingTime(Ai) denotes the constrained variable that represents the processing

time of activity Ai,
• W(Ai, t) is an implicit 0-1 constrained variable representing fact that Ai executes at

time t (when Ai cannot be interrupted, W(Ai, t) = (start(Ai) ≤ t) ∧ (t < end(Ai))),
• set(Ai) is a set variable that represents the set of time points at which Ai executes,
• in(Ai) is a binary constrained variable representing the fact that Ai is performed on the

resource or not,
• ri denotes the release date of activity Ai, i.e., ri = lb(start(Ai)),
• di denotes the deadline of activity Ai, i.e., di = ub(end(Ai)),
• lsti = ub(start(Ai)), denotes the upper bound of the start time variable, i.e., the latest

start time of Ai,
• eeti = lb(end(Ai)), denotes the lower bound of the end time variable, i.e., the earliest

end time of Ai,
• pi denotes the processing time of the activity Ai, i.e., pi = lb(processingTime(Ai)) (in

general, processingTime(Ai) is bound, and thus pi is exactly equal to
processingTime(Ai)),

• wi denotes the weight that is associated to the activity Ai.
Given a set of activities Ω,
• rΩ denotes the smallest release date among release dates in Ω,
• dΩ denotes the largest deadline among deadlines in Ω,
• pΩ denotes the sum of the processing times of activities in Ω.
Given a resource R,

160

• capacity(R) denotes the constrained variable that represents the capacity of R, i.e., the
number of parallel identical machines that are available in R,

• capacity(R, t) denotes the constrained variable that represents the capacity of the
resource R available at time t (such variables are useful to model a variable profile of
a resource),

• CR denotes the maximal capacity available, i.e., CR = ub(capacity(R)),
• reject(R) denotes the number of activities of the resource that can be sub-contracted.
Given an activity Ai and a resource R,
• capacity(Ai, R) denotes the constrained variable that represents the amount of resource

R required by activity Ai.
• ci,R denotes the minimal amount of the capacity of the resource required by the

activity, i.e., ci,R = lb(capacity(Ai, R)),
• in(Ai, R) denotes the binary variable that states whether the activity Ai is performed on

the resource or not.
When a single resource is considered, the name of the resource R is omitted, i.e.,
capacity(R, t) = capacity(t), C = CR, capacity(Ai, R) = capacity(Ai), and ci = ci,R.

161

Appendix 2. Minimizing the weighted
number of late jobs to be preemptively
scheduled on a single machine, when

processing times are equal

Given a set of weighted jobs, with release dates and due dates, the problem of minimizing
the weighted number of late jobs that can be preemptively scheduled on a single machine
is NP-hard. However, it is shown in [Lawler, 1990] that this problem, denoted as the (1 |
rj, pmtn | Σwj Uj), is solvable in O(n3W2), where W denotes the sum of the weights. This
result leaves a question open: Is there a polynomial time algorithm when all processing
times are equal (∀ i, pi = p). We answer affirmatively and we provide an O(n10) dynamic
programming algorithm14.

From now on, we suppose that jobs are sorted in increasing order of due dates. We first
introduce Jackson Preemptive Schedule and some notation. Afterwards, we provide the
proposition that is the basis of our programming algorithm.

Definition.
Let Θ = {t such that ∃ ri, ∃ l ∈ {0, ... , n} | t = ri + l * p}. �
The time points in Θ play a particular role in the structure of optimum schedules. In the
following, we note Θ = {t1, t2, ..., tq} the ordered set of distinct time-points in Θ. Recall
that q ≤ n2.

Definition.
The Jackson Preemptive Schedule (JPS) of a set of jobs O is the preemptive schedule
obtained by applying the Earliest Due Date priority dispatching rule: whenever the
machine is free and one job in O is available, schedule the job Ji ∈ O for which di is the
smallest. If a job Jj becomes available while Ji is in process, stop Ji and start Jj if dj < di,
otherwise continue Ji. �

14 The result presented in this Appendix come from [Baptiste, 1998b].

162

Jackson Preemptive Schedule has several interesting properties (e.g., [Carlier, 1984]). In
particular, if a job is scheduled on JPS after its due date, there is no feasible preemptive
schedule of the set of jobs. Hence, searching for a schedule on which the weighted number
of late jobs is minimal, reduces to finding a set whose weight is maximal and that is
feasible, i.e., whose JPS is feasible.

Proposition Ap2-1.
For any subset of jobs S, the start and end times of the jobs on the JPS of S belong to the
set Θ.

