Université de Technologie de Compiegne, UMR CNRS 6599 HEUDIASYC

UNE ETUDE THEORIQUE ET EXPERIMENTALE DE LA
PROPAGATION DES CONTRAINTES DE RESSOURCES

A THEORETICAL AND EXPERIMENTAL STUDY OF RESOURCE
CONSTRAINT PROPAGATION

These soutenue le 30 octobre 1998, dans la spéciaité Controle Des Systémes, par
Monsieur Philippe Baptiste, ingénieur civil des Mines de Nancy, pour I'obtention du grade

de Docteur de I'UTC, devant le jury composé de :

Mademoiselle Marie-Claude Portmann

Monsieur Peter Brucker
Monsieur Marc Bui
Monsieur Jacques Carlier

Monsieur Y ves Caseau
Monsieur Claude Le Pape
Monsieur Wim Nuijten

(Présidente)
(Rapporteur)

(Directeur de These)

Monsieur Eric Pinson (Rapporteur)
Monsieur Pierre Villon
P AL i Violations
rd Ao A : T\
As Ao Ar Ag A

UNE ETUDE THEORIQUE ET
EXPERIMENTALE DE LA PROPAGATION
DES CONTRAINTES DE RESSOURCES

A THEORETICAL AND EXPERIMENTAL STUDY OF RESOURCE
CONSTRAINT PROPAGATION

These soutenue le 30 octobre 1998 devant e jury composé de :

Mademoiselle Marie-Claude Portmann (Présidente)
Monsieur Peter Brucker (Rapporteur)
Monsieur Marc Bui

Monsieur Jacques Carlier (Directeur de These)
Monsieur Y ves Caseau

Monsieur Claude Le Pape

Monsieur Wim Nuijten

Monsieur Eric Pinson (Rapporteur)

Monsieur Pierre Villon

Remerciements

Je tiens aremercier Monsieur Jacques Carlier, Professeur al’ Université de Technologie de
Compiégne, qui m’'a encadré tout au long de cette these et qui m’'a fait partager ses
brillantes intuitions. Qu'il soit aussi remercié pour sa gentillesse, sa disponibilité
permanente et pour les nombreux encouragements qu’il m'’ a prodiguée.

Je remercie Monsieur Claude Le Pape, directeur du département de Recherche et de
Développement de Bouygues-Telecom. Cette these est |e fruit d’ une collaboration de plus
de cing années avec lui. C'est a ses cotés que j'ai compris ce que rigueur et précision
voulaient dire.

J adresse tous mes remerciements a Monsieur Peter Brucker, Professeur a I’Université
d’ Osnabriick, ains qu'a Monsieur Eric Pinson, Professeur a I’ Institut de Mathématiques
Appliquées d Angers, de I’honneur gu’ils m'ont fait en acceptant d’ étre rapporteurs de
cette these.

Mademoiselle Marie-Claude Portmann, Professeur des Universités al’ Ecole des Mines de
Nancy, m'a non seulement initié a la Recherche Opérationnelle et a la théorie de
I’ ordonnancement lorsque j’ étais de ses éléves, mais elle ma aussi prodigué de nombreux
conseils pour bien débuter le troiseme cycle universitaire dont cette these est
I’ accomplissement. Qu’ elle en soit remerciée.

J exprime ma gratitude a Monsieur Marc Bui et a Monsieur Pierre Villon, Professeurs a
I’ Université de Technologie de Compiegne, qui ont bien voulu étre examinateurs.

Je tiens auss a remercier Monsieur Yves Caseau, Directeur de la Direction des
Technologies Nouvelles du groupe Bouygues et Professeur associé a I'ENS, qui m'a
accueilli pendant deux ans au sein de son laboratoire. C'est gréace alui quej’a pu concilier
avec bonheur recherche théorique et appliquée pendant cette thése.

Merci aussi a Monsieur Wim Nuijten, responsable du dével oppement de ILOG SCHEDULER,
dont les thémes de recherche ont fortement inspiré cette thése.

Enfin, je tiens a remercier tous les membres de la Direction des Technologies Nouvelles
du groupe Bouygues, Catherine Bernez, Tibor Kdkény et Arnaud Linz, qui ont répondu
avec came et patience aux guestions quotidiennes dont je les accablais. Un grand merci
auss a tous les membres du département de Génie Informatique de I'Université de
Technologie de Compiégne et en particulier a, Emmanuel Néron.

Table of Contents

RS SN R 2|
(=T e e I L = N T ——— 3|
[TABLE OF ILLUSTRATIONS ..o 6
[CHAPITRE A. INTRODUCTION (EN FRANCAIS) oo)
A.1. PROGRAMMATION PAR CONTRAINTEScveveveeeererseeereesreessensesenseseneeseensens 9|
[A.2. RECHERCHE OPERATIONNELLE ET PROGRAMMATION PAR CONTRAINTES...13]
(A3, L ORDONNANCEMENToeveeteeteeeeeeereereeeerserseeenserseeeeeensensesensssesaneesseesneaeens 14
IA.3.1. Représentation des Activités et des RESSOUICES............cocuveveuvereereevennnes 15|
IA.3.2. Contraintes Temporelles et Contraintes de Ressources......................... 16|
[A.3.3. Des Problémes Classiques d’ Ordonnancement................c.cooveeeeeennnee.. 17|
IA.4. RESUME DES RESULTATSET PLAN DE LA THESE....viiiiiiieiririeiesnsssssesesesnsnanas 20|
[CHAPTER A. INTRODUCTIONoovoeeeeeteeeeeseeeeereeeereeeserenseseeeesesesesneeeseeeseae 23|
IA.1l. CONSTRAINT PROGRAMMING ...eeeieisereieseiesessassssesessasssesesssssassssessssesssaes 24|
A.2. INCORPORATING EFFICIENT O.R. ALGORITHMS IN CONSTRAINT-BASED
| S = 27|
N = N < 28|
IA.3.1. Representation of Activities and RESOUICES.............cccvevvevevevereerinenennas 29|
IA.3.2. Temporal and ResoUrceS-CONSIIAINEScrrirrerieiiircrsscsseseeeaes 30|
[A.3.3. Modeling some Classical Scheduling Problems..............cccccoveucununee..... 31|
[A.4. SUMMARY OF RESULTS AND OUTLINE OF THE THESIS.....c.cceevevererererereneen. 34
[CHAPTER B. PROPAGATION OF RESOURCE CONSTRAINTS................. 37|
B.1. THE NON-PREEMPTIVE DISIUNCTIVE CASEccocvvererererereerereeeeteereierennens 38|
B.1.1. Time-Table CONSIIAINT.............ooeeeeeeeeeeeeeeeeeeeeeeeeeeeerrereereererseeeeeesnseas 38|
[B.1.2. Disjunctive Constraint Propagation................c.cceeveeeeeveeseeneensnenennas 39|
B.1.3. EAQE-TINAINGc.oovieeieiiiieieiiieeeeeee e 40|
B.14. NOtFIrst, NOFLast oo 23
B.2. THEPREEMPTIVE DISIUNCTIVE CASE, THE MIXED CASEc.cocoveer.... 47]
B.2.1. Time-Table CONSIAINtcceveeerereerereerieereereeeereeeeerereerseenseereenerenans 47|

[B.2.2. Digjunctive Constraint Propagation................ccoceeeeeeeeeereeeeneseeeereenene 49|

B.2.3. Network-F1ow based CONSIIAINESc.ciorrieieceirerieseceeseseesesecseeseseenas 50|

B.2.4. EAGE-FINAINGcovveveereeereeeeeeeeereeeeeeeeeeeeeesteeeeteeeeereenseensneseenssenens 53|
B.3. THE CUMULATIVE CASE ..ccutteeeeteteiiieieieeeteeeeeeeteteeeesesietesenesesessesenenesessenas 57|
[B.3.1. Necessary Conditions for the Existence of a Feasible Schedule............ 59|
B.3.1.1. A Necessary and Sufficient Condition of existence for
| RN E S TGS o —— 59|
B.3.1.2. A Necessary and Sufficient Condition of existence for
| the Partially ElastiC CUSPccoueviiieeeiieeeeeeee e 60|
[B.3.1.2.1. Jackson’ s Partially Elastic Schedule................ccocucveveuvnnene..... 61
B.3.1.2.2.ENErgetiCc REASONING «.....c.cveeeeeeeeteceeeteeeeteeeeieeeeeieeeeeeeeeeneeeeene 61]
B.3.1.2.3.A Quadratic AlgOrithMcooveveveeerereeeeeerrererseeerereeseseeerenes 63|
B.3.1.3. A “Left-Shift / Right-Shift” Necessary Condition of
| EXISLENCE FOr tNE CUSP ...ttt eesenseeeesan e 67|
B.3.1.3.1. Characterization of relevant and irrelevant intervals.................. 68|
B.3.1.3.2 A QuadratiC AIQOMtNMcooveveeeeeeeeeeeeeeveeeeereeeeeeeeerrrnen 72|
[B.3.1.4. Synthesis of Theoretical RESUILS...........c.ccocveeeevevieierererreererrevne. 74|
B.3.2. Time-Bound Adjustmentsfor the CUSPc.ooeeeveeeeeeeeereeeeeerverann 77|
[B.3.2.1. Time-Bound Adjustments for the Fully Elastic CusP..................... 77
B.3.2.2. Time-Bound Adjustments for the CuSP Based on
| the Partially Elastic REIaXation...............ccooueoveeeveveeeeeeisenesensensennas 78|
B.3.2.2.1. Resolution Of Py fOr @ll i......ocoouiiveiieceiesiisesecesesessesesesesessssssesseas 80|
B.3.2.2.2. Resolution of Po for all i...........cccouoeeeeeueveeeeeieeeseiseeesensessesaa 81|
B.3.2.3. “ Left-Shift / Right-Shift” Time-Bound Adjustments for the CuSP..84|
[B.3.2.4. Synthesis of Theoretical RESUILS..............cooeeeeeeeeeeeeereereveerraen. 84
B.4. OVER-LOADED RESOURCES........cccoveuviveeeetrereereineresseseesssessessssessesseessesseseens 86|
B.4.1. Lower Bound COMPUEBLION.............ooeeeeeeeeeeeeereeeeeeeersereeserseeeeeensensenana 83|
[B.4.1.1. The Preemptive Lower BouNnd..............c.cveueeverveeeeverrieererserereennnens 89|
B.4.1.1.1. Reformulation of the Problem..........oooiiirercciieescsesssesneneeees 89|
[B.4.1.1.2. Some Fundamental PrOpertiesccooveeeevveeerevseeesenrensennas 89|
B.4.1.1.3. Overall AlQOrithMm...........cccvvuiireiericieeeeeieeeeeeeeee e 93]
[B.4.1.1.4. Minimizing the Weighted Number of Late Activities............... 94
[B.4.1.2. The Relaxed Preemptive Lower Bound...............ccccccveveverrererennnnene, 95|
B.4.2. Resource Constraint Propagationcooeeeeeeeeereeeeeerseeseeeesensnns 99|
[B.4.2.1. Late ActiVity DEECHION...........coeveereriereretieteeieeeteeeeieeeteeeeeeereeenns 100|
B.4.2.2. On-Time ActiVity DeteCtioncccoevuereeeneienisereiseseeieeeeeeenes 103
[CHAPTER C. PROBLEM SOLVING AND EXPERIMENTAL RESULTS...104
[C.1. THE JOB-SHOP SCHEDULING PROBLEMc.coveveereiereiteerenrereereieneerenenes 105
[C.2. THE PREEMPTIVE JOB-SHOP SCHEDULING PROBLEM......ccovoveueverceeninnenes 108|
[C.2.1. AdOMINANCE PrOPEITY.....c.ccveueeriereieeiereeteieteeteeeteeteeeeeeteereeereereeaesenens 108|

[C.2.2. BranChing SChEIME.cooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerereesesensesenseseeensesens 109

[C.2.3. EXDENTMENAl RESUILSc.eeeeeeeeeeeeseeeeeseeeneeeeseeeeneneeaesnceeaee 111]

[C.3. THE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM. 116
[C.3.1. General FrameworK...........cuoveueevoveieeeieeoieeeeeeeeeeeeeeeeeeeeeeeeeeenn 117|
[C.3.2. CONStraint Propagation................coeeueoveeereerreeseersesereeseseesesessessseseeees 121|
[C.3.3. DOMINANCE RUIES.........c.coveeeeeeeeeteeeeeeteeee e 123
[C.3.3. EXPEiMENtAl RESUILS ...t en s s eeses e seeen s 127|

[C.4. MINIMIZING THE NUMBER OF LATE ACTIVITIESON A SINGLE MACHINE..135)|
(O N L S T = e 136|

[C.A4.1.1. ACHVItY SEOCHON.......ceceeeeeeeeeeeeeeieeeteereereteeeeeeeneeeeensteenerennanas 136
[C.4.1.2. Solving the One-Machine Problem.............cccocoovvevnrcvncnannene. 136
[C.4.1.3. DOMINANCE PrOPEITIES.........cvcveeverveeeeeeeeeeveeesieerrereeseeeerenenseseereneas 137|
[C.4.1.3.1.Dominance of Small Activities with Large Time-Windows....137|
[C.4.1.3.2.Straight Scheduling RUI...........ccoveeeeveveereereeveeeeerereen 138]
[C.4.1.3.3.Decomposition RUIE...........c.cccoevvrereeeereiieiereteeeereeeeeeeievenne 139

[C.4.2. EXPEIMENAl RESUILS ...t reeeeereesesenennana 140|
[CHAPITRE D. CONCLUSION (EN FRANCAIS)coovvuvreeveeversrrerrren 145|
[CHAPTER D. CONCLUSIONciiiiiiiiiiiiiisisesesessresssesesssssssesssssssssssssssssssssseseas 147
NI Ry N 149
IAPPENDIX 1. SUMMARY OF NOTATIONS. ..ot ceesesesesenanas 159

APPENDIX 2. MINIMIZING THE WEIGHTED NUMBER OF LATE
JOBSTO BE PREEMPTIVELY SCHEDULED ON A SINGLE
MACHINE, WHEN PROCESSING TIMESARE EQUALccocoviviiiiicnnes 161

APPENDIX 3. MINIMIZING THE WEIGHTED NUMBER OF LATE
JOBSTO BE SCHEDULED ON A SINGLE MACHINE, WHEN
PROCESSING TIMESARE EQUAL ..ottt 165|

Table of Illustrations

Hgure A-1. Le comportement d’ un systéme de programmation par contraintes....... 11|
[Figure A-2. Les caractéristiques temporelles d'une activité..............cceevevereerennnnens 15|
[Figure A-1. The behavior of aconstraint programming System................c..ccuun..... 26)
[Figure A-2. Temporal characteristics of an actiVity.c.cccceeveeeeeceeceireercrenennes 29|
[Figure B-1. Propagation of the timetable CONStraint..................cooevevevevevversrrnn. 39|
[Figure B-2. Propagation of the disjunctive constraint (non-preemptive case) 40|
[Figure B-3. The JPS Of 3 @CtVITIES.o.oeeeeeeeeeeeeeeeeeeeeeeeeeeeeeteeeeeesereeeeserseransnsens 42|
[Figure B-4. Propagation of the time-table constraint (mixed case)............................ 48|
[Figure B-5. Propagation of the disjunctive constraint (preemptive case).................. 49|
[Figure B-6. A network flow for the preemptive resource constraint.......................... 51|
IFigure B-7. Fully Elastic and Partially Elastic SChedules. ..o, 59
[Figure B-8. Required energy consumption (Partialy Elastic casg)............................ 62|
IFigure B-9. Required energy consumption (Left shift / Right shift)cccococoveieecennes 67|
Figure B-10. Some relevant time intervals for the Left shift / Right shift

| NECESSAIY CONTITION.........oveeveeieeeeetieteieteeteeeeect et eeeee et eeeneresaennan 71]
[Figure B-11. A comparison of the 3 necessary conditions.................c.cccoeveevevennne... 74
[Figure B-12. Selection of Ayin Q.cceveuveeeeeeeeieieeeieeieteeieeeteeeeeet e steseeesreeeennas 82|
[Figure B-13. A brief comparison of the three adjustment techniques............c.c........ 84|
[Figure B-14. The JPS computed at each step of the algorithmc...cu.......... 99|
[Figure B-15. The network flow built from G...........ccccooeveeveieeeicicececeeereeen 101
[Figure B-16. The modified NEtWOIrK fIOW...........c..cccooveveeeriieeeeeieeeeeiseeseeesenseeaas 102
Table C-1. Experimental results obtained on 10 instances of the JSSP

| used by Applegate and Cook in their computational study..................... 106]|
[Figure C-1. A preemptive schedule and its Jackson derivation...................c............ 109
Table C-2. Results obtained on 20 instances of the preemptive Job-Shop

| Scheduling ProbIEM.ccccveuiuieriecreetieeseereeeeeeeneeeeee st 113]
Table C-3. GUTB results on ten 10110 instances of the preemptive Job-Shop

| SCheduling ProbIEM.cvouvieeeeieeeeeeeeeeeeeeee et nsen s nsen e 114
Table C-4. Edge-finding results on ten 10110 instances of the preemptive

| Job-Shop Scheduling Probl@M...............oooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrenenena 114
Figure C-2. The incompatibility graph of the instance described in the

| EXAMPIC ADOVE.veoeeeeeeeeeeeeeseeerereeerenseeeneeseesneenenssnesnenesnene 123
[Figure C-3. Therelative positions of Aj @0 Aj........cveveveereeevereeeeeeeeeeereerererennas 125|

[Figure C-4. A simple instance of the RCPSP.............oooeeeeeeeeeeeeeeeeeeeveerrerrevrserennca 126

[Figure C-5. The directed graph associated to activitiesA, B, C,D, EandF........... 126|

[Table C-5. Patterson (110 instances of average disunctiveratio 0.67) 128|
[Table C-6. KSD RS 0.2 (120 instances of average digunctiveratio 0.65) 128|
[Table C-7. KSD RS 0.7 (120 instances of average digunctiveratio 0.53) 129
[Table C-8. KSD ALL (480 instances of average digunctiveratio 0.56).................. 129
[Table C-9. BL (40 instances of average disunctive ratio 0.33)c...u.......... 129

[Table C-12. Experimental results on the 110 Patterson instances............................ 131|
[Table C-13. Experimental results on the 480 KSD INStances...........cccccccoveveeennn.... 132
[Table C-14. Experimental results on the 40 BL inStances...............cccccvvvrucerennnee.. 132]
[Figure C-6. The behavior of LsrRs and NO on the KSD instance st......................... 133
[Figure C-7. The behavior of LSrRs and NO on the BL instances................................. 133
[Table C-15. Behavior of the algorithm for several sizes of instances...................... 142
[Figure C-8. Number of instances solved within atime limit in seconds.................. 142|

Figure C-9. The behavior of the algorithm on 60-activities instances with
different characteristics (parameters pmin and and pmax

| [R N e IO o) T ——— 143
Figure C-10. The behavior of the algorithm on 60-activities instances

with different characteristics (parameters pmin and and Prmax
| KEPE 10 25 AN 75). ...vuvceceicieiesicecsesesissciesesessssessessnssessessessnsssssssesnacs 143]
Table C-16. A comparison of two branch and bound procedures on four sets
| OF INSEANCES. ..vuveceieeicesssessissesissessesesssssesssnssesnssssssnsssnsssssssssssssssssasaseas 144

Chapitre A. Introduction (en francais)

Le but de cette these est de décrire et de comparer, tant d’un point de vue expérimental
gue théorique, de nouveaux algorithmes de propagation de contraintes de ressources en
ordonnancemenlEl.

Dans une premiére partie (A.1) de ce chapitre introductif, nous donnons un apercu rapide
de la programmation par contraintes. Nous montrons alors (A.2) que I’ efficacité de cette
méthode est conditionnée a |I'utilisation de méthodes déductives puissantes, i.e.,
d’ algorithmes de propagation de contraintes qui utilisent une formulation « globale » d’un
ensemble de contraintes. Au cours de la troisieme partie (A.3), nous proposons une
classification simple (et un tant soit peu grossiére) des problémes d’ ordonnancement que
nous avons pu rencontrer. Cette classification nous permet d'identifier un ensemble de
situations dans lesquelles il nous semble utile d étudier et de développer de nouveaux
algorithmes de propagation de contraintes de ressources. Nous illustrons la pertinence de
ces contraintes de ressources a travers un ensemble de problémes d' ordonnancement de la
littérature. Nous terminons cette introduction en présentant un résumé des résultats
obtenus et en annoncant le plan de ce mémoire.

! Les travaux présentés dans ce mémoire ont éé réalisés pendant que |'auteur était
ingénieur de recherche au sein du groupe Bouygues. Au long des deux années passées ala
Direction des Technologies Nouvelles, I'auteur a pris part a plusieurs projets industriels
incluant (1) la résolution d' un probléme de gestion de projet partiellement préemptif (2)
I’intégration dans le langage CLAIRE de plusieurs produits de programmation linéaire, (3)
larésolution d’un probléme de gestion de stocks [Baptiste et al., 19984] et (4) I’ étude d’un
probléme de séguencement de véhicules généralisé [Régin et Puget, 1997]. Les deux
derniéres applications faisant partie du projet européen CHic-2. Ces applications ne sont
pas étudiées au long de ce mémoire. Certaines d’ entre-elles sont cependant a la source des
travaux de recherche présentés dans la suite.

A.l. Programmation par Contraintes

Le probléme de satisfaction de contraintes (CSP) peut étre énoncé d'une maniere
informelle comme suit : éant donné (1) un ensemble de variables, (2) pour chague
variable, un domaine (i.e., un ensemble de vaeurs possibles), et (3) un ensemble de
contraintes entre ces variables, la question est de savoir S'il existe une affectation de
valeurs pour chague variable qui satisfasse toutes les contraintes. Les contraintes peuvent
étre représentées de maniére implicite (i.e, il est aors nécessaire d' effectuer un calcul
pour vérifier que la contrainte est vérifiée pour une certaine instanciation des variables) ou
de maniére explicite (i.e., les tuples de valeurs qui satisfont la contrainte sont enregistrés
dans une base de données). D’une fagcon générale, la programmation par contraintes
S attaque a ce probléme. Nous renvoyons le lecteur a, par exemple, [Prosser, 1993],
[Esquirol et al., 1995], [Caseau, 1996] pour une description plus poussée de la
programmation par contraintes et de ses applications. L’ un des intéréts majeurs de cette
technique est que les contraintes sont utilisées dans un processus déductif, i.e., la
propagation, qui peut permettre de détecter rapidement une inconsistance ou de réduire les
domaines des variables ; ce qui permet d accélérer |e traitement du probleme.

Par exemple, s x et y sont des variables entieres, sur lesquelles les contraintes x < y et
X>8 sont imposées, la phase de propagation permet de déduire que la valeur de la
variable y est au moins égale a 10. Si la contrainte y < 9 est gjoutée au systeme, une
contradiction est immédiatement détectée. Sans cette phase de propagation, I’ absence
d affectation faisable ne pourrait étre prouvée gu’ apres une énumération plus ou moins
longue.

De nombreuses techniques ont été proposées pour propager les contraintes.
L’ arc-consistance est une technique largement répandue.

Définition A-1.

Etant donnée une contrainte ¢ sur n variables x, ..., X, € un domaine d(x) pour chague
variable x;, ¢ est “arc-consistante” si et seulement si pour toute variable x; et pour toute
valeur val; de d(x), il existe des valeurs valy, ..., vali-1, vali+, ..., val, appartenant aux
domaines d(xy), ..., d(Xi-1), d(Xi+1), ..., d(x») telles que la contrainte ¢ soit vérifiée lorsque
Oj0{1, ..., n}, x =val,. O

Beaucoup de recherches ont été consacrées a des algorithmes de propagation capables de
maintenir |’ arc-consistance de toutes les contraintes d’un CSP binaire, i.e., d'un CSP dans
lequel les contraintes jouent sur deux variables ([Montanari, 1974], [Mackworth, 1977],
[Mohr et Henderson, 1986], [Van Hentenryck et al., 1992], [Bessiére at al., 1995]).

Dans le cas particulier d'un CSP dont les variables sont contraintes a prendre des valeurs
numériques, les domaines sont parfois représentés sous la forme dun intervalle
[1b(X), ub(x)]. Cette représentation beaucoup plus compacte permet, d’'un point de vue
pratique, de manipuler un grand nombre de variables. La propagation de contraintes sur de
telles variables se résume souvent a I’ arc-B-consistance [Lhomme, 1993], C'est a dire a
I’arc-consistance restreinte aux bornes des domanes. |l est aise de rendre
arc-B-consistantes certaines contraintes arithmétiques, comme des contraintes linéaires
([Lhomme, 1993)).

Définition A-2.

Etant donné une contrainte ¢ sur n variables Xy, ..., X, € un domaine d(x;) = [Ib(x;),ub(x)]
pour chaque variable X, Cc est “arc-B-consistante” s et seulement s [Oiet
O val; O{1b(x),ub(x)}, il existevaly, ..., vali-1, vali+1, ..., val, appartenant respectivement
aux domaines d(xi), ..., d(Xi-1), d(X+1), ..., d(x,) telles que la contrainte ¢ soit vérifiée
lorsque U j O {1, ..., n}, x = val,. O

Pour des raisons évidentes de complexité, |a propagation des contraintes est généralement
incompléte, toutes les conséguences des contraintes sur les domaines des variables n’ étant
pas calculables en un temps limité. 1l est donc nécessaire de développer une recherche
arborescente pour déterminer s'il existe ou non une affectation valide de valeurs aux
variables. Les deux caractéristiques les plus importantes d'une telle recherche
arborescente sont :

» Les heuristiques utilisées pour choisir la variable a instancier et pour déterminer la
valeur du domaine de cette variable a essayer en premier (e.g., choisir la variable dont
le domaine est le plus petit et essayer de I'instancier a la valeur minimum de son
domaine).

» La dtratégie de retour arriere en cas d'échec, i.e, lorsqu’il a été prouvé qu’aucune
affectation faisable ne peut étre dérivée de |’ état courant du systeme. La plupart des
outils de programmation par contraintes sont basés sur une recherche en profondeur
d abord : la derniére décision est remise en cause et |’ aternative a cette décision est
imposée. D’autres stratégies de retour arriere ont été proposees, comme le
« backtrack » intelligent.

10

Le comportement général d’'un systeme de contraintes peut se résumer a la figure A-1.
Notons que le la définition du probleme, |a propagation des contraintes et |a phase de prise
de décision sont clairement séparés.

» Enpremier lieu, le probleme est défini en termes de variables et de contraintes.

* Puis, les agorithmes de propagation de ces contraintes sont spécifiés. En pratique,
I utilisateur d’un systéme de contraintes peut soit utiliser des contraintes prédéfinies,
par exemple des contraintes sur des entiers ou sur des ensembles, soit définir ses
propres contraintes dont il pourra expliciter les méthodes de propagation.

* Enfin, le mécanisme de prise de décision, c'est-a-dire la fagon dont I'arbre de
recherche est construit, est défini. Il précise le type de décisions qui doivent étre prises
au fur et a mesure de la recherche (e.g., instancier une variable a une valeur, ordonner
une paire d activités).

Nouvelles contraintes

Définition (décision) Prise de décision
du probléme et retour en arriere
> . ,
. — > Solution partielle
Contraintesinitiales — 3
Propagation des
Contraintes déduites contraintes

contradictions détectées

Figure A-1. Le comportement d’ un systeme de programmation par contraintes

11

Le fait que la propagation des contraintes soit un mécanisme indépendant des autres
parties du systéme est d’'un grand intérét en terme de réutilisation de code. En effet, les
algorithmes de propagation de contraintes sont (ou devraient étre) totalement génériques,
et peuvent donc étre reutilisés dans toutes les applications ou la méme contrainte est a
nouveau présente. Tel n'est pas le cas des algorithmes de recherche qui sont difficilement
réutilisables d'un probléme a I’autre (ces algorithmes utilisent souvent des critéeres de
dominance qui la plupart du temps ne sont plus vérifiés dés qu’ une nouvelle contrainte est
gjoutée au systeme).

Cette possibilité de réutiliser des algorithmes de propagation d’une application a |’ autre
est I’ une des raisons de |’ engouement des industriels pour des outils de programmeation par
contraintes, parfois au dériment dautres techniques de résolution, comme la
programmation linéaire qui, méme si elle se montre extrémement performante sur certains
problémes, nécessite souvent |’ élaboration de modeles complexes. Parmi les systémes de
contraintes (commerciaux ou de domaine public), citons ILOG SOLVER [Puget, 1994],
[Puget et Leconte, 1995], CHIP [Aggoun et Beldiceanu, 1993], [Beldiceanu et Contejean,
1994], EcLIPsE, et CLAIRE [Caseau et Laburthe, 1996b] accompagné d ECLAIR [Laburthe
et al., 1998].

12

A.2. Recherche Opérationnelle et
Programmation par Contraintes

L’utilisation d'agorithmes «dédiés» de propagation de contraintes permet d’ accroitre
considérablement I’ efficacité des systémes de contraintes. De tels agorithmes sont
capables de prendre en compte d’ un point de vue global un ensemble de contraintes.
Considérons par exemple la contrainte dite «tous-différents » qui contraint un ensemble
de n variables a prendre des valeurs deux a deux distinctes. Un algorithme de propagation
trivial consiste a décomposer cette contrainte en n * (n — 1) / 2 contraintes « locales » qui
imposent pour toute paire de variables (x, y) que x # y. Propager cette contrainte se fait
alors simplement par arc-consistance locale sur chacune des contraintes. [Régin, 1994]
décrit un agorithme bien plus puissant qui garantit I’arc-consistance globale de la
contrainte «tous-différents». La contrainte est modélisée sous la forme dun graphe
biparti, ou sont représentées d' un coté les variables, de I’autre I’union des domaines des
variables. Une aréte entre une variable et une valeur indiquant que cette valeur fait partie
du domaine de la variable. La contrainte est évidemment consistante si et seulement si le
couplage maximum du graphe est de cardinalité n. Régin utilise donc un algorithme de
Recherche Opérationnelle pour assurer la consistance globae de la contrainte. Mais il
étend auss de fagon originde ce mécanisme pour assurer, avec une complexité
raisonnable, |’ arc-consistance globale de la contrainte : pour chague variable, les valeurs
du domaine qui rendraient la contrainte insatisfiable sont retirées. Une autre contrainte
globale célébre est la contrainte de ressource qui impose a un ensemble d' activités de
S exécuter sur une machine. De nombreux travaux (e.g., [Nuijten, 1994], [Caseau et
Laburthe, 1995], [Baptiste et Le Pape, 1995b], [Colombani, 1996]) ont porté sur des
algorithmes de propagation globaux pour cette contrainte. Tous reprennent les idées des
travaux fondateurs de Carlier et Pinson sur le Job-Shop (e.g., [Carlier et Pinson, 1989)).
L’intégration de tels algorithmes permet de bénéficier de I’ efficacité de techniques de
recherche opérationnelle dans le cadre trés souple de la programmation par contraintes. En
d’ autres termes, nous disposons d’ une part d agorithmes tres efficaces de Recherche
Opérationnelle mais dont le spectre d'utilisation est parfois réduit, et d’autre part de
techniques plus générales de propagation de contraintes dont e spectre est beaucoup plus
large mais dont I’ efficacité reste souvent a démontrer. Nous nous proposons de dével opper
un ensemble d'algorithmes de Recherche Opérationnelle intégrables dans un systéme
d’ ordonnancement a base de contraintes.

13

A.3. L’ Ordonnancement

Nous proposons une typologie rudimentaire des problemes d ordonnancement a
contraintes de ressources. Fondée, en partie, sur les probléemes industriels que nous avons
pu rencontrer au cours de ces dernieres années, elle ne prétend pas étre exhaustive. Au
sens strict, un probleme d’ ordonnancement consiste a déterminer les dates d’ exécutions
d’activités qui utilisent une ou des quantités connues d’un ensemble donné de ressources
dont les capacités sont limitées. Nous laissons donc de coté les problémes d’ affectation ou
le positionnement des activités est connu, et ou I’on cherche a couvrir la demande en
ressource de ces activités par une affectation adéquate de ressources aux activités.

Nous distinguons trois dimensions dans notre classification.

* Dans un probléme d’ ordonnancement non-préemptif, les activités sont exécutées sans
interruption de leur date de début a leur date de fin. Au contraire, dans un probleme
préemptif, les activités peuvent étre interrompues a tout instant pour laisser, par
exemple, s exécuter des activités plus urgentes.

» Dans un probleme digonctif, les ressources ne peuvent exécuter qu’une activité a la
fois. Dans un probléme cumulatif, une ressource peut exécuter plusieurs activités en
paralée.

* Dans la plupart des cas, les contraintes de ressources doivent étre prises au sens
strict, (i.e., elles ne peuvent jamais étre violées). Dans certains problemes, lorsque la
ressource est surchargée, les contraintes de ressources peuvent étre prises dans un
sens plus large : un nombre limité d’ activités peuvent étre sous-traitées, pour rendre la
contrainte de ressource satisfiable. La ressource se caractérise alors par sa capacité
totale et par le nombre d’ activités qu’ elle peut sous-traiter.

Dans le «meilleur » des cas, le probleme consiste a déterminer un ordonnancement

faisable, c'est a dire un ordonnancement qui respecte toutes les contraintes, mais le plus

souvent, un critere doit étre optimisé. Bien que le makespan, i.e., la date de fin de

I’ ordonnancement, soit le critere le plus frequemment utilise (ce qui dailleurs ne

correspond pas forcément a un critere d’ une grande utilité concréete), d autres critéres

peuvent étre considérés. Citons par exemple le nombre d activités exécutées dans un
certain délai, le retard moyen ou pondéré, ou encore le pic d' utilisation d'une ressource.

La théorie de I’ ordonnancement est un champ de recherches trés large qui, tant d’un point

de vue pratique qu’ appliqué, a donné lieu a un nombre important de publications. Nous

renvoyons le lecteur a [Baker, 1974], [Coffman, 1976], [French, 1982], [Carlier et

Chrétienne, 1988], [GOThA, 1993], [Brucker, 1995] pour une introduction plus poussée a

ce domaine.

14

Comment représenter cet ensemble de probléemes d’ ordonnancement dans un systéme de
contraintes ? Nous utilisons un modéle simple constitué de quatre entités : les activités, les
ressources, les contraintes temporelles et les contraintes de ressources. Les activités sont
liées entre elles par des contraintes temporelles. Activités et ressources sont liées entre
elles par des contraintes de ressources.

A.3.1. Représentation des Activités et des Ressources

Dans le cas non-préemptif, deux variables start(A) et end(A) sont associées a chaque
activité A;. Elles représentent respectivement les dates de début et de fin de A.. La plus
petite valeur dans le domaine de start(A) est en fait la date de disponibilité r; de I’ activité,
et la plus grande des valeurs dans le domaine de end(A) est la date d’ échéance d; de A.
Nous appellerons Ist; la plus grande valeur dans le domaine de start(A), i.e., la date de
début au plus tard de A;, et nous appellerons est; la plus petite valeur dans le domaine de
end(A), i.e., ladate de fin au plus tét de A.. Le temps d’ exécution de A; est représenté par
une autre variable processingTime(A)) qui est contrainte a étre égale a la différence entre
end(A) e sart(A). Le plus souvent, nous considérerons que la variable
processingTime(A) est instanciée a une valeur pj, (i.e., les temps d’ exécution sont connus
et fixés).

ri pi d;
A/ < > \A

(LTI
/ [TT T

/ v
et Ist;

Figure A-2. La date de disponibilité, la date d’ échéance, |e temps d’ exécution, la date de
fin au plus tot et la date de début au plus tard d'une activité (la couleur gris clair est
utilisée pour représenter la fenétre [r;, dj] de I’ activité alors que le gris foncé représente
la durée del’ activité).

Un probléme d’ ordonnancement préemptif est sensiblement plus complexe a représenter.
Il est tout auss possible d associer une variable ensembliste (i.e., une variable dont la
valeur est un ensemble) set(A) a chagque activité A; que d utiliser des variables binaires
WA, t) pour chague activité A;; I'activité sexécutant a I'instant t s et seulement s
WA, t) = 1. Sans tenir compte des détails d’implémentation, notons que

15

« WA, t) vaut 1 s et seulement si t appartient a set(A)

o dStart(A) = mintﬂset(Ai)(t) et end(A) = maXtDset(Ai)(t + 1); ces variables étant
indispensables pour connecter les activités par des contraintes temporelles, comme
nous le verrons dans la suite. Notons que dans le cas non-préemptif, I’équation
set(A) = [start(A), end(A)) est vérifiée. L'intervalle est fermé a gauche et ouvert a
droite, ce qui permet de vérifier [set(A)| = end(A) — start(A) = processingTime(A).

Nous représentons une ressource R par la variable capacity(R) qui définit la capacité de la

ressource, e.g., le nombre de machines paralleles identiques disponibles dans I’ atelier.