Proof (sketch).
We first prove that the end time of a job on the JPS of S belongs to Θ. Let Jk be any job
and let s and e be respectively its start and end times on JPS. Let t be the minimal time
point such that between t and s JPS is never idle. Because of the structure of JPS, t is a
release date, say rx. The jobs that execute (even partially) between s and e execute neither
before s nor after e (because Jackson Preemptive schedule is based upon the EDD rule).
Thus e – s is a multiple of p. Two cases can occur:
• Either Jk causes an interruption and hence s = rk.
• Or Jk does not cause any interruption and hence the jobs that execute between rx and s,

are fully scheduled in this interval. Consequently, s – t is a multiple of p.
In both cases, there is a release date ry (either rk or rx) such that between ry and e, JPS is
never idle and such that e is equal to ry modulo p. On top of that, the distance between ry
and e is not greater than n * p (because JPS is not idle). Hence, e ∈ Θ.
Now consider the start time of any job on JPS. This time point is either the release date of
the job or is equal to the end time of the “previous” one. Thus, start times also belong
to Θ. �

Definition.
For any time points tu, tv in Θ with u < v and any for integer value k such that 1 ≤ k ≤ n,
• let Uk(tu, tv) = {Ji | i ≤ k and tu ≤ ri < tv} (as for the non-preemptive case),
• for any m such that 1 ≤ m ≤ n, let Wk(tu, tv, m) be the weight of the subset S ⊆ Uk(tu, tv)

of m jobs such that, (1) the JPS of S is feasible and ends before tv and (2) its weight is
maximal. If there is no such subset, Wk(tu, tv, m) is arbitrarily set to -∞. �

163

Proposition Ap2-2. (cf., Figure Ap2-1)
For any time points tu, tv in Θ with u < v and any integer values k and m such that 1 < k ≤ n
and 1 ≤ m ≤ n, Wk(tu, tv, m) is equal to Wk-1(tu, tv, m) if rk ∉ [tu, tv) and to the expression
above otherwise:
max(Wk-1(tu, tv, m),

xy

vkyxuk
yx

ttmp
mmmm

tdtttr
tt

−=+
−=++

≤<≤
Θ∈

)1(*
,1

),min(),max(
, ,

2
321

max (Wk-1(tu, tx, m1) + Wk-1(tx, ty, m2) + Wk-1(ty, tv, m3)) + wk)

Proof.
Let W’ be the expression above. It is obvious that if rk ∉ [tu, tv), Wk(tu, tv, m) is equal to
Wk-1(tu, tv, m). In the following, we suppose that rk ∈ [tu, tv).

We first prove that W’ ≤≤≤≤ Wk(tu, tv, m).
• Consider the case where W’ = Wk-1(tu, tv, m). Since Uk-1(tu, tv) ⊆ Uk(tu, tv), we have

W’ ≤ Wk(tu, tv, m).
• Consider now the case where there exist tx ∈ Θ, ty ∈ Θ and 3 integers m1, m2, m3 such that

�� max(rk, tu) ≤ tx < ty ≤ min(dk, tv),
�� m1 + m2 + m3 = m -1
�� p * (m2 + 1) = ty – tx,
�� W’ = Wk-1(tu, tx, m1) + Wk-1(tx, ty, m2) + Wk-1(ty, tv, m3)) + wk.

Obviously, the subsets Uk-1(tu, tx), Uk-1(tx, ty) and Uk-1(ty, tv) do not intersect. Thus, the
JPS schedules of the subsets that realize Wk-1(tu, tx, m1), Wk-1(tx, ty, m2) and Wk-1(ty, tv, m3),
put one after another define a valid overall schedule of a set of m – 1 jobs taken in
Uk-1(tu, tv). Moreover, between tx and ty there is enough space to schedule Jk since m2

tu tv tx ty

J

time

Schedule
corresponding to

W (t t m)

Schedule
corresponding to

W (t t m)

Schedule
corresponding to

W (t t m)

Figure Ap2-1. Illustration of Proposition Ap2-2

164

jobs in Uk-1(tx, ty) are scheduled and since p * (m2 + 1) = ty – tx. As a consequence, we have
W’ ≤ Wk(tu, tv, m).