Notons que s la capacité de la ressource varie au cours du temps, il suffit alors

d’introduire pour chague instant t, capacity(R, t), la variable contrainte qui représente la

capacité de la ressource R a I'instant t. Pour simplifier, nous noterons Cr la capacité
maximale de la ressource (Cr = ub(capacity(R)). Dans la suite, I'indice R sera omis
lorsqu’ une seule ressource est considérée.

Un tel modéle permet de représenter un grand nombre de types de ressources. Cependant,

pour prendre en compte le cas ou une ressource est surchargée, nous introduisons une

variable rgect(R) qui représente le nombre d' activités qui devraient s exécuter sur la
ressource, mais qui sont sous-traitées du fait de la surcharge.

A.3.2. Contraintes Temporelles et Contraintes de
Ressources

Nous qualifions de contrainte temporelle une contrainte qui lie le début ou la fin de deux
activités par une relation linéaire. Par exemple, une contrainte de précédence entre A; et A
se représente par |'éguation linéaire end(A) < start(A). De telles contraintes sont
propagées en utilisant un algorithme d’ arc-B-consistance [Lhomme, 1993]. De plus, une
variante de I’algorithme de Ford proposée par [Cesta et Oddi, 1996] est utilisée pour
détecter en temps polynomia en le nombre de contraintes toute inconsistance liée au
réseau de contraintes de précédence (et aux contraintes de temps d’ exécution).

Une contrainte de ressource représente le fait que les activités utilisent une certaine
guantité de ressource tout au long de leur exécution. Etant données une activité A et une
ressource R, nous noterons capacity(A;, R) la variable contrainte correspondant a la
guantité de ressource R requise par I'activité A.. cir = Ib(capacity(Ai, R)) est alors la
guantité minimale de ressource utilisée pendant I’exécution de A.. Une contrainte de
ressource spécifie qu’a chague instant t, la capacité de la ressource R est supérieure ou
€gale alasomme, sur toutes les activités, des capacités requises al’instant t.

16

» Dansle cas non-préemptif, cette contrainte peut s écrire
OR, Ot > capacity(A, R) < capacity(R, t).
start(A)<t<end(A)
* Dansle cas préemptif,
OR, Ot D W(A ,t)* capacity(A, R) < capacity(R, t).
start(A)<t<end(A)
Examinons maintenant le cas ou la machine est surchargée. Il est assez naturel
d’introduire, pour chague activité A et pour chague ressource surchargée R sur lagquelle
elle peut s'exécuter, une variable in(A;, R) qui permet de déterminer si A; est exécutée (i.e.,
in(A, R) =1) sur Rousi A est sous-traitée (i.e., in(A;, R) = 0). Lorsqu’ une seule ressource
est considérée, I’indice R sera omis. La contrainte de ressource impose alors que toutes les
activités non sous-traitées vérifient une contrainte de ressource standard.
» Dansle cas non préemptif, cette contrainte peut s écrire
OR, Ot, > in(A, R)* capacity(A, R) < capacity(R,t)
start(A)<t<end(A)
Y in(A,R) 2 n-rgect(R)

* Dansle cas préemptif,

OR, O, D in(A,R)*W(A,t)* capacity(A , R) < capacity(R,t)
start(A)<t<end(A)

Y in(A,R) 2 n-reect(R)

Notons que ce modéle se généralise trivialement si un poids est associé a chague activité
et que laressource ne peut sous-traiter qu’ un poids total donné d’ activités.

A.3.3. DesProblemes Classiques d Ordonnancement

Nous nous proposons de montrer la fagon dont peuvent étre représentés, au moyen du
modele proposé dans les paragraphes précédents, quatre problemes classiques
d’ ordonnancement. Dans ces quatre cas, les problemes de décisions associés sont
NP-Complets au sens fort [Garey et Johnson, 1979].

17

L e probleme du Job-Shop (JSSP)
Instance. Une instance de la variante de décision du Job-Shop est décrite par un ensemble

de m machines, par un ensemble de n jobs et par une date d’ échéance globae D. Chague
job J; est constitué d’une liste L; d’ activités. Pour chagque activité A;, un temps d’ exécution
pi entier ainsi que lamachine sur laquelle elle doit s exécuter sont specifieés.

Question. Existe-t-il un ordonnancement non-préemptif des activités, ¢’ est-a-dire une date
de démarrage pour chaque activité, tel que (1) chague machine exécute au plus une
activité alafois, (2) les activités d'un méme job sont exécutées dans I’ ordre induit par la
liste L; et (3) les dates de fin des activités ne dépassent pas la date d’ échéance D ?

Modéle. Chague machine est représentée par une ressource digonctive. Les activités sont
non-interruptibles et utilisent la ressource correspondant a la machine qui leur est
attribuée. Les contraintes de précédence induites par les jobs sont imposées sur les
activités. Enfin, pour chague activité A;, les domaine initiaux des variables start(A;) et
end(A) sont fixés a0, D].

L e probleme du Job-Shop préemptif (PJSSP)

Instance. Mémes données gque celles du JSSP.

Question. Existe-t-il un ordonnancement préemptif des activités, ¢ est-a-dire, pour chaque
activité, un ensemble d’intervalles de temps dont la durée totale est la durée de I’ activité,
tel que (1) chague machine exécute au plus une activité a la fois, (2) les activités d’un
méme job sont exécutées dans I’ordre induit par la liste L; et (3) les dates de fin des
activités ne dépassent pas la date d échéance D ?

Modéle. Chague machine est représentée par une ressource digonctive. Les activités sont
interruptibles et utilisent la ressource correspondant a la machine qui leur est attribuée.
Pour chaque activité, les domaine initiaux des variables start(A) et end(A) sont fixés a
[0, D].

Alors que pour la plupart des problemes d’ ordonnancement, la relaxation préemptive est
plus «facile» que le probléme d' origine, le PIJSSP est « plus difficile » que le JSSP. En
effet, il a é&é démontré que lorsque le nombre de machines est fixé a 2 et que le nombre de
jobs est fixé a 3, le PISSP est NP-difficile alors que le probléme non-préemptif est
fortement polynomial ([Brucker et al., 1999]).

18

L e probleme de gestion de projet a contraintes de ressour ces (RCPSP)
Instance. Une instance de la variante de décision du RCPSP est décrite par (1) un

ensemble de ressources de capacités données, (2) un ensemble d activités
non-interruptibles de durées données, (3) un graphe orienté sans cycle représentant les
contraintes de précédence entre les activités, (4) un entier par activité et par ressource
représentant la quantité de ressource utilisée par I’ activité tout au long de son exécution, et
enfin (5) par une date d’ échéance globale D.

Question. Existe-t-il un ordonnancement, i.e.,, un ensemble de dates de démarrage des
activités, qui permet de satisfaire a la fois les contraintes de précédence et les contraintes
de ressources, et dont ladurée totale est inférieure ou égaleaD ?

Modele. Les activités de I'instance sont représentées par des activités non-interruptibles,
chague ressource est représentée par une ressource cumulative dont la capacité est fixée
(i.e., la variable capacity(R) est instanciée). Des contraintes de ressources sont imposees
entre activités et ressources (capacity(A;, R) est instanciée). Des contraintes temporelles
sont imposees conformément au graphe de précédence. Enfin, pour chague activité A;, les
domaine initiaux des variables start(A;) et end(A;) sont fixés a0, D].

Minimiser lenombredejobsen retard sur une machine (1|rj|ZU;)

Instance. Une instance de la variante de décision de ce probléme est constituée d’'un
ensemble de n jobs (chaque job étant décrit par une date de disponibilité r;, une date
d’ échéance d; et un temps d' exécution p; avecr; + p; < d)) et d’un entier N.

Question. Existe-t-il un ordonnancement des jobs, i.e., un ensemble de dates de
démarrage, tel que (1) un job au plus s exécute a chague instant, (2) chague job débute
apres sa date de disponihbilité, (3) moinsde N jobs finissent apres leur date d’ échéance ?
Modéle. Chague job est représenté par une activité. Dates de disponibilités, dates
d échéances et durées sont imposées aux variables start, end et processingTime. Une
ressource digonctive R, dont la surcharge est autorisée, est utilisée pour modéliser la
machine. Les activités A telles que in(A;, R) = 1 sont al’ heure. Les autres sont en retard et
peuvent étre ordonnancees arbitrairement tard. Enfin, le domaine de la variable reject(R)
est fixéa[o, NJ.

19

A4, Résume des Résultats et Plan dela These

Le modéele que nous avons présenté est trés général. Pour étre totalement exhaustif, il nous
faudrait étudier huit types de contraintes de ressources (préemptif vs. Non-préemptif,
digonctif vs. cumulatif et contrainte de ressource stricte vs. contrainte de ressource

surchargée). En pratique, nous ne nous sommes pour |’instant intéressé en détail qu’ aux
cas détaill és ci-dessous.

Contraintes de ressources digonctives sans préemption. Suite aux travaux de
[Nuijten, 1994], la plupart des systemes de programmation par contraintes ont
maintenant intégré des variantes des travaux de Carlier et Pinson sur le probléme a une
machine. L’'idée sous-jacente de ces travaux est de comparer les caractéristiques
temporelles d’ une activité par rapport a un ensemble d’ activités. 1l est alors possible de
déduire qu’une activité A; peut, ne peut pas, ou doit S exécuter apres un ensemble
d’autres activités S; ceci se traduisant par une réduction des fenétres de temps des
activités. Plusieurs algorithmes ont été proposés pour effectuer toutes les déductions
possibles du type « A doit s exécuter apres S». En particulier, [Carlier et Pinson,
1994] décrit un algorithme dont la complexité théorique n’est que O(n log(n)). Les
regles permettant de prouver qu’ une activité ne peut pas s exécuter apres un ensemble
de téaches ont été beaucoup moins éudiées. Nous proposons le premier algorithme
capable deffectuer toutes les déductions possibles a partir de ces régles. La
complexité de cet algorithme est O(n?).

Contraintes de ressour ces dig onctives dans le cas préemptif. A notre connaissance,
de telles contraintes de ressources n’ont jamais été étudiées en tant que telles. Nous
proposons plusieurs algorithmes de propagation de cette contrainte: le premier est
basé sur un emploi du temps de la ressource, le second sur une formulation disjonctive
du probleme, le troisiéme sur un probléme de flot dans un réseau de transport et le
dernier sur une extension au cas préemptif des algorithmes d’ gjustement de Carlier et
Pinson.

Contraintes de ressources cumulatives. Contrairement au cas digonctif, la
communauté de Recherche Opérationnelle a peu étudié les méthodes déductives pour
ce genre de probléme, mis a part évidemment des calculs de borne inférieure pour
certains cas particuliers de cette contrainte de ressource. De nombreux travaux ont été
menés au sein de la communauté de programmation par contraintes pour tenter de
généraliser les résultats obtenus dans le cas digonctif (e.g., [Aggoun and Beldiceanu,
1993], [Nuijten, 1994], [Caseau et Laburthe, 19964]). Les résultats sont moins
satisfaisants que dans le cas digonctif. Nous abordons |’ étude de cette contrainte de

20

ressource en introduisant un probleme de décision, le «Cumulative Scheduling
Problem » (CuSP), dont nous éudions deux relaxations — une relaxation dite
totalement élastique qui permet de se ramener a un probléme a une machine, et une
relaxation partiellement éastique. Nous étudions auss un ensemble de conditions
necessaires a I’existence d'un ordonnancement faisable basées sur une approche
énergétique [Lopez et al., 1992]. Dans tous les cas, nous proposons des algorithmes
permettant de vérifier des conditions nécessaires d’ existence et d’ gjuster les fenétres
temporelles des taches. Nous comparons ces résultats aux bornes inférieures de la
littérature pour le probleme a m-machines. Nous montrons que la relaxation
partiellement élastique est équivalente a une borne inférieure connue sous le nom de la
subset bound [Perregaard, 1995], elle-méme équivaente a la borne obtenue par une
relaxation pseudo-préemptive proposée par [Carlier et Pinson, 1996]. Nous montrons
aussi que le raisonnement énergétique domine strictement toutes les autres techniques
précédemment citées. Notons enfin que certains des résultats énoncés sont valables
dans le cas cumulatif préemptif.

* Les contraintes de ressources digonctives et surchargées. Dans le cadre de la

programmation par contraintes, de telles contraintes de ressources n'ont pas éé
étudiées. Dans la communauté de Recherche Opérationnelle, un grand nombre de
travaux ont été effectués sur le probléme de la minimisation du nombre de «jobs » en
retard sur une machine. En particulier, de nombreux cas particulier ont été traités.
Nous montrons d'ailleurs que deux dentre eux, jusgu aors ouverts, sont
polynomiaux : deux algorithmes fortement polynomiaux décrits en annexe permettent
de minimiser dans les cas préemptif et non-préemptif le nombre pondéré de jobs en
retard lorsgue les durées des jobs sont égales.
Nous proposons plusieurs techniques pour la contrainte de ressource surchargée. Nous
étudions la relaxation préemptive de cette contrainte de ressource et nous proposons
un algorithme en O(n* qui permet de calculer I’ optimum préemptif. Nous améliorons
ains I'algorithme de [Lawler, 1990]. Nous montrons aussi qu'en utilisant une
relaxation encore plus forte, une borne de moindre qualité peut étre obtenue (a
moindre colt). De plus, cette relaxation nous permet de proposer un agorithme
capable de déduire que certaines activités doivent obligatoirement étre sous-traitées
alors que d’ autres doivent étre obligatoirement exécutées sur la ressource.

Le Chapitre B est consacré a I’ é&ude de ces différentes contraintes et aux algorithmes de

propagation associés. Dans le but d’ évaluer d un point de vue expérimental leur efficacite,

nous décrivons dans le Chapitre C des méthodes arborescentes avec propagation de
contraintes pour résoudre les probléemes classiques d’ordonnancement gue nous avons

évoqués précédemment. Le Job-Shop préemptif, le probleme de gestion de projet a

contraintes de ressources, ains que le probléme de la minimisation du nombre de jobs en

21

retard sur une machine (1|rj|>U;) sont étudiés. En sus de la propagation, nous utilisons un
certain nombre de critéres de dominance qui, bien exploités, permettent de réduire
considérablement |’ espace de recherche. Des résultats expérimentaux sont décrits pour

chague probléme. IIs nous permettent non seulement d'évaluer I’ efficacité relative des
algorithmes de propagation du chapitre B, mais aussi de nous comparer, pour chague
probléme, aux meilleures procédures de séparation et d’ évaluation connues.

A notre connaissance, aucune méthode exacte n'a été proposée pour résoudre le
probléme du Job-Shop préemptif. Nous nous contentons donc de comparer les
différentes méthodes que nous proposons. Notre schéma de branchement est
chronologique et nous appliquons un critere de dominance qui impose que les
ordonnancements des machines soient du type de ceux de Jackson. Ce schéma de
branchement, associé aux ajustements qui étendent les travaux de Carlier et Pinson au
cas préemptif, est relativement efficace puisgue toutes les instances de la littérature de
taille 10* 10 sont résolues.

Nous proposons plusieurs variantes du méme schéma de branchement pour le RCPSP.
Une caractérisation simple des instances nous permet de déterminer si celles-ci sont
« fortement digonctives » ou « fortement cumulatives ». Nous montrons alors que les
différents schémas de branchement que nous utilisons sont plus ou moins efficaces
suivant le type d'instance. Il est clair que sur des instances fortement disonctives,
notre méthode n'est pas auss efficace que les procédures utilisant les résultats de
[Demeulemeester et Herroelen, 1995]. Nous montrons cependant que sur des instances
fortement cumulatives, nous obtenons des résultats extrémement encourageants.
Résultats confirmés d'ailleurs sur le probleme du flow-shop hybride [Néron et al.,
1993].

Nous proposons pour finir une procédure arborescente pour minimiser le nombre de
jobs en retard sur une machine. Le schéma de branchement est extrémement simple
puisgu’il consiste a choisir un job et ale mettre al” heure ou en retard. A chaque noaud
de I’arborescence, nous vérifions que les jobs a I’ heure peuvent étre ordonnancés (ce
sous probléme est NP-difficile mais est extrémement bien résolu par la méthode de
[Carlier, 1982]). L’efficacité de cette procédure provient de la propagation des
contraintes mais aussi de |’ utilisation d’un certain nombre de criteres de dominance.
Les précédentes méthodes exactes ([Dauzére-Péres, 1995]) pour résoudre ce probléme
étaient limitées a une dizaine de jobs. Notre procédure résout 90 % des instances a 100
jobs. De plus nos résultats se comparent tres favorablement a la derniere procédure de
[Dauzere-Pérés et Sevaux, 1998b].

Nous présentons nos conclusions au cours du chapitre D et nous évoquons quelques
directions de recherche qui nous semblent prometteuses dans un avenir proche.

22

Chapter A. Introduction

The am of this thesis is to describe and to evaluate, both from a theoretical and
experimental point of view, new resource constraint propagation algorithms for several
classes of scheduling probl eméZI

A brief overview of constraint programming is provided in the first section of this
introductory chapter (Section A.1). We then show that a key reason for the efficiency of
this technique is the use of powerful deductive methods, i.e., of globa propagation
algorithms that are applicable on a whole set of constraints (Section A.2). We provide in
Section A.3 a simple, and somewhat naive, classification of scheduling problems. It
alows us do identify some of the scheduling areas where it could be worth to study a
(new) global resource constraint. The relevance of these resource constraints is illustrated
through a set of scheduling problems from the literature. Finally, an outline of the thesis
and of our research resultsis provided in Section A .4.

2 This thesis has been done while the author was working as an engineer at the “Direction
des Technologies Nouvelles’ of Bouygues. Along the two years spent in this department,
the author has taken a part in the development of several industrial projects. This includes
(1) the resolution of a partialy preemptive project scheduling problem (2) the integration
into the Claire programming language of LP solvers, (3) the resolution of a complex stock
management problem [Baptiste et al., 1998a] and, (4) in the context of the CHIC-2
ESPRIT project, the study of a generalization of the Car-Sequencing Problem [Régin and
Puget, 1997]. These applications are not studied throughout this thesis. However, they
have motivated a large amount of the research presented in the following.

23

A.l. Constraint Programming

Constraint programming is concerned with solving instances of the Constraint Satisfaction
Problem (CSP). Informally speaking, an instance of the CSP is described by a set of
variables, a set of possible values (domain) for each variable, and a set of constraints
between the variables. The question is whether there exists an assignment of values to
variables, so that all the constraints are satisfied. Constraints are stated either implicitly
(e.g., an arithmetic formula) or explicitly (each constraint is a set of tuples of values that
satisfy the constraint). For an overview of constraint programming and of its applications,
see for instance [Prosser, 1993], [Esquirol et al., 1995], [Caseau, 1996]. The interest of
this technique lies in using constraints to reduce the computational effort needed to solve
combinatorial problems. Constraints are used not only to test the validity of a solution, as
in conventional programming languages, but also in a constructive mode to deduce new
constraints and rapidly detect inconsistencies.

For example, from x <y and x > 8, we deduce, if x and y denote integers, that the value of
y is at least 10. If later we add the constraint y < 9, a contradiction can be immediately
detected. Without propagation, the “y < 9" test could not be performed before the
instantiation of y and thus no contradiction would be detected at this stage of the problem-
solving process.

Several techniques have been developed to propagate constraints. Among these
techniques, let us mention arc-consistency.

Definition A-1.

Given a constraint c over n variables x, ..., X, and adomain d(x) for each variable x;, cis
“arc-consistent” if and only if for any variable x and any value val; in d(x), there exist
valuesvaly, ..., vali-1, valjs, ..., valp in d(xi), ..., d(%-1), d(X+1), ..., d(X,) for the variables
X1, ey Xi-1, X1, ..., Xn SUch that the constraint ¢ is consistent (i.e.,, holds when
Oj0{1, ..., n}, x =val). O

A huge amount of work has been carried on constraint propagation algorithms that
maintain arc-consistency on the constraints of a binary CSP, i.e.,, of a CSP whose
constraints link at most two variables ([Montanari, 1974], [Mackworth, 1977], [Mohr and
Henderson, 1986], [Van Hentenryck et al., 1992], [Bessiere at al., 1995]).

Numeric CSPs are special cases of the CSP where the variables are constrained to take
numeric values. The domain of a variable x can then be represented by an interva
[1b(x), ub(x)]. This compact representation is often used to tackle real life problems for
which maintaining explicitly the set of values that can be taken by each variable

24

throughout the search tree may not be reasonable. A usual way to propagate constraints on
such variables is to achieve arc-B-consistency [Lhomme, 1993], i.e., arc-consistency
restricted to the Bounds of the domains. Arc-B-consistency can be easily achieved on
some arithmetic constraints such as linear constraints [Lhomme, 1993].

Definition A-2.

Given a constraint ¢ over n variables x, ..., X, and adomain d(x) = [lb(x),ub(x;)] for each
variable x;, c is “arc-B-consistent” if and only if (I i and [val; (0{ Ib(x),ub(x)}, there exist
values valy, ..., vali-1, valjs1, ..., val, in d(Xp), ..., d(Xi-1), d(Xi+1), ..., d(X,) for the variables
X1y ey Xi-1, Xi#1, -, Xn SUCh that the constraint ¢ is consistent (i.e., holds when
Oj0{1, ..., n}, x =val). O

For complexity reasons, constraint propagation is usually incomplete. This means that
some but not all the consequences of constraints are deduced. In particular, constraint
propagation cannot detect all inconsistencies. Consequently, tree search algorithms must
be implemented to determine if the CSP instance is consistent or not. To precisely define
the search tree, one has to specify both the heuristic selection and the backtracking
strategies.

* Most of the generic search strategies use dynamic criteria to choose both the variable x
to instantiate and the value val to which x is to be instantiated (e.g., select the unbound
variable with the smallest domain and bound it to the minimum value of its domain).

» The backtracking strategy states how the system shall behave when a contradiction is
detected, i.e.,, when it is proven that there is no feasible assignment of values to
variables given the original data of the CSP and given the heuristic choices that have
been made. Most constraint programming tools rely on depth-first chronological
backtracking: The last decision is undone and the alternative constraint is imposed.
More complex backtracking strategies have aso been proposed (e.g., intelligent
backtracking).

The overall behavior of a constraint-based system is depicted on Figure A-1. This figure

underlines the fact that problem definition, constraint propagation and decision making are

clearly separated.

* First, the problem is defined in terms of variables and of constraints.

* Then, constraint propagation agorithms are specified. In practice the user of a
constraint programming tool can use some pre-defined constraints (e.g., constraints on
integers, constraints on sets, scheduling constraints) for which the corresponding
propagation algorithms have been pre-implemented.

* Finally, the decision-making process, i.e., the way the search tree is built, is specified.
It states how new constraints are added to the system (e.g., instantiating a variable to a
value, ordering a pair of activities).

25

New constraints

Problem (decisions) Decision-making
definition (and retracting)
L 5| Problem specification
Initial constraints }; or partial solution in
‘ terms of constraints
Constraint
ropagation
Deduced constraints Propsg

Contradictions

Figure A-1. The behavior of a constraint programming system

The separation between constraint propagation and the other parts of the system is a key
feature of constraint programming. It impacts a lot on the reusability of the constraint
propagation algorithms in the severa applications where similar constraints apply. This
explains the success of commercial and public domain constraint programming packages
such as ILOG SOLVER [Puget, 1994], [Puget and Leconte, 1995], CHIP [Aggoun and
Beldiceanu, 1993], [Beldiceanu and Contgean, 1994], EcLipse, CLAIRE [Caseau and
Laburthe, 1996b] and ECLAIR [Laburthe et al., 1998]

26

A.2. I ncorporating Efficient O.R. Algorithms in
Constraint-Based Systems

It appeared in the past few years that the use of specific constraint propagation algorithms
can drastically enhance the efficiency of constraint-based systems. Such algorithms are
able to take into account a set of constraints from a “globa” point of view, and can
propagate them very efficiently. Let us consider for instance the so-called “all-different”
constraint. It constrains a set of n variables to take pairwise distinct values. Such a
constraint can be obviously propagated by maintaining arc-consistency onn* (n—1) / 2
“local” congtraints that state for any pair of variables {x, y} that x # y. [Régin, 1994]
describes an agorithm to achieve the global consistency of the “all-different” constraint.
The constraint is modeled by a bi-partite graph. One of the sets is the set of the variables
while the other one is the union of the domains. An edge between a variable and a value
states that the given value is in the domain of the given variable. The constraint is
consistent if and only if there is a matching whose cardinality is n. Régin uses an
Operations Research algorithm to ensure the global consistency of the constraint. On top
of that, an extension is proposed to achieve, with a reasonable algorithmic cost, the global
arc-consistency of the constraint. The domains of the variables are filtered to remove the
values that would make the constraint inconsistent. Another famous global constraint is
the resource constraint that states that a set of activities has to execute on a single
machine. [Nuijten, 1994], [Caseau and Laburthe, 1995], [Baptiste and Le Pape, 1995b],
[Colombani, 1996] describe several constraint propagation agorithms for this constraint.
All of them are based upon the work of Carlier and Pinson for the Job-Shop problem
([Carlier and Pinson, 1989]).

These agorithms, integrated in a constraint-based tool, alow any user to benefit from the
efficiency of operations research techniques in a flexible framework (e.g., [Baptiste et al.,
19954q]). Stated another way, on the one hand operations research offers efficient
algorithms to solve problems that however might not be well suited to be used in practice,
and on the other hand “classical” constraint propagation offers algorithms that are more
generaly applicable, but that might suffer from somewhat poor performance. Naturally,
we want the best of both worlds, i.e., we want efficient algorithms that we can apply to a
wide range of problems.

27

A.3. Scheduling

Following the idea developed above, we tried to identify some of the (deterministic)

scheduling areas where it could be worth to study in details global resource constraints.

Partially based upon the scheduling problems we encountered in the industry, we

introduce a simple (and necessarily incomplete) typology of scheduling. In pure

scheduling problems (e.g., job-shop scheduling), the capacity of each resource is defined
over a number of time intervals and the problem consists of positioning resource-
demanding activities over time, without ever exceeding the available capacity. In the
following, we do not consider problems where a resource alocation dimension occurs.

Three broad families are distinguished.

* In non-preemptive scheduling, activities cannot be interrupted. Each activity must
execute without interruption from its start time to its end time. In preemptive
scheduling, activities can be interrupted at any time, e.g., to let some other activities
execute.

* Indigunctive scheduling, each resource can execute at most one activity at atime. In
cumulative scheduling, a resource can run several activities in parallel, provided that
the resource capacity is not exceeded.

* Most often, resource constraints must be taken in the strict sense, i.e., they can never
be violated. For some problems, when the resource is overloaded, resource constraints
can be taken in a broader sense: A limited number of activities can be sub-contracted
to make the resource constraint consistent. The resource is then characterized by its
overall capacity and by the number of activitiesit can sub-contract.

On top of that, several optimization criteria can be considered. The problem sometimes

lies in finding a feasible schedule but most often a criteria has to be optimized. Although

the minimization of the makespan, i.e., the finishing time of the schedule, is commonly
used, other criteria are sometimes of great practical interest (e.g., the number of activities
performed with given delays, the maximal or average tardiness or earliness, the peak or
average resource utilization). Over the years, the theory and application of scheduling has
grown into an important field of research, and an extensive body of literature exists on the
subject. For more elaborate introductions to the theory of scheduling, we refer to [Baker,

1974], [Coffman, 1976], [French, 1982], [Carlier and Chrétienne, 1988], [GOThA, 1993]

and [Brucker, 1995].

To represent this set of scheduling problems, we use a smple model based upon four

entities: Activities, resources, temporal constraints and resource constraints.

28

A.3.1. Representation of Activities and Resources

A non-preemptive scheduling problem can be encoded efficiently as a constraint
satisfaction problem: two variables, start(A;) and end(A;), are associated with each activity
A;; they represent the start time and the end time of A.. The smallest values in the domains
of start(A) and end(A) are caled the release date and the earliest end time of A (r; and
eetj). Similarly, the greatest values in the domains of start(A) and end(A) are caled the
latest start time and the deadline of A; (Ist; and d;). The processing time of the activity isan
additional variable processingTime(A), that is constrained to be lower than or equal to the
difference between the end and the start times of the activity (most often, processing time
is known and bound to avalue p;).

/ /
eet Ist

Figure A-2. The release date, the deadline, the processing time, the earliest end time and
the latest start time of an activity (light gray is used to depict the time-window [r;, di] of an
activity and dark gray is used to represent the processing time of the activity).

A preemptive scheduling problem is more difficult to represent. One can either associate a

set variable (i.e., a variable the value of which will be a set) set(A) with each activity A,

or define a 0-1 variable W(A;, t) for each activity A; and time t; set(A;) represents the set of

times at which A; executes, while W(A;, t) assumes value 1 if and only if A; executes at
timet. Ignoring implementation details, let us note that:

* thevalueof W(A;, t) is1if and only if t belongsto set(A).

e assuming time is discretized, start(A;) and end(A)) can be defined, in the preemptive
case, by start(A) = mintDset(Ai)(t) and end(A) = maXtDset(Ai)(t + 1); such variables
are often needed to connect activities together by temporal constraints. Notice that in
the non-preemptive case, set(A) = [dart(A), end(A)), with the interval
[start(A), end(A)) closed on the left and open on the right so that
|set(A)] = end(A) - start(Aj) = processingTime(A).

29

In the following, capacity(R) denotes the constrained variable used to represent the
capacity of the resource R, the number of paralel identical machines that are available in
R. To model resources with variable profile, we can aso introduce capacity(R, t), the
constrained variable that represents the capacity of the resource R available at time t. We
note Cr the maximum capacity available, i.e., Cr = ub(capacity(R)).

This model alows to represent a large variety of resource types. However, to handle the
case of overloaded resources, we introduce another variable reject(R) that represents the
number of activities among the n activities requiring the resource that can be
sub-contracted. Most often, a single resource will be considered at a time. Hence, to
simplify notations, the reference to R will be omitted.

A.3.2. Temporal and Resources-Constraints

Temporal relations between activities can be expressed by linear constraints between the
start and end variables of activities. For instance, a precedence between two activities A,
A is modeled by the linear constraint end(A;) < start(A;). Such constraints can be easily
propagated using a standard arc-B-consistency algorithm [Lhomme, 1993]. In addition, a
variant of Ford's algorithm proposed in [Cesta and Oddi, 1996] is used to detect any
inconsistency between precedence and processing time constraints, in time polynomial in
the number of constraints (and independent of the domain sizes).

Resource constraints represent the fact that activities use some amount of resource
throughout their execution. Given an activity A; and a resource R, capacity(A;, R) is the
constrained variable that represents the amount of resource R required by activity Ai. Ciris
the minimal amount of the capacity of the resource required by the activity, i.e,
Cir = Ib(capacity(Ai, R)). A resource constraint states that at any time t, the resource
capacity is never exceeded by the sum of the resource requirements.

* Inthe non-preemptive case, thisleads to

OR, Ot 2. capacity(A, R) < capacity(R, t).
start(A)<t<end(A)

* Inthe preemptive case, this leads to

OR, Ot D W(A ,t)* capacity(A, R) < capacity(R, t).
start(A)<t<end(A)

30

Consider now the situation where the resource is overloaded. It is fairly natura to
introduce an extra binary constrained variable in(A;, R) that states whether A is

» performed ontheresourceR, i.e, in(A;, R) =1

» or subcontracted, i.e., in(A;, R) = 0.

When a single resource is considered, the index R will be omitted. The resource constraint
simply states that on-time activities must satisfy a usual resource constraint.

* Inthe non-preemptive case, thisleads to

OR, Ot, > in(A, R)* capacity(A, R) < capacity(R,t)
start(A)<t<end(A)

Y in(A,R) 2 n-reect(R)
* Inthe preemptive case, this leads to

OR, Ot, > in(A,R)*W(A,t)* capacity(A , R) < capacity(R,t)
start(A)<t<end(A)

Y in(A,R) 2 n-reect(R)
A.3.3. Modeling some Classical Scheduling Problems

We examine four well-known scheduling problems and we show how they can be
represented within the model described above. The decision variant of each of these
problems is NP-Complete in the strong sense [Garey and Johnson, 1979].

The Job-Shop Scheduling Problem (JSSP)
Instance. An instance of the decision variant of the Job-Shop Scheduling Problem is

described by (1) a number m of machines, (2) aset of njobs and (3) an overall deadline D.
Each job J consists of a list L, of activities. Each activity is given an integer processing
time and a machine on which it has to be processed.

Question. The problem is to find a non-preemptive schedule, i.e., an assignment of start
times to activities such that (1) each machine executes one activity at a time (2) activities
of the same job J, are processed in the order induced by the list L, and (3) al activities end
beforetime D.

Model. Each machine of the Job-Shop Scheduling Problem is modeled by a
non-preemptive digunctive resource. Precedence constraints are imposed between
activities of the same jobs. The overall deadline D isimposed to al activities.

31

The preemptive Job-Shop Scheduling Problem (PJSSP)
Instance. Same data as those for the JSSP.

Question. The problem is to find a preemptive schedule, i.e., a set of execution times for
each activity such that (1) each machine executes one activity at atime (2) activities of the
same job J, are processed in the order induced by the list L; and (3) all activities end before
timeD.

Model. Each machine of the Job-Shop Scheduling Problem is modeled by a preemptive
digunctive resource. Precedence constraints are imposed between activities of the same
jobs. The overall deadline D isimposed to all activities.

Surprisingly, the preemptive version of the job-shop is “harder” than the non-preemptive
one. As shown in [Brucker et al., 1999], if the number of machines is fixed and equals 2
and if the number of jobs is fixed and equals to 3, the preemptive problem is NP-hard
while the corresponding non-preemptive one can be solved in polynomial time.

The Resour ce-Constrained Project Scheduling Problem (RCPSP)
Instance. An instance of the decision variant of the RCPSP consists of (1) a set of

resources of given capacities, (2) a set of non-interruptible activities of given processing
times, (3) an acyclic network of precedence constraints between the activities, (4) for each
activity and each resource the amount of the resource required by the activity over its
execution and (5) an overall deadline D.

Question. The problem is to find a start time assignment that satisfies the precedence and
resource capacity constraints, and whose makespan (i.e., the time at which all activities are
completed) isat most D.

Model. Each resource of the instance is modeled by a cumulative resource. Following the
structure of the network, precedence constraints are imposed between activities. The
overall deadline D isimposed to all activities.

32

Minimizing the number of latejobson a single machine (1|rj|ZU;)

Instance. An instance of the decision-variant of this problem consists of a set of n jobs
described by a release date rj, aduc-}daté';‘| di and aprocessing time p; (ri + pi < d) and an
integer N.

Question. The problem is to find an assignment of start times to jobs such that (1) jobs do
not overlap in time, (2) each job starts after its release date and (3) the number of jobs that
end after their due-date islower than or equal to N.

Model. Each job is modeled by an activity. Release dates, due dates and processing times
are imposed. A non-preemptive disunctive overloaded resource R is used to model the
problem. Activities A; such that in(A;, R) = 1 are on-time, the other ones are late. The
upper-bound of the constrained variable reject(R) is set to N.

% The term deadline d; is used when an activity has to execute before d; (otherwise the
schedule is not feasible). When activities can execute after d; (in such a case these
activities are late), the term due-date is more appropriate than deadline. To keep the same
name “deadline” for d; throughout the document, we make a slight misuse of language.

33

A4 Summary of Results and Outline of the
Thesis

The model that has been provided in the previous section is very general. An exhaustive
study of al type of resource constraints would lead us to consider 8 types of resource

constraints (preemptive vs. non-preemptive, digunctive vs. cumulative, strict vs.
overloaded). Up to now, we have only considered the following cases:

Digunctive resource constraint in the non-preemptive case. Following the work of
[Nuijten, 1994], most of the constraint-based scheduling tools have integrated variants
of the adjustments techniques of Carlier and Pinson, initially developed for the Job-
Shop Scheduling Problem. The basic consists of deducing that some activities from a
given set Q must, can, or cannot, execute first (or last) in Q. Such deductions lead to
new ordering relations and new time-bounds, i.e., strengthened release dates and
deadlines of activities. Several algorithms have been proposed to compute all the
possible adjustments due to deductions like “activity A; must be the first (last) one to
execute among activitiesin Q”. The deductive rules that allow to prove that an activity
cannot be the first (last) one to execute have been less studied. We provide the first
algorithm that is able to perform all the possible adjustments corresponding to this
rule. It runsin O(n?).

Digunctive resource constraint in the preemptive case. To our knowledge, such
constraints have never been studied. We propose severa propagation algorithms. The
first one is based upon a time-tabling technique, the second one on a digunctive
formulation of the problem, the third on a flow formulation of the problem and finally,
we show that the adjustments of Carlier and Pinson can be generalized to the
preemptive case.

Cumulative resource constraint. In comparison with the digunctive case, few work
has been carried in the Operations Research community on deductive techniques for
cumulative problems (except for the computation of lower-bound on some special
cases). The constraint programming community has paid more attention to this
constraint. Several attempts have been made to generalize the results obtained in the
digunctive case (e.g., [Aggoun and Beldiceanu, 1993], [Nuijten, 1994], [Caseau and
Laburthe, 1996a]). We tackle the cumulative resource constraint through a particular
decision problem, namely the Cumulative Scheduling Problem (CuSP). We study two
relaxations of this problem: A fully elastic relaxation, which can be seen as a
preemptive one-machine problem, and a partially elastic relaxation. We also study a

set of necessary conditions based upon an energetic formulation [Lopez et al., 1992].
Each time, we propose some algorithms that are able to verify that some necessary
conditions of existence hold. On top of that we propose new algorithms to adjust
release dates and deadlines. We compare our results to some lower-bounds of the
literature for the m-machines problem, a special case of the CuSP. In particular, we
show that the partially elastic relaxation is equivalent to the subset bound [Perregaard,
1995], itself as good as the lower bound obtained by Carlier and Pinson through a
pseudo-preemptive relaxation of the m-machine Problem [Carlier and Pinson, 1996].
We aso show that energetic reasoning strictly dominates all the other techniques cited
above.

Digunctive and overloaded resource constraint. As far as we know, such
constraints have never been studied in the constraint programming community. A large
amount of work has been carried, in the Operations Research field, on the
minimization of the number of late jobs on a single machine. Severa particular case
are known to be solvable in polynomial time. In the appendices, we describe strongly
polynomia agorithms for two open problems that consist in minimizing in the
preemptive and in the non-preemptive case the weighted number of late jobs with
release dates and deadlines.

We propose severa techniques to propagate the overloaded resource constraint. First,
we study its preemptive relaxation. We propose an O(n?) dynamic programming
algorithm for this problem; which improves the time and space complexities of a
previous agorithm of [Lawler, 1990]. We also propose a weaker relaxation that gives
a (weaker) bound which can be computed in a quadratic amount of time. On top of
that, this relaxation is the basis of an adjustment scheme that is able to deduce that
some activities have to be performed on the resource while some others have to be
sub-contracted.

Chapter B is dedicated to the study of these different constraint propagation algorithms.
To evaluate from an experimental point of view the efficiency of these algorithms, we
describe in Chapter C some branching schemes with constraint propagation to solve some
classical scheduling problems. The Preemptive Job-Shop Scheduling Problem, the
Resource Constrained Project Scheduling Problem and the problem of the minimization of
the number of late jobs are studied. On top of the propagation, we use several dominance
properties that allow to drastically reduce the search space. Experimenta results are
provided for each problem and allow us to compare our approach to some well known
exact approaches of the literature.

Asfar as we know, no exact approach has been proposed to solve the Preemptive Job-
Shop Scheduling Problem. We use a chronological branching scheme and we apply a
dominance property that imposes that the premptive schedules of each machine “look

35

like” Jackson Preemptive Schedules. This branching scheme, combined with the
adjustments that extend the work of Carlier and Pinson to the preemptive case, proves
to be efficient since all the 10* 10 benchmark instances from the literature are solved.

* We propose severa variants of the same branching scheme for the RCPSP. We show
that, these variants perform more or less well, depending on the type of instances. On
highly digunctive instances (i.e.,, on instances that have a strong digunctive
dimension), our procedure does not perform as well as other branch and bound
procedures based upon the dominance rule of [Demeulemeester and Herroelen, 1995].
However, on highly cumulative instances (i.e., on instances for which the digunctive
dimension is not very important), we obtain very promising results, that have been
confirmed on the multi-processor Flow-Shop, a special case of the RCPSP [Néron et
al., 1993].

* Finally, we propose a branch and bound procedure to minimize the number of late jobs
on a single machine. Our branching scheme simply consists of deciding whether a
given job islate or on-time. At each node, we check that there is a feasible schedule of
the jobs that have to be on-time (this is an NP-hard problem, however, it is very well
solved thanks to a variant of the procedure of [Carlier, 1982]). On top of that, we use a
strong dominance property. Previous exact approaches ([Dauzére-Péres, 1995])
relying on MIP formulation could not consider instances with more than 10 jobs
because of the size of the MIP. Our procedure is able to solve 90% of the 100-jobs
instances in less than one hour. Moreover, our results compare very well to the very
recent branch and bound of [Dauzére-Pérés and Sevaux, 1998b].

We draw some conclusionsin Chapter D and we give some promising research directions.

36

Chapter B. Propagation of Resource
Constraints

The propagation of resource constraints is a purely deductive process that alows to
deduce inconsistencies and to tighten the characteristics of activities and resources. In the
simplest case, the release dates and the deadlines of activities are updated. When
preemption is alowed, modifications of earliest end times and latest start times aso apply.
When resources are overloaded, the propagation process does not only aim at adjusting the
time-windows of activities but also at deducing automatically that some activities have to
be processed on the resource or have to be subcontracted.

In this chapter, we study four resource constraints that correspond to the disjunctive non-
preemptive case (Section B.1l), the digunctive preemptive case (Section B.2), the
cumulative case (Section B.3) and the disjunctive overloaded case (Section B.4). In the
last two cases, some remarks concerning the preemptive variant of the resource constraint
will be provided. Each time, several propagation algorithms are described and compared
from atheoretical point of view.

37

B.1. The Non-Preemptive Digunctive Case

In the following sections, we study severa methods to propagate the non-preemptive
digunctive resource constraint. A set of n non-interruptible activities { Ay, ..., An} require
the same resource of capacity 1. This resource constraint is an exact transposition of the
decision variant of the One-Machine Problem [Garey and Johnson, 1979]: Is there a
feasible schedule, i.e., a start-time assignment such that activities are scheduled between
their release dates and their deadlines and such that they do not overlap in time? Given an
instance of this problem, our aim is (1) to detect some cases in which we can prove that
there is no feasible schedule and (2) to adjust release dates and deadlines of the activities.
The adjustments consist of removing from the domain of each activity A; valuest for
which we can prove that there is no feasible schedule on which A; starts at t.

First we consider the simple Time-Table mechanism, widely used in constraint based
scheduling tools, that allows to propagate the resource constraint in an incremental
fashion. We then consider the digunctive constraint that compares the temporal
characteristics of pairs of activities. In the third part, we describe the edge-finding
propagation technique, which has been shown to be extremely efficient for solving
disiunctive problems like the Job-Shop problem. In the last section of this chapter, we
present a mechanism that extends the basic edge-finding mechanism and that allows to
make some additional deductions. For this mechanism, known as Not-First / Not-Last, we
propose a quadratic algorithm that overcomes, in terms of complexity, the previous known
algorithmic results.

B.1.1. Time-Table Constraint

A simple mechanism to propagate resource constraints in the non-preemptive case relies
on an explicit data structure called “timetable” to maintain information about resource
utilization and resource availability over time. Resource constraints are propagated in two
directions: from resources to activities, to update activity time bounds (release dates and
deadlines) according to the availability of resources, and from activities to resources, to
update the timetables according to the time bounds of activities. Although several variants
exist [Le Pape, 1988], [Fox, 1990], [Le Pape, 1995], [Smith, 1994], [Caseau and Laburthe,
19964], [Lock, 1996], the propagation mainly consists of maintaining arc-B-consistency
[Lhomme, 1993] on the formula:
2i [W(A;, 1) * capacity(A)] < capacity(t)

38

where capacity(A;) denotes the capacity of the resource required by activity A;, capacity(t)
denotes the capacity available at time t, and W(A;, t) is an implicit 0-1 variable
representing the Boolean value WA, t) = (start(A) < t) O (t < end(A)).

Before Propagation | ri | di | pi 0 1 2 3 4 5
A 0132

Propagation 1 ri|di|p
A 0[3]2 |

Propagation 2 ri|di|pi |
A1 0|2]|2

Figure B-1. Propagation of the timetable constraint.

Example.

Figure B-1 displays two activities A; and A, which require the same resource of capacity
1. The latest start time (d; - p1 = 1) of A; issmaller than its earliest end time (r1 + p1 = 2).
Hence, it is guaranteed that A; will execute between 1 and 2. Over this period, W(A, t) is
set to 1 and the corresponding resource amount is no longer available for A;. Since A,
cannot be interrupted and cannot be finished before 1, the release date of A; is updated to
2 (propagation 1). Then, W(A,, t) is set to 1 over the interval [2, 4), which results in a new
propagation step, where the deadline of A; is set to 2 (propagation 2).

B.1.2. Digunctive Constraint Propagation

In non-preemptive disunctive scheduling, two activities A; and A; which require a
common resource R cannot overlap in time: either A; precedes A; or A; precedes Ai. If n
activities A; ... A, require R, the resource constraint can be implemented as nC{n-1) / 2
(explicit or implicit) disunctive constraints. As for timetable constraints, variants exist in
the literature [Erschler, 1976], [Carlier, 1984], [Esquirol, 1987], [Le Pape, 1988], [Smith
and Cheng, 1993], [Varnier et al., 1993], [Baptiste and Le Pape, 1995a], but in most cases
the propagation consists of maintaining arc-B-consistency on the formula

(end(A) < start(A)) O (end(A) < start(A)).

39

Enforcing arc-B-Consistency on this formula is done as follows: Whenever the smallest
possible value of end(A) (earliest end time of A;) exceeds the greatest possible value of
start(A) (latest start time of A;), Ai cannot precede A;; hence A; must precede A;; the time-
bounds of A; and A; are consequently updated with respect to the new temporal constraint
end(A) < start(A). Similarly, when the earliest possible end time of A; exceeds the latest
possible start time of A, A; cannot precede A.. When neither of the two activities can
precede the other, a contradiction is detected.

Digunctive constraints provide more precise time bounds than the corresponding
timetable constraints. Indeed, if an activity A; is known to execute at some time t between
the release date r; and the earliest end timer; + p; of A;, then the first digunct of the above
formula is false and thus, A; must precede A and the propagation of the digunctive
constraint implies start(A)) > r; + p; > t.

The following example shows that, in some cases, digunctive constraints propagate more
than time-table constraints.

Before Propagation | ri | di | pi 0 1 2 3 4 5 6
Ay 042
Ay 1|15|2
Propagation ri | di | pi
A 032
A 2152

Figure B-2. Propagation of the digunctive constraint (non-preemptive case)

Example.
Figure B-2 displays two activities A; and A, which require the same resource of capacity
1. The earliest end time of each activity does not exceed its latest start time, so the
timetable constraint cannot deduce anything. On the contrary, the propagation of the
disunctive constraint imposes end(A;) < start(Ay) which, in turn, results in updating both
d, and ro.

B.1.3. Edge-finding

The term “edge-finding” is often used in non-preemptive digunctive scheduling
[Applegate and Cook, 1991]. It denotes both a “branching” and a “bounding” technique.
The branching technique consists of ordering activities that require the same resource. At
each node, a set of activities Q is selected and, for each activity A; in Q, a new branch is
created where A; is constrained to execute first (or last) among the activities in Q. The

bounding technique consists of deducing that some activities from a given set Q must, can,
or cannot, execute first (or last) in Q. Such deductions lead to new ordering relations
(“edges’ in the graph representing the possible orderings of activities) and new time-
bounds, i.e., strengthened release dates and deadlines of activities.
In the following, let rq denote the smallest of the release dates of the activitiesin Q, let dg
be the greatest of the deadlines of the activitiesin Q, and let pg be the sum of the minimal
processing times of the activitiesin Q. Let Aj « Aj (Al » Aj)) mean that A; executes before
(after) Ay and A « Q (A » Q) mean that Ay executes before (after) all the activities in Q.
Once again, variants exist [Pinson, 1988], [Carlier and Pinson, 1990], [Carlier and Pinson,
1994], [Caseau and Laburthe, 1994], [Nuijten, 1994], [Brucker and Thiele, 1996], [Lévy,
1996], [Martin and Shmoys, 1996], [Péridy, 1996] but the following rules capture the
“essence” of the edge-finding bounding technique:

[@ , OA OQ, doggay —ro <pe + pi] = A «Q

[[@ , 0OA 0Q,dq—raongay <po +p] = A»Q

A «Q = [end(A) < mingw (do —pa’)]

A »Q = [start(A) 2 maxom (fo + Pe’)]

If n activities require the resource, there are a priori O(n £72N) pairs (A, Q) to consider. An
algorithm that performs all the time-bound adjustments in O(n?) is presented in [Carlier
and Pinson, 1990]. It consists of a “primal” agorithm to update release dates and a * dual”
algorithm to update deadlines. The primal algorithm runs as follows:

» Compute “Jackson’s preemptive schedule” (JPS) for the resource under consideration.
JPS is the preemptive schedule obtained by applying the following priority rule:
whenever the resource is free and one activity is available, schedule the activity A; for
which d; is the smallest. If an activity A; becomes available while A; is in process, stop
A and start A if d; isstrictly smaller than d;; otherwise continue A;.

» For each activity A, compute the set W of the activities which are not finished at t =r;
on JPS. Let p* be the residual processing time on the JPS of the activity A; at timet.
Take the activities of W in decreasing order of due dates and select the first activity Ax
such that:

[P+ 2a @ (A} |d < P") >k
If such an activity Ay exists, then post the following constraints:
A»{A - {A} [g<dd
Start(A) = max o g A3 | < d SPSA))
where JPS(A)) is the completion time of activity A in JPS.

41

Example.
Figure B-3 presents the JPS of a resource of capacity 1 required by 3 activities. On this

example, the edge-finding propagation algorithm deduces start(A)) = 8, when the timetable
and the digunctive constraint propagation algorithms deduce nothing.

rijdijp| O 2 4 6 8 10 12 14 16

Ay 0(1l7| 6
Ao 1(11|4
Az 11113
Schedule ALlA | Ao | Ao | Ao | As | As | Az A | Al Ag | ALl Ag

Figure B-3. The JPSof 3 activities.

[Nuijten, 1994] and [Martin and Shmoys, 1996] present variants of this algorithm, which
aso run in O(n?), but do not require the computation of Jackson’s preemptive schedule.
[Carlier and Pinson, 1994] presents another variant, which runs in O(nCog(n)) but
requires much more complex data structures. [Caseau and Laburthe, 1994] presents
another variant, based on the explicit definition of “task intervals.” This variant runs in
O(n®) in the worst case, but works in an incremental fashion and allows the performance
of additional deductions (cf., Section B.1.4). Finally, [Brucker and Thiele, 1996] proposes
several extensions to take setup times into account. [Baptiste, 1995] and [Martin and
Shmoys, 1996] establish an interesting property of the edge-finding technique: considering
only the resource constraint and the current time bounds of activities, the algorithm
computes the smallest release date at which each activity Ay could start if al the other
activities were interruptible.

As shown in [Lévy, 1996], the edge-finding agorithms above may perform different
deductions from the more standard digunctive constraint propagation algorithms.
Examples given in [Lévy, 1996] show that each of the two techniques (edge-finding and
digunctive constraint propagation) performs some deductions that the other technique
does not perform. Examples given in [Baptiste, 1995] show that the same result applies to
the edge-finding rules and the energetic reasoning rules of [Erschler et al., 1991]. In
practice, an edge-finding algorithm is often coupled with a digunctive constraint
propagation algorithm to allow a maximal amount of constraint propagation to take place.

42

B.1.4. Not-First, Not—LastIZI

The algorithm presented in the preceding section mostly focuses on determining whether
an activity A; must execute before (or after) a set of activities Q requiring the same
resource. A natural complement consists of determining whether A; can execute before (or
after) Q. In the non-preemptive digunctive case, this leads to the following rules [Pinson,
1988], [Carlier and Pinson, 1990], [Caseau and Laburthe, 1994]:

@ ,0A0Q,dg-ri<pa+p=-(A«Q)

@ ,OA0Q,di-rg<pa+p=-(A»Q)

(A « Q) = start(A) = mi NAD (rj + p)

= (A »Q) = end(A) = max A (di - p)

The problem which consists of performing all the time-bound adjustments corresponding
to the first and third rules can be called the “not-first” problem, since it consists of
updating the release date of every activity Aj which cannot be first to execute in a set
Q [0{A}. Similarly, the problem which consists of performing al the time-bound
adjustments corresponding to the second and fourth rules can be called the “not-last”
problem (it consists of updating the deadline of every activity A which cannot be last to
executeinaset Q [{A}).

Most researchers who have been working on edge-finding technigues have considered the
“not-first” and “not-last” rules above [Pinson, 1988], [Carlier and Pinson, 1990], [Caseau
and Laburthe, 1994], [Nuijten, 1994], [Baptiste and Le Pape, 1995b], [Lévy, 1996], but in
the absence of low-polynomial algorithms for solving the complete “not-first” problem,
the rules had to be applied in an incomplete way, alowing only some but not al of the
possible time-bound adjustments. In this section, we present an O(n?) time and O(n) space
algorithm to solve the “not-first” problem. The “not-last” problem is solved in a
symmetric fashion. To our knowledge, this is the first reported agorithm to perform all
the deductions allowed by the rules above in quadratic time.

Let us first introduce some assumptions and notations. We assume that the relation r; + p;
< d; holds for every activity A. Otherwise, the scheduling problem clearly alows no
solution and the constraint propagation process can stop. We also assume that the
activities Ay, ..., Ay which require the resource under consideration are sorted in non-
decreasing order of deadlines (this can be done in O(n Olog(n)) time). Hence, i < j implies
di < di. For agivenj and agivenk, Q(j, k) denotes the set of indicesmin {1 ... k} such that

* Most of the results presented in this section come from [Baptiste and Le Pape, 1996h].

I+ P < rm+ pmand Q(i, j, k) denotes Q(j, k) —{i}. Hence, if i does not belong to Q(j, K),
Q(i, j, k) is equal to Q(j, k). Let § « = pqg, 1 If j< k and § x=- otherwise. Let
g, k=min < (d —§,)).

Proposition B-1.
For agiven j, thevalues g 1, ..., 4, n can be computed in O(n) time.

Proof.
Indeed, the values of §, « and g, k can be computed in constant time from the values of

S, k1and g, k1. Onejust hasto test whether k verifiesr; + pj < ry + py or not. O
Proposition B-2.

If the “not-first” rules applied to activity A and set Q allow to update the release date of A
to r; + pj then there exists an index k = j such that the “ not-first” rules applied to activity A
and set Q(i, j, k) alow to update the release date of A to rj + p;.

Pr oof.

Let k be the maximal index of the activitiesin Q. Q isincluded in Q(i, j, k) and dq is equal
to dog, j, . Hence the rules can be applied to A and Q(i, j, k) and provide the conclusion
that A; cannot start beforer; + p; since every min Q(i, j, K) satisfiesrj + pj < rm + pm. O

Proposition B-3.

Leti and j be such that r; + p; <r; + p;. In this case, the “not-first” rules allow to update the

release date of A torj + p;if andonly if ri + p; > g, .

Proof.

Necessary condition.
Let us assume that the rules alow to update the release date of A to rj+p.
According to Proposition B-2, there exists k = j such that Q(i, j, k) is not empty and
de - i< pag,j K+ Pi. Sincer; + p; <r; + p; implies that i does not belong to Q(j, K),
thisimpliesri + pi>dc- § k= g, n.

Sufficient condition.
Let usassumethat ri + pi > g, n. 9, n isfinite, so there exists an index k> j such that
J,n=0k—§ « Sincei does not belong to Q(j, k), we have d - ri < pag,j K + pi- SO,
the rules allow to update the release date of A; to the valuer; + p;. O

Proposition B-4.
Leti and j be such that r; + p; = r; + p;. In this case, the “not-first” rules allow to update the
release date of Ajtor; + p; if and only if either ri + pi> g i 0rri > g, n.

Proof.
Necessary condition.

Let us assume that the rules allow to update the release date of A to rj +p;.
According to Proposition B-2, there exists k = j such that Q(i, j, K) is not empty and
dk - 1i < Pag,j, K + Pi. Two cases, k<iandi <k, can bedistinguished. If k<i, i does
not belong to Q(j, k). Thisimpliesthat r; + pi > di - §, « = g, i-1. On the contrary, if
I <k, i belongsto Q(j, K). Then pag, k = Pag,j,k + Pi and ri>d—§ k=2 g n.
Sufficient condition.

If ri + pi > 4 i1, 9, i1 s finite, so there exists an index k, not greater than i, such
that §,i.1 = dk - §, k. Sincei does not belong to Q(j, k), we have di - ri < pog, j, k) + Pi-
So, the rules allow to update the release date of A to rj + p;. Let us now assume that
r+pi<qgii1andri>g n Thenthereexistsanindex k= j suchthat § n=dk— S «.
Note that k> i (otherwise, g, = §,i.1 <rj contradicts r; + p; < 9, i.1). Consequently,
I belongs to Q(j, k). In addition, Q(j, k) is not reduced to {i}, otherwise we would
haveri > g n=di—§ k= dk— pi = di — p; which contradicts the initial assumption
that ri+pi<d;for al i. Hence, Q(i,j,k)# 0 satisfies d—ri <pag,j,k +pi.- So, the rules
alow to update the release date of A torj + p;. O

We now introduce Algorithm B-1 that performs the same time-bound adjustments as the
“not-first” rules.

Algorithm B-1.

1 For i =1 Toi =n

2 ri' = r;

3 End For

4 For j =1 Toj =n

5 conpute delta;, 1, ..., deltaj, n
6 For i =1 Toi =n

7 If ri + pi <r; + p; Then

8 If ri + pi > deltaj, » Then
9 ri' = max(ri', rj + pj)

10 End If

11 El se

12 If ri + pi >delta;, ; -1 0or r; > deltaj, » Then
13 ri' = max(ri', rj + pj)

14 End If

15 End If

16 End For

17 End For

18 For i =1 Toi =n

19 ri =r;'

20 End For

Proposition B-5.

Algorithm B-1 performs the same time-bound adjustments as the “not-first” rules. It runs
in O(n?) time and O(n) space.

Proof.

Propositions B-3 and B-4 imply that the algorithm performs exactly the deductions
implied by the rules. Thanks to the introduction of the variablesr ;' , one does not need to
resort activities inside the loops. The algorithm runs in O(n®) steps since for each j in the
outer loop, O(n) steps are required to compute g, 1 ... g, » and for each i in the inner loop,
O(1) steps are required to perform the relevant tests. In addition, the algorithm requires
alinear amount of memory space since only the values g, 1... g, , for a given j are
required. O

Let us note that when the processing times of activities are fixed, the “not-first” and “not-
last” rules subsume the disjunctive constraint propagation technique mentioned in Section
B.2.2. Hence, no disunctive constraint propagation algorithm is needed when the “not-
first” algorithm above and its dual “not-last” algorithm are applied.

46

B.2. The Preemptive Digunctive Case, the Mixed

Case®

In the following sections, we study several methods to propagate the preemptive
digiunctive resource constraint. A set of n interruptible activities { Aq, ..., Ay} require the
same resource of capacity 1. This resource constraint can be seen as the decision variant of
the preemptive One-Machine Problem: Is there a preemptive feasible schedule, i.e., an
assignment of execution times such that activities are scheduled between their release
dates and their deadlines, and such that they do not overlap in time? Like for the
non-preemptive case, our aim is to detect some cases in which we can prove that there is
no feasible schedul e, and to tighten the temporal characteristics of each activity.

It is well-known that the preemptive One-Machine Problem can be solved in polynomial
time by Jackson's algorithm. However, we consider this problem as a relaxation of
another more complex problem (e.g., the preemptive Job-Shop Scheduling Problem) and it
is of great interest to study some algorithms that are able to tighten the temporal
characteristics of activities.

We study several methods to propagate the preemptive one-machine resource constraint.
First, we show that both the Time-Table mechanism and the digunctive constraint can be
extended. We then propose a resource-constraint based on network-flows. In the last
section, we present a mechanism that extends the edge-finding mechanism. In particular,
we show that this last resource constraint propagation scheme is able to handle the mixed
case, i.e., the case in which both interruptible and non-interruptible activities are mixed.

B.2.1. Time-Table Constraint

At the first glance, it seems that the main principle of the timetable mechanism directly
applies to both the preemptive and the mixed case. However, an important difference
appears in the relation between the five variables WA, t), set(A), start(A), end(A), and
processingTime(A). The earliest start time r; can easily be set to “the first time t at which
W(A;, t) can be 1.” Similarly, the deadline d; can easily be set to 1 + “the last time t at
which W(A,, t) can be 1.” However, the earliest end time eet; must be computed so that
there possibly exist processingTime(A;) time pointsin set(A) n [ri, eeti), and the latest start
time Isti must be computed so that there possibly exist processingTime(A) time pointsin

> Most of the results presented in this section come from [Baptiste, 1995], [Le Pape and
Baptiste, 1996] and [Le Pape and Baptiste, 19984 .

47

set(A) n [Isti, d). These additional propagation steps make the overall propagation
process far more complex.

In the reverse direction, it is important to notice that W(A,, t) cannot be set to 1 as soon as
Ist; <t < eet;. The only situation in which W(A;, t) can be deduced to be 1 is when no more
than processingTime(A;) time points can possibly belong to set(A). This is unlikely to
occur before decisions (choices in a search tree) are made to instantiate set(A). Therefore,
constraint propagation cannot prune much.

BeforeProp. | ri |eeti| Ist | di | pi

Aj(non-int.) |0 2 | 1 |3|2

A(int) |0 2| 2|42

Prop. 1 ri|eet|Ist | di|p

Ai(non-int.) |0 2 | 1 |3|2

Ar(int) |0] 3|2 |42

Figure B-4. Propagation of the time-table constraint (mixed case)

Example.

Given the data of Figure B-1, the timetable mechanism cannot deduce anything if both
activities can be interrupted. Figure B-4 shows what happens when only A, can be
interrupted. As in Figure B-1, it is guaranteed that A; will execute between Ist; = 1 and
eet; = 2. Over this period, the corresponding resource amount is no longer available for A,.
The earliest end time of A; is then set to 3. Then the propagation process stops since there
isno time point at which A; is guaranteed to execute.

Both costly and in most cases ineffective, the timetable mechanism appears far from
satisfactorily applicable to preemptive problems. Severa researchers incorporated some
possibilities of preemption in their constraint-based algorithms or applications
(e.g., interrupt a machining operation in favor of a planned machine maintenance but not
in favor of another machining operation, interrupt an activity at most once or twice
[Zweben et al., 1993], [Smith, 1994], [Le Pape, 1996], [Pegman et al., 1997]). Few did
attack the general problem of preemptive and mixed scheduling. [Demeulemeester, 1992]
presents a branch and bound algorithm for a particular preemptive cumulative scheduling
problem: the preemptive Resource-Constrained Project Scheduling Problem. This
algorithm relies on memorizing states rather than on constraint propagation to prune the
search space. [Baptiste, 1994] reports on a tentative implementation, in 1LOG SOLVER
[Puget, 1994], [Puget and Leconte, 1995], of preemptive time-table constraints. The
reported results confirm that even on ssimple problems the propagation process is rather

slow. Let us note, however, that the timetable mechanism can easily be generalized to
other types of resources, such as resources of capacity m> 1, or resources which must be
in a specific state for an activity to execute [Le Pape, 1994]. Such is not the case for the
techniques described in the following sections.

B.2.2. Digunctive Constraint Propagation

In the preemptive disunctive case, the fact that activities A and A; cannot overlap is most
naturally represented by two alternative formulas:
Set(A) n set(A) =0 or Ot, [WA;, t) = 0 or WA, t) =0].
When one of these formulas is adopted, the preemptive digunctive constraints and the
corresponding preemptive timetable constraints deduce the same time bounds. However, a
simple rewriting of the non-preemptive disunctive constraint
[start(A;) + processingTime(A) < end(A;) — processingTime(A))]
or [start(A) + processingTime(A)) < end(A;) — processingTime(A)]
suggests an additional preemptive digunctive constraint:
[start(A;) + processingTime(A)) + processingTime(A)) < end(A)]
or [start(A) + processingTime(A;) + processingTime(A;) < end(A)]
or [start(A) + processingTime(A;) + processingTime(A;) < end(A)]
or [start(A) + processingTime(A;) + processingTime(A) < end(A)]
which can serve as a complement to set(A)) n set(A) = U. Arc-B-Consistency is achieved
on this additional constraint. Note that in the mixed case, the first (fourth) disjunct can be
removed from the disunction if A; (respectively, A;) cannot be interrupted.

BeforeProp. | ri [eeti| Ist | di | pi 0 5 6

Prop. 1 ri|eet|Isti|d|p

A(int) |0| 5| 1]6

A(int) |2] 3|3 |41

1 2 3 4
A(int)y |0 4264
AGnt) |23 3 |41

Figure B-5. Propagation of the digunctive constraint (preemptive case)

Example.
In the example of Figure B-5, the propagation of the redundant constraint provides
start(A;) <1 and end(Aq) = 5.

49

B.2.3. Network-Flow based Constraints

[Régin, 1994] describes an agorithm, based on matching theory, to achieve the global
consistency of the “al-different” constraint. This constraint is defined on a set of variables
and constrains these variables to assume pairwise distinct values. Régin's agorithm
maintains arc-consistency on the n-ary “all-different” constraint, which is shown to be
more powerful than achieving arc-consistency for the nC{n- 1) /2 corresponding binary
“different” constraints.

Basically, Régin’s algorithm consists of building a bipartite graph G(X, Y, E) where X isa
set of vertices corresponding to the variables of the “all-different” constraint, Y is a set of
vertices corresponding to the possible values of these variables, and E is a set of edges
(xy), xOX, yOY, such that (x, y) O E if and only if y is a possible value for x. As a
result, the “all-different” constraint is satisfiable if and only if there exists a 0-1 function f
on E such that:

OxOX, Z e f(x, y) =1
OydY, Zxyef(x y) <1

In addition, a given valuey; is a possible value for a given variable x; if and only if there
exists a 0-1 function f; such that:

Lx U X, Z(x, y)OE fij(X, y) =1
Oy OY, Z e fij(x y) <1
fija yp) =1

The problem of finding such a function (flow) f or fij can be solved in polynomial time. In
addition, the current value of f can be used to generate fj; at low cost, and to compute the
new value of f when the domain of a variable changes. See [Régin, 1994], [Régin, 1995],
[Régin, 1996] for details and extensions.

Notice that when all activities have unitary processing times, Régin's algorithm can be
directly applied. In the preemptive case, this can be generalized to activities of arbitrary
processing times by seeing each activity A as processingTime(A;) sub-activities of unitary
processing times 1. Then, each sub-activity has to pick a value (the time at which the sub-
activity executes) and the values of the sub-activities that require a given resource have to
be pairwise distinct. However, under this naive formulation, both the number of variables
and the number of values would be too high (dependent on the sum of the processing
times of the activities) for practical use. This led us to another formulation where the
nodes x in X correspond to activities, and the nodesy in Y correspond to a partition of the
time horizon in n digoint intervals 1, = [s, €1) ... In =[S, €,) such that [s,, €,) represents

50

the complete time horizon, € =541 (1<i<n), and {s, ..., S, €} includes al the time
points at which the information available about W(A, t) changes (Figure B-6 illustrates this
formulation on a small example). In particular, {s;, ..., S, €} includes al the earliest start
times and latest end times of activities, but it can also include bounds of intervals over
which W(A, t) is constrained to be true or false (in this sense, the flow model is more
genera than preemptive edge-finding described in B.2.4, but it does not generalize to the
mixed case). E is defined as the set of pairs (X, y) such that activity x can execute during
interval y. The maximal capacity crax(X, y) Of edge (x,y) is set to length(y), and the
minimal capacity Cnin(X, y) Of edge (X, y) is set to length(y) if x is constrained to execute
over y and to O otherwise. As a result, the preemptive resource constraint is satisfiable if
and only if there exists afunction f on E such that:

Ox O X, Zx, y)oe f(X, y) = processingTime(x)

Oy DY, 2 ye f(x y) < length(y)

Oe O E, Crin(e) < f(€) < crax(€)

rild |pi| O 1 2 3 4 5 6 7 8 9 10
A |0]10]|5
A |12 4|1
A |4] 6|1
A, |6] 81
Y
[02):
<
[24) : <2

[46)

[68)

Figure B-6. A particular network flow. Arrows have been omitted, they all go from left to
right.

51

Similar models are commonly used in Operations Research. For example, [Federgruen and
Groenevelt, 1986] use a more general model to solve particular polynomial scheduling
problems with multiple parallel resources operating at different speeds. Following [Régin,
1994], what we propose below is to use network flow techniques, not only to find
solutions to polynomial sub-problems, but also to update the domains of the variables.
[Baptiste, 1995] provides two agorithms for the search of a compatible flow f (SCF). The
first algorithm uses Herz's algorithm, as described in [Gondran and Minoux, 1995], to
construct the compatible flow, starting from f(x, y) = 0 for al x and al y. It runs in
O(X] OJY] O Zxox processingTime(x)). The second algorithm builds a variant of Jackson’'s
preemptive schedule which respects the intervals during which activities are required to
execute. This can be done in O(|Y] Olog(]Y])). This schedule is then used as an initial
(possibly incompatible) flow, repaired by Herz's agorithm in O(JX| O |Y] OF), where F
denotes the sum, over the activities, of the sizes of the intervals included in [r;, di] during
which the activity A is not allowed to execute (for reasons that are not directly related to
the use of the resource by other activities).

To reduce variable domains, the most natural generalization of Régin’'s algorithm consists
of varying cnin(€) and crux(€) for each edge e in turn. The following agorithm updates the
minimal flow cqin(X, y) that can pass through an edge (X, y). The maximal flow Crax(X, Y) IS
obtained in asimilar fashion.

o SetU=Cnrin(X Y) and V= Crax(X, Y).

« While(u#v)

. Setw=|(u+v)/2]

. Search for acompatible flow f with f(x, y) < w.

. If such aflow f exists, set v=w, otherwise set u=w + 1.
e SetCrin(X Y) = U.

It is proven in [Baptiste, 1995] that this adjustment of edge capacities (AEC) can be done
for al edges (x, y) in O(IX]* O]Y] OH), where H denotes the overall time horizon e, — s;.
This complexity is reached by systematically reusing the previous flow as a start point
when computing the flow f with the new constraint f(x, y) < w.

Then the following rules can be applied:

Cmax(X, Y) =0 = OtOy, W(x, t) =0

Crin(X, Y) = length(y) = Ot0y, W(x, t) = 1

cmn(X%, [s€@)#20 = [dart(X) <& —cmin(X, [s &))]
Cmn(X, [s@)#0 = [end(X) =S + Cmin(X [&))]

52

However, SCF and AEC are not sufficient to determine the best possible time bounds for
activities. Let us consider, for example, the four activities Ay, Az, As, A4 defined on Figure
B-6. In this case, cnmin(A1, 1) remains equal to O for al I; yet A; cannot start after 3 and
cannot end before 7. However, the flow model can be used to compute the best possible
earliest end times. First, given x and the intervals y; ... y, (sorted in reverse chronol ogical
order) to which x is connected, one can find the maximal integer k such that there exists a
compatible flow f with f(x, y;) = 0 for 1 < i <k. Then, one can compute the minimal flow
frin(X, Vi) through (X, yk), under the constraints f(x,y;) = 0 for 1 < i < k. Under these
conditions, end(X) =S¢+ frin(X, [S, €)) provides the best possible earliest end time for x. It is
shown in [Baptiste, 1995] that this global update of time bounds (GUTB) can be done for
al activities x in O(JXC]Y|CH). As for AEC, this complexity is reached by systematically
reusing the previous flow as a start point for computing the new flow when an additional
capacity constraint is added.

Let us remark that the incrementality of Herz’'s algorithm is a key factor for both the
worst-case and the practical complexity of SCF, AEC and GUTB. Of course, strongly
polynomial agorithms (with complexity independent of the schedule duration) could also
be used for the search of a compatible flow [Gondran and Minoux, 1995].

B.2.4. Edge-Finding

The edge-finding algorithm detailed in Section B.1.3 can be extended to take into account
the preemptive case and also the mixed case (i.e., the case where interruptible and non-
interruptible activities are mixed). As mentioned in Section B.1.3., [Baptiste, 1995] and
[Martin and Shmoys, 1996] have established an interesting property of the non-preemptive
edge-finding technique. Considering only the resource constraint and the current time
bounds of activities, the algorithm computes the earliest start time at which each activity
A could start if all the other activities were interruptible. This suggests alogica extension
of the technique to preemptive and mixed cases: for each activity A; requiring the resource,
if A is not interruptible, the non-preemptive edge-finding bound applies, if A is
interruptible then, considering only the resource constraint and the current time bounds, it
would be nice to determine the earliest start and end times between which A; could execute
if al the activities were interruptible.

Let us define)) so that A)Y Q means “A; ends after dl activitiesin Q ” and substitute))
for » in the rules of the primal agorithm.