We now prove that Wk(tu, tv, m) ≤≤≤≤ W’.
We only consider the case where Wk(tu, tv, m) is finite otherwise the result holds. Consider
a set S that realizes Wk(tu, tv, m). If Jk does not belong to S then
Wk(tu, tv, m) = Wk-1(tu, tv, m) ≤ W’. Suppose now that Jk ∈ S. Let tx and ty be the start and end
times of Jk on the JPS of S. Thanks to Proposition Ap2-1, tx ∈ Θ and ty ∈ Θ. We also have
max(rk, tu) ≤ tx < ty ≤ min(dk, tv). Let S1, S2, S3 be the partition of S- {Jk} into the jobs that have
a release date between tu and tx, between tx and ty and between ty and tv. Because of the
structure of JPS (Jk is the job whose due date is maximal), all jobs in S1 are scheduled
before tx. Moreover, all jobs in S2 are scheduled after tx and before ty, and all jobs in S3 are
scheduled before tv. On top of that, p * (|S2| + 1) = ty – tx because Jk is also scheduled between
tx and ty. Moreover, we have |S1| + |S2| + |S3| + 1 = m. Finally the weight of S1 is not greater
than Wk-1(tu, tx, |S1|), the weight of S2 is not greater than Wk-1(tx, ty, |S2|) and the weight of S3
is not greater than Wk-1(ty, tv, |S3|). This leads to Wk(tu, tv, m) ≤ W’. �

Our dynamic programming algorithm relies on the above proposition. The values of
Wk(tu, tv, m) are stored in a multi-dimensional array of size O(n6) (n possible values for k, n2
possible values for tu, n2 possible values for tu, and n possible values for m).
• In the initialization phase the value of W1(tu, tv, m) is set to w1 if m = 1 and if p is not

greater than min(d1, tv) - max(r1, tu) and to -∞ otherwise.
• We then iterate from k = 2 to k = n. Each time, Wk is computed for all the possible

values of the parameters thanks to the formula of Proposition Ap2-2 and to the values
of Wk-1 computed at the previous step.

The maximum weighted number of on-time jobs is equal to:
max(Wn(min(ti), max(ti), 1), Wn(min(ti), max(ti), 2), ..., Wn(min(ti), max(ti), n)).

The overall complexity of the algorithm is O(n5) for the initialization phase. For each
value of k, O(n5) values of Wk have to be computed. For each of them, a maximum among
O(n4) terms has to be computed (for given values of tx, m1 and m2, there is only one
possible value for both ty and m3). This leads to an overall time complexity of O(n10). A
rough analysis of the space complexity leads to an O(n6) bound but since, at each step of
the outer loop on k, one only needs the values of W computed at the previous step (k-1),
the algorithm can be implemented with 2 arrays of O(n5) size (one for the current values
of W and one for the previous value of W).

165

Appendix 3. Minimizing the weighted
number of late jobs to be scheduled on a
single machine, when processing times

are equal

Since when a job is late, it can be scheduled arbitrarily late, the problem reduces to finding
a set of jobs (1) that is feasible, i.e., for which there exists a schedule that meets release
dates and due dates and (2) whose weight is maximal. From now on, we suppose that jobs
are sorted in increasing order of due dates. We first introduce some notation and then
provide the proposition that is the basis of our dynamic programming algorithm15.

Definition.
Let Θ = {t such that ∃ ri, ∃ l ∈ {0, ... , n} | t = ri + l * p}. �
Notice that there are at most n2 values in Θ.

Proposition Ap3-1.
On any left-shifted schedule (i.e., on any schedule on which jobs start either at their
release date or immediately after another job), the starting times of jobs belong to Θ.

Proof.
Let Jk be any job. Let t be the largest time point before the start time of Jk at which the
machine is idle. Since the schedule is left-shifted, t is a release date, say ri. Between ri
and the starting time of Jk, l jobs execute (0 ≤ l ≤ n). Hence the starting time of Jk belongs
to Θ. �
Since any schedule can be left-shifted, Proposition Ap3-1 induces a simple dominance
property: There is an optimal schedule on which jobs start at time points in Θ.

15 The result presented in this Appendix come from [Baptiste, 1998b].

166

Definition.
• For any integer k ≤ n, let Uk(s, e) be the set of jobs whose index is lower than or equal

to k and whose release date is in the interval [s, e).
• Let Wk(s, e) be the maximal weight of a subset of Uk(s, e) such that there is a feasible

schedule S of these jobs such that
�� S is idle before time s + p,
�� S is idle after time e,
�� starting times of jobs on S belong to Θ.

Notice that if the subset of Uk(s, e) is empty, Wk(s, e) is equal to 0. �

Figure Ap3-1. Illustration of Proposition Ap3-2

Proposition Ap3-2. (cf., Figure Ap3-1)
For any value of k in [1, n] and for any values s, e with s ≤ e, Wk(s, e) is equal to Wk-1(s, e)
if rk ∉ [s, e) and to the following expression otherwise:

max(Wk-1(s, e),

pedspsr
s

kk −≤≤+
Θ∈

),min('),max(
 '

max (wk + Wk-1(s, s’) + Wk-1(s’, e))).