@ ,0A [,[do—ronay <pe +p] =A) Q
A Q = [start(A) = maxam (fo + pa’)]

53

When A; cannot be interrupted, these two rules remain valid (even if other activities can be
interrupted) and the adjustment of r; is the same as in the non-preemptive case. When A
can be interrupted, the first rule is still valid but the second is not. However, the second
rule can be replaced by a weaker one:

A) Q = [end(A) 2 maxg (Froogay + Paogai)]

Thisleads to amore general prima edge-finding algorithm:

* Compute “Jackson’s preemptive schedule”’ for the resource under consideration.

» For each activity A;, compute the set WP of the activities which are not finished at t =r;
on JPS. Let p* be the residual processing time on the JPS of the activity A at time't.
Take the activities of W in decreasing order of deadlines and select the first activity Ax
such that:

ri + pi +ZA,- ¥ <A} |d< g, (P*) > dk
If such an activity A exists, then post the following constraints:
© A{AW —{A}|d<dd
e start(A) =max A +{A}|d sdk(‘]PS(Ai)) if Aj cannot be interrupted

. end(A5)2ri+pi+ZAjEp _{Ai}ldjsdk(pj*) if A can be interrupted

Example.

In the example of Figure B-3, the algorithm above deduces start(A;) = 8 if A; cannot be

interrupted. It deduces end(A;) = 13 if A; can be interrupted.

It is proven in [Baptiste, 1995] that considering only the resource constraint and the

current time bounds of activities, this algorithm computes,

* when A is not interruptible: the earliest time at which A; could start if al the other
activities were interruptible.

* when A isinterruptible: the earliest time at which A; could end if all the other activities
were interruptible.

Nuijten’s edge-finding algorithm can be modified in a similar fashion. The following

algorithm B-2 is equivalent to the algorithm sketched above. We assume that activities are

sorted in increasing order of release dates.

Algorithm B-2.

1 For k =1 To k =n

2 P=0 C=-0H=-x,

3 For i = n Down Toi =1

4 If di < d¢ Then

5 P=P+ p

6 C=mx(C, r; + P

7 If C > dkx Then

8 there is no feasible schedul e,
9 End |f

10 End |f

11 C =¢C

12 End For

13 For i = 1toi =n

14 If di < d¢ Then

15 H=mx(H ri + pi)

16 P=P- p

17 El se

18 If ri + P+ p; > d¢x Then

19 If A can be interrupted Then
20 eet; = max(eet;, r; + P + pj)
21 El se

22 ri = max(ri, G)

23 End |f

24 End If

25 If H+ pi > dx Then

26 If A can be interrupted Then
27 eet; = max(eet;, H + p;i)

28 El se

29 ri = max(ri, ©

30 End |f

31 End |f

32 End If

33 End For

34 End For

exit

Release dates and earliest end times are adjusted inside the inner loop (lines 20, 27 and 22,
29). Actually, the adjusted values should be stored and applied at the end to avoid the
resorting of the activities (cf., Algorithm B.1.). The proof that this algorithm is equivalent
to the JPS-based algorithm follows the proof of Nuijten’s algorithm in [Nuijten, 1994].

55

First, if A cannot be interrupted, the new algorithm makes the same conclusions as

Nuijten’s algorithm, so the proof in [Nuijten, 1994] applies to the new algorithm. Let us

now assume that A; can be interrupted. It is proven in [Baptiste, 1995] that the earliest time

at which A could end if all the other activities could be interrupted is equal to the maximal
value of ropgaiy + pangaiy for Q triggering the edge-finding rules. The earliest end times
computed by the new algorithm are, when they are used, equal to rongaiy + Pangaiy for such

Q. To prove that the best possible bound is reached, consider the two cases distinguished

in [Nuijten, 1994]: if al activities A, in Q are such that i < u then, either Q or a superset of

Q is detected by the first test (r; + P + p; > dy); if some activity A, of Q issuch that u <

then, either Q or a superset of Q is detected by the second test (H + p; > dy). In both cases,

abound greater than or equal to ronga + Panga is found.

This algorithm can be further improved:

* When A can be interrupted and set(A;) is known to contain a series of time intervals
l; ... Im A can be replaced by (m + 1) activities A, ..., A™ A’, with each A forced to
execute over |} and Ay’ with the same release date and deadline as A and a processing
time equal to (pi — 21 <1 < m length(l})); where length(l)) denotes the length of the
interval .

When A can be interrupted and either (r; + P = dy) or (H = dy) in the course of the
algorithm, it is certain that A; cannot start before dy. Hence, the algorithm can also be
used to update the release date of interruptible activities.

Remark.
When activities have fixed processing times, the computation and the use of C; and C to

compute maxg@ (ro' + pa’) serves only to avoid repeated iterations of the agorithm.
Indeed, suppose a purely preemptive edge-finding algorithm is used and suppose A is not
interruptible. The purely preemptive edge-finding algorithm uses the following rules:

[@ , OAQ , [do —raooga} <pa +pi] = A) Q

A) Q= [end(A) 2 maXo'm (Fo'oga + Perogai)]
When constraint propagation stops, the earliest end time of A; is set to a value eet; such that
if al activities were interruptible, there would be a schedule S of the resource such that
(1) A does not start before rj and (2) A ends at eet;. If the processing time of A is fixed,
the propagation of the constraint start(A;) + processingTime(A)) = end(A)) guarantees that
when constraint propagation stops r; + p; = eetj. Consequently, A is not interrupted in S
which implies that the non-preemptive edge-finding algorithm cannot find a better bound
for r;.

56

B.3. The Cumulative CaseE

Our aim is to extend the results obtained on the One-Machine Problem to the cumulative
case. The Cumulative Scheduling Problem (CuSP) is the framework on which we are
going to work. An instance of the CuSP consists of (1) one resource with a given capacity
C and (2) a set of n activities { Ay, ..., A}, together with a release date r;, a deadline d;, a
processing time p;, and a resource capacity requirement ¢; for each activity A,. We assume
that all data are integers and that i, ri + p; < di and ¢ < C. The problem is to decide
whether there exists a feasible schedule, i.e., a start time assignment that satisfies all
timing constraints and the resource constraint. The CuSP obviously belongsto NP. It isan
extension of the decision variant of both the One-Machine Problem (C =1, ¢, = 1) and the
m-Machine Problem (C = m, ¢, = 1). Thus it is NP-complete in the strong sense [Garey
and Johnson, 1979].

The CuSP can be seen as a relaxation of the decision variant of the well-known Resource-
Constrained Project Scheduling Problem (RCPSP) [Garey and Johnson, 1979]: Given an
instance of the RCPSP, release dates and deadlines of activities can be derived from the
network of precedence constraints and from the overall deadline (for example using Ford's
algorithm [Gondran and Minoux, 1995]). The CuSP is then the relaxation in which
precedence constraints are relaxed and where a single resource is considered at atime.

As mentioned in the previous sections, a large amount of work has been carried out on the
One-Machine Problem. Similarly, lower bounds have been developed for the optimization
variant of the m-Machine Problem (e.g., [Carlier and Pinson, 1996], [Perregaard, 1995]).
Obvioudly, these lower bounds can be seen as necessary conditions of existence for the
decision variant of the m-Machine Problem. As far as we know, no specific algorithm for
adjusting release dates and deadlines has been proposed. On the CuSP itself, little work
has been done. Constraint propagation algorithms have been developed to adjust time-
bounds of activities (e.g., [Caseau and Laburthe, 1996a], [Lopez et al., 1992], [Nuijten,
1994], [Nuijten and Aarts, 1996]), but they tend to be less uniformly effective than the
algorithms available for the One-Machine Problem.

® Most of the results presented in this section come from [Baptiste and Le Pape, 1997h]
and [Baptiste et. al., 1998b].

57

In the following sections, we study three necessary conditions of existence of a feasible
schedule for the CuSP.

The first necessary condition is based on the resolution of the Fully Elastic CuSP, a
relaxation of the CuSP (cf. Figure B-7). An instance of the Fully Elastic CuSP is
described by the same data as an instance of the CuSP. The problem is to decide
whether there exists a feasible fully elastic schedule, i.e., an integer function fes(t, i)
representing the number of units of the resource assigned to A over the interva
[t, t + 1), such that:

O, Ot0O[r, d), fes(t,i) =0

O, 2 fes(t,)=pi* ¢

Ot 2ifes(t,i)<C
The second necessary condition is based on the resolution of the Partially Elastic
CuSP, a tighter relaxation of the CuSP (cf. Figure B-7). An instance of the Partialy
Elastic CuSP is described by the same data as an instance of the CuSP. The problem is
to decide whether there exists a feasible partially elastic schedule, i.e., an integer
function pes(t, i) such that:

O, Ot0O[rg, di), pes(t,i)=0

O, 2% pes(t, i) =pi * ¢

Ot 2 pes(t,i)<C

OO0, OtO[r, d), 2kt pes(x,i) < ¢ * (t-1)

O, OtO[ri, d), Zix pes(x, i) < ¢ * (di - 1)
The third necessary condition, called the “left-shift / right-shift” necessary condition,
is not based on a well-identified relaxation of the CuSP but on energetic reasoning as
defined in [Erschler et al., 1991], [Lopez et al., 1992].

For each of these necessary conditions, we propose a polynomia agorithm, running in
O(n * log(n)) for the fully elastic condition, and in O(n?) for the partialy elastic and the
left-shift / right-shift conditions. In the particular case of the m-Machine Problem, these
necessary conditions can be theoretically compared with other results from the literature.
The subset bound [Perregaard, 1995] (seen as a necessary condition) is equivalent to the
partially elastic relaxation and the left-shift / right-shift necessary condition is strictly
stronger than the partially elastic relaxation.

We a'so propose three time-bound adjustment schemes for the CuSP.

The first oneis based on the fully elastic relaxation. An O(n®) algorithm is described.
The second one is based on the partialy elastic relaxation. An O(n* * log(K ci}])
algorithm is described (where [{c}| is the number of distinct resource capacity
reguirements).

58

« The third one is based on the left-shift / right-shift necessary condition. An O(n®)
algorithm is described.

ri | di Ri | G 0 1 2 3 4 5 6 7 8 9 10

A |0[10|8]|2

Figure B-7. Consider a resource of capacity 3 and an activity with release date O,
deadline 10, processing time 8 and resource requirement 2. Both Gantt charts correspond
to feasible fully elastic schedules. The first oneis not a feasible partially elastic schedule.
Indeed, 9 units of the resource are used in [0, 4), which is more than 2/{4-0). The second
oneisafeasble partially elastic schedule.

B.3.1. Necessary Conditions for the Existence of a
Feasible Schedule

B.3.1.1. A Necessary and Sufficient Condition of existence for the
Fully Elastic CuSP

We exhibit in this section a strong link between the Fully Elastic CuSP and the decision
variant of the Preemptive One-Machine Problem. An instance of the Preemptive One-
Machine Problem is defined by a set of n activities { Ay, ..., An}, together with a release
date ri, adeadline d; and a processing time p; for each activity A.. The problem isto decide
whether there exists a feasible preemptive one-machine schedule of the given activities.

Transformation F.
For any instance | of the Fully Elastic CuSP, let F(I) be the instance of the Preemptive

One-Machine Problem defined by n activities A7, ..., Ay’ with Ui, ri' =C Or;, d' = C 0Od,,
pi' =hi Uc.

59

Proposition B-6
For any instance | of the Fully Elastic CuSP, there exists a feasible fully elastic schedule
of | if and only if there exists a feasible preemptive schedule of F(1).

Proof.

Let C be the capacity of the resource R of the instance |I. Let R be the resource of the
instance F(1). We first prove that if there is afeasible fully elastic schedule of I, then there
is afeasible preemptive schedule of F(I). Let fes(t, i) be the number of units of A; executed
at t. We build a schedule of Aq', ..., Ay on R as follows. For each time t and each activity
A, schedule fes(t, i) units of A on R’ as early as possible after time C [It. It is obvious that
at any timet, for any activity A, the number of units of A; executed at t on Risequal to the
number of units of A" executed between C [0t and C [I(t + 1) on R since this algorithm
consists of cutting the schedule of A, ..., A, into slices of one time unit and rescheduling
these dlices on R. Consequently, for any activity A, exactly pi O ¢ units of A' are
scheduled between C Or; and C [d; and thus the release dates as well as deadlines are
met. A symmetric demonstration would prove that if there is a feasible preemptive
schedule of F(1) then thereisafeasible fully elastic schedule of 1. O
Consider now Jackson's Preemptive Schedule. JPS is feasible if and only if there exists a
feasible preemptive schedule. Moreover, JPS can be built in O(n [log(n)) steps (see
[Carlier, 1984] for details). Consequently, thanks to Proposition B-6, we have an
O(n Olog(n)) algorithm to solve the Fully Elastic CuSP. In the following, Jackson’s Fully
Elastic Schedule (JFES) denotes the fully elastic schedule obtained (1) by applying JPS on
the transformed instance and (2) by rescheduling slices as described in the proof of
Proposition B-6.

B.3.1.2. A Necessary and Sufficient Condition of existence for the
Partially Elastic CuSP

The Partially Elastic CuSP is dlightly more complex. We first introduce a pseudo-
polynomial algorithm to solve this problem. We then present the concept of required
energy consumption, which enables us to show that the Partially Elastic CuSP is
equivalent to another problem for which we can provide a quadratic algorithm. In the
following, “1” denotes an instance of the Partially Elastic CuSP. Let us first introduce a
new transformation.

60

Transformation G.

Consider the instance G(1) of the Fully Elastic CuSP defined by replacing every activity A
by pi activities A%, ..., A™, each having a resource requirement ¢! = ¢, a release date
ri=ri +j-1, adeadined’ = d - (i - j) and a processing time p; of 1 (the resource
capacity of G(l) isC asfor I).

B.3.1.2.1. Jackson’sPartially Elastic Schedule

Jackson’s Partially Elastic Schedule (JPES) is the schedule built by scheduling each
activity A at the time points at which the activities A} are scheduled on JFES of G(1).
Given the definition of G, it is easy to verify that if JFES is a feasible fully elastic
schedule of G(1) then JPES is afeasible partially elastic schedule of I.

Proposition B-7
There exists a feasible partially elastic schedule if and only if JPES is a feasible partially
elastic schedule.

Proof (sketch).
Consider afeasible partialy elastic schedule S of an instance I. It is then possible to build

afeasible fully elastic schedule of G(1) obtained from S by a similar transformation as G
(i.e., for any activity A, schedule Ai* at the same place as the “first ¢ units’ of A on S,
iterate ...). Since there is a feasible fully elastic schedule of G(I), JFES is also a feasible
fully elastic schedule of G(l) (Proposition B-6). Thus, JPES is a feasible partialy elastic
schedule of 1. |
Since transformation G is done in O(Z p;) and since the fully elastic problem G(I) can be
solved in O(Z p; * log(Z pi)), Proposition B-7 leads to an O(Z p; * log(Z p;)) algorithm to
test the existence of afeasible partially elastic schedule.

B.3.1.2.2. Energetic Reasoning

We adapt the notion of “required energy consumption” defined in [Lopez, 1991] and
[Lopez et al., 1992] to partidly elastic activities. The required energy consumption
Wee(A, t1, tp) of an activity over an interval [ty, to] is defined as follows (cf. Figure B-8).
Wee(A, t1, t2) = ¢ Omax (0, pi - max(0, ty - ri) - max(0, di - t))

To get an intuitive picture of the formula, notice that max(0, t - r;) is an upper bound of
the number of time units during which A; can execute before time t; and max(0, d; - t) is
an upper bound of the number of time units during which A; can execute after time t.
Consequently, max(0, pi - max(0, t; - r;) - max(0, d; - t,)) isalower bound of the number of
time units during which A; executesin [t, to].

61

ri| di [pi|G

AL 01107 |2

Wee(A,2,7)

Figure B-8. The required energy consumption of A; over [2,7]. A; must execute during at
least 2 timeunitsin[2, 7]; i.e,, Wee(A,2,7)=2/{7-(2-0)-(10-7))=4

We now define the overall required energy consumption Wee(ts, to) over [ty, to] asthe sum
over al activities Ay of Whe(A, t1, t2). Note that for t; = to, Wee(ty, t) is defined and, under
the assumption r; + p; < d;, isequal to 0.

Proposition B-8.
There is a feasible partially elastic schedule of | if and only if for any non-empty interval
[ta, t2], Wee(ty, t2) < C O(t2 - ty).

Proof.

The fact that Whee(ty, t2) < C O(t2 - t1) is a necessary condition is obvious. Suppose now
that there is no feasible partially elastic schedule of 1. Then there is no feasible preemptive
schedule of F(G(I)). Consequently, there is a set of activities S of F(G(I)) such that
between the minimum release date of activities in S and the maximum deadline of
activities in S there is not enough “space” to schedule all activities in S [Carlier, 1984].
Thisleadsto

min riJ 2 pi‘ > max di] S pi‘ >C*(th -)
A0S A0S A0S ri>C*,
d) <C*t,
where C * t; is the minimum release date in Sand C * t, the maximum deadline in S
(recal that release dates and deadlines of activities in S are multiple of C). Then the
equation becomes:

2 2 >C*(tz ~ty)
i jin[1, p;]such that:
C*(r, +j-1)=C*t,
Cr(d;—p +])<C*t,
For each i, let us now count the values of j in[1, pj] suchthat (1) C* (ri+j-1)=C* 3
and(2) C* (di-pi +)) < C* ty, i.e, the number of integersin [max(1, t; + 1 - r;), min(p;, t2
+ pi - di)]. Thisnumber isequal to:
max(0, 1 + min(p;, tz + p; - di) - max(1, t; + 1-r1;))
=max(0, pi + min(0, t - d;) - max(0, t; - rj))
=max(0, pi - max(0, d; - tp) - max(0, ty - rj)).

Therefore, the previous equation becomes 2 Wpg (A, t7,t5) > C* (ty — t;). O
i

62

B.3.1.2.3. A Quadratic Algorithm

We propose a quadratic algorithm to determine whether there exists a feasible partially
elastic schedule for a given instance of the Partially Elastic CuSP. This algorithm is
derived from the algorithm used in [Perregaard, 1995] to compute the subset bound of the
m-Machine Problem. It consists of computing the overall required energy consumption
over each interval [r;, di] and to test whether this energy exceeds the energy provided by
the resource over this interval. We prove that such tests guarantee the existence of a
feasible partially elastic schedule. To achieve this proof, we study the slack function

See(ty, to) = C (12 - t1) - Whe(ty, t2).
Proposition B-9.
Let ty, t, be two integer values such that t; < t,.
* If ty isnot arelease date, then

either Soe(ty + 1, t2) < Spe(ty, t2) Or Spe(ts - 1, t) < Spe(ty, to).
* If t;isnot adeadline, then

either Soe(ty, t2 - 1) < Spe(ty, 1) or Spe(ty, to + 1) < Spe(ty, to).
Proof.
The two items of the proposition being symmetric, we only prove the first item. Suppose
that Spe(ty, t2) < See(ty + 1, to) and Spe(ty, to) < See(ty - 1, to). Let us then define the sets
W={i|p - max(0, t - r;) - max(0, d; - tz) > 0} and @ ={i | ri <t3}.
The equation Spe(ty, to) < Spe(ty + 1, to) can be rewritten

-C+> ¢ O(-max(0, ty-r;) + max(0, t1 + 1-r;)) 2 0.

i
Since Ui[® , max(0, t; - rj) = 0and max(0, t; + 1 - r;) = O, the previous equation becomes:

Y G OFEmax(0,ty-r) +max(0,t, +1-r))2C= 2 ¢=C.
iowno iowno

The equation Se(ty, t2) < See(ty - 1, t2) can be rewritten as follows:
I Omax(0, pi - max(0, t; - 1 - r;) - max(0, d; - t2))
[

- Z ¢i Omax(0, pi - max(0, ty - ri) - max(0, d; - t)) < C

= 2 ¢ d-max(0, t; - 1 - r;) + max(0, t; - r;))

iow
+ 2. ¢ Omax(0, pi - max(O,ty - 1 - rj) - max(0, di - tp)) < C
oy
= > ¢ O-max(0, t;- 1-r;) +max(0,t- 1)) <C
iow

63

Consider now two cases.
e Ifiddthent;-ri=0. Moreover, t; -r; - 1 =0 sincet; isnot areease date.
e [fiddthent;-ri<Oandt;-ri-1<0.

Previous equation then becomes Y. ¢ <C,whichcontradicts 2, ¢ =C. O
ioWnao ioWnao

Proposition B-10.
[0 r,-,de>r,-,S:E(rj,dk)20] = [Oty, Otx >y, Spe (tg, t2) = 0]

= [There exists afeasible partially elastic schedul€]

Proof.

Note that if t; < min(r;), the slack strictly increases when t; decreases, and if t; > max;(d),
the slack strictly increases when t; increases. Hence, the slack function assumes a minimal
value over an interval [ty, to] with mini(r) < t; < t; < maxi(d;). We can assume that both t;
and t, are integers (if t is not, the function t — See(t, t,) is linear between |t] and [,];
thus either See(Lto, t2) < See(ty, t2) or See((t1], 1) < Spe(ty, t2)). Among the pairs of integer
values (t1, t2) which realize the minimum of the slack, let (uy, uU,) be the pair such that u; is
minimal and u, is maximal (given u).

We can suppose that Se(up, Up) < 0 (otherwise the proposition holds). Consequently,
u; < Up and thus, according to Proposition B-9, either u; is arelease date or Soe(up + 1, Up)
< Soe(ug, Up) or Soe(ur - 1, Up) < Spe(ug, Wp). Since See(ug, Up) is minimal, the previous
inequalities lead to Soe(ui- 1, W) = See(uy, Uy); which contradicts our hypothesis
on u;. Consequently, u; is arelease date. A symmetric demonstration proves that u; is a
deadline. O

This proposition is of great interest since it allows us to restrict the computation of Wee to
intervals [ty, t;] where t; is a release date and t; is a deadline. Before describing the
algorithm, we introduce the notation p;*(t;) which denotes the minimal number of time
units during which A; must execute after ty, i.e.,

pi" (t2) = max(0, pi - max(0, ty - r;)).

Algorithm B-3 computes Wee(ts, t2) over al relevant intervals. The basic underlying idea
is that, for a given ty, the values of t, at which the slope of the t — Wpg(ty, t) function
changes are either of the form d; or of the form d; - pi*(t1). The procedure iterates on the
relevant values of t; and t,. Each timet; is modified, Weg(ts, t2) is computed, as well asthe
new slope (just after t) of thet — Wpg(ty, t) function. Each time t; is modified, the set of
activities with relevant d; - p;*(t1) is incrementally recomputed and resorted.

Algorithm B-3.

© 00 NO 01Tk WDN P

PR R RRPRRRPR R
0 ~NOoO UM WNERO

N DN
= O ©

N NN
A wDN

W W WWwWwWwWwWwWwwWwNDNDNDNDN
~N O O WNEFE O O ooNO O

38
39

procedure update(DP, old t1, t1)
nmove = [, no_nove = [[l initialize two enpty |ists
for act in DP
if (pfact(tl) > 0) then
if (pfact(tl) = pYact(old t1)) then add act to no_nove
el se add act to the list nove
end if
end if
end for
DP = nerge(nove, no_nove)

procedure energies
DD = activities sorted in increasing order of dac
DP = activities sorted in increasing order of dat - Pact
old t1l = mnj(r;)
for t1 in the set of release dates (sorted in inc. order)
update(DP, old tl1, tl)
old_t1 =1t1, ibb=0, iDP =0
W=0, old t2 =t1, slope = Tact Weg(act, t1, t1 + 1)
while (1DP < length(DP) or iDD < n)
if (iDD<n) thent2 DD = dDD[iDD+ 1]
else t2 DD = o
end if
if (|DP<Iength(DP)) t hen t2_DP:de[iDp+1]-p+Dp[iDp+1](t1)
else t2 DP = o
end if
t2 = mn(t2_DD, t2 DP)
if (t2 =t2_DP) then iDP = iDP + 1, act = DP[i DP]
else iDD = iDD + 1, act = DD[i DD]
end if
if (tl1 <t2) then
W= W+ slope * (t2 - old_t2)
WPE(t1l, t2) = W // energy over [tl, t2]
oldt2 =12
sl ope = slope + Wg(act, t1, t2 + 1)
- 2*Weg(act, tl1, t2) + We(act, t1, t2 - 1)

end if
end while
end for

65

Let us detail the procedure ener gi es.

Lines 13 and 14 initialize DD and DP. DD is the array of activities sorted in increasing
order of deadlines and DP isthe array of activities sorted in increasing order of d; - p; .
The main loop (line 16) consists in an iteration over al release dates t;. Notice that
ol d_t ; allowsto keep the previous value of t;.

The procedure updat e(DP, ol d_ti, t3) reorders the array DP in increasing
order of d; - p; *(t1) . Thisprocedure will be described later on.

Before starting the inner loop, a variable sl ope isinitialized (line 19). It corresponds
to the slope of the functiont — Wpg(ty, t) immediately after the time point ol d_t 2.
ol d_t 2 and sl ope areinitialized line 19 and updated lines 34 and 35.

Theinner loop ont » (lines 20-38) consists in iterating on both arrays DD and DP at the
same time. Because both arrays are sorted, some simple operations (line 21 to 27)
determine the next value of t ,. Noticethat t , can take at most 2* nvaluesand that t
takes al the values which correspond to a deadline. The indices i pp and i pp
correspond to the current position in arrays DD and DP respectively.

Lines 28 to 30 enable to increase one of the indices and to determine the activity act
which has induced the current iteration.

To understand lines 31 to 36, consider the following rewriting of Weg(A, t1, t2).

Wee(A t,t2) = 0 If to< di - pi"(ta)
= G*(-d+p'(t) Ifd-p'(t) <tz<d
= G*p(t) If di <t

Between two consecutive values of t , in the inner loop, the function Weg is linear. The
required energy consumption betweent ; andol d_t , is W as computed at the end of
the previous iteration. In addition, the slope of t — Wpg(ts, t) between ol d_t, andt »
is slope. So, the required energy consumption between t; and t, is
Wtsl ope* (t,- ol d_t,). Then, sl ope is updated to take into account the non-
linearity of the required energy consumption of activity A; (act in the pseudo code) at
time t,. Notice that the algorithm may execute severa times lines 31-36 for the same
values of t; and t; (e.g., if di = d; for somei and j). In such a case, the slope is modified
several times, with respect to al the activities inducing a non-linearity at timet,.

Let us now detail the procedure updat e. This procedure reorders the array DP in
increasing order of d; - pi*(ty). Thisisdonein linear time. We rely on the fact that when we
movefromol d_t; tot 1, three cases can occur.

Either pi"(ty) is null and then the required energy consumption of A in [ty, t;] is null;
and A; can be removed;
Or pi"(tz) = p*(old_ty) (line 5);

66

e Orp(ty) =p“(old_ty) - (t1 - old_ty) (line 6).

Activities are taken in the initial order of DP and are stored in either the list no_nove
(second item) or in thelist nove (third item). Notice that no_nove is sorted in increasing
order of d; - p*(old t1) = d; - p*(t1). Moreover, move is sorted in increasing order of
di - p*(old_t1) but nove is also sorted in increasing order of d; - pi*(t1) since the difference
between p;*(t1) and p;*(old_t;) is constant for al activities in nove. This means that we
only have to merge nove and no_nove to obtain the reordered array.

The overall algorithm runs in O(n?) since (1) the initial sort can be donein O(n * log(n)),
(2) the procedure updat e is basically a merging procedure which runs in O(n), (3) the
initial value of sl ope for agiven t; is computed in O(n), and (4) the inner and outer loops
of the algorithm both consist in O(n) iterations.

B.3.1.3. A “Left-Shift/ Right-Shift” Necessary Condition of
existence for the CuSP

The required energy consumption as defined in Section B.3.1.2.2 is still valid if we

consider that activities can be interrupted. In fact, [Erschler et al., 1991] and [Lopez et al.,

1992] propose a sharper definition of the required energy consumption that takes into

account the fact that activities cannot be interrupted. Given an activity A; and a time

interval [ty, to], Wen(A, t1, t2), the “left-shift / right-shift” required energy consumption of

A over [t, to] is ¢ times the minimum of the three following durations.

* t-1, thelength of theinterval;

e pi'(t) = max(0, p; - max(0, t - r;)), the number of time units during which A, executes
after timety if A isleft-shifted, i.e., scheduled as soon as possible;

* pi(t2) = max(0, pi - max(0, d; - t)), the number of time units during which A; executes
beforetimet, if A isright-shifted, i.e., scheduled aslate as possible.

This leads to We(A;, t1, t2) = 6 * min(ts - t1, pi*(to), pi’(t2)) (cf. Figure B-9 for an example).

ri| di [pi|CG

AL |0|110|7 |2

Left Shift
Right Shift

Wan(Ad, 2, 7)

Figure B-9. The required energy consumption of A; over [2, 7]. At least 4 time units of A
have to be executed in [2, 7] ; i.e., Wen(A,2,7)=2[Min(5,5,4)=8.

67

We can now define the left-shift/ right-shift overal required energy consumption
Wan(t1, to) over an interval [ty, to] asthe sum over al activities Aj of Way(A;, t1, t2). We can
also define the left-shift / right-shift slack over [ty, to]: Ssn(ty, t2) = C O(tz - t1) - Wen(ty, t2).
It is obvious that if there is a feasible schedule of an instance of the CuSP then [t,
Oty > ty, Sw(ty, to) 2 0.

B.3.1.3.1. Characterization of relevant and irrelevant intervals

In Section B.3.2 we showed that for the partialy elastic relaxation, it was sufficient to
calculate the slack only for those intervals [t;, t5] that are in the Cartesian product of the
set of release dates and of the set of deadlines. In this section we show that in the
left-shift / right-shift case, alarger number of intervals must be considered. On top of that,
we provide a precise characterization of set of intervals for which the slack needs to be
calculated to guarantee that no interval with negative slack exists.
Proposition B-11.
Let us define the sets Oy, O, and O(t).
Or={r,1<isnt O0{d-p,l<isntO{ri+p,1l<i<n}
O,={d,1<isnt O{ri+p,1<i<n O0{di-p,1l<i<n}
Ooft)={rj+di-t,1<i<n}
We claim that:
Dtl,Dt22t185h(t1,t2)20 < DsDOl,DeDOZ,eZS,Sgh(S,e)ZO

and [OsOO,dedO(s),e=s Sx(s e =0

and Oeld O, 0sO0O(e),e=s Sxn(s e =0
To prove Proposition B-11, we first need to prove some technical properties of Wy,

(Propositions B-12, B-13 and B-14). In the following, we consider that W4, is defined on
02 and equal to O when t, < t;.

Proposition B-12.
Let A be an activity and (t;, tp) O 0% with t; < to. If t; O {ri, d - pi, ri + p} and if
to O{d, di - pi, ri + pi}, then d(h) = W (A, t1 + h, t2 - h) islinear around 0.

Proof.

@(h) can be rewritten®(h)=¢;* max(0, min(ty-t;-2* h, i, ri +pi-t1-h, t2-di+p;i-h)). Each of
the terms 0,t,-t1-2* h,p;, ri+pi-t1-h,to-di+pi-h islinear in h and if for h = 0, one term only
realizes ®(0), we can be sure that a small perturbation of h will have a linear effect.
Assume two terms are equal and realize ®(0). Since there are five terms, this leads us to
distinguish ten cases.

68

®0)=0=t2- 1,

®(0) =0 = pi,
®O)=0=ri+p -ty
®0)=0=tx-d +p,

®0) =t -ty =,

PO) =ta-t1=ri +pi - ty,
PO0)=ty-t1 =t - d +pj,
PO)=pi=ri+p -ty

. PO)=p=t2-d +p,

10. p(0)=ri+p-t1=t-di + ;.
According to our hypotheses, all cases are impossible except (5) and (10).

© ©® N o g ke DN

* We claim that case (5) cannot occur. Since t; - t; = p; and since this value is equal to
@®(0), wehavepi <ri+pi -ty and p; <t, - d + p; (equality cannot occur because of our
hypotheses). Thus, to-t;=p;>d;-r;; which contradictsr; + p; < d;.

e If (10) holds, thenri + p; - t1 - h=1, - d + p; - h. We can moreover suppose that these
two terms are the only ones to realize ®(0) (otherwise one of the previous cases would
occur). Around 0, @(h) can berewrittenc * (r; + p; - t1 - h); whichislinear. O

Proposition B-13.
Let A be an activity and (t,t2) 0 02 such that t; < t, and t,O0{ di, di-p;, ri+p;, ri+di-t1}, then
O(h) = Way (A, ta, t2 - h) islinear around O.

Proof.

@(h) can be rewritten ©(h) = ¢;* max(0, min(tz-t1-h, p;, ri +pi - t1, t2-di + pi-h)). Each of the
terms is linear in h and if for h = 0, one term only realizes @(h), we can be sure that a
small perturbation of h will have a linear effect. Two terms are equa and realize ©(0) if
either

1. ©(0)=0=t,-t; or

©(0) =0=p; or

O(0)=0=r;+p;-ty or

©0)=0=t,-d +por

O0)=t,-ty=p;or

O0)=ty-ty=r+p-tyor

O0)=t-t;=t,-d+por

OO0 =pi=ri+p-tior

. ©0)=p=t-di+por

10.00)=ri+p -t =t-d +pi.

© © N o O MWD

69

According to our hypotheses, all cases are impossible except (3), (5), (7), (8).

o Ifty=r; +p; (3) then Uh, ©(h) = 0.

e Case (5) cannot occur otherwise we would have pi<ri+p;i-t; and p; <t - d; + p;; which
contradictsr; + p; < d.

o Ifty-ty=tx-di +p (7) then Oh, ©(h) = ¢ * max(0, min(tz - t; - h, pi, ri + pi - t1)). We
can moreover suppose that t; - t; is the only term in the new expression to realize ©(0)
(otherwise case (1), (5) or (6) would occur) and thus ©(h)=¢;* (t-t;-h) around O.

o If pi=ri+pi-t; realizes ©(0) (8) then @(h)=c¢;* max(0, min(tz-ri-h, p;, t2-di+pi-h)). Since
©(0)=¢* pi>0, around 0 we must have ©(h)=c¢;* min(tz-r;-h,pi,t2-d;+p;-h). Moreover,
since ri<d;-p;, around 0 we have ©(h) =c¢;* min(p;,t2-d; +p;i-h). Finally, we know that
toZdithus, pi<t,-d;+ p;. Consequently, around O, ©(h)=c¢;* pi. |

Proposition B-14.

Let (t;, t) O O such that t; < t,.

e Ift;0O0randt, 00O, h - Si(ty + h, t2 - h) islinear around O.
e Ift, 0O, 0 O(t1), h - Sx(ty, ta - h) islinear around O.

o Ift; 00 00(t), h - Sx(ty + h, ty) islinear around 0.

Proof (sketch).

We prove the first item. Since t;[1O; and t; 105, i, h - We(A, t1+h,t2-h)is linear around
0 (Proposition B-12). Thus, h — Ss(t1+h,t2-h) is linear around 0. The same proof applies
for other items (Proposition B-13 and its symmetric counterpart are used). O

Proof of Proposition B-11.

The implication from left to right is obvious. Suppose now that the right hand side of the
equivalence holds and that there exists an interva [ty, t;] for which the slack is strictly
negative. As in the partialy elastic case, we remark that when t; is smaller than
rmin = MiN(r;), the dack strictly increases when t; decreases. Similarly, when t, is greater
than dmax = max(d;), the dlack strictly increases when t;, increases. Since the slack function
is also continuous, it assumes a minimal value over an interva [ty ty] with
Fmin < t1 < 2 < dnax. L€t us consequently select a pair (ty, to) at which the slack is minimal.
In case several pairs (i1, t;) minimize the slack, an interval with maximal length is chosen.
Since this slack is strictly negative, we must havet; <t,.

Case 1. If t 0 Oy and t, O O,, then according to Proposition B-14, the function
¢(h)=Ss(t1+ h, t2- h) is linear around 0. Since (t1, t2) is a global minimum of the slack,
¢(h) is constant around 0, which contradicts the fact that the length of [t;, t] is maximal.
Case 2: If t; 0 Oy then t, O O, [0 O(ty), otherwise the slack is non-negative. According to
Proposition B-14, 8(h) = Sg(t1, t2 - h) islinear around 0. Since (3, t2) isagloba minimum

70

of the slack, 6(h) is constant around 0, which contradicts the fact that the length of [t;, t5]
ismaximal.

Case 3: If t, 0 Oz then ty O Op 0 O(ty), otherwise the slack is non-negative. According to
Proposition B-14, 6(h) = Sx(t; + h, to) islinear around 0. Since (t3, t2) isagloba minimum
of the dlack, 6(h) is constant around 0, which contradicts the fact that the length of [ty, t5]
ismaximal.

The combination of cases 1, 2 and 3 leads to a contradiction. O

Proposition B-11 provides a characterization of interesting intervals over which the slack
must be computed to ensure it is aways non-negative over any interval. This
characterization is weaker than the one proposed for the partially elastic case where the
interesting time intervals [t;, t;] are in the Cartesian product of the set of the release dates
and of the set of deadlines. However, there are still only O(n?) relevant pairs (s, t) to
consider. Some of these pairs belong to the Cartesian product O; [10O,. The example of
Figure B-10 proves that some pairs do not.