Proof (sketch).
Let W’ be the expression above. If rk ∉ [s, e), the result obviously holds since
Uk(s, e) = Uk-1(s, e). We now consider the case where rk ∈ [s, e).

We first prove that W’ ≤≤≤≤ Wk(s, e).
• If W’ = Wk-1(s, e) then we obviously have, W’ = Wk-1(s, e) ≤ Wk(s, e).
• If there is a value s’ in Θ such that max(rk, s + p) ≤ s’ ≤ min(dk, e) - p and such that

W’ = wk + Wk-1(s, s’) + Wk-1(s’, e). Let X and Y be two subsets that realize respectively Wk-

1(s, s’) and Wk-1(s’, e). Because of the definition of W, the sets X and Y are disjoint and
moreover, there exists a feasible schedule of X that fits in [s + p, s’] and there exists a
feasible schedule of Y that fits in [s’ + p, e]. Thus, X ∪ Y ∪ {Jk} is a set whose weight is
W’ and there is a schedule of the jobs in this set that does not start before s + p and that

s e s s + p s' s' + p

Schedule
corresponding to

Wk-1(s, s’)

Schedule
corresponding

to Wk-1(s', e)

Jk

Idle
time

time

Idle
time

167

ends before e (take the schedule of X, schedule Jk at time s’ and add the schedule of Y).
On top of that, starting times belong to Θ. Hence, W’ ≤ Wk(s, e).

We now prove that Wk(s, e) ≤≤≤≤ W’.
Let Z be the subset that realizes Wk(s, e). If Jk does not belong to Z then Wk(s, e) = Wk-1(s,
e) ≤ W’. Now suppose that Jk belongs to Z. According to the definition of Wk(s, e), there is
a schedule S of Z that fits in [s + p, e] on which starting times belong to Θ.
We claim that we can suppose that on S, the jobs executed after Jk are not available when
Jk starts (i.e., their release date is strictly greater than the start time of Jk). To justify our
claim, we show how S can be modified to reach this property: Suppose that there is a job Ji
that starts after Jk and that is available at the time where Jk starts. Let then f(S) be the
schedule obtained by exchanging the positions of Ji and Jk. Because di ≤ dk and because
processing times are equal, the resulting schedule is feasible. Notice that each time f is
applied, the position of Jk strictly increases and that the idle time intervals of the resource
remain the same. Thus, f can be applied a limited number of times only. The resulting
schedule is feasible and the jobs executed after Jk are not available at the starting time of
Jk. On top of that the overall set of starting times has not been modified.
Let us examine the partition induced by the starting time s’ of Jk.
• The jobs scheduled before s’, belong to Uk-1(s, s’) and their total weight is lower than

or equal to Wk-1(s, s’).
• The jobs scheduled after Jk belong to Uk-1(s’, e) and their total weight is lower than or

equal to Wk-1(s’, e).
• The weight of Jk is wk.
Moreover s’ is in Θ because it is a starting time and max(rk, s + p) ≤ s’ ≤ min(dk, e) – p.
Hence, the weight of the set Z is lower than or equal to W’. �
Given the dominance property induced by Proposition Ap3-1, the maximum weighted
number of on-time jobs is Wn(min Θ – p, max Θ). Thanks to Proposition Ap3-2, we have a
straight dynamic programming algorithm to compute this value. The relevant values for s
and e are exactly those in Θ (plus min Θ – p for s). The values of Wk(s, e) are stored in a
multi-dimensional array of size O(n5) (n possible values for k, n2 possible values for s and
n2 possible values for e). Our algorithm then works as follows.
• In the initialization phase, W0(s, e) is set to 0 for any values s, e (s ≤ e) in Θ .
• We then iterate from k = 1 to k = n. Each time, Wk is computed for all the possible

values of the parameters thanks to the formula of Proposition Ap3-2 and to the values
of Wk-1 computed at the previous step.

168

The initialization phase can be done in O(n4). Afterwards, for each value of k, O(n4) values
of Wk have to be computed. For each of them, a maximum among O(n2) terms is
computed. This leads to an overall time complexity of O(n7). A rough analysis of the
space complexity leads to an O(n5) bound but since, at each step of the outer loop on k,
one only needs the values of W computed at the previous step (k-1), the algorithm can be
implemented with 2 arrays of O(n4) size (one for the current values of W and one for the
previous values of W).