R|d|P|c| O 1 2 8 9 10
Ar|1[8|4]1
Al1[(8[4]1
A;| 010|141
Ay 010|141
As| 010|141
to\ tg 0 1 2

8 16-4*2-2*3=2 14-4*2-2*3=0 12-3*2-2*3=0
9 18-4*2-3*3=1)| 16-4*2-3*3=-1 | 14-3*2-2*3=2
10 20-4*2-4*3=0 18-4*2-3*3=1 16-3*2-2*3=4

Figure B-10. Some interesting time intervals are outside the Cartesian product O; //O,. In
this example, (resource of capacity 2 and 5 activities Ay, A, As, A4, As), the pair (1, 9)
corresponds to the minimal slack and does not belong to {0,1,4,5,6} /{4,5,6,8,10}. In this
interval, the dlack is negative, which proves that there is no feasible schedule. Notice that
neither the fully elastic nor the partially elastic relaxation can trigger a contradiction.

71

B.3.1.3.2 A Quadratic Algorithm

We propose an O(n?) algorithm to compute the required energy consumption W, over all
interesting pairs of time points. Actualy, the algorithm first computes all the relevant
values taken by Wy, over time intervals [ty, t] with t; 00 Oq, and then computes all the
relevant values taken by Wy, over time intervals [ty, to] with t; O O,. The characterization
obtained in the previous section ensures that all the interesting time intervals are examined
in a least one of these steps. For symmetry reasons, we will only describe the first
computation. It is achieved by the same type of technique than in the partially elastic case.
An outer loop iterates on all values t; [1 O; sorted in increasing order. Then, we consider
the function t — Wg,(A;, t1, t). This function is linear on the intervals delimited by the
values d;, ri + p;, di - pi and r; + d; - t;. We rely on this property to incrementally maintain
the slope of the functiont — Wg,(A;, ty, t).

72

Algorithm B-4.

1
2
3
4
5
6
7
8

9

10
11
12
13
14
15

16
17
18
19

20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

DD = activities sorted in increasing order of dac
RP = activities sorted in increasing order of rac + Pact
DP = activities sorted in increasing order of dat - Pact
RD = activities sorted in increasing order of rga: + dact
for t1 in the set OL (sorted in increasing order)
ibb=0, iRP=0, iDP=0, iRD=0
W= 0, old t2 =t1, slope = act Wy(act, t1, t1 + 1)
while (iDD<nor iRPR<nor iDP<nor iRD< n)
if (iDD < n) then

t2_DD = dpoiop + 1
el se

t2 DD = o end if
if (iRP < n) then

t2_RP = rrefire + 1] + PRA[iRP + 1]
el se

t2 RP = o end if
if (iDP < n) then

t2_DP = dopriop + 1 - Por[ior + 1
el se

t2 DP = o
end if
if (iRD < n) then

t2_RD = rroiro+1 + droiro+1 - t1
el se

t2 RD = o
end if

t2 = mn(t2_DD, t2 RP, t2 DP, t2_RD)
if (t2 =t2_DD) then iDD =iDD + 1, act = DD i DD

else if (t2=t2_iRP) then iRP = iRP + 1, act = RP[iRP]
else if (t2=t2_iDP) then iDP = iDP + 1, act = DP[i DP]
else if (t2=t2_iRD) then iRD =iRD + 1, act = RO i RD|

end if
if (tl <t2) then
W= W+ slope * (t2 - old_t2)

Weh(t1l, t2) = W// energy over [t1l, t2] is conputed

old t2 =12
sl ope = slope + Wyp(act, t1, t2 + 1)

- 2*Wy(act, tl1, t2) + Wy(act, t1, t2 - 1)

end if
end while
end for

73

There are some few differences with the partially elastic case.

* The computation of t, is dlightly more complex since there are more interesting
valuesto consider.

* One does not need to reorder any list: whent ; increases, none of the values d;, r; + pi,
di - pi and r; + d; - t; changes except the last one; which corresponds to the list RD.
Since RD isinitially sorted in increasing order of r; + d;, it is aso sorted in increasing
order of ri + d; - t;.

* Inline 37, one shall in fact be careful not to update the slope more than once for the
same tuple (t, to, act). This can be done easily by marking the activity act with t,. We
have not included this marking in the pseudo-code to keep it smple.

B.3.1.4. Synthesisof Theoretical Results

Figure B-11 summarizes the theoretical results related to the conditions described in
Sections B.3.1.1, B.3.1.2 and B.3.1.3. The most satisfactory results are obtained for the
Fully Elastic CuSP and for the Partialy Elastic CuSP since the related problems are
polynomially solvable by either a reduction to a One-Machine Preemptive Problem or by
some simple and intuitive energetic computation. Less strong results are obtained for the
CuSP. No polynomia sufficient condition for the existence of a feasible schedule is
proposed (which seems reasonable since the CuSP is NP-complete). As for the Partially
Elastic CuSP, the left-shift / right-shift necessary condition relies on energetic reasoning,
but there are more time intervals to consider in practice and the structure of these intervals
is far more complex and poorly intuitive.

Needless to say, all relaxations can be used as part of the resolution of a non-preemptive
cumulative problem. However, it is easy to see that the necessary condition based on the
fully elastic relaxation is subsumed by the one based on the partially elastic relaxation,
which in turn is subsumed by the left-shift / right-shift necessary condition.

Fully Elastic Partidly Elastic | Left-Shift / Right-Shift
Characterization | Necessary and Necessary and Necessary
sufficient sufficient
Complexity O(n * log(n)) o(n%) o(n%)
Method One-Machine Slack computation Slack computation
reduction
Intervals [ty, to] - O(n°) in a Cartesian o(n%)
product

Figure B-11. A comparison of the 3 necessary conditions.

74

In the m-Machine case, i.e., when activities require exactly one unit of the resource, the
three necessary conditions can be compared to severa results of the literature (these
results are discussed in [Perregaard, 1995]).

First, notice that the decision variant of the Preemptive m-Machine Problem is polynomial
and can be formulated as a maximum flow problem (similar techniques as those depicted
in Section B.2.3 for the One-Machine Problem are used), see for instance [Federgruen and
Groenevelt, 1986] or [Perregaard, 1995]. As shown in [Perregaard, 1995], solving this
maximum flow problem leads to a worst case complexity of O(n®). The preemptive
relaxation is strictly stronger than the fully and the partially elastic relaxations. However,
it is not stronger than the left-shift / right-shift necessary condition. Indeed, there exists a
feasible preemptive schedule of the m-Machine instance described on Figure B-10, while
the left-shift / right-shift necessary condition does not hold.

A comparison can aso be made between the subset bound, a lower bound for the
optimization variant of the m-Machine Problem (see for example [Carlier, 1984], [Carlier
and Pinson, 1996], [Perregaard, 1995]) and the partially elastic relaxation. An instance of
the optimization variant of the m-Machine Problem consists of a set of activities
characterized by a release date r;, a tall g and a processing time p;, and a resource of
capacity C = m. The objective isto find a start time assignment s for each activity A such
that (1) temporal and resource constraints are met and (2) max; (S + p; + ¢) isminimal.
The subset bound is the maximum among all subsets J of at least C activities of the
following expression, in which R(J) and Q(J) denote the sets of activities in J having
respectively the C smallest release dates and the C smallest tails.

1
E[A DZR(J)rj ' A-ZDJ Pit A D%(J)qj}
]]]

[Perregaard, 1995] presents an algorithm to compute the subset bound in a quadratic
number of steps. Carlier and Pinson [Carlier and Pinson, 1996] describe an
O(n Olog(n) + n OC Olog(C)) dgorithm which relies on a “pseudo-preemptive”
relaxation of the m-Machine Problem. Notice that the subset bound can apply, thanks to a
simple transformation, as a necessary condition of existence for the decision variant of the
m-Machine Problem:

0J O{ALA A} suchthat [9]2C, X r+ X pjs X d;
A;ORQ) A0 A;0D(J)

where D(J) denotes the set of activitiesin J having the C largest deadlines.

75

Proposition B-15.
In the m-Machine case, there exists a feasible partially elastic schedule if and only if the
subset bound necessary condition holds.

Proof.
* First, assume that there exists a feasible partially elastic schedule. Let J be any subset

of at least C activities. Let py, p2, ..., pc be the C smallest release dates of activitiesin
J, and &, &, ..., &c be the C largest deadlines of activitiesin J. Since before pc, at most
C activities execute, and since for each of these activities A; at most (pc - ;) units are
executed before pc, the schedule of these activities can be reorganized so that pes(t, i)
isat most 1 for every t< pc. Let us now replace each activity A in R(J) with a new
activity of release date p;, deadline d;, and processing time p; + (ri - p1). A feasible
partially elastic schedule of the new set of activities is obtained as a simple
modification of the previous schedule, by setting pes(t, i) =1 for every A in R(J) and t
in [p1 ri). The same operation can be done between dc and &; for activitiesin D(J). We
have a partially elastic schedule requiring Zainapi+Zaiorw) (fi-P1) + Zaiop) (01-di) units
of energy between p; and &;.

Hence, Zainapi+Zaior) (M- P1) + Zaiop) (01-d) <C* (01-p1). Thisis equivalent to the
subset bound condition for J.

* We now demonstrate the other implication. Assume that the slack S is strictly
negative for some interval. Let then [ty, t;] be the interval over which the slack is
minimal and let us define J as the set of activities A; such that Weg(A, t1, to) > 0.
Notice that there are at least C activities in J because ri + p < d; implies that
Wee(A, t1, to) < tp - t3. In addition, at most C activities A in J are such that r; < t;.
Otherwise, when t; is replaced by t; - 1, the slack decreases. Similarly, there are at
most C activities A; in J are such that t; < d;. Let us define X ={A O J|r;<t;} and
Y={A OJ|t,<d}. According to the previous remark, we have |X| < C and |Y| < C.
Now notice that for any activity A in J, Weg(Ai, t1, t2)) > 0. Thus, we have
Whe(A, t1, t2) = Zaios (pi - max(0, ty - rj) - max(0, d; - t)). This can be rewritten:

Wee(A, 1, t2) = Zaima Pi + Zaiox Fi - [X]* t1 - Zaioy di + [Y]* o
Since S(ty, tp) is strictly negative, we have

Zaox i+ (C-X)* ta+ Zanapi > Zaoy di + (C- [Y]) * ta.
Moreover, because of the definition of R(J) (resp. D(J)), and because |X|< C and
Y] < C, we have Zaicry) 2 Zaioxlj+(C-X]) * t1 and Zaiop) di<Zaioyd; +(C-[Y))* to. Asa
consequence, Zaicry) i + Zas Pi > Zaop dj, which is exactly the subset bound
necessary condition for the set J. O

76

B.3.2. Time-Bound Adjustments for the CuSP

The following sections describe three time-bound adjustment schemes for the CuSP.
These techniques extend the time-bound adjustments, also called edge-finding, initially
proposed for the One-Machine Problem [Applegate and Cook, 1991], [Baptiste and Le
Pape, 1995b], [Carlier and Pinson, 1990], [Carlier and Pinson, 1994], [Caseau and
Laburthe, 1995], [Nuijten, 1994], [Pinson, 1988].

B.3.2.1. Time-Bound Adjustments for the Fully Elastic CuSP

In the fully elastic case, we rely on the reduction of the Fully Elastic CuSP to the
Preemptive One-Machine Problem. We then use the time-bound adjustment algorithm for
the Preemptive One-Machine Problem described in Section B.2.4.

More precisely, the adjustment schemeis:

1. Build the One-Machine Preemptive Problem instance F(I) corresponding to the Fully
Elastic CuSP instance |.

2. Apply the preemptive edge-finding algorithm on activities Ay, ..., Ay’ of the instance
F(1). As explained in Section B.2.4., for each activity A/, four time-bounds can be
sharpened: the release date ry', the latest possible start time Ist;', the earliest possible end
timeeet;', and the deadline d;'.

3. Update the four time-bounds of each A. ri=Lr;'/CJ, Isti =L Ist'/ CJ, eet; =[eet;' /C] and
d=ld'/Cl.

This agorithm runs in a quadratic number of steps since (1) and (3) are linear and (2) can

be done in O(n?) as detailed in Section B.2.4.

Proposition B-16.

The time-bound adjustments made by the algorithm above are the best possible ones, i.e.,
the lower and upper bounds for the start and end time of activities can be reached by some
feasible fully elastic schedules.

Proof (sketch).
The same proof applies for each of the four time-bounds. We focus on the earliest end

time. The basic idea is to prove that for any A;, (1) there is a fully elastic schedule on
which A can end at the earliest end time computed by the fully elastic time-bound
adjustment algorithm and (2) there is no fully elastic schedule on which A; can end before
the earliest end time computed by the algorithm. Both steps can be proven thanks to the
reduction F, and to the fact that the preemptive edge-finding algorithm computes the best
possible time-bounds for the Preemptive One-Machine Problem (cf., SectionB.2.4.). O

77

B.3.2.2. Time-Bound Adjustments for the CuSP Based on the Partially
Elastic Relaxation

In this section, we provide an adjustment scheme for the CuSP which relies on the
required energy consumptions computed in the partially elastic case. From now on, we
assume that [rj, O di, Wee(rj, di) < C O(dk - 7). If not, we know that there is no feasible
partially elastic schedule. As for other adjustments techniques, our basic ideais to try to
order activities. More precisely, given an activity A; and an activity A,, we examine
whether A; can end before di.

Proposition B-17.
If OA | rj < dk and Weg(r;, d) - Wee(A, rj, d) + ¢ Omax (0, pi - max (0, rj - ri)) > C(dk-r;) then a
valid lower bound of the end time of A is:

+WPE(rj ,d,) _WPE(A’rj ,d,) + ¢ max(0, p; - max(O,rJ. =) -C*(d, - rj)

k

C.

Proof.

Notice that Wee(r;, di) - Wee(A, 1, di) + ¢ Omax (0, pi - max(0, rj - ri)) is the overall required
energy consumption over [r;dy when d; is set to dk. If this quantity is greater than
C U(dk - rj) then A; must end after di. To understand the lower bound of the end time of A;,
simply notice that the numerator of the expression is the number of energy units of A
which have to be shifted after time dx. We can divide this number of units by the amount
of resource required by A to obtain a lower bound of the processing time required to
execute these units. O

As all values Weg(rj, d) can be computed in O(n?), this mechanism leads to asimple O(n®)
algorithm. For any tuple (Ai, A;, Ay (1) check wether A; can end before di and (2) in such a
case compute the corresponding time-bound adjustment. The issue is that O(n®) is a high
complexity. This led us to further investigation. In the following, we show that the same
adjustments can be made in O(n* log(f c}), through successive transformations and
decompositions of the adjustment scheme.

Given A and Ay, our god is to find the activity A; which will produce the best possible
adjustment. Notice that if d < dx, Wee(A, rj, di) = ¢ Omax(0, pi - max (0, rj-r;)) and then no

’ Note that the lower bound proposed in this proposition only holds for the CuSP and does
not hold for the Partialy Elastic CuSP. Indeed, in the partialy elastic case, nothing
prevents A; from using more than ¢; units of the resource at a given time point. To get a
valid lower bound, one has to divide the numerator by C instead of ¢;. In practice, we use
only the Partially Elastic CuSP as a relaxation of the CuSP, which justifies the use of ¢; to
get a better bound.

78

adjustment can be achieved since Urj, Jdy, Wee(rj, di) <CL(dk-r;). In the following, we only
consider the case in which d, > d. This can be written as a mathematical optimization
problem (P).

(d +WPE(ri’dk)_WPE(A’rwdk)+Ci*maX(O, p —max(0,r; —r;)) —C* (d, —rj)j

max

i C

{WPE(rj’dk)_WPE(A’rj’dk) +¢; * max(0, p, —max(0, =)) >C*(d, _rj)
|1 <d

Let Wi« = Whe(rj, di) if r; < dy, and -co otherwise. Note that the Wi, can be pre-computed
in O(n?) as shown in Section B.3.1.2.3. Then, P can be reduced to the following problem.

mjax (V\/j’k+ ci(max(O,pi —max(0yr; —,)) -max(0, p, -max(0yr; ;) -max(0,d, —dk))) +C rj)

uc. W, + ci(max(O, p, —max(0,r; —1;)) -max(0, p; -max(0yr; ;) -max(0,d, —dk))) +Cr; >Cd,

As C [dk does not depend on j, we can first compute the maximum of the expression
W i+ ¢ C(max (0, pi - max (0, rj-r;)) - max(0, p; - max(0, r;-r;) -max (0, d; - dy))) + Cr; and then
check whether it is greater than C [dk.
For dl j such that p;<max(0, rj-ri), pi-max(0, rj-r;) is smaler than or equa to
max (0, pi - max(0, r;-ri)) and f(j) =W, «+ C Ur; which, under our hypothesis does not
exceed C [dk. Consequently, we can replace max (0, pi-max(0, rj-r;)) by pi-max(0,rj-r;) in
the expression above.
Thus, we seek to maximize

W +ci L(pi-max (0, rj-ri)-max (0, pi-max(0, r-ri)-di+dy)) +CLT;
which isequivalent to

max; (W i+ ¢ LXpi-max (0, rj-ri, pi- i +dy)) + CLI;).

This problem can be split into two sub-problems P; and P, by adding respectively the
constraint r;<r;+max(0, p; - d; + di) and the constraint r;=r;+max (0, pi - d; + dy). Indeed, an
optimal solution | of the original problem is either an optimal solution j; for P; or an
optimal solution j, for P,.

max (V\/j'k+C*rj)
J
uc.r;<r,+max(0,p, —d; +d,)

(P1)

]
uc.r;zr,+max(0,p, —d; +d,)

o o 0o o

79

B.3.2.2.1. Resolution of P; for all i

We propose an O(n?) algorithm to compute the optima of P; for al pairs of activities
(Ai, A). The basic idea consists of rewriting the constraint of P;. In particular,
ri<ri+max(0, pi-di+dy) is equivalent to rj<rsy i), where Ag) is the activity with the largest
release date such that either ryy<ri or ryxi<ri+pi-di+d. Let now Qy ,denote the optimum
of W, x+C* r; under the constraint r; < ry, then the optimum of Py is Qi (). This rewriting
isof great interest since computing the values of Qy , and f(k, i) can be done in linear time
for agivenk.

Algorithm B.5.

1 R = activities sorted in increasing order of r 4

2 RPD = activities sorted in inc. order of rac + Pact - dact
3 for any activity act_k

4 let Q be an array of integers (convention: Q[0] = -)
5 for iR=1toiR=n

6 QIR = max(Q[iR - 1], We(rrir, dact k))

7 end for

8 for iR=1toiR=n

9 fR[iR] = iR

10 end for

11 iR=0, iRPD =0

12 while (IR < n or iRPD < n)

13 if (iIR<n) then Rval = rgir+ 1
14 else Rval = o end if

15 if (iRPD < n) then

16 RPDval =rrepirep+1] + PreojireD+1] - OreppiReD+ 1) + dact k
17 el se

18 RPDval =

19 end if

20 if (Rval < RPDval) then

21 iR=iR+ 1

22 el se

23 iRPD = iRPD + 1

24 fRPD[iRPD] = ITHX(prD[iRpD], IR)
25 end if

26 end while

27 end for

80

Let us comment the algorithm.

» Lines1and 2 achieve two initia sorts of activities. Notice that since RPD is sorted in
increasing order of r; + p; - d;, it isalso sorted in increasing order of r; + p; - di + dk for
any value of dy.

* Lines 4 to 7 compute the values of Q. We rely on the fact that activities are taken in
increasing order of release dates and thus, the recurrence property of line 6 holds.

* Lines 11 to 26 compute the values of f(k, i). Since k is fixed, we use the notation fa to
denote the index of the activity in R such that its release date is equal to ry iy. Since
Ak, iy is the activity with the largest release date such that either re iy < ri or
Mg iy ST+ Pi - di + di, wefirstinitiadizef gig = 1 R(lines 8 to 10) and then iterate
over both lists R and RPD a the same time. Rval and RPDval correspond
respectively to the release date of the current activity in R and to the “rj+p;-d;+dy” of
the current activity in RPD. If it comes that Rval > RPDval , then the value of
f reoyi RPDp CaN be updated (line 24) since there the release date of thei R" activity in R
has the largest release date lower than or equal to ri+p;-d; +dx.

Notice that this algorithm runs in O(n®) since it consists in two initial sorts and in one

outer loop over the n activities and one inner loop (2 * n iterations).

B.3.2.2.2. Resolution of P, for all i

For each different value A of ¢;, the problem P, can be solved with a similar algorithm. C
is replaced by C - A which is taken as a constant, and the optima for al pairs of activities
(A, A) with ¢ = A are computed (with a simple transformation needed to accommodate
the direction of the inequality rj = r; + max(0, pi - d; + di)). We then have an on?* Kc}
algorithm to solve P,. Notice that in the m-Machine case, this reduces to asimple O(n?).
We now show that this worst case complexity can be brought down to O(n* log(f ¢} |)).
To simplify notations, we suppose that (1) activities are sorted in increasing order of
release dates and (2) all release dates are distinct. The basic idea of the algorithm is to fix
the value of k and then to solve the problem P, for all values of i at the same time.

First, we introduce g(k, i), the first index j such that r; > r; + max(0, pi- di + dy). For the
values of i for which g(k, i) is not defined, the problem P, has no solution. As for f(k, i)
(cf. Section B.3.2.2.1), the values of g(k, i) can be computed in linear time. For each
activity Ay alist S, of activities A; such g(k, 1) = u can be built in linear time.

We introduce some more notations:

» Forl#m,let slope(A, Am) = (W, k- Wi k) / (rm-1).

o Leth(X)=min({C-cy, C-cy=x} O {+o0}).

81

The agorithm builds and maintains alist Q of activitiesinitialized to Q = (A,). Aswe will
see later on, Q contains, throughout the algorithm, the activity A; which leads to the
optimum of P, for some values of i.

The structure of the algorithm is the following one. We iterate from | = ndownto |l =1
(i.e., activities are taken in decreasing order of release dates). For each activity A, we
make the following computations:

1. Compute the activity A, in Q such that dope(A,A) is minimum, i.e,
dope(A, A)) = min{slope(A;, A), A« 00 Q}, with ties broken by taking u maximal (see
Figure B-12).

2. Add A to the beginning of Q, i.e., set Q = (A, Q(AJ)). Where Q(A,) denotes the tail of
thelist Q after A, (A, included).

3. If A, has a successor A+ in Q and if h(slope(A;, Ay)) = h(slope(A,, Au+)), remove A,
from Q.

4. For each activity A in the list §, compute the maximum of W, + (C —¢;) * r; over all
activities A in Q.

Procedures 1 and 4 will be described later on.

Wh Minimal slope

//

Ix

Activitiesin Q

I'| ru_ ru ru+

Figure B-12. Sdection of A, in Q. Notice that the values of slope(Ay, Ax+) and of
h(slope(Ax, Ax+)) are strictly increasing when Ay goes through Q.

Proposition B-18.
The values computed in step 4 of the algorithm are optimal values of f;.

Proof.

We rely on the fact that Q isdominant i.e., if at astep | of the algorithm, an activity Aq has
been removed from Q, and if Aq is an optimal solution of (P,) for a given i (such that
a(k, i) < q), then there exists an optimal solution of (P2) in Q for the samei. Ay can be
"removed" from Q for two reasons. Either in step (2) or in step (3). We prove that in both
cases, the dominance property holds when exiting respectively step 2 and step 3. To
simplify notations, we introduce fi(A) = Wk + (C—¢c) * r;

e If Ay is removed in step 2. There exists AnUOQsuch that

(a) slope(Ay, Ag) = slope(Al, Ay) and (b) rq < rm. Let us compute fi(Am) - fi(Ag).

82

fi(Am) -fi(Ag) =fi(A) - i(Ag) - (fi(A) - fi(Am))

=(rq-11) Lslope(A, Ag) - (rm-11) sl ope(A;, Am) +(C- €))L m-rq)

2 (rq-11) DS Ope(A, Ar) - (Fm-11) S OPE(A, Ar) +(C-C) (rm-Tg)

2(Im-rq) XC-Ci-slope(A, Am)) =('m-1q) L{C- ¢i-slope(A, Aq))
If slope(Ay, Ag) >C - ¢ then it would be easy to prove that fi(Ag) <fi(A); which is
impossible since A is optimal. Thus, we can suppose that slope(A;, Ag) < C-c;. This
leads to fi(Am) - fi(Ag) = 0. Consequently, An, is aso optimal, which concludes the
proof.

* If Ayisremoved in step 3. In such a case, when entering step 3, Ay had one predecessor
and one successor in Q. Let A; and Aq+ be respectively its predecessor and its successor
in Q. Aqisoptimal for (Py).

Thus, fi(Ag) = fi(A) consequently, Wy, «+ (C - ¢c) Orq=W, «+ (C-¢) Or,. This leads to
slope(A, Ag) <C-c. But we know that h(slope(A, Ag) = h(slope(Aq, Ag+)), thus
dope(Aq, Ag+) cannot be strictly greater than C-c. As a conclusion,
dope(Ay, Ag+) < C - . Thisdirectly implies fi(Ag+) = fi(Ag). O

An interesting property of this algorithm is that the length of Q is always lower than or
equal to {c}|+ 1, where [c}|is the number of distinct values of ¢ in the instance
(cf. step 3). Let us describe steps 1 and 4 of the algorithm. In both cases, a ssimple loop
over activities in Q could solve the optimization problems of steps 1 and 4. This would
lead to an overall complexity (for a given k) of O(n O[c}|), to compute for al i, an
optima solution of (P,). However, this complexity can be sharpened. Notice that the
values of slope(Ay, Ax:) and of h(slope(Ax, Ax)) are strictly increasing when A, goes
through Q, and that Q can be implemented as a stack embedded in an array.

o Ay asdefined in step 1 isthe activity of Q such that slope(A;, Ay) islower than or equal
to slope(A;, A,) and strictly lower than slope(A;, Au+) if Ay (the predecessor of A, in Q)
and/or A+ exist. Thus, adichotomic search for A, can be performed on Q.

* Step 4 is dlightly more complex. Notice that f; increases over a first part of the list Q
and decreases in the remaining part (the value of slope(A;, A+) becomes strictly greater
than C - ¢;). As a consequence, a dichotomic search for the activity A; that leads to the
optimum can be performed on Q again.

This leads to a complexity (for a given k) of O(n Olog(f c}]), to compute for al i, an

optimal solution of (P2). The overall complexity of the constraint propagation algorithm is

then O(n? Olog(K ci}). Obviously, this complexity becomes quadratic when the algorithm
is applied to an instance of the m-Machine Problem.

83

B.3.2.3. “Left-Shift/Right-Shift” Time-Bound Adjustments for the
CuSP

As in Section B.3.2.2, the values of Wy, can be used to adjust time-bounds. Given an
activity Ay and atimeinterval [t; to] with t; < d;, we examine whether A; can end before ts.

Proposition B-19.
If Oty | t; <t,and qu(tl, tz) - Wgh(Ai, 11, tz) + ¢ Omi n(tz - 14, pi+(t1)) >C D(tz - t1) then a
valid lower bound of the end time of A is
+W91 (t,,t,) ~Wen (A 1, 1) +¢ *min(t, —ty, p* (1)) ~C* (t, —ty)
Ci -

2

Proof.
Similar to proof of Proposition B-17. O

There is an obvious O(n®) algorithm to compute all the adjustments which can be obtained
on the intervals [ti, t,] which correspond to potential local minima of the slack function.
There are O(n?) intervals of interest and n activities which can be adjusted. Given an
interval and an activity, the adjustment procedure runs in O(1). The overall complexity of
the algorithm is then O(n®).

In spite of our efforts, we were unable to exhibit a quadratic algorithm to compute al the
adjustments on the O(n?) intervals under consideration.

B.3.2.4. Synthesis of Theoretical Results

The most satisfactory result is obtained for the Fully Elastic CuSP. Indeed, time-bound
adjustments are perfectly characterized (Proposition B-16).

It is easy to see that the deductions made by the fully elastic techniques (both necessary
condition and time-bound adjustment) are subsumed by partially elastic techniques which
are in turn subsumed by left-shift / right-shift techniques. However, the weaker the
relaxation, is the cheaper the complexity is.

Fully Elastic Partidly Elastic | Left-Sh. / Right-Sh.
Characterization Perfect - -
Complexity o(n?) o(n” * log{ ¢} o(n°)
Method One-Mac. reduction | Slack computation | Slack computation

Figure B-13. A brief comparison of the three adjustment techniques

Three necessary conditions for the existence of a feasible schedule for a given instance of
the Cumulative Scheduling Problem, and three deductive algorithms to adjust the

time-bounds of activities have been presented. Two of the three proposed techniques
correspond to well-defined relaxations of the Cumulative Scheduling Problem: the fully
elastic relaxation and the partialy elastic relaxation. These techniques can be used not
only for standard scheduling problems, but also for preemptive scheduling problems. In
addition to that, the fully elastic relaxation aso applies when an activity requires an
amount of resource capacity that is not fixed (e.g., because the same activity can be done
either by 2 people in 3 days or by 3 people in 2 days) or even alowed to vary over time
(e.g., 2 people on day 1 and 4 people on day 2). The third technique (left-shift/right-shift),
which is the most powerful but aso the most expensive, only applies to “non-elastic
non-preemptive problems.” Notice that the satisfiability tests are such that they provide
the same answers when an activity A;, which requires ¢; units of the resource, is replaced
by ci activities A}, each of which requires one unit of the resource. This is not true for the
time-bound adjustments.

Severa questions are still open at this point.

* Firgt, for the left-shift/right-shift technique, we have shown that the energetic tests can
be limited to O(n®) time intervals. We have also provided a precise characterization of
these intervals. However, it could be that this characterization can be sharpened in
order to eliminate some intervals and reduce the practical complexity of the
corresponding algorithm.

* Second, it seems reasonable to think that our time-bound adjustments could be
sharpened. Even though the energetic tests can be limited (without any loss) to a given
set of intervals, it could be that the corresponding adjustment rules cannot. A related
open question is whether the time-bound adjustment schemes proposed in the previous
sections subsume the rules already presented in [Caseau and Laburthe, 1996a], [Lopez
et al., 1992], [Nuijten, 1994], [Nuijten and Aarts, 1996]. A partial but positive answer
to this question is provided in [Le Pape and Baptiste, 1998c].

85

B.4. Over-loaded Resourcega

As shown in the previous sections, various classes of strict resource constraints have been
developed in the literature to enable the resolution of computationally demanding
problems. These globa constraints have enabled the development of many industrial
applications based on constraint programming. Overloaded resources, i.e., resources that
can sub-contract a given amount of activities, have been less studied. The problem
induced by these resources can be seen as an over-constrained problem (the strict resource
constraint cannot be satisfied and one tries to satisfy it as “much” as possible). A lot of
academic work has been performed on over-constrained problems, and many extensions
of the constraint satisfaction paradigm have been proposed (see, eg., [Freuder and
Wallace, 1992], [Bistarelli et al., 1995], [Schiex et al., 1995]). It appears that such
extensions could be highly useful in practice. Indeed, industrial problems tend to include
many “preference” constraints, that cannot be all satisfied at the same time.

In this section, we develop a resource constraint propagation algorithm that can be used
for overloaded resources. If we consider this resource constraint alone (i.e., without taking
care of the other components of the scheduling problem), it appears that we study the
decision variant of the (1|r;|ZU;) problem. Following the classical terminology for this
problem, an activity is late if it is scheduled after its due-date. It is on-time otherwise. For
our resource constraint, “late” corresponds to “sub-contracted” and “on-time” corresponds
to “performed on the resource’. We refused to use the terminology late / on-time when
defining, in the introductory chapter, the resource constraint because we think it is much
more restrictive than the other one. In this technical section, we come back to the classical
terminol ogy.

Recall that the number of sub-contracted (late) activities is represented by a constrained
variable reject whose domain is [0, n]. Each activity A is described by a binary variable
in(A) that states whether the activity is performed on the resource (on-time) in(A) = 1 or
sub-contracted (late) in(A;) = 0, and by an integer variable start(A) (the start time), whose
domain is [ri, di - p]]. The first constraint to satisfy is >(1 - in(A))) =regect. Simple arc-
consistency techniques can be used to propagate this constraint. The “classical” resource
constraint is modified to work not only on the domains of the start time variables start(A)),
but also on the activity status variables in(A). It states that activities which must be on-
time cannot overlap in time and that there are reject late activities:

® Most of the results presented in this section come from [Baptiste, 19984], [Baptiste et al.,
1998c].

86

o [t, {A suchthat in(A) =1 and start(A) <t <start(A) + pi}| < 1,

e 2(1-in(A)) =regect.

To alow further pruning, the maximal value of reject and dominance relations between

the activity status variables (of the form in(Aj) = in(A;)) can also be optionally taken into

account in this constraint (such dominance properties apply for the (1|rj|ZU;), cf., Section

C.4.1.3). Constraint propagation reduces the domains of both the start(A) and in(A)

variables. O denotes the set of activities that have to be on-time (in(A;) has been bound to

1) and L denotes the set of activities that have to be late (in(A;) = 0).

The propagation of the modified resource constraint consists of four interrelated parts.

1. In the first part, classical resource constraint propagation techniques are used on the
on-time activities: digunctive constraint propagation and edge-finding are applied on
O (cf., Section B.1.2. and Section B.1.3).

2. Inthe second part, for each activity A; such that in(A) is unbound, we try to add to the
set O of activities that must be on-time (1) the activity A; and (2), according to our
dominance property, al the activities Ay such that in(A) = in(A). The resource
constraint is propagated as described in part 1. If an inconsistency is triggered, then
in(A)) can be set to 0. If the propagation of the digunctive resource constraint does not
trigger a contradiction then the release date r’; and the due date d’; obtained after the
propagation can be kept and imposed as the new release (ri = r’;) and as the new due
date (di = d'j) of the activityEl. Notice that one pass of such a propagation scheme runs
in O(n*) since for each activity the edge-finding algorithm, itself running in O(n?), is
caled.

3. Thethird part determines alower bound for reject (Section B.4.1). Two techniques are
proposed. The first one relies on the preemptive relaxation of the (1|r;j|>U;) problem.
An O(n* dynamic programming algorithm is proposed (Section B.4.1.1.). It improves
the O(n®) algorithm described in [Lawler, 1990]. The second lower bound is itself a
relaxation of the preemptive relaxation (Section B.4.1.2.). It can be computed in O(n?)
and is very useful in the remaining parts of the constraint propagation.

4. Thefourth part focuses on the in(A;) variables (Section B.4.2).

% A drawback of this mechanism is that it may strengthen the time-bounds of activities that
won’'t execute on the machine i.e., activities that will be sub-contracted. To avoid this
drawback and to keep the generality of the propagation mechanism, one should introduce
fictive release dates and deadlines associated to the given activity on the given machine.
These release dates and deadlines would then be adjusted as described above and would
be propagated to the “true” release dates and to the deadlines of activities as soon it is
would be known that a given activity is on-time.

87

Of course, when the domain of a variable is modified by one of the four parts above, the
overall propagation process restarts.

B.4.1. Lower Bound Computation

Any lower bound of the (1|rj|ZU;) problem is a valid lower bound of the constrained
variable reject. Some special cases of the (1|r;|ZU;) problem are solvable in polynomial
time. Moore's well-known algorithm [Moore, 1968] solvesin O(n log(n)) steps the special
case where release dates are equal. Moreover, when release and due dates of activities are
ordered similarly (r; <r; = d;< d;), the problem is solvable in a quadratic amount of steps
([Kise et al., 1978]). This result has been extended by [Dauzére-Peres and Sevaux, 19984]
to the case where [ri <rj] = [di<dj or r; + p; + pi > d]. A simple way to obtain a lower
bound of the (1|r;|ZU;) problem is to relax some release dates (respectively due dates) so
that the relaxed problem fits in one of the above special cases. Another specia case, the
(1]rj,p=p|Z U;) problem is solvablein O(n®log(n)) [Carlier, 1984]51.

Lower bounding techniques have also been developed for the general problem. [Dauzére-
Péres, 1995] and [Dauzére-Peres and Sevaux, 1998a] propose severa linear programming
formulations of the (1|rj|=U;) problem. The resolution of the relaxed linear programs
allows to obtain lower bounds of the number of late activities. [Péridy et al., 1998]
propose to use a MIP formulation of the preemptive problem. Surrogate duality is used to
compute a lower bound of this MIP. [Lawler, 1990] has proposed a strongly polynomial
agorithm for the preemptive problem (1|pmtn,r;|ZU;). Time and space bounds of this
algorithm are respectively O(n’k?) and O(nk?), where k is the number of distinct release
dates. So, O(n°) and O(n®) if all release dates are distinct. Notice that Lawler's algorithm
aso applies for minimizing the weighted number of late activities (1|pmtn,r;|Zw; U;). It
then becomes pseudo-polynomial in the sum W of the weights of the activities; the bounds
being respectively O(n kK*W?) and O(k*W).

In this section, we first show that the preemptive lower bound can be reached in O(n®)
(Section B.4.1.1). Despite this improvement, such a complexity remains high and we
propose in Section B.4.1.2 to use a weaker lower bound that can be obtained
in O(n? log(n)).

19 Notice that an O(n™®) algorithm is provided in Appendix 2 for solving the special case of
the weighted preemptive problem where processing times are equal. The non-preemptive
problem can be solved in O(n") (Appendix 3).

88

B.4.1.1. ThePreemptive Lower Bound

B.4.1.1.1. Reformulation of the Problem

As noticed in [Lawler, 1990], the preemptive problem reduces to finding a maximum
subset of activities that is feasible, i.e., which can be preemptively scheduled on a single
machine. It is well known that testing the feasibility of a subset O of activities can be
achieved by computing JPSo, the Jackson Preemptive Schedule of O. We recall some
fundamental properties of Jackson Preemptive Schedule (for a proof, see for instance
[Carlier, 1984]).
» If an activity is scheduled on Jps after its due date, O is not feasible.
* The makespan Co (i.e., the time at which all activities are finished) of JPSs is minimal
among all preemptive schedules.
From now on, we assume that activities are sorted in increasing order of their due dates
(di<d; < ... £dy). For any integer a and any activity Ay, let S(a) be the set of activities A
suchthat a<rjandi < k. Given an interval [a, b] and a set of activities O, slack(O, a, b)
denotes the time during which JPs isidle over [a, b]. By convention, Cg = -co.
Let a and b be any values such that a < b. We introduce three definitions. As we will see
later on, we will be mainly interested in the values of a and b that are release dates.
Definition.
Let Cy(a, m) be the minimal time at which m activitiesin S(a) can be completed.
Ci(a, m) = min{{} 0{Co|O O S(a), O feasibleand [O] = m}}
Definition.
Let 7z(a, b) be the maximal number of activitiesin S.1(a) that can be scheduled before b.
7%(a, b) = max{[O] | O O S.1(a), O feasible and Co < b}
Definition.
For any b = ry, let 14(a, b) be the largest possible slack over the interval [ry, b] among sets
that redlize 7i(a, b).
(@, b) = max{slack(O, ri, b) | O O Sc4(a), O feasible, [O] = 7x(a, b), Co < b}

B.4.1.1.2. Some Fundamental Properties

We prove three propositions that exhibit a strong link between the values of C, /rand L.
We first show that Cy can be computed in function of Cy.1, 77 and . To write a compact
formula, we introduce fi(x) which isequal to x if x < dx and to +c otherwise.

89

Proposition B-20.
If A, 0 S(a) (i.e, rq < a) then C(a, m) = Cra(a, m). If Ay 0 S(a) then

C«(a, m)= fi(min(Ci.1(a, m),
max(rg, Ce-1(@, m- 1)) + py,
min (Cya(ry, m- 1 - 7x(a, ry)) + max(0, px - £i(a, ry)))))

(=1

Proof.

The first part of the proposition is obvious. Consider now that Ax [0 S(a). Let C' be the
value corresponding to the right term in the equation above.

We first prove that C' < Cy(a, m). We can suppose that Cy(a, m) has afinite value (if not,
the result is obvious). Several cases can occur:

Either thereis aset O that realizes Cy(a, m) such that A [0 O. Then Cy(a, m) isequal to
Ci.1(a, m). Consequently, C' < Ci(a, m).
Or A¢ belongsto all the sets that realize Cy(a, m) but there is one, say O, such that Ay is
fully executed on JPrs, after al other activitiess Then, we have
Cu(a, m) =max(Co-(ag,) + px. Moreover, Co . (ag 2 Cra(d, m - 1). Thus,
Ci(a, m) 2 max(rg, Cr.1(a, m-1)) + px=C'.
Or A« belongs to all the sets that realize Cy(a, m) and Ak is never fully executed after all
the other activities. Let O be a set that realizes Cy(a, m) and let t be the maximal time
point such that (a) Ax executesin [t - 1, t] on JPSo and (b) another activity executes
after timet on JPso. Given our hypothesis, such atime point exists. Moreover, because
of the particular structure of Jackson Preemptive Schedules, the first time point at
which an activity executes after t isthe release date r, of an activity A, (withry = ry).
Consider now an activity A (i # k) which starts on JPsy before ry. Since d; < dy, A ends
before r,, (otherwise A; would be scheduled at timet - 1 on JPsy instead of Ay). Let then
O1 be the set of activitiesin O - { A that end before r, on JPs. Let O, be the set of
activitiesin O - { A} that start after or at ry,.
If O is not maxima (i.e., |O1] < 7&(a, ry)), then consider the set O'; that redlizes
7&(a, ry). Itisobvious that O'1 O O, is feasible and that it contains as many activities as
O. Moreover, Co1 0 o2 IS lower than or equa to Co; which contradicts our hypothesis
that A¢ is in al the sets that realize Cy(a, m). We know that O, contains 7%(a, ry)
activities, moreover slack(Os, rg, ry) time units are available before r, to schedule Ax.
Thus,

Co = max(0, px - slack(Ox, ry, ry)) + Coz

2 Ca(ru, m-1- (@, ru)) + max(0, p - (@, ry)) 2 C

90

We now prove that C' = Cy(a, m). Notice that if C' = oo, the result is obvious. We can then

suppose that C' is the minimum of one of the three terms.

e If C'=Cya(a, m). Since Cy(a, m) < Cy.1(a, m), C'= Cy(a, m).

e If C'=max(r, Cca(a, m1)) + px. Let O be the set that realizes Cy.1(a, m1). Ay is not
late if it is “added” at the end of JPsy (because C' is finite). Thus, the set O [{ A}
contains m activities and is feasible. Moreover, it is a subset of S(a). As a
consequence, C' = Cotag = Ci(a, m).

o IfOry=ry|C' = Cyary, m-1- 7%(a, ry)) + max(0, px - t(a, ry)). Let O be the set that
realizes wu(a, ry) and O, be the set that realizes Ci.1(ry, m- 1 - 7%(a, ry)). First, notice
that O, 00 O, OO { A} obviously belongs to S(a). Second, notice that O, [0 O, [{ A}
isfeasible. Indeed, on JPSo1 0 o2, there are i(a, ry) “holes’ between ry and r, and thus,
the quantity Cy.1(ry, m-1-1i(a,ry))+max(0, p«- Hk(a,ry)) is the makespan of JPSo1 0oz ON
which A¢ has been scheduled as soon as possible in the “holes’. This makespan is
lower than d¢ (otherwise C' = o). Third, notice that there are m activities in
01 0 O, O {A4}. Indeed, according to the definition of y, beforery, 7&(a, ry) activities
are scheduled. After ry, m- 1 - 7%(a, ry) activities are scheduled; which means that
m- 1 activitiesin O; [J O, are scheduled.

We have proven that C' = Co1 0 020 ¢ak; thusC' = Ci(a, m). O

Proposition B-21.
For any a< b, 7z(a, b) = max{m| C.1(a, m) < b}.

Proof.
Let 77 = max{m | Cy.1(a, m) < b}.
Let O be the set that realizes Cya(a, 7). O is a subset of Sci(a), O is feasible and
Co = Cia(a, 1) < b; consequently, 7t < 7i(a, b).
Let O be the set that realizes 7g(a, b). According to the definition of C, Cy(a, |O]) is lower
than or equal to Co. Consequently Cy(a, |O|) < b and thus, 77 > 7z(a, b). O
Proposition B-22.
Oa band JAcsuchthata<rg<b,

Hid@, b) = max(b - max(Cia(a, 7&(a, b)), 1),

max (@, ry) + b - Ciea(ry, 7&(rv, b))))

rn.<r,<b
mfabl=m (ar, b,)
mr, ,b)>0

91

Proof.
Let 1/ be the value corresponding to the right term in the previous equation.

We first prove that 1/ > ti(a, b). Let O be the set that realizes ti(a, b). The proof relieson
the fact that if there is a time point t 0 [ry, b] such that JPso is idle in [t- 1,t], the
computation of the maxima slack can be decomposed into the computation of the
maximal slack over [ry, t] and over [t, b]. In the following, we distinguish two cases.

If Co < ry, then dlack(O, r, b) = b - r.. Moreover, Cr.1(a, 7&(a, b)) < Co <rk. Thus,
b - max(Cy.1(a, 7x(a, b)), ry) isequal to b - ry. Consequently, 1/ = ti(a, b).

If Co>ry, let t be the largest time point such that JPsy isidle immediately before t and
never idle in the interval [t, Co]. According to the structure of a Jackson Preemptive
Schedule, t is arelease date; say ry. Two cases are distinguished.

First, if ry < r then slack(O, ry, b) = b - Co < b - Cra(a, 7&(a, b)); thus i = t(a, b).
Second, suppose that r, > ry. According to the definition of ry, 7z(ry, b) > 0. We claim
that 7z(a, b) = 7z(a, rv) + 7%(ry, b). Indeed, consider O, the subset of O that consists of
the activities ending before or at r, on JPSo and O, the subset of O that consists of the
activities ending after r, on JPSo. On the one hand, |O,] + |O,] = [O] = 7&(a, b), on the
other hand, |O4] < 7%(a, ry) and |O] < 7%(ry, b). Suppose that the first inequality is strict,
let then O'; be the set that realizes 7z(a, ry). It is easy to see that the set O'; [O, is
included in S¢1(a), that it is feasible and that its JPS ends before b. Moreover, O'; [0 O,
is larger than O, which contradicts the fact that O redlizes 7z(a, b); consequently,
|O41] = 7%(a, ry). Similarly, we can prove that |O,| = 7z(ry, b). Let us compute the slack of
O over [rk, b]. dack(O, ri, b) = dack(Oq, ry, ry) + dack(O, ry, b). As a consequence,
slack(O, ri, b) < pida, rv) + b - Ciea(ry, 7#(rv, b)) < K.

We now prove that / < i(a, b). Let us distinguish the two following cases:

If W'=b-max(ry, Cr.1(a, Ti(a,b))), let then O be the set that realizes Cy.1(a, Ti(a,b)). JPso
is idle after Cia(a, 7&(a, b)) and its makespan is lower than or equa to b, thus
dack(O, r, b) = b - max(Cy.1(a, 7x(a, b)), r). Moreover, O [0 Sc1(a), O is feasible,
|O] = 1z(a, b) and Co < b; thus 14(a, b) = slack(O, ry, b). Consequently, i/ < ti(a, b).

If there is a release date r, such that (1) re < ry < b, (2) 7%(a, b) = 7z(a, rv) + 7&(ry, b),
(3) 7&(rv, b) > 0and (4) i = w(a, ry) + b - Cea(ry, 7&(ry, b)), let then O, be the set that
redizes w(a, ry) and let O, be the set that realizes Ciy(ry, 7&(rv, b)). Notice that
slack(O; 0 Oy, 1y, b)=p' since the quantity p(a,ry) +b-Ci.1(rv, Ti(ry, b)) is the slack of O;
before r, plus a lower bound of the dack of O, in [ry, b] (7&(r\, b) > 0 ensures that
Ci-a(rv, 7%(rv, b)) isfinite). Moreover, O; and O, are digjoint because 0 A [0 Oy, 1; <ty
and DA OOy ri=r,. Thus, |01 0 Oy = m(a, rv) + 7&(rv, b) = 7%(a, b). It is easy to

92

verify that O, 0 O, O Sc1(a), that O; O O, is feasible and that Co1noe < b; thus
(@, b) = dack(O; [0 Oy, ri, b). Consequently, i/ < ti(a, b). O

Propositions B-20, B-21 and B-22 are the basis of the dynamic programming algorithm
that we propose in the following section.

B.4.1.1.3. Overall Algorithm

Our am is to determine the largest value of m such that C,(min; r;, m) is finite. The
variables of the dynamic programming algorithm correspond to Cy(a, m), 7&(a, b) and
(@, b). They are stored in multi-dimensiona arrays. Actualy, it is easy to understand
that given Propositions 1 and 3, the relevant values of a and b are those corresponding to
release dates. Thus, the values of Cy(a, m), 7x(a, b) and ri(a, b) are stored in indexed

arrays (e.g., Ci(rj, m) is stored in a 3-dimensional array at the “position” (k, A, m)).

The first step of the algorithm is the computation of Cy(rj, m) for al release date r; and all

thevaluesof min[1, n].

e Ifm=0, Cy(rj, 0) = -00

e Ifm=1andri<rj, Cy(rj,1) =0

e Ifm=1andry2r, Cu(rj,) =ryi+ps

o Ifm>1, Cy(rj, m) = o0

The second step isaloop on k from 2 to n.

» For each release date r; and each release date ry, compute 7g(r;, ry). This computation is
donein O(n) thanks to Proposition B-21.

» For each release date rj and each release date ry (taken in increasing order), compute
the values of 1(rj, ru). Thisis done in O(n) thanks to Proposition B-22. Indeed, for a
given value of r,, we use the pre-computed values of £i(rj, rv) (with ry <ry). Moreover,
thetestsr < ry < ry, 7(rj, rv) = 7&(rj, rv) + 7%(rv, ro) and 7z(ry, ry) > 0 are computed in
constant time.

» For each release date r; and each value of m, compute Ci(rj, m). Thisis done in O(n)
thanks to Proposition B-20.

The overall agorithm then runs in O(n®). A rough analysis in terms of memory

consumption leads to an O(n®) bound. Indeed, three cubic arrays are needed to store the

values of Ci(rj, m), 7&(rj, ru) and za(rj, ru). However, notice that at each step of the outer
loop on k, one only needs the values of C computed at the previous step (k-1). Thus, the
agorithm can be implemented with 4 arrays of n*n size (one for 77 one for y, one for the
previous values of C and one for the current values of C); which leads to a space
complexity of O(n?).

93

This agorithm does not exhibit a set O that realizes the optimum of the problem. A
backward computation can be done to determine such a set. The space complexity then
increases to O(n°) since all values taken by C must be stored. Since we are mainly
interested in the computation of the optimum, which serves as a lower bound of the
non-preemptive problem, we do not provide the description of how O can be computed.

B.4.1.1.4. Minimizing the Weighted Number of Late Activities

At this point, an interesting question is whether our algorithm can be extended to solve the
weighted version of the problem (i.e., a version of the problem where each activity A has
aweight w; = 0 and where the goal is to minimize the weighted number of late activities).
The definitions of the variables C, /rand w can be easily extended:
* Cy(a, w) is the minimal time at which a set of activities in S(a), whose weight is
greater than or equal to w, can be completed (if no such set exists, Cy(a, w) =).
 71i(a, b) is the maxima weighted number of late activities in Sci(a) that can be
scheduled before b.
* 1u(a, b) isthe largest possible slack over [rg, b] among sets that redlize 7z(a, b).
Given these definitions, one could think that Proposition B-20 can be extended as follows:
If A, 0 S(a) (i.e, r < a) then C(a, w) = Cia(a,). If Ay 0 S(a) then
Cu(a, w)= fi(min(Cy.1(a, w),
maX(rk, Ci.1(@, W - Wy)) + pi,
Min (Cica(ru, W - Wi - 7R(8, ru)) + max(0, p« - (@, 1u)))))

ruzrk
Unfortunately, this extension does not hold. Intuitively, this comes from the fact that, in
Proposition B-20, the expression
min (Ck-l(rwm' 1-Tﬁ<(a,ru))+ma)((0, Px- Hk(awru)))

=
means that it is worth scheduling between a and r, a maximum number of activitiesin S.
1(a). On the contrary, if activities are weighted, it can be of interest to schedule a smaller
amount of activities (in term of weights) between a and r, to increase the slack and thus to
|leave more space to schedule Ax.

94

The following counter-example illustrates this phenomenon. Consider five weighted
activitiesA; (r1=0,p1=3,d1 =6, w1 =2), Ao (r2=0,p2=3, =6, W, = 2), Ag (r3=0, p3
=2, d3=6,W3=1), As(rs=6,ps=1,ds=7,Wws=2),and As (rs =0, ps= 3, ds = 9,
ws = 10). It is easy to prove by hand that C5(0, 15) = 9. This is not the result obtained
when applying the weighted version of Proposition B-20:

C5(0, 15) = f5(min(Cy(0, 15),

max(0, C4(0, 15 - 10)) + 3,

C4(6, 15 - 10 - 77(0, 6)) + max(0, 3 - 1u(0, 6)))
fs(min(co, max (0, 7) + 3, C4(6, 1) + max(0, 3)))
fs(min(co, 10, 7 + 3)) = o0

B.4.1.2. TheRelaxed Preemptive Lower Bound

The One-Machine Problem [Carlier, 1982] is a special case of the (1|rj|ZU;) in which all
activities must be on-time. Its preemptive relaxation is polynomial. It is well known that
there exists a feasible preemptive schedule if and only if over any interval [r;, di], the sum
of the processing times of the activitiesin §rj, di) = {A | r; < ri and di < di} islower than
or equal to dyx —rj. As a conseguence, the optimum of the following MIP is the minimum
number of activities that must be late on any preemptive schedule of the machine (hence,
this optimum is alower bound of the variable reject). The binary variable x; is equal to 1
when an activity is on-time, to O otherwise.

min 2 (1- Xi)
i1A n}
DI‘j,de>I’j, Z Pi % Sdk—rj
J; 0S(r;,dy) (P)

0J; 0O, =1and 0J; OL,x =0

O O{LA ,n}, x O{01}
The first set of constraints of P represents the resource constraints. The notation (rj, di)
refers to the resource constraint over the interval [rj, di. In the following, we focus on the
continuous relaxation CP of P. We claim that CP can be solved in O(n?log(n)) steps. To
achieve this result, we first provide a characterization of one vector that realizes the
optimum (Proposition B-23). From now on, we suppose that activities are sorted in
increasing order of processing times.

Proposition B-23.
The largest vector (according to the lexicographical order) satisfying al the constraints of
CP realizes the optimum of CP.

95

Proof.
Let Y=(Y1, ..., Yn) be the largest vector (according to the lexicographical order) satisfying
al the constraints of CP, i.e, Y1 is maximal, Y, is maximal (givenY;), Yz is maximal
(given Y1 and Yy), ..., Ypismaxima (given Yy, ..., Yn.1). Moreover, let X = (Xy, ..., X,) be
the largest (according to the lexicographical order) optimal solution of CP. Suppose that
XY, let then u be the first index such that X, <Y,. Consider the set C of constraints that
are saturated at X.
C={(,d)|AOSr,d)and > piX;=dc—rj}
ADS(r,dy)

If C is empty, then none of the constraints containing the variable x, is saturated at the
point X (X, <Y, ensures that X, < 1 and that X, is not constrained to be equal to 0) and
thus, X is not an optimum of CP. Hence C is not empty. Let then (o1, &) O C be the pair
such that o, is maximum and J, is minimum (given p,). Let (02, &) O C be the pair such
that & is minimum and p, is maximum (given o).
Suppose that o, < p. It is then obvious that o, < o1 < oy < A £ & < 4. Let
A=3p2, &) -Sp, &) and let B = o, 4) — o1, &). Because both (o1, a) and
(o2, &) O C, we have:

dPXi+t Y pX =8-p

A DA A 0S(p1,02)

dpXi+t D pXi=h-p
ADS(oL.3,) ADB

Sincethe sets A, B and §(p1, &) aredigoint and since A [B [Sp1, &) 0 Yo, A1),
DPXi2%h-pta-p— D PXi 20~

AUS(p2.01) AUS(p1,07)
The inequality above cannot be strict hence (o1, &) belongs to C. This, together with
P2 < o, contradicts our hypothesis on the choice of 4.
Now suppose that o1 =0 = pand =& = O The pair (o, J) is the unique minimal
saturated constraint containing the variable x,. We clam that among activities in §p, 9),
there is one activity, say A,, such that v > u and X, > 0 and A, O O (otherwise we could
prove, because X, < Y, that X, can be increased; which contradicts the fact that X is
optimal). Consider now X' the vector defined as follows. OO i O {u, v}, X=X and
Xu=Xyt &lppand X'y =X, - £/ pv. Where > 0isasmall value such that £ < py (1 —Xy),
£ < py Xy and such that

ADS(I’J !dk)

96

Since activities are sorted in increasing order of processing times, £/ py - £/ py = 0 and
thus, 2 (1 -X'j)) < Z (1 -X). Moreover, X' is“better” for the lexicographical order than X.
Second, because of the definition of &, the constraints that were not saturated for X are not
violated for X'. Third, the saturated constraints (for the vector X) that contain the variable
X, al contain the variables in (p, J). In particular, they contain both x, and x,. As a
consequence they are also saturated for the vector X'. We have proven that al constraints
are satisfied. This contradicts our hypothesis on X. O

Proposition B-23 induces a smple agorithm (Algorithm B-6) to compute the optimum X
of CP. Activities A that do not have to be late or on-time are considered one after another.
Each time, we compute the maximum resource constraint violation if the activity is fully
on-time (lines 4-11). Given this violation, the maximum value X; that the variable x; can
take is computed (line 12). This algorithm runs in O(n”) since there are n activities A; and
since for each of them O(n?) violations are computed, each of them in linear time.

Algorithm B-6.

1 O A, initialize Xi to 1.0 if Xi OO to 0.0 otherw se
2 for i =1ton

3 if AV, JOand Al OL

4 Xi =1.0, Violation =0

5 for all constraint (rj, dk) such that Al O S(rj, dk)
6 sum = 0.0

7 for Al O S(rj, dk)

8 sum = sum + pl * X

9 end for

10 Violation = max(Violation, sum—- dk + rj)
11 end for

12 Xi = (pi — Violation) / pi

13 end if

14 end for

We improve this algorithm thanks to Jackson’s Preemptive Schedule (JPS), the
One-Machine preemptive schedule obtained by applying the Earliest Due Date priority
dispatching rule [Carlier and Pinson, 1990]. A fundamental property of JPSis that it is
feasible (i.e., each activity ends before its due date) if and only if there exists a feasible
preemptive schedule.

The procedure “Conput eJPS” of Algorithm B-7 is caled for several vaues of i. It
computes the JPS of the activities, assuming that the processing time of A, (I #1) isp X

97

and that the processing time of A; isp;. “EndTi meJPS[k] ” isthe end time of A on JPS.
JPScan be built in O(n log(n)) [Carlier, 1982]. Algorithm B-7 then runsin O(n? log(n)).

Algorithm B-7.

1 O A, initialize Xi to 1.0 if Xi OO to 0.0 otherw se
2 for i =1toi =n

3 if A/, D Oand Al OL

4 Conput eJPS

5 ViolationJPS = 0

6 for all k such that Xx > 0

7 Vi ol ati onJPS=max(Vi ol ati onJPS, EndTi neJPS[k] — dk)
8 end for

9 Xi = (pi — ViolationJPS) / pi

10 end if

11 end for

Proof of the correctness of Algorithm B-7.
By induction. Suppose that at the beginning of iteration i (line 2), the first coordinates X,

.., X1 are exactly equal to those of Y, the maxima vector (according to the
lexicographical order) satisfying the constraints of CP. Consider the case Y; =1 then,
because of the structure of CP, there exists a feasible preemptive schedule of A, ..., An
(the processing time of activity A, being py Yu) and thus, the JPS computed line 4 is also
feasible; which means that no violation occurs. Hence, X; =1 (line 9). Consider now the
caseY; <1l
We first prove that X < Y;. SinceY; < 1, the violation computed by Algorithm B-6 at step i
is positive. Let then (r;, di) be the constraint that realizes this violation. We then have
Y, :1—i_(pi+ DYy +rp—dg).
P ADS(r;,d). #
Moreover, at step i of Algorithm B-7,
EndTi meJPS[k] = p; + Zp|x| +rj.
ADS(rj,dy),l #i

Hence Xi <Y, (line 9).

We now prove that Y; < X;. Let k be the index of the activity such that the maximum
violation on JPSis “EndTi meJPS[k] — dk”. Such an index exists because we have
proven that Xi < Y; < 1 and thus, “Vi ol ati onJPS’ is strictly positive. Let t be the
largest time point lower than or equal to the end time of this activity such that immediately
before t, JPS is either idle or executing an activity with a larger due date than dy.
According to the particular structure of JPS t is arelease date, say r;. Notice that between

98

ri and dy, JPSis never idle and the activities that are processed are exactly those whose
release date is greater than or equal to r; and whose due date is lower than or equal to dy.
As a consequence, the end time of the K" activity is

rj+ Zp|X|+pi.

A DS(rj,dy)
[#i
Hence, X; =1—i(rj + Zp|X| +p —dg) Y. O
P ADS(rj,dk)
| #i

The following table displays the characteristics of four activities A, Ay, Az and A4. The
last column X is the value of the activity variable at the end of Algorithm B-7. The Gantt
charts display the JPS computed at each step of Algorithm B-7.

Activity |r |p |d [X

Aq 7 12 |10 (22
A 4 (319 |33
As 1|5 |6 |4/5
Ay 4 |7 |12 |27

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
A T {1 i Violations '
A AL T

Ao AT
Ao A Aq

As
As

Figure B-14. The JPS computed at each step of the algorithm

B.4.2. Resource Constraint Propagation

In this section, we propose an algorithm which is able to detect that, given the domain of
reject, some activities must be on time while some others must be late. A constraint
propagation process is purely deductive, i.e., it deduces some characteristics that any
schedule satisfying al constraints must satisfy. For some problems, it happens that a
particular dominance property holds. Such a dominance property can be “integrated” into
the resource constraint propagation. However, it makes the propagation less generic, i.e.,

99

if new constraints are added, the dominance property may not hold and thus the
propagation process must be changed.

Concerning the (1|r;|>U;) problem, a strong dominance property holds. It states that for
any activity A,

* aset O(A) of activitiesthat have to be on-timeif A ison-time

* andaset L(A) of activitiesthat have to be late if A islate

can be computed. This dominance property is detailed in Section C.4.1.3. In the following
we present a constraint propagation algorithm that exploits this dominance. It can be
ignored to make the constraint propagation process more generic.

B.4.2.1. LateActivity Detection

From now on, we suppose that the optimum X of CP has been computed as described in
the previous section. Consider an activity A such that A; [0 O and A U L. Our objectiveis
to compute efficiently a lower bound of the number of late activities if A; and O(A)) are
on-time. If this lower bound is greater than the maximal value in the domain of reject,
then, Ay must be late. Algorithm B-7 could be used to compute such a lower bound.
However, this would lead to a high overall complexity of O(n® log(n)). We propose to use
adlightly weaker lower bound that can be computed in linear time, for a given activity A;.
The overall filtering scheme then runsin O(n?).

Let CPo be the linear program CP to which the constraints 0A; 0 O(A)), X = 1 have been
added. Moreover, let Xo be the optimal vector of CPo obtained by Algorithm B-7 (CPo
has a solution, otherwise part 2 of the propagation described at the beginning of Section
B-4 would have detected that A; [1 L). Propositions B-24 and B-25 exhibit two relations
that X and Xo satisfy. These relations are used to compute a lower bound of > Xo;.

Proposition B-24.

2 piXo < X piXi

Proof.

Let G(Activities, Time, E) be a bipartite graph, where Activities = {Joby, ..., Job,} is a set

of vertices corresponding to the activities, where Time={T;, minjri<t<max;di} is a set of

vertices corresponding to all the “relevant” time-intervals [t, t + 1] and where an edge

(Joby, Ty) belongsto E if and only if A; can executein [t, t + 1] (i.e., rist<d;). Consider the

network flow (cf. Figure B-15) built from G by adding:

* twoverticesS P andanedge (P, S,

» for each node Job; an edge (S, Job;) whose capacity is (1) upper bounded by either O if
A O L or by p otherwise and (2) lower bounded by either p; if A 00 O or by 0
otherwise,

100

» for each node T; an edge (T, P) whose capacity is upper bounded by 1.

For any feasible flow, a vector satisfying al constraints of CP can be built (the
i™ coordinate of the vector is the value of the flow on (S Job;) divided by p;). Since
Oi, X * p; isinteger, afeasible flow can be derived from the JPS associated to the vector X
(when A; executesin [t,t+ 1] on JPS set the value of the flow to 1 on the edge (Job;, Ty)).
Suppose that 2. piXo; > 2. piXi, then the flow corresponding to X is not maximal in G, and
thus there is an augmenting path from Sto P. Let then X" be the vector corresponding to
the augmented flow. Because of the structure of G, i, X*; = X;. On top of that there exists
| such that X*| > X;. This contradicts Proposition B-23. O

T
JObl !

Job, T

Figure B-15. The network flow built from G

Proposition B-25.
OA O O(A), Xoi < X

Proof (sketch).

Suppose the proposition does not hold. Let i be the first index such that Ay [O(A;) and Xo
> X; . We modify the instance of the problem by removing the activities A, with u > i that
do not belong to O nor to O(A;). The activities that have been removed do not influence
Algorithm B-7 when computing the i first coordinates of X and of Xo (i.e, for the
modified instance, the i first coordinates of the optimum vector are exactly those of X).
Now, consider the modified instance. We still have A; I O(A;) and Xo; > X;. Moreover, the
activities that have a greater index than i belong to O [0 O(A;). Consider the modified
network (Figure B-16) built from the bipartite graph G by adding:

» threeverticesS S, P, andtwo edges, (S S) and (P, S),

101

» for each node Job, (u # i) an edge (S, Job,) whose capacity is (1) upper bounded by
either O if A, O L or by p, otherwise and (2) lower bounded by either p, if A, 0O or
by 0 otherwise,

* anedge (S Job)) whose capacity is upper bounded by p; and lower bounded by O,

» for each node T; an edge (T, P) whose capacity is upper bounded by 1.

For any feasible flow, a vector satisfying al constraints of CP can be built. Conversely,

for any vector satisfying all constraints of CP, a feasible flow can be built. The flow

corresponding to Xo is obviously feasible. Moreover the flow on (P, S) for vector X is
greater than or equal to the one for Xo (see Proposition B-24). Moreover, the flow on

(S, Joby) for Xo is greater than the one for X. Hence, because of the conservation law at S

the flow that goes over (S S) is not maximal for Xo. As a consequence, there is an

augmenting path from S to Sfor the flow corresponding to Xo. Let then Xo* be the vector
corresponding to the augmented flow. Because of the structure of G, 0 u # i, Xo', = Xoy.

Hence, 0A, O O O O(A), Xo'y= 1 and then, Xo" satisfies al the constraints of CPo.

Moreover it is better than Xo because:

+ If theedge (P, S isin the augmenting path then > piXo"; > > piXo;.

« If the edge (Joby, S) isin the augmenting path then we claim that Xo" is greater, for the
lexicographical order, than Xo. Indeed, there is an edge from S to an activity, say
Job,, in the augmenting path. Hence, A, neither belongs to O nor to O(A;) (otherwise,
the edge would be saturated for Xo and it could not belong to the augmenting path).
Consequently, u < i and then Xo*, > Xo.

This contradicts the fact that Xo is optimal. O
T
Job; T,
g JObi_l

Figure B-16. The modified network flow

102

Thanks to Propositions B-24 and B-25, we can add the constraints 2. piXo; < > piX; and
OA OO O(A), X < X to the linear program CPo. Since we are interested in a lower bound
of CPo, we can also relax the resource constraints. As a consequence, we seek to solve the
following program. It is solved in linear time by Algorithm B-8.

min> (1-x;)

D Pi% <> piX

0J; Uo, X < X

0J; DO0O(@J),x =1land 0J; UL, X =0
Oi {LA ,n}, x; 0[0,1]

Algorithm B-8.

1 0O A set Xoi to 1.0Oif Al O OO QA), to 0.0 otherw se
2 MuxVal = Z pi Xi - X pi Xoi

3 for all activity Al 0 OO OA)

4 Xoi = mn(Xi, MaxVal [/ pi)

5 MaxVal = MaxVal - pi * Xoi

6 End for

B.4.2.2. On-Time Activity Detection

Let A; be an activity that is neither late nor on-time. We want to compute a lower bound of
the number of late activitiesif all activitiesin L(A;)) are late. Let X be the optimal vector of
CPI, the linear program CP to which the constraints 0 A O L(A)), X = 0 have been added.
We claimthat = pi XI; < = pi X and that O A O L(A), XI; = X (proofs are similar to the
proofs of propositions B-24 and B-25). The same mechanism as for the late activity
detection then applies. The new constraints are entered in CPl while the resource
constraints are removed. The resulting linear program can be also solved in linear time.

103

Chapter C. Problem Solving and
Experimental Results

In this chapter, we perform an experimental evaluation of the efficiency of the resource
constraint propagation agorithms proposed in Chapter B. Exact problem solving
procedures have been built to tackle the four problems outlined in the introductory
chapter, namely

* the Job-Shop Scheduling Problem (Section C.1),

» the Preemptive Job-Shop Scheduling Problem (Section C.2),

» the Resource-Constrained Project Scheduling Problem (Section C.3),

* theminimization of the number of |ate jobs on a single machine (Section C.4).

The branch and bound procedures that have been designed rely not only on the resource
constraints of Chapter B but also on dominance properties that allow to restrict the search
space, and on more or less complex branching schemes.

Experimental results are provided for each problem. They alow us to compare the
efficiency of different resource constraint propagation algorithms on the same problem. In
particular, we will see that for some problems, the efficiency varies alot from a“type” of
instance to another. We also compare our approaches to the most efficient procedures of
the literature.

104

C.1 The Job-Shop Scheduling Problem

The aim of this section is to very briefly recall a widely used branching scheme for the

non-preemptive Job-Shop Scheduling Problem. We will rely on this mechanism as part of

the resolution of severa other combinatorial problems such as the Resource-Constrained

Project Scheduling Problem (Section C.3) and the problem of minimizing the number of

late activities on a single machine (Section C.4). A rather comprehensive review of the

most common techniques used for solving the JSSP can be found in [Blazewicz et al.,

1996].

Severa successful exact (branch and bound) approaches for the non-preemptive JSSP rely

on successive resolutions of the decision variant of this problem:

1. Compute an obvious upper bound of the makespan variable and an initial lower bound.

2. Select avalue Vv in the domain of makespan.

3. Constrain the makespan to be lower than or equal to v and run the branching procedure.
If asolution is found, set ub(makespan) to the makespan of the solution; otherwise, i.e.,
if the search procedure fails, set Ib(makespan) to v + 1.

4. Iterate steps 2 and 3 until makespan is bound.

The branching procedure (step 3) often consists of ordering successively the set of

activities AcTS(M) which require the same machine M [Carlier and Pinson, 1990],

[Carlier and Pinson, 1994], [Brucker at al., 1994], [Baptiste and Le Pape, 1995b]. At each

node, a machine M and a set Q [ACTS(M) are selected. For each activity A in Q, a new

branch is created where A is constrained to execute first (or last) among the activitiesin Q.

The set of candidates to be first (or last) is drasticaly reduced by the edge finding rules

applied to the set of unordered activities. The decision is then propagated, through one of

the variant of the edge-finding bounding technique described in Section B.1. Such a

branching scheme is known as the edge-finding branching technique [Applegate and

Cook, 1991].

Its efficiency depends on the heuristic used to select the machine to schedule first, and on

the heuristic used to select the unordered activity that is to be first (or last). In our

experiments, we used the following heuristics:

* The machine to schedule first is the one whose slack is minimal. The slack is defined
as the minimal difference between supply and demand over each time interval [r;, dy]
(release date / deadline). The resource supply over [ri, dy] is dk - ri, which reflects the
fact that the resource can perform only one activity at a time. The demand over
interval [ri, dg is the sum of the processing times of the activities that must execute
between r; and d.

105

* The activity to schedule first is selected according to the following rule: The activity
with the smallest release date is chosen; in case of ties, the activity with the smallest
latest start time (Ist; = d; — ;) is chosen.

The following table C-1 provides the results reported in [Baptiste, 1995] that have been

obtained with the ILoG SCHEDULE scheduling tool (version 2.0) [Le Pape, 1995] on the ten

10x10 (10 machines, 10 jobs, 100 activities) instances of the JSSP used by Applegate and

Cook in their computational study of the JSSP [Applegate and Cook, 1991]. In this table,

column “MAK?” provides for each instance the optimal makespan, i.e., the minimal total

duration of the schedule. Columns “BT” and “CPU” provide the total number of
backtracks and CPU time needed to find an optimal solution and prove its optimality.

Columns “BT(pr)” and “CPU(pr)” provide the number of backtracks and CPU time

needed for the proof of optimality. CPU times are expressed in seconds on an RS6000

workstation, rounded to the closest tenth of a second.