	Remerciements
	Table of Contents
	REMERCIEMENTS	2
	Chapitre A. Introduction (en français)
	A.1.		Programmation par Contraintes
	A.2. 	Recherche Opérationnelle et Programmation par Contraintes
	A.3. 	L’Ordonnancement
	A.3.1.	Représentation des Activités et des Ressources
	A.3.2.	Contraintes Temporelles et Contraintes de Ressources
	A.3.3.	Des Problèmes Classiques d’Ordonnancement

	A.4. 	Résumé des Résultats et Plan de la Thèse

	Chapter A. Introduction
	A.1. 	Constraint Programming
	A.2. 	Incorporating Efficient O.R. Algorithms in Constraint-Based Systems
	A.3. 	Scheduling
	A.3.1.	Representation of Activities and Resources
	A.3.2.	Temporal and Resources-Constraints
	A.3.3.	Modeling some Classical Scheduling Problems

	A.4. 	Summary of Results and Outline of the Thesis

	Chapter B. Propagation of Resource Constraints
	B.1.		The Non-Preemptive Disjunctive Case
	B.1.1.	Time-Table Constraint
	B.1.2.	Disjunctive Constraint Propagation
	B.1.3.	Edge-finding
	B.1.4.	Not-First, Not-Last

	B.2.		The Preemptive Disjunctive Case, the Mixed Case
	B.2.1.	Time-Table Constraint
	B.2.2.	Disjunctive Constraint Propagation
	B.2.3.	Network-Flow based Constraints
	B.2.4.	Edge-Finding

	B.3.		The Cumulative Case
	B.3.1.	Necessary Conditions for the Existence of a Feasible Schedule
	B.3.1.1.	A Necessary and Sufficient Condition of existence for the Fully Elastic€CuSP
	B.3.1.2.	A Necessary and Sufficient Condition of existence for the Partially Elastic CuSP
	B.3.1.2.1.	Jackson’s Partially Elastic Schedule
	B.3.1.2.2.	Energetic Reasoning
	B.3.1.2.3.	A Quadratic Algorithm

	B.3.1.3.	A “Left˚Shift€/€Right˚Shift” Necessary Condition of existence for the€CuSP€€€
	B.3.1.3.1.	Characterization of relevant and irrelevant intervals
	B.3.1.3.2	A Quadratic Algorithm

	B.3.1.4.	Synthesis of Theoretical Results

	B.3.2.	Time-Bound Adjustments for the CuSP
	B.3.2.1. Time-Bound Adjustments for the Fully Elastic CuSP
	B.3.2.2. Time-Bound Adjustments for the CuSP Based on the Partially Elastic Relaxation
	B.3.2.2.1. Resolution of P1 for all i
	B.3.2.2.2. Resolution of P2 for all i

	B.3.2.3. “Left˚Shift€/€Right˚Shift” Time-Bound Adjustments for the CuSP
	B.3.2.4. Synthesis of Theoretical Results

	B.4.		Over-loaded Resources
	B.4.1. 	Lower Bound Computation
	B.4.1.1.	The Preemptive Lower Bound
	B.4.1.1.1. Reformulation of the Problem
	B.4.1.1.2. Some Fundamental Properties
	B.4.1.1.3. Overall Algorithm
	B.4.1.1.4. Minimizing the Weighted Number of Late Activities

	B.4.1.2.	The Relaxed Preemptive Lower Bound

	B.4.2. 		Resource Constraint Propagation
	B.4.2.1.	Late Activity Detection
	B.4.2.2.	On-Time Activity Detection

	Chapter C. Problem Solving and Experimental Results
	C.1.		The Job-Shop Scheduling Problem
	C.2.		The Preemptive Job-Shop Scheduling Problem
	C.2.1.	A dominance property
	C.2.2.	Branching scheme
	C.2.3.	Experimental Results

	C.3.		The Resource-Constrained Project Scheduling Problem.
	C.3.1.	General Framework
	C.3.2.	Constraint Propagation
	C.3.3.	Dominance Rules
	C.3.3.	Experimental Results

	C.4.		Minimizing the Number of Late Activities on a Single Machine
	C.4.1.	Search Strategy
	C.4.1.1.	Activity Selection
	C.4.1.2.	Solving the One-Machine Problem
	C.4.1.3.	Dominance Properties
	C.4.1.3.1.	Dominance of Small Activities with Large Time-Windows
	C.4.1.3.2.	Straight Scheduling Rule
	C.4.1.3.3.	Decomposition Rule

	C.4.2.	Experimental Results

	Chapitre D. Conclusion (en français)
	Chapter D. Conclusion
	Bibliography
	Appendix 1. Summary of notations
	Appendix 2. Minimizing the weighted number of late jobs to be preemptively scheduled on a single machine, when processing times are equal
	Appendix 3. Minimizing the weighted number of late jobs to be scheduled on a single machine, when processing times are equal