MAK BT CPU BT(pr) CPU(pr)
MT10 930 69758 1076.4 7792 126.8
ABZ5 1234 17636 218.1 5145 62.6
ABZ6 943 898 152 291 4.7
LA19 842 21910 293.3 5618 75.8
LA20 902 74452 845.9 22567 249.2
ORB1 1059 13944 222 5382 84.7
ORB2 888 114715 1917.2 30519 500.9
ORB3 1005 190117 3193.8 25809 449
ORB4 1005 64652 1131.2 22443 395.2
ORB5 887 11629 172.8 3755 55

Table C-1. Experimental results obtained on 10 instances of the JSSP used by Applegate
and Cook in their computational study.

A large amount of research has been carried on extensions or on variants of such a
branching scheme. In particular, global operations aso called “shaving” have been used
by [Carlier and Pinson, 1994] and by [Martin and Shmoys, 1996]) to reduce the search
space. The basic idea is very ssimple. At each node of the search tree and for each activity
A, the earliest date x at which the activity can be scheduled without triggering a
contradiction is computed. This basically consists of (1) iteratively trying a start time for
the activity A;, (2) propagating the consequence of this decision thanks to the edge-finding
bounding technique and (3) verifying that no contradiction has been detected. The earliest
date x; is of great interest since it can serve to adjust the release date of the activity. A
dichotomizing procedure can be used to determine the date x. It decreases both the
theoretical and the practical complexities of the algorithm. Several extensions of this

106

mechanism are proposed in [Péridy, 1996]. The underlying idea is to impose a decision
(e.g., a starting time for a given activity) and to exploit the consequences of this decision
in more or less complex algorithms to obtain a globa information on the instance. We
think that using such mechanismsis a very promising research direction.

Another promising research direction is to build approximation algorithms that exploit the
extensive propagation of resource constraints. [Applegate and Cook, 1991], [Nuijten,
1994], [Baptiste et al., 1995b] and [Nuijten and Le Pape, 1998] report experimental results
on the job-shop scheduling problem. It is shown that very good solutions can be reached
in a short amount of time.

Finally, one can also use an approximation algorithm for a given number of iterations and
then proceed with an exact algorithm. The following table displays the results that have
been obtained with such an approach [Baptiste et al., 1995b].

BT CPU BT(pr) | CPU(pr)
MT10 13684 235.8 4735 67.3
ABZ5 19303 282.1 4519 61.3
ABZ6 6227 100.6 312 4.7
LA19 18102 269.5 6561 91
LA20 40597 496.7 20626 227.2
ORB1 22725 407.3 6261 108
ORB2 31490 507.1 14123 228.7
ORB3 36729 606.1 22138 342.6
ORB4 13751 213.7 1916 23.7
ORB5 12648 2109 2658 36.5

107

C.2. The Preemptive Job-Shop Scheduling
ProblemE

To evaluate the constraint propagation algorithms presented in Section B.2, we developed
a branch and bound procedure for the preemptive Job-Shop Scheduling Problem (PJSSP),
the variant of the Job-Shop Scheduling Problem (JSSP) in which all activities are
interruptible.

For the PJSSP, the classica edge-finding branching scheme (Section C.1) is not valid
since activities are interruptible, and thus cannot just be ordered. However, the dominance
criterion introduced below alows the design of branching schemes which in a sense
“order” the activities that require the same machine.

C.2.1. A dominance property

Definition.

For any schedule Sand any activity A;, we define the “due date of A in S’ dg(A) as.

» the makespan of Sif A isthe last activity of itsjob;

» thestart time of the successor of A; otherwise.

Definition.

For any schedule S, an activity Ax has priority over an activity A in S (Ax <s A) if and only

if either ds(Ax) < ds(A) or ds(Ay) = ds(A)) and k< |. Note that <sisatotal order.

Proposition C-1.

For any schedule S, there exists a schedule J(S) such that:

1. J(S meetsthe due dates: A, theend time of A in J(S) isat most dg(A).

2. J(S is“active’: For any machine M at any time point t, if some activity A that belongs
to ACTS(M) (the set of activities that execute on M), is available at time t, then M is not
idle at timet (where “available” means that the predecessor of A isfinished and A is not
finished).

3. J(S follows the <g priority order: 0OM, [It, DA OACTS(M), A, LJACTS(M), A # Ay, if Ay
executes at timet, either Ay isnot available at timet or A <s A.

1 Most of the results presented in this section come from [Baptiste, 1995], [Baptiste and
Le Pape, 1996a] and [Le Pape and Baptiste, 19984]

108

Proof.
We construct J(S) chronologically. At any time t and on any machine M, the available

activity that is the smallest (according to the <s order) is scheduled. J(S) satisfies

properties 2 and 3 by construction. Let us suppose J(S) does not satisfy property 1. Let A

denote the smallest activity (according to <g) such that the end time of A in J(S) exceeds

ds(A). We claim that:

» theschedule of Aisnot influenced by the activities Ax with A<sAy (by construction);

» for every activity Ac<sA, the time at which A, becomes available in J(S) does not
exceed the time at which A¢ starts in S (because the predecessor of Ay is smaller
than A).

Let M be the machine on which A executes. In J(S), the activities A, O ACTS(M) such that

A« <s A are scheduled in accordance with Jackson’s rule, applied to the due dates ds(Ax).

Since ds(A) is not met, and since Jackson’s rule is guaranteed to meet due dates whenever

it is possible to do so (cf. [Carlier and Pinson, 1990]), we deduce that it is impossible to

schedule the activities A, [1 ACTS(M) such that A¢ <s A between their start timesin Sand
their due dates in S This contradicts the fact that in S these activities are scheduled
between their start times and their due dates. So, the hypothesis that J(S) violates property

1is contradicted. O

Schedule S

[T T [T [[W [[| M1
| M2
[T T "l T 1 m3

[| M1
[| M2
[| M3

[Job 1: executeson M1 (p=3),on M2 (p=3) andfinally on M3 (p=5)
B job 2: executes on M1(p=2),onM3(p=1)andfinalyon M2 (p=2)
B j0b 3: executeson M2 (p=5), on M1 (p = 2) and finally on M3 (p = 1)

Figure C-1. A preemptive schedule and its Jackson derivation.

C.2.2. Branching scheme

We call J(S) the “Jackson derivation” of S Since the makespan of J(S) does not exceed the
makespan of S at least one optimal schedule is the Jackson derivation of another schedule.
Thus, in the search for an optimal schedule, we can impose the characteristics of a Jackson

109

derivation to the schedule under construction. In this section, we present two branching

procedures in which this result is used to solve the PISSP.

Each of them isintegrated in the following makespan minimization algorithm:

1. Compute an obvious upper bound of the makespan variable and an initial lower bound.

2. Select avaluev in the domain of makespan.

3. Constrain the makespan to be lower than or equal to v and run the branching
procedure. If a solution is found, set ub(makespan) to the makespan of the solution;
otherwise, i.e., if the search procedure fails, set [b(makespan) to v + 1.

4. Iterate steps 2 and 3 until makespan is bound.

The first branching scheme consists of ordering the activities according to an hypothetical

<g order. For each machine M, an ordered list Ly, of activities, initially empty, is devel oped

asfollows:

1. Select amachine M such that the set Ky = ACTS(M) — Ly is not empty.

2. Select an activity A¢ in Ky (e.g., the one with the smallest latest end time). Add Ay to
the end of the list Ly. Use Jackson’s rule to schedule the activities of Ly according to
the Ly priority order and impose the resulting earliest end times. Keep the other
activities of Ky as alternatives to be tried upon backtracking.

3. lterate until all the activities are ordered or until al alternatives have been tried.

This branching scheme is attractive since it mimics the edge-finding branching technique

that is often used in non-preemptive digunctive scheduling. Yet, our first experiments

have been disappointing. This led us to develop another branching scheme which more
heavily exploits the dominance criterion.

1. Let t be the earliest date such that there is an activity A available (and not scheduled

yet!) at t.

2. Compute K, the set of activities available at t on the same machine as A.

3. Compute NDK, the set of activities which are not “dominated” in K (as explained
below).

4. Select an activity A in NDK (e.g., the one with the smallest latest end time). Schedule
A¢ to execute at t. Propagate the decision and its consequences according to the
dominance criterion. Keep the other activities of NDK as alternatives to be tried upon
backtracking.

5. Iterate until all the activities are scheduled or until al aternatives have been tried.

Needless to say, the power of this branching scheme highly depends on the rules that are

used to (a) eliminate “dominated” activities in step 3 and (b) propagate “consequences’ of

the choice of A in step 4. The dominance criterion is exploited as follows:

* Whenever A0 ACTSM) is chosen to execute at timet, it is set to execute either up to
its earliest end time or up to the earliest start time of another activity A O ACTS(M)
which is not available at timet.

110

« Whenever A K is chosen to execute at time t, any other activity A [1K can be
constrained not to execute between t and the end of A.. Attimest’ > t, this reduces the
set of candidates for execution: A is dominated by Ay, hence not included in NDK. In
step 4, redundant constraints can also be added:

end(Ay) + rp(A) < end(A),
where rpi(A) isthe remaining processing time of A at timet; end(Ay) < start(A) if Ais
not started at timet.

o If AcOAcTS(M) isthe last activity of itsjob, A« is hot candidate for execution at time't
if another activity Aj [0 ACTS(M), which is not the last activity of its job, or such that | <
k, isavailable at timet (A is dominated by A).

The proof that these reductions of the search space do not eliminate al optimal schedules

follows from the fact that J(S) schedules are dominant. Indeed, in a J(S) schedule, (1) an

activity cannot be interrupted unless a new activity becomes available on the same
resource, (2) an activity Ax cannot execute when another activity A is available, unless A¢
<s A, and (3) we cannot have A <s A if A¢isthelast activity of itsjob and either A is not

the last activity of itsjob or | < k.

An open question at this point is whether there exists an optimal solution S such that

J(S = S Thiswould alow us to constrain the search even more. For example, as soon as

an activity A would be given priority over an activity A;, we could constrain the successor

of A not to start before the successor of Ax. This could have a dramatic impact on the
search space.

C.2.3. Experimental Results

The second branching scheme was used to evaluate the various constraint propagation
techniques developed in Section B.2. The digunctive constraint set(A) n set(B) = O and
the flow-based algorithms, SCF, AEC, and GUTB, were implemented in ILOG SOLVER
[Puget, 1994] on a RS6000 workstation. The mixed edge-finder was implemented in
CLAIRE [Caseau and Laburthe, 1996b] on a PC Dell 200MHz running Windows NT.

Table C-2 summarizes the results on 20 well-known instances of the Job-Shop Scheduling
Problem. The first two columns indicate the version of the resource constraint that was
used and the problem instance(s) under consideration. This can be a unique instance like
“FT06” or, for “easy” instances, a series of instances similar in size and toughness, like
“LAO1 to LA10.” In the latter case, the table provides average results over the whole
series. All the instances we use are available from the job-shop directory in the OR
benchmark library (http://www.ms.ic.ac.uk/info.html), except the CAR instances which
can be found in the flow-shop directory.

111

Column “BT” provides the total number of backtracks needed to solve the problem.
Column “CPU” provides the total CPU time in seconds, on a PC for the mixed edge-
finder, and on an RS6000 for the other agorithms. Columns “BT(pr)” and “CPU(pr)”
provide the number of backtracks and CPU time spent in proving that the optimal solution
is, indeed, optimal. Results appear only when the considered version of the resource
constraint enabled the branch and bound agorithm to solve the considered instance(s) in a
reasonable amount of time. (For the smallest problems (FT06 to CAR4), at most 5000
backtracks were allowed for each iteration of the makespan minimization procedure.)
Table C-2 shows that both the mixed edge-finder and the GUTB agorithm alow the
resolution of “tough” problems like CARS5 (with optimal makespan 7667) and FT10 (900).
Part of the differences between the edge-finder and the GUTB algorithm are due to
differences in implementation, e.g., different computers and different sorting functions, so
further comparison is not possible. Interestingly enough, the instances that appear the most
difficult in the non-preemptive case, CARS and FT10 [Baptiste, 1994], are also the most
difficult in the preemptive case.

Table C-3 shows the results obtained by GUTB on the ten 10110 (i.e., 10 machines [110
jobs = 100 activities) instances used by [Applegate and Cook, 1991] in their computational
study of the (non-preemptive) Job-Shop Scheduling Problem. Five of these instances
(ABZ6, LA19, LA20, ORB2, and ORB5) were solved to optimality in afew hours of CPU
time, one (FT10) was allowed more time to terminate, and four (ABZ5, ORB1, ORB3,
and ORB4) remained open. For these instances, column “OPT” provides the best lower
and upper bound that have been achieved. Otherwise, column “OPT” provides the value of
the optimal makespan.

112

Congtraint Instances BT CPU BT(pr) CPU(pr)
Digunctive |FT06 6353 35 4775 2.6
Edge-finder | FT06 3 0.1 2 0.0

LAO1-10 1 0.2 1 0.0

CAR1-4 9 0.2 1 0.0

CARS5 97927 582.6 26034 155.3

CARG6-8 2870 234 937 75

FT10 140903 2105.6 41255 624.0

SCF FTO06 24 0.3 21 0.1
LAO1-10 1196 9.2 1 0.0

AEC FTO06 5 0.5 2 0.1
LAO1-10 112 25.9 1 0.1

CAR1-4 461 61.5 11 2.0

CARG6-8 6947 1644.9 1403 351.3

GUTB FTO06 6 0.4 2 0.0
LAO1-10 9 11.0 1 0.0

CAR1-4 27 13.0 1 0.1

CAR5 73135 10295.8 19265 2673.7

CARG6-8 3593 663.6 819 146.5

FT10 254801 97585.7 49817 19626.6

Table C-2. Results obtained on 20 instances of the preemptive Job-Shop Scheduling

Problem.

113

OPT BT CPU BT(pr) CPU(pr)
FT10 900 254801 97585.7 49817 19626.6
ABZ5 1159/ 1219
ABZ6 924 17578 3955.5 10879 2268.3
LA19 812 39286 7150.1 14184 2482.4
LA20 871 5494 1483.6 1627 463.8
ORB1 991/ 1054
ORB2 864 56863 11199.2 20203 3835.3
ORB3 951/1254
ORB4 977 /980
ORB5 849 16457 4721.3 4496 1296.6
Table C-3. GUTB results on ten 10/20 instances of the preemptive Job-Shop Scheduling
Problem.
OPT BT CPU BT(pr) CPU(pr)
FT10 900 140903 2105.6 41255 624.0
ABZ5 1203 1192553 15628.0 338597 4430.9
ABZ6 924 17699 307.8 8157 134.3
LA19 812 34637 564.3 10928 176.4
LA20 871 2779 59.4 998 22.7
ORB1 1035 347647 5182.4 85085 1278.3
ORB2 864 53127 709.4 16189 220.9
ORB3 973 6804127 96917.7 1947325 27884.2
ORB4 980 97654 1201.8 37122 461.3
ORB5 849 10380 158.6 4151 61.6
Table C-4. Edge-finding results on ten 10/10 instances of the preemptive Job-Shop

Scheduling Problem.

Table C-4 provides the results obtained with the edge-finding algorithm on the same ten
instances. All of these instances have been solved to optimality. Other instances we have
solved include FT20 (in 0.4 second), LA11 to LA15 (0.4 second), LA16 (145 minutes),
LA17 (1 second), LA18 (4 minutes), LA21 (65 hours), LA22 (4 seconds), LA23
(1 second), LA24 (44 hours), LA26 (1 second), LA28 (1 second), LA30 (1 second), LA31
to LA35 (4 seconds), LA37 (110 minutes), ORB6 (39 minutes), ORB7 (10 minutes),
ORBS8 (1 second), ORB9 (3 minutes), and ORB10 (1 minute). Let us note that, in the non-

114

preemptive case, ORB3 also appears to be one of the most difficult 10(110 instances
[Applegate and Cook, 1991], [Baptiste and Le Pape, 1995b], [Caseau and Laburthe,
1995], [Colombani, 1996], [Colombani, 1997]. Such is not the case for LA16 (also a
10110 instance) which is considered “easy” in the non-preemptive case.
Experimental results have shown that two of these techniques, (1) edge-finding and (2)
global update of time bounds (GUTB), alow the resolution of hard instances such as the
preemptive variant of the famous FT10. Let us remark that a combination of the two
techniques is not likely to be useful when all the activities are interruptible and only time-
bound constraints are imposed. Indeed, the characterization of the preemptive edge-
finding algorithm proves that the best possible bounds are obtained. A combination might
however be useful in more complex situations: on the one hand, the mixed edge-finding
algorithm explicitly deals with non-interruptible activities, and thus can be more
efficiently applied to the mixed case; on the other hand, if an interruptible activity cannot
execute during some time intervals, the GUTB algorithm can take these intervals into
account.

These results encouraged us to pursue work in the application of constraint programming

to preemptive and mixed scheduling problems. [Le Pape and Baptiste, 1997b] and

[Le Pape and Baptiste, 1998b] evaluate the interest of different heuristics and branching

strategies to reach very good solutions of the PISSP in a few amount of time. We think

that several other research directions are of great interest for mixed scheduling problems.

* Based on our results, the PISSP currently appears to be much harder than the non-
preemptive JSSP. An important reason for this is that we have not been able to reuse
the concept of “bottleneck resource” in an efficient way. An open question is how the
“bottleneck” concept can be used, without throwing away the dominance criterion
which appears crucial in reducing the size of the search tree.

* Most of the results presented in the preceding sections concern resources of capacity 1.
More work is needed to generalize these techniques to resources of arbitrary capacity.

e Other constraint propagation techniques, such as shaving [Carlier and Pinson, 1994],
[Martin and Shmoys, 1996], [Péridy, 1996] can be worth investigating.

115

C.3. The Resource-Constrained Project
Scheduling Problem. 22

Many industrial scheduling problems are variants, extensions or restrictions of the
“Resource-Constrained Project Scheduling Problem” (RCPSP). Given (1) a set of
resources of given capacities, (2) a set of non-interruptible activities of given processing
times, (3) a network of precedence constraints between the activities, and (4) for each
activity and each resource the amount of the resource required by the activity over its
execution, the goal of the RCPSP is to find a schedule meeting all the constraints whose
makespan (i.e., the time at which all activities are finished) is minimal. The decision
variant of the RCPSP, i.e., the problem of determining whether there exists a schedule of
makespan smaller than a given deadline, is NP-hard in the strong sense [Garey and
Johnson, 1979].

The am of this experimental study is to test the efficiency of the constraint propagation
schemes proposed in Section B.3 and also to investigate one particular dimension along
which problems differ. Within the cumulative scheduling class, we distinguish between
highly digunctive and highly cumulative problems. a scheduling problem is highly
disunctive when many pairs of activities cannot execute in parallel on the same resource;
conversely, a scheduling problem is highly cumulative when many activities can execute
in parale on the same resource. To formalize this notion, we introduce the disunction
ratio, i.e., the ratio between a lower bound of the number of pairs of activities which
cannot execute in parallel and the overall number of pairs of distinct activities. A simple
lower bound of the number of pairs of activities which cannot execute in parallel can be
obtained by considering pairs {A;, A} such that either there is a chain of precedence
constraints between A; and A;, or there is a resource constraint which is violated if A and
A overlap in time. The disunction ratio can be defined either globally (considering all the
activities of a given problem instance) or for each resource R by limiting the pairs of
activities to those that require at least one unit of R. The digunction ratio of a disunctive
resource is equal to 1. The digunctive ratio of a cumulative resource varies between 0 and
1, depending on the precedence constraints and on the amounts of capacity that are
required to execute the activities. In particular, the ratio is equal to 0 when there is no
precedence constraint and no activity requires more than half of the resource capacity.

12 Most of the results presented in this section come from [Baptiste and Le Pape, 19974]
and [Baptiste et al., 1998b].

116

Needless to say, the digunction ratio is only one of a variety of indicators that could be
associated with scheduling problem instances. For example, the precedence ratio (also
known as order strength [Mastor, 1970], flexibility ratio, and density [De Reyck and
Herroelen, 1995]), i.e, the ratio between the number of pairs of activities which are
ordered by precedence constraints and the overall number of pairs of distinct activities, is
aso important (a high precedence ratio makes the problem easier). Although some
researchers, e.g., [Kolisch et al., 1995], have worked on such indicators, we believe much
more work is necessary to discover which indicators are appropriate for designing,
selecting, or adapting constraint programming techniques with respect to the
characteristics of a given problem.

In the following, we explore the hypothesis that the digunction ratio is an important
indicator of which techniques shall be applied to a cumulative scheduling problem. With
this distinction in mind, we introduce several new techniques to solve the RCPSP.

Section C.3.1 presents our general approach to the resolution of the RCPSP; Section C.3.2
presents the constraint propagation techniques we use (including a redundant constraint
generation scheme); Section C.3.3 presents dominance rules, which are used to
dynamically decompose an instance of the RCPSP; Section C.3.4 presents experimental
results, which confirm that the techniques we use exhibit different behaviors on problems
with different digunction ratios.

C.3.1. General Framework

The aim of this section is to present our general approach and establish alist (by no means
exhaustive) of possible “ingredients’ that can be incorporated in a constraint programming
approach to the RCPSP. We limit the discussion to the standard RCPSP. However, some
of the techniques we propose aso apply to extensions of the RCPSP, such as problems
with interruptible activities.

First, the RCPSP is an optimization problem. The goa is to determine a solution with
minimal makespan and prove the optimality of the solution. As usual, we represent the
makespan as an integer variable constrained to be greater than or equal to the end of any
activity. Severa strategies can be considered to minimize the value of that variable, e.g.,
iterate on the possible values, either from the lower bound of its domain up to the upper
bound (until one solution is found), or from the upper bound down to the lower bound
(determining each time whether there still is a solution). In our experiments, a
dichotomizing algorithm is used:

117

1. Compute an obvious upper bound of the makespan variable and an initial lower bound.

2. Select avaluev in the domain of makespan. (e.g., the middle of the domain)

3. Constrain the makespan to be lower than or equal to v and run the branching
procedure. If a solution is found, set ub(makespan) to the makespan of the solution;
otherwise, i.e., if the search procedure fails, set |b(makespan) to v + 1.

4. Iterate steps 2 and 3 until makespan is bound.
A branching procedure with constraint propagation at each node of the search tree is used
to determine whether the problem with makespan at most v accepts a solution. As shown
in the literature, there are many possible choices regarding the amount of constraint
propagation that can be made at each node. [Carlier and Latapie, 1991], as well as
[Demeulemeester and Herroelen, 1992], use simple bounding techniques compared to the
more complex constraint propagation algorithms described in Section B.3. Performing
more constraint propagation serves two purposes. first, detect that a partial solution at a
given node cannot be extended into a complete solution with makespan lower than or
equal to v; second, reduce the domains of the start and end variables, thereby providing
useful information on which variables are the most constrained. However, complex
constraint propagation algorithms take time to execute, so the cost of these algorithms
may not always be balanced by the subsequent reduction of search. The deductive
techniques for the CuSP have been tested on the RCPSP. Experimental results show that it
isworth using such techniques when the digunction ratio is low.
Artificialy adding “redundant” constraints, i.e., constraints that do not change the set of
solutions, but propagate in a different way, is another method for improving the
effectiveness of constraint propagation. For example, [Carlier and Latapie, 1991] and
[Carlier and Néron, 1996] present branch-and-bound algorithms for the RCPSP which rely
on the generation of redundant resource constraints. If Sis a set of activities and m an
integer value, and if for any subset s of S such that |s| > m, the activities of s cannot all
overlap, then the following resource constraint can be added: “Each activity of Srequires
exactly one unit of a new (artificial) resource of capacity m’. As detailed in Section
B.3.1.4, severa lower-bounding techniques have been developed for this resource
constraint ([Perregaard, 1995], [Carlier and Pinson, 1996]). These techniques serve to
update the minimal value of the makespan variable, but do not update the domains of the
start and end time variables. We propose to generate artificial digunctive resource
constraints, for which standard digunctive resource constraint propagation algorithms can
be applied, resulting in a powerful update of earliest and latest start and end times.

Besides constraint propagation, a branching solution search procedure is also

characterized by:

» the types of decisions that are made at each node. Most search procedures for the
RCPSP chronologically build a schedule, from time O to time v. At a given time t,

118

[Demeulemeester and Herroelen, 1992] schedule a subset of the available activities;
other subsets are tried upon backtracking. The main interest of this strategy is that
some resource can be maximally used at time t, prior to proceed to a time t' > t.
However, there may be many subsets to try upon backtracking, especialy if the
problem is highly cumulative. [Caseau and Laburthe, 1996a] schedule a single activity
and postpone it upon backtracking. The depth of the search tree increases, but each
(smaller) decision is propagated prior to the making of the next decision. An example
of non-chronological scheduling strategy is given by [Carlier and Latapie, 1991]. Their
strategy is based on dichotomizing the domains of the start variables: at each node, the
lower or the upper half of the domain of a chosen variable V is removed and the
decision is propagated. This strategy may work well if there are good reasons for
selecting the variable V, rather than another variable (e.g., when there is a clear
resource bottleneck at a given time).

the heuristics that are used to select which possibilities to explore first. When a
chronological strategy is used, one can either try to “fill” the resources at time t (to
avoid the insertion of resource idle time in the schedule) or select the most urgent
activities among those that are available at time t. When a non-chronological strategy
isused, the best isto focus first on identified bottlenecks.

the dominance rules that are applied to eliminate unpromising branches. Several
dominance rules have been developed for the RCPSP (see, for example,
[Demeulemeester and Herroelen, 1992]). These rules enable the reduction of the
search to a limited number of nodes, which satisfy the dominance properties. Section
C.3.3 proposes a new dominance rule that generalizes the “single incompatibility rule’
of Demeulemeester and Herroelen. When it is applied, this rule leads to a
decomposition of the remaining problem. As for constraint propagation, dynamically
applying complex dominance rules at each node of the search tree may prove more
costly than beneficial. Our generalization of the “single incompatibility rule” is worth
using when the digunctive ratio is high.

the backtracking strategy that is applied upon failure. Most constraint programming
tools rely on depth-first chronological backtracking. However, “intelligent”
backtracking strategies can aso be applied to the RCPSP. For example, the cut-set
dominance rule of [Demeulemeester and Herroelen, 1992] can be seen as an intelligent
backtracking strategy, which consists of memorizing search states to avoid redoing the
same work twice. When backtracking, the remaining sub-problem is saved. In the
remainder of the search tree, the algorithm checks if the remaining sub-problem is not
aready proved unfeasible. The advantage of such techniques is that the identified
impossible problem-solving situations are not encountered twice (or are immediately
recognized as impossible). However, such techniques may require large amounts of

119

memory to store the intermediate search results and, in some cases, significant time for
their application.

Our overall research agendaisto look at al these aspects of the problem-solving strategy

and determine (if at all possible) when to apply each technique. As a first step, we

designed some of the constraint propagation techniques and dominance rules mentioned
above with the intent of applying them either to highly disunctive or to highly cumulative
problems. For this reason, we decided to fix the types of decisions to be made at each
node, the heuristics that are used to select which possibilities to explore first, and the
backtracking strategy (depth-first chronological backtracking). Our solution search

procedure slightly differs from the one proposed by [Caseau and Laburthe, 19964

1. Select an unscheduled activity A; of minimal release date. When severa activities have
the same release date, select one of the most urgent, i.e., one with minimal latest start
time (Ist;). Create a choice point.

2. Left branch: Schedule A from its release date r; to its earliest end time eet; (in other
terms, set start(A) to the smallest value in its domain). Propagate this decision. Apply
the dominance rules. Go to step 1.

3. Right branch: If step 2 causes a backtrack, compute the set S of activities that could
overlap the interval [r; eet]] (according to current variable domains). Post a delaying
constraint: “A; executes after at least one activity inS’. Propagate this constraint.
Apply the dominance rules. Go to step 1.

4. If both branches fail, provoke a backtrack to the preceding choice point (chronological
backtracking).

This agorithm stops when all activities are scheduled (in step 1) or all branches have been

explored (no more preceding choice point in step 4).

Two points of flexibility remain in this procedure. The first concerns constraint

propagation. As shown in Section B.3, severa constraint propagation algorithms can be

associated with each resource. Among these algorithms, the timetable mechanism, is
systematically applied. It guarantees that, at the end of the propagation, the earliest start
time of each unscheduled activity is consistent with the start and end times of all the
scheduled activities (i.e., activities with bound start and end times). This, in turn,
guarantees the correctness of the overall search procedure: adding the constraint

“A executes after at least one activity in S’ upon backtracking is correct, because if A

could start before the end of al activities in S then A; could start at the release date r;

resulting from previous constraint propagation.

The second point of flexibility concerns the dominance rules. Several dominance rules can

be applied, which may lead to some decomposition of the problem (cf. Section C.3.3).

120

C.3.2. Constraint Propagation

The aim of this section is to review the constraint propagation techniques we use in the

context of the RCPSP. The constraints of the RCPSP and the decisions made in our

framework are of the following types:

1. O<start(A), for every activity Aj;

start(A) + processingTime(A)) = end(A), for every activity A;;

end(A)) < makespan, for every activity A;;

end(A) < start(A;), for every precedence constraint (A = A));

2 sart(ai)<t<end(ai(Capecity(A, R)) < capacity(R), for every resource R and time t

(cumulative constraint);

6. makespan<y;

7. " A executes after at least one activity in S’ i.e., ming(end(S)) < start(A), where Ay isan
activity and Sa set of activities.

Constraints 1, 2, 3, and 6, guarantee that each variable in the problem has a finite domain

(since we use integer variables). Theinitial domain of each variableis set to [0, UB] where

UB is an obvious upper bound of the optimum. As often in constraint programming, unary

constraints (1, 6) are propagated by reducing the domains of the corresponding variables.

Processing time constraints (2) and precedence constraints (3, 4) are propagated using a

standard arc-B-consistency algorithm [Lhomme, 1993].

The constraint “A; executes after at least one activity in S’ (7) is propagated as follows:

compute minajoseet;, the minimal earliest end time of al activities in S and update r; to

o~ WD

max(ri, minajpseet;). Moreover, when there is only one activity A; in Sthat can end before
Isti, then the deadline of A; can be set to min(d, Ist;).

The resource constraints (5) are propagated with a timetable mechanism. Time bound
adjustments based on the CuSP (cf., Section B.3) are eventually applied (depending on the
variant of the algorithm).

Since some project scheduling problems are highly digunctive, we considered the
generation of redundant digjunctive resource constraints as a mean to strengthen constraint
propagation (see also [Brucker et al., 1997]). Thebasicideaissimple: if aset Sof activities
is such that any two activities in S cannot execute in parallel, a new (artificial) resource of
capacity 1 can be created, and all the activities in S can be constrained to require the new
resource. The disunctive edge-finding constraint propagation algorithm (cf., Section
B.1.3) can then be applied to the new resource, in order to guarantee a better update of the
release dates and deadlines of these activities.

121

To detect the relevant sets S we use a compatibility graph G = (X, E) where X is a set of
vertices corresponding to the activities of the RCPSP and E is a set of edges (A, A), such
that (A, Aj)) O E if and only if A; and A; are not compatible (i.e., cannot execute in
paralel). We distinguish three subsets Ecap, Eprec, and Eime Of E. These subsets denote
respectively the incompatibilities due to resource capacity constraints, to precedence
constraints, and to time-bounds.
* (A, A) O Ecqp if and only if there is a resource R such that the sum of the capacities
required by A; and A; on Ris greater than the overall capacity of R.
* (A, A) O Epec if and only if there is a precedence constraint between A and A; (the
transitive closure of the precedence graph is computed for this purpose).
* (A, A)UEimeif and only if either d < rj or d <r;.
Any clique of the compatibility graph is a candidate digunctive resource constraint.
However, since the edge-finding constraint propagation algorithm is costly in terms of
CPU time, very few redundant digjunctive constraints can be generated. Hence, we have to
heuristically select some of these cliques (otherwise, the cost of the digunctive resource
constraint propagation would be too high to be compensated by the subsequent reduction
of search). Since the problem of finding a maximal clique (i.e., a clique of maximal size)
is NP-hard [Garey and Johnson, 1979], we use a simple heuristic which increases step by
step the current cligue C: among the activities which are incompatible with all activities of
the current clique, we select one of maximal duration. Our hope is that the resulting
constraint will be tight since several activities with large processing times will require the
same disjunctive resource.
In our first experiments, we built one digunctive resource per cumulative resource plus
one more “globa” digunctive resource (for the pot!). For each cumulative resource, we
arbitrarily put in the clique al the activities requiring more than half of the resource and
the clique was completed thanks to the heuristic described above. The extra digunctive
resource was fully generated according to the heuristic rule. A careful examination of the
generated problems showed that many activities were added in the cliques because of
precedence and time-bound constraints. It is far more interesting to generate digunctive
problems where most of the activities are incompatible because of resources. To achieve
this, the generation heuristic has been split in two different procedures:
1. build amaximal clique Ccap Of (X, Ecap);
2. extend Cgyp to amaximal clique C of G.

Example:

Let A, B, C, D, E be five activities requiring respectively 3, 2, 1, 4, 1 units of aresource of
capacity 4. These activities last respectively 3, 6, 3, 2 and 5 units of time. Moreover, there
are 4 precedence constraints (A > C), (A > E), (B> C), and (B > E). Let us build the

122

incompatibility graph of this instance (see Figure C-2). First, we add the edges
corresponding to the precedence constraints (dotted lines). Then we consider each pair of
activities and add an edge (solid line) between the corresponding vertices if and only if the
sum of the resource requirements of both activities exceed 4. In this example, there are
two maximal cliques: {A, B, D, E} and { A, B, D, C}. Our agorithm starts with { A, D} and
successively adds B (based on Ce,p) and E (which islonger than C) to the clique.

Resource

K\ Capacity

v
A B CD 4

N

Figure C-2. The incompatibility graph of the instance described in the example above.

C.3.3. Dominance Rules

Our search procedure incorporates severa dominance rules. Each of them consists of
expressing additional constraints which do not impact the existence of a solution schedule
(if there exists a schedule satisfying al constraints posted so far, then at least one such
schedul e satisfies also the additional constraints).

Immediate scheduling rule
Let A; be an unscheduled activity of minimal earliest end time. Let O be the set of

activities which can be “partially” scheduled in the interval [r; eet], i.e., O={A | d, >r;
and eet; > rj}.

Proposition C-2:

If all activities in O can be scheduled in paralel, i.e., on each resource, the amount
required to execute all activitiesin O is lower than or equal to the resource capacity, then
A can be scheduled at r;.

Proof.
Suppose that there is a schedule S that satisfies all the constraints posted so far. Let us

examine S. All predecessors of A are scheduled before r; since the earliest end time of A
is minimal. Moreover, there is enough space on each resource to schedule A; at r; since all
activitiesin O can execute in parallel. S can thus be modified by bringing A back tor;. [

123

Single incompatibility rule [Demeulemeester and Herroelen, 1992]
Let trin be the minimal release date among the release dates of unscheduled activities.

Proposition C-3:

If no activity isin progress at time tyn and if there is an activity A;, available at tyin, such
that Ay cannot be scheduled together with any other unscheduled activity at any time
instant without violating precedence or resource constraints, then activity A, can be
scheduled at time tyip.

Pr oof.
see [Demeulemeester and Herroelen, 1992]. O

Incompatible set decomposition rule
We propose an extension of the single incompatibility rule based on a directed

compatibility graph. Let tyn, and tmax be respectively the minimal release date and the
maximal deadline among unscheduled activities. Consider the directed graph I = (X, U),
where X is a set of vertices corresponding to the activities A; such that tin < eetj and Ist; <
tmax. U is the set of directed arcs such that (A, A) U U if and only if either (A, A) O E
(i.e., Ay and Ay are not incompatible as defined in Section C.3.2) or A precedes A in the
transitive closure of the precedence network. Let X;, X, ..., Xm be the strongly connected
componentsof I', i.e., { X1, Xz, ..., Xm} IS @ partition of X such that any two activities A, and
A belong to the same X; if and only if there is a directed path from A; to A; and from A; to
Ai. Let y be the quotient graph of I (the “strongly connected” relation is an equivalence
relation). y is a directed acyclic graph and thus the strongly connected components can be
totally ordered. We suppose without any loss of generality that this total order
IS X1, X2, «eey X

Proposition C-4.

For aliin[1m], all activitiesin X; can be scheduled before all activitiesin X.1.

Proof.

We only prove that al activitiesin X; can be scheduled before all activitiesin X — X;. The
remaining part of the proof can be achieved by induction. Suppose that there exists a
schedule satisfying all constraints posted so far. Let S be such a schedule, such that the
first time point t; at which an activity A; of X; is scheduled after an activity of X - X; is
minimal. Let t;" be the first time after t; such that no activity of X; isscheduled at t;’. Let {
be the minimal start time among start times of activitiesin X — X; in S. Let us modify S
into S by exchanging the schedule blocks [t; t;] and [t ;'] (cf. Figure C-3). The schedule
S satisfies precedence constraints, otherwise X; would not be the first strongly connected
component. The resource constraints are also satisfied. Moreover, the activities are not
interrupted since at times t;, t; and t;’, there is no activity in progress on S (otherwise two

124

activities in different components would be compatible, which contradicts our
hypothesis). Thus, schedule S is a solution and contradicts the hypothesis that t; exists and
isminimal. O

A Al

Al A ®

t f + 1t — 1 t’

Figure C-3. Therelative positions of A; and A

Ordering the subsets Xy, ..., Xy, IS interesting for two reasons. First, additional precedence
constraints can be added. Second, the problem can be decomposed into m optimization
problems. Indeed, since subsets Xy, ..., Xm are ordered, it is sufficient to find the optimal
solutions to the RCPSP restricted to each X;.

The overal agorithm which implements this incompatible set dominance rule runs in
O(n) since there are potentially O(n) verticesin X and thus, building the set U requires at
most a quadratic number of steps (we assume the transitive closure of the initial
precedence graph has been computed once and for al). Moreover, searching for the
strongly connected components of I can be done in O(JU|) thanks to the depth first
algorithm of Tarjan [Gondran and Minoux, 1995].

125

Example.

Let A B, C, D, E, F be 6 activities requiring respectively 2, 3, 1, 2, 1 and 2 units of a
resource of capacity 4 (cf. Figure C-4). Let us suppose that the following precedence
constraints apply: (A > D), (A > E), (B> E), (C—> D), (C—> E),and (E > F). To
simplify the example, we do not consider the time-bounds of activities and thus, the values
of the processing times are not necessary for the example.

Figure C-4. A simple instance of the RCPSP

The transitive closure of the precedence network consists of adding arcs (A > F), (B> F)
and (C—> F). The pairs of activities which are incompatible because of resource
constraints are (A, B), (B, D), and (B, F). Consequently, the pairs of activities which are
not incompatible are (A, C), (B, C), (D, E), (D, F); which corresponds to the graph
depicted on Figure C-5. There are two strongly connected components { A, B, C} and {D,
E, F}. Our dominance rule states that there exists an optimal solution in which {A, B, C}
is scheduled before {D, E, F}.

Figure C-5. The directed graph associated with activities A, B, C, D, Eand F.

126

C.3.3. Experimental Results

The following tables provide the results obtained on different sets of benchmarks with
four different versions of our search procedure:

» with or without using the adjustments based on the Fully Elastic relaxation of the

CuSP (“Fe” or “NO” in column E.F.),
» with or without the incompatible set decomposition rule (“YES’ or “NO” in column
Dec.).

All versions of the algorithm use precedence constraint propagation, resource constraint
propagation based on timetables, edge-finding on redundant disunctive resource
constraints, the immediate scheduling rule, the single incompatibility rule, and their
symmetric counterparts. In each of the tables, column "Solved" denotes the number of
instances solved to optimality (optimality proof included) within a limit of 4000
backtracks. Column "BT" provides the average number of backtracks over those problems
that have been solved by al agorithms. Column "CPU" provides the corresponding
average CPU time, in seconds on a PC Dell GXL 5133. Table C-5 provides the results
obtained on the highly digunctive Patterson problem set (problems with 14 to 51
activities) [Patterson, 1984]. These results compare well to other constraint programming
approaches. For example, in [Caseau and Laburthe, 1996a] the overall Patterson set is
solved in an average of 1000 backtracks and 3.5 seconds. Our algorithm requires
approximately the same CPU time, but a much smaller number of backtracks. Using the
fully elastic adjustments and the incompatible set decomposition rule on this set decreases
the average number of backtracks needed to solve the problem to optimality. However, the
cost of these techniques is such that the overall CPU time increases.

We also applied the four algorithms to the 480 instances of [Kolisch et al., 1995] (KSD,
30 activities each). These instances are interesting because they are classified according to
various indicators, including the “resource strength,” i.e, the resource capacity,
normalized so that the “strength” is O when for each resource R,
capacity(R) = max;(capacity(A;, R)), and the “strength” is 1 when scheduling each activity
at its earliest start time (ignoring resource constraints) results in a schedule that satisfies
resource constraints as well. Table C-6 provides the results for the 120 instances of
resource strength (RS) 0.2, Table C-7 provides the results for the 120 instances of resource
strength 0.7, and Table C-8 provides the overall results. Clearly, the decomposition rule is
very useful for the highly digunctive problems. Considering the overal set, the
decomposition rule allows the resolution of 14 additional instances, 13 of which are in the
most highly digunctive set. Unfortunately, the instances of resource strength 0.7 are

127

easy” (except one of them!), so for this subset the interest of the more complex
techniques does not appear.

Table C-10 provides the average precedence ratio, digunctive ratio, and resource strength,
and their standard deviations on the different problem sets. It clearly appears that even
K SD instances with high resource strength have large disjunction ratios (0.53) due to large
precedence ratios. For experimental purposes, this led us to generate a new series of 40
highly cumulative problems (the BL set). More precisely, we generated 80 instances with
3 resources, and either 20 or 25 activities, and we kept the 40 most difficult of these
instances. Each activity requires the 3 resources, with arequired capacity randomly chosen
between 0 and 60% of the resource capacity. 15 precedence constraints were randomly
generated for problems with 20 activities; 45 precedence constraints were generated for
problems with 25 activities. This simple parameter setting alowed us to generate
problems with average precedence and digunctive ratios of 0.33, with a standard deviation
of 0.07, smaller than the standard deviation observed on the classical benchmarks from the
literature, and arelatively low resource strength (0.34 on average). Table C-9 provides the
results. It clearly shows that the fully elastic adjustment scheme is a crucia technique for
solving these instances. However, one may wonder whether the versions with no
cumulative adjustments could “catch up” if given more CPU time. To evauate that, we
ran the BL instances again with alimit of 20000 backtracks. This led the versions with no
cumulative adjustments to solve only 4 additional instances in an average of 8173
backtracks and 146.7 seconds. With the fully elastic adjustments, these 4 instances are
solved in an average of 994 backtracks and 23.8 seconds.

Globally, these results show that highly digunctive and highly cumulative problems
require different types of constraint propagation and problem decomposition techniques.

E.F. Dec. Solved |BT CPU
NO NO 110 7 2.68
NO YES 110 71 3.75
FE NO 110 63 3.67
FE YES 110 58 4.65

Table C-5. Patterson (110 instances of average disunctive ratio 0.67)

E.F. Dec. Solved BT CPU

NO NO 51 369 12.52
NO YES 64 253 11.70
FE NO 51 366 17.79
FE YES 64 251 14.82

Table C-6. KSD RS 0.2 (120 instances of average disjunctive ratio 0.65)

128

E.F. Dec. Solved |BT CPU
NO NO 119 101 4.85

NO YES 119 101 7.33
FE NO 119 100 7.96
FE YES 119 100 10.64

Table C-7. KSD RS 0.7 (120 instances of average digunctive ratio 0.53)

E.F. Dec. Solved BT CPU
NO NO 388 121 5.19
NO YES 402 105 7.03
FE NO 389 119 7.88
FE YES 403 104 9.56
Table C-8. KSD ALL (480 instances of average digunctive ratio 0.56)

E.F. Dec. Solved |BT CPU
NO NO 4 1241 29.5
NO YES 4 1241 47.0
FE NO 28 407 13.9
FE YES 28 407 20.1

Table C-9. BL (40 instances of average digunctive ratio 0.33)

Precedenceratio |Digunctionratio |Resource strength
Average | Std Average | Std Average | Std
Patterson 0.64 0.10 0.67 0.11 0.50 0.21
KSD RS0.2 |0.52 0.09 0.65 0.11 0.20 0.02
KSD RS05 |0.52 0.09 0.53 0.09 0.52 0.03
KSD RS0.7 |0.52 0.08 0.53 0.08 0.70 0.03
KSDRS1.0 |0.52 0.09 0.52 0.09 1.00 0.00
BL 0.33 0.07 0.33 0.07 0.34 0.09
Table C-10. Average ratios and standard deviations for different problem sets

This algorithm has two drawbacks. First, it fails to detect bottleneck resources. Moreover,
it only relies on the propagation of the redundant disjunctive resource-constraints and does
not take advantage of the powerful branching schemes developed for such resource
constraints. We then developed a procedure which first focuses on the digunctive
resources of the instance (i.e., the resources of capacity 1 that are either part of the data of

129

the instance or those that correspond to a redundant constraint). When all of them are
ordered with the edge-finding branching technique (cf., Section C.1), the previous
cumulative branching scheme is used to complete the schedule. In the following
experiments, we also evaluate the effect of using the more powerful time-bound
adjustment techniques described in Section B.3 (Partialy Elastic adjustments and
Left-Shift/Right Shift adjustments).

Intuitively, the new branching scheme should benefit to highly digunctive instances
(because for such instances, the redundant disjunctive resources are very loaded) while the
use of more powerful time-bound adjustment techniques should benefit to the less
digunctive ones. Our initial experiments confirmed this hypothesis. In particular, it
happened that when using the edge-finding branching technique the incompatible-set
decomposition rule became ineffective. This is the reason why it is not considered in the
following of this experimental study.

One point of flexibility has been kept in the resulting algorithm, which corresponds to the
use of a necessary condition (Section B.3.1) and of a time-bound adjustment scheme
(Section B.3.2).

 The first version, NO, uses none of the necessary conditions and time-bound
adjustment techniques presented in Section B.3.

* The second version, FE, relies on the fully elastic relaxation, both for the necessary
condition for existence and for the time-bound.

* The third version, Pg, relies on the partially elastic relaxation (Sections B.3.1.2 and
B.3.2.2), both for the necessary condition for existence and for the time-bound
adjustment. However, the results reported below rely on a straightforward O(n®)
algorithm instead of using the more complex algorithm described in Section B.3.2.2.

e The fourth version, LSRS, relies on the necessary condition and the time-bound
adjustments based on the left-shift / right-shift energy consumption (Sections B.3.1.3
and B.3.2.3). However, we quickly found out that this version was too time-consuming
for producing any useful result. This is quite understandable. Indeed, the number of
intervals to consider (cf. Proposition B-11) is multiplied by 3003 + 3 + 3 =15 in
comparison to the partially elastic case! Consequently, we tried to determine a better
tradeoff, i.e., to reduce the number of intervals to examine without compromising too
much with respect to the effectiveness of the evaluation (detection of impossibilities
and time-bound adjustments). After a few trials, we decided to reduce the set of
intervals to the Cartesian product of O'={ri,1<i<n} 0{d-p,1<i<n} and
O2'={d;, 1<i<n} O{ri+p;,1<i<n}.

130

The four versions were tested on the “Patterson” set, on the KSD set, on the BL set and
also on the “Alvarez” set [Alverez-Vadés and Tamarit, 1989], which includes 48
instances with 27 activities, 48 instances with 51 activities and 48 instances with 103
activities (the last 48 instances are ignored in this computational study); the average
digunctiveratio for the Alvarez set being 0.82.

Each version of our branch and bound agorithm has been applied to each of the 726
instances, with a maximal CPU time of half an hour on a PC Dell OptiPlex GX Pro 200
MHz running Windows NT. Tables C-11, C-12, C-13 and C-14 present the results
obtained respectively on the Alvarez instances, the Patterson instances, the KSD instances
and the BL instances. For each version of the algorithm, each table provides the number of
instances solved (including proof of optimality), the average number of backtracks to
solve these instances, and the corresponding average CPU time, in seconds. For each set
of instances, the last columns of the corresponding table provide the average number of
backtracks and CPU time obtained on the subset of instances solved by all of the four
agorithms.

Algorithm | Solved BT CPU BT over CPU over
73instances |73 instances

NO 80 4027 78.1 244 11.2

FE 78 1810 58.4 244 14.3

PE 76 990 88.1 244 39.1

LSRS 73 243 64.7 243 64.7

Table C-11. Experimental results on the 96 Alvarez instances (27 or 51 activities)

Algorithm | Solved BT CPU BT over CPU over
110 instances | 110 instances

NO 110 143 16 143 16

FE 110 139 2.3 139 2.3

PE 110 128 7.7 128 1.7

LSRS 110 111 8.3 111 8.3

Table C-12. Experimental results on the 110 Patterson instances

131

Algorithm | Solved BT CPU BT over CPU over
451 instances | 451 instances

NO 465 4612 26.1 1181 6.8

FE 461 2593 28.9 1101 12.8

PE 453 1455 52.9 909 47.2

LSRS 451 794 52.8 794 52.8

Table C-13. Experimental results on the 480 KSD instances

Algorithm | Solved BT CPU BT over CPU over
3linstances |31 instances

NO 31 84632 187.9 84632 187.9

FE 39 17171 80.9 4839 27.1

PE 40 3757 46.7 2177 30.4

LSRS 40 3400 384 1868 25.6

Table C-14. Experimental results on the 40 BL instances

The effect of the different satisfiability tests and time-bound adjustment algorithms clearly
depends on the set of instances. Considering only the instances solved by all algorithms,
the reduction in the average number of backtracks between NO and LSRsS is a@most null on
the Alvarez set, and equal to 22%, 33% and 98 % on the Patterson, KSD and BL sets
(respectively). On the Alvarez, Patterson and KSD sets, the cost of the more complex
time-bound adjustment algorithms is not balanced by the subsequent reduction of search,
and the CPU time increases. On the contrary, LSRS performs much better than NO on the
BL set. On the 31 instances solved by all algorithms, the number of backtracks is divided
by 45, and the overal CPU time by more than 7. Figures C-6 and C-7 illustrate the
behavior of NO and LSRs on the KSD instances and on the BL instances.

132

5007 Nb Instances

NO
Solved

LSRS
300+

200+

1004

Figure C-6. The behavior of LsrRs and NO on the KSD instance set. Each curve shows the
number of instances solved in a given amount of CPU time.

40 7 Nb Instances
Solved LSRS

CPU (9

10° 10*

Figure C-7. The behavior of Lsrs and NO on the BL instances.

The three resource constraint propagation schemes presented in Section B.3 prove to be
effective on some, but not all problem instances in the cumulative scheduling class.
Computational results have shown that, on “highly digunctive” project scheduling
instances, the algorithms presented in Section B.3 induce an overhead that is not balanced
by the resulting reduction of search. On the other hand, the most expensive techniques

133

prove to be highly useful for the resolution of less highly disunctive problems. These
results have been confirmed by another experimental study led on the Multi-Processor
Flow-Shop (see [Vignier, 1997] for an extensive study of this problem), a special case of
the RCPSP that is highly cumulative. As shown in [Néron et.al., 1998], the time-bound
adjustment techniques have shown to be extremely efficient for this problem. Our
procedure compares very well to the best known procedures for the Multi-Processor Flow-
Shop (e.g., [Portmann et al., 1997], [Vignier, 1997], [Carlier and Néron, 1998]).

We have not incorporated in our branch and bound procedure al the results obtained by
other researchers for the Resource-Constrained Project Scheduling Problem (RCPSP). In
particular, we have not used, until now, any “intelligent backtracking” rule such as the cut-
set rule of [Demeulemeester and Herroelen, 1992]. This may seem alittle “strange” given
the excellent results reported in [Demeulemeester and Herroelen, 1995], in particular on
the KSD instances, even with a limited use of the cut-set rule. However, it appears that
many industrial scheduling problems include a variety of additional features (including,
for example, elastic activities [Caseau and Laburthe, 1996a]) which seem to require the
use of other techniques. Nevertheless, in the case of the pure RCPSP, it would be
interesting to determine how subsequent improvements of our procedure would influence
experimental results, and hence our conclusions on the usefulness of the various
adjustment techniques that have been proposed.

134

C.A4. Minimizing the Number of Late Activities
on a Single MachineH

Few exact approaches have been made to solve the (1|r;|ZU;). [Dauzere-Peres, 1995]
shows that the problem can be modeled by a Mixed Integer Program (MIP).
Unfortunately, instances with more than 10 jobs could not be considered because of the
size of the MIP. [Dauzere-Pérés and Sevaux, 1998b] describes a branch and bound
procedure that basically relies (1) on a dominance property stating that there exists an
optimal schedule of on-time jobs such that for any pair of jobs (J;, J) successively
sequenced on the machine, either (r;<r;) or (di<d;) or (ri=r; and di=d;) and (2) on a set of
three lower bounds. The first lower bound is obtained by solving a relaxed MIP that
exploits the dominance property. The two other lower bounds are ssimply obtained by
relaxing the release dates or conversely the due dates. (When release dates are equal the
problem of minimizing the number of late jobsis polynomial.)

In this section we show that the constraint propagation methods developed in Section B.4
can be used in a branch and bound procedure for the (1|rj|>U;) problem. Our experimental
results show that this branch and bound procedure outperforms all other approaches.

To reach an optimal solution, we solve several decision variants of the problem. More

precisely, we rely on the following scheme.

1. Compute an initial lower bound of (1|r;|ZU;); set the minimum of reject to this value
(recall that number of late activitiesis represented by the variable reject).

2. Tryto bound reject to its minimal value N.

3. If there is a feasible schedule with N late activities then stop (N is the optimum).
Otherwise, backtrack and remove N from the domain of reject and go to step 2.

Beside the lower bound computation, our search strategy is based on three principles.

» First, at each node of the search tree, we verify that there exists a schedule of the
activities that have to be on-time (if not, a backtrack occurs). Such a verification is
NP-hard in the strong sense but it turns out to be “easy” in practice.

* Second, given the above verification, our branching scheme simply consists in
selecting an unbound variable in(A;) to instantiate either to 1 or 0.

3 Most of the results presented in this section come from [Baptiste et. al., 1998c] and
[Péridy et al., 1998].

135

e Third, we use severa dominance properties that allow us to generate constraints of the
form “if A is on-time then A is also on-time” (in(A) = in(A)), which are in turn
exploited as part of constraint propagation; for each activity A;, O(A;) denotes the set of
activities that have to be on time if A; is on-time and, symmetrically, L(A) is the set of
activitiesthat haveto belateif A islate (A O O(A) and A I L(A)).

C.4.1. Search Strategy

The search treeis built as follows. While al variables in(A;) are not instantiated,

1. select an activity A such that in(A) is not instantiated,

2. impose the fact that Ay must be on-time (if a backtrack occurs, Ay must be late), i.e.,
in(A) =1,

3. apply dominance properties and propagate constraints

4. check that there exists a feasible One-Machine schedule of the activities that must be
on-time (if not, the problem isinconsistent and a backtrack occurs).

When the branch and bound succeeds, al variables in(A) are instantiated and at most

reject of these variables are equal to 0 (because arc-consistency is enforced on the

constraint (1 - in(Aj)) = reject). Moreover there is a feasible One-Machine schedule of

the on-time activities (step 4). Since the late activities can be scheduled anywhere, a

solution schedule with less than reject late activities has been found. Let us detail the

heuristic used for the activity selection and the procedure that checks whether there is a

feasible One-Machine schedule of the activities that must be on-time.

C.4.1.1. Activity Selection

Let pmin be the minimum processing time among activities A; such that in(A) is not
instantiated. Let then S be the set of activities Ay such that in(A) is not instantiated and
such that p; < 1.1 * pmin. Among activitiesin S we select an activity whose time window
is maximum (i.e., di - ri maximum). This heuristic “bets’ that it is better to schedule small
activities with large time windows rather than large activities with tight time windows.

C4.1.2. Solving the One-Machine Problem

A large amount of work has been carried on this problem (e.g., [Carlier, 1982]) because it
serves as the basis for the resolution of several scheduling problems (e.g., the Job-Shop
problem).

Since the One-Machine resolution procedure is called at each node of the search tree, it
has to be very fast. Following some initial experiments, it appeared that it is often easy to

136

find a feasible schedule of the activities in O. As a consequence, before starting an
exhaustive search, we use a simple heuristic (the Earliest Due Date dispatching rule) to
test whether the obtained schedule is feasible or not. [Carlier, 1982] proposes an
O(n log(n)) algorithm to implement this heuristic. It appears that over all our experiments,
this simple heuristic was able to find a feasible schedule for 97% of the One-Machine
instances that had to be solved. For the remaining instances, the branch and bound
procedure described below has been used.
To solve the One-Machine Problem we use the edge-finding branching technique
(cf, Section C.1) combined with classical resource constraint propagation techniques
(digunctive constraint plus edge-finding bounding technique). However, this branching
scheme sometimes is inefficient. In particular, it is unable to focus early in the search tree
on bottlenecks that occur late in time. To avoid this drawback, and inspired by the ideas
proposed in [Carlier, 1982], we dlightly modify the branching scheme as follows:
 If there are some time intervals [rj, di] such that (1) the resource can never beidlein
[rj, d (because the sum of the processing times of the activities that have to execute
after r; and before dy is equal to di —r;j) and such that (2) there is an activity A; that can
start before r; and that can end after dy, then we select among these intervals one
whose size is maximum. The branching decision is then: Either Ai ends before r; or A
starts after dy.
» Otherwise, the edge-finding branching scheme is applied.

C.4.1.3. Dominance Properties

Dominance properties allow to reduce the search space to schedules that have a particular
structure. The most important dominance property relies on the idea that “it is better to
schedule small activities with large time windows than large activities with small time
windows’. We aso propose two other dominance rules that respectively fix the start times
of some activities and split the problem into distinct sub-problems.

C.4.1.3.1. Dominance of Small Activitieswith Large Time-Windows

We rely on the observation that on any solution, if a large activity A is on-time and is
scheduled inside the time window [r;, di] of a smaller activity A that is late, then the
activities A, and A; can be “exchanged”, i.e., A becomes on-time and A; becomes late. We
suppose that jobs are sorted in non decreasing order of processing times. Our dominance
property is based upon the binary activity-relation “<” described as follows:

137

i <]
DA,DA]',A <Aj =3t h srj+pj
dj -pj<di-p

“<"istrangitiveand O A, O A, A <A = A # A. Thus, it defines a strict partial order on
activities. Proposition C-5 is the theoretical basis of our dominance property.

Proposition C-5.
Recall that L is the set of activities that have to be late and that O is the set of activities
that have to be on-time. We claim that there is an optimal schedule such that

OA,OA, ((A<A)OAOLOADO)
Proof (sketch).
Consider an optimal schedule such that the first index i, for which there exists an activity
A that violates the above equation, is maximum. We have

(A<A)O(ADO)O(ADL)

We build a new schedule obtained by “exchanging” A and A;. More precisely, A is
scheduled at the date max(start(A;), r;) and A is scheduled after all other activities (it then
becomes late). It is obvious to verify that the new schedule is till feasible and that A; is
now on-time. Now, suppose that there exists a late activity A¢ such that A < Ai. We then
have A < A < A;. Moreover, A, was also late on the initial schedule. Consequently, k> i
because of the choice of i. This contradicts our hypothesis on the choice of the initial
schedule. O

Proposition C-5 allows us to define for each activity A; the sets

« L(A) ={A|A <A} O{A} and

.+ OA)={A|A <A} O{A}.

In addition, for any pair (A, A;) with i<j, the following constraint can be added:

(i + pr > Start(Ay) + py) O (start(Ay) > d —py) O (in(A) = 0) D (in(A) = 1).
Arc-B-consistency is achieved on this new constraint. It alows to prove that some
activities must be late or on-time and it tightens the domains of the start variables.

C.4.1.3.2. Straight Scheduling Rule

We propose a simple dominance property which schedules automatically a set of activities
if they “fit” in aparticular interval.

Proposition C-6.
Given atime-interval [ty,to], let J(t1,t2) ={ A UL |ti<diandr;<ty} bethe set of activities that
may execute (even partialy) in [ty, to]. Moreover, suppose that there exists a feasible

138

schedule S of J(ty, to) that isidle before t; and after t,. Then there exists an optimal overall
schedule Ssuch that between t; and t, the schedules Sand S; are identical.

Proof.
Obvious. 0

Consider now any time point t; and let J(t;) be the set of activities A that do not have to be
late and that can end after t; (t; < d;). We use the following algorithm to look for a time-
point t, that satisfies the conditions of Proposition C-6. In this algorithm, we assume that
J(t1) is not empty.

Algorithm C-1.

1 S=J(tl), t2 = max(tl, mn({ru, Au O S}))
2 stop = fal se, success = fal se
3 while (S # O and stop = fal se)
4 Select Al in Swithri <t2 and with di m nimal
5 S=S-A, t2=1t2+p
6 if (di <t2)

7 stop = true

8 else if (t2 < mn({ru, Au O S})

9 stop = true, success = true

10 end if

11 end while

At the end of Algorithm C-1, if the Boolean “success” is true, the conditions of
Proposition C-6 hold for the points (i1, t2). Indeed, all activities in J(t;) that can start
strictly before t, are scheduled and do not end after their due date on this schedule (lines
6-10). These activities are exactly those in J(t;, t;). For a given value of t;, Algorithm C-1
runs in O(n?) since there are O(n) activities in S and since each time,
“mn({ru, Au O S}” hasto be computed (line 8). Now remark that if t; is not a due
date of an activity then J(t; — 1, to) = J(ty, t) and a schedule that can fit in [ty, t] can also
fitin [ty - 1, ty]. Hence we decided to apply Algorithm C-1 for t; = min(r;) and for t; in
{dy, d, ..., d}. Thisleads to an overall complexity of O(n®).

C.4.1.3.3. Decomposition Rule

The basic idea of the decomposition is to detect some cases in which the problem can be
split into two sub-problems. Each of them being solved independently.

139

Proposition C-7.

Let t; be atime point such that 00 A; O L, either d; < t; or t; < rj. Any optimal schedule is
the “sum” of an optimal schedule of {A 0 L | di < t3} and of an optimal schedule
of {AOL|ti<r}

Proof.
Obvious because activitiesof {A O L |d <t} and of {A O L |ty <r} do not compete for
the machine. O

We only consider the values of t; that are release dates (if the problem can be decomposed
a time ty, it is easy to verify that it can aso be decomposed at the next release date
immediately after t;). There are O(n) distinct release dates and the decomposition test (at a
given time point) obviously runs in linear time. Consequently, the overall decomposition
test runsin O(n?).

Once the problem has been decomposed, the optimum of each sub-problem is computed,
and we simply have to verify that the sum of these optimais lower than or equal to N.

C.4.2. Experimental Results

Our implementation of the branch and bound is based on CLAIRE SCHEDULE [Le Pape and
Baptiste, 19974]. To test the efficiency of our branch and bound procedure, instances of
the (1]r;|ZU;) have been generated. Our intuition is that one shall pay attention to at least
three important characteristics:
» Thedistribution of the processing times.
* Theoveral “load” of the machine; where the load is the ratio between the sum of the

processing times of the activities and (max d; —min ;).
e Themarginm =d; —r; —p; of each activity.
Our generation scheme is based on 4 parameters. The number of activities n and the three
statistical laws followed by the release dates, the processing times and the margins (given
ri, pi and my, the due date can be immediately computed di=m+r;+p)).
* Processing times are generated from the uniform distribution [Prin, Prex] -
* Release dates are generated from the normal distribution (0, o).
* Margins are generated from the uniform distribution [0, Mypx]
Given these parameters and relying on the fact that most of the release dates are in [-2g,
20, the load is approximately equal to (0.5N(Pmin + Prax)) / (40 + Prax + Miax). Given n,
Prins Prmax, Mmax @Nd load, this allows us to determine a correct value of o.
One instance has been generated for each of the 960 combinations of the parameters
(N, (Prmin, Pmax), Mmax, l0ad) in the Cartesian product

{10,20,40,60,...,140} *{(0,100),(25,75)} *{ 50,100, ...,500} *{0.5,0.8, ... ,2.0}.

140

Table C-15 reports the results obtained for different values of n; each line corresponding
to 120 instances. The column “%” provides the percentage of instances that have been
solved within one hour of CPU time on a PC Dell OptiPlex GX Pro 200 MHz running
Windows NT. The columns “Avg CPU” and “Max CPU” report respectively the average
and the maximum CPU time in seconds required to solve the instances of each group (n =
10, n = 20, ..., n = 140) that could be solved within the time limit. Figure C-8 illustrates
the (reasonable) loss of efficiency of our agorithm when the number of activities
increases. Instances are solved within a few amount of backtracks (35 backtracks on the
average for n = 60, 154 for n = 100 and 259 for n = 140). The extensive use of pruning
techniques can explain the good behavior of the algorithm. The large time spent per node
isof course the drawback of such an approach.

Throughout our experiments, we discovered that the efficiency of the algorithm varies

from one instance to another (which is not very surprising for an NP-complete problem).

To characterize, from an experimental point of view, the instances that our algorithm

found too hard to solve, we generated 25 instances of 60 activities for each combination of

the parameters (Prmin, Pmax) 01 (0, 100), (25, 75)} , Max [1{ 25,50, .., 500} and load [1{0.2,0.3,

0.4, ,2.2}. 5 minutes have been allotted to each instance. Figures C-9 and C-10 report the

average CPU time required to solve the different group of instances (for the 2% of

instances that could not be solved within the time limit, we decided to count 5 minutes
when computing the average CPU time). The study of Figures C-9 and C-10 leads us to
the following remarks:

* Thetighter the processing time distribution is, the harder the instanceis.

* The hardest instances seem to be those for which the load ratio is between 0.7 and 1.2
and when the margin parameter myox Varies in [275, 475] (for an average processing
time of 50).

* When the load ratio becomes very high, instances are quite easy. An hypothesis is that
the search tree becomes small (because very few activities can be on-time and thus
very few decisions have to be taken). Conversely, when the load ratio is very low,
instances are easy (because few activities are late on an optimal solution).

When both load and my.x are low, the behavior of the algorithm is somewhat
surprising. Further investigations have shown that for these instances the number of
backtracks is kept very small but the time spent per node increases a lot. Thisis, we
think, a side-effect of our current implementation: The decomposition rule is likely to
be triggered very often for such instances. Hence, a large amount of (small and easy)
sub-problems are solved one after another. This is a source of inefficiency, because in
the current implementation, the data structures representing each sub-problem have to
beinitialized at each decomposition.

141

n % AvgCPU |[Max CPU
10 [100.0 0.0 0.1
20 [100.0 0.2 0.7
40 |100.0 31 27.5
60 |100.0 23.2 184.5
80 | 96.7 | 117.3 2903.2

100 | 90.0 | 2735 2395.3

120 | 84.2 | 538.2 3263.4

140 | 725 |1037.3 3087.8

Table C-15. Behavior of the algorithm for several sizes of instances

120 | Solved n =280
n=100
100 n =120
n =140
80 -
60 -
0 -
20 CPU (9)
0 T
0 1000 2000 3000 4000

Figure C-8. Number of instances solved within a time limit in seconds

142

500
450 Avg CPU(s)
400 1[0, 25)

B9 [25, 50)
350 Bl |50, 75)
300 Il [75, 100)
250

200
150
100
50

<)

™ ;n I~ MO n N~ o
SO © S © <« «d «d «dA «dH «o @ load

Figure C-9. The behavior of the algorithm on 60-activities instances with different
ckrlﬁagcteristics (parameters prin and and pmax kept to 0 and 100).

500
450

400 Avg CPU(s)
350 1[0, 25)
300 [[25, 50)
250 Bl |50, 75)
200 Il |75, 100)

150
100
50

n ~ O <« o™ i
S S S d d o o i o load

™
o

Figure C-10. The behavior of the algorithm on 60-activities instances with different
characteristics (parameters pmin and and prax kept to 25 and 75).

143

The branch and bound procedure has also been tested on four sets of 160 instances
(instances with 80, 100, 120 and 140 jobs) generated by Stéphane Dauzére-Péres and
Marc Sevaux. Table C-16 reports the results obtained on these sets by our procedure and
by the procedure described in [Dauzére-Péres and Sevaux, 1998b]. Column n provides the
number of jobs in each of the sets of 160 instances. Columns “ %" provide the percentage
of problems solved for both methods. A time limit of one hour (with a Pentium 200) has
been set on our procedures. The branch and bound of [Dauzére-Pérés and Sevaux, 1998b]
has been stopped after 100000 nodes (which corresponds to 1000 seconds on a SUN
UltraSparc workstation for instances with 140 jobs). The columns “Avg CPU”, “Avg
Bck” and “Avg Nds’ report respectively the average CPU time, the average number of
backtracks and the average number of nodes used to solve the instances that could be
solved by both methods.
At this point several remarks can be made.
* Interms of number of instances solved, our procedure compares very well to the one
of [Dauzére-Péres and Sevaux, 1998b].
* The search tree that we explore is far smaler than the one of [Dauzere-Pérés and
Sevaux, 1998b].
* On*“easy” instances, our procedure is significantly slower as its competitor.
This can be explained by the high amount of propagation that is performed at each node of
our branch and bound. Given the theoretical complexity of the propagation algorithms, it
appears that even the generation of an initial solution (where no backtrack occurs) can be
costly. However, the extensive use of propagation allows us to solve hard instances in a
very few amount of nodes.

[Baptiste et al., 1998c] [Dauzere-Pérés and Sevaux, 1998b]

n % Avg CPU | AvgBck % Avg CPU | AvgNds
80 100.0 20.7 14 95.0 7.0 1631
100 975 55.0 35 88.1 275 4353
120 98.1 98.0 17 82.5 21.4 2467
140 931 121.2 5 80.6 63.8 4557

Table C-16. A comparison of two branch and bound procedures on four sets of instances.

We have proposed a set of techniques, including global constraint propagation, to solve a
particular partial CSP. Thisis of course afirst step and alot of work remains to adapt and
to develop global constraints in over-constrained frameworks. In particular, we think that
a large part of our results can be extended to the cumulative case. Studying more general
situations where activities do not have the same importance (i.e., each activity has a
weight) or where some activities have several due dates (with a different weight for each
due date) is another exciting research direction.

144

Chapitre D. Conclusion (en francais)

Nous avons présenté dans ce mémoire un ensemble original de techniques de propagation
de contraintes de ressources. Pour chaque type de ressource étudié, nous avons mene une
comparaison théorique et expérimental e des différents algorithmes de propagation.

* Dans le cas préemptif comme dans le cas des ressources surchargees, les outils
déductifs que nous avons mis en place sont totalement originaux et ouvrent aux
systémes de programmation par contraintes de nouveaux champs d’application en
ordonnancement.

» Dans le cas cumulatif, les méthodes déductives que nous avons proposées reprennent
en partie des résultats de la littérature. Nous avons particulierement porté notre effort
sur la caractérisation théorique de ces méthodes ainsi que sur leur codt algorithmique.
Nous avons aussi cherché a comparer ces méthodes a des calculs de bornes inférieures
classiques de Recherche Opérationnelle.

L’ efficacité des algorithmes de propagation a été démontrée sur un ensemble de problemes
classiques de Recherche Opérationnelle: la procédure arborescente pour le Job-Shop
préemptif résout toutes les instances de la littérature de taille 10*10. La méthode exacte
pour le RCPSP est particuliérement efficace sur un ensemble d'instances. Enfin, les
résultats que nous obtenons sur le probléme de la minimisation du nombre de jobs en
retard sont les meilleurs connus acejour.

Il nous semble que les travaux présentés dans ce mémoire peuvent étre prolongés dans

plusieurs directions.

* Notons tout d abord que les contraintes de ressources que nous avons decrites dans
I”introduction n’ont pas encore toutes été étudiées. En particulier, nous n’avons que
peu travaillé sur les problemes ayant a la fois une dimension préemptive et
cumulative: s certains des algorithmes de propagation que nous avons proposés
S adaptent bien a ce cas, il n’en est pas de méme des schémas de séparation. Pour ce
type de probleme, il faut bien avouer que nous sommes quelque peu démuni. D’ autre
part, il nous semble important de généraliser les résultats obtenus dans le cas d’ une
machine surchargée au cas de m-machines surchargées, et, pourquoi pas, en intégrant
une notion de poids sur chaque activite.

» Malgré nos efforts, la complexité des algorithmes de propagation que nous proposons
reste éevée (quadratique dans le meilleur des cas). Si cette complexité ne pése pas

145

d’un poids trop lourd sur nos méthodes de résolution lorsque les instances sont de
taille raisonnable, il est évident que sur des instances de grande taille, une telle
approche est déraisonnable. Il ne nous reste alors plus qu'a décomposer de fagon
heuristique le probleme en sous problémes de tailles plus modestes... Vaste champ de
recherche!
Nous espérons poursuivre nos recherches sur les problemes d ordonnancement, a la
frontiére entre Recherche Opérationnelle et Intelligence Artificielle. La synergie qui existe
entre ces disciplines permet de résoudre dans un cadre flexible des problémes
d’ ordonnancement complexes dont |a taille augmente chague jour.

146

Chapter D. Conclusion

Along this thesis, we have presented a set of original techniques for the propagation of
resource constraints. For each type of resource, a theoretical and experimental comparison
of the propagation algorithms, has been performed.

Both for the preemptive case and for overloaded resources, the deductive tools that we
have proposed are fully original. They could allow constraint based scheduling tools to
tackle some new classes of problem.

For the cumulative case, the deductive techniques that we have proposed are based
upon severa results of the literature. We have tried to characterize theoretically these
techniques and we have paid much attention to the worst case complexities of the
agorithms.

The efficiency of the propagation algorithms has been proven on a set of classical
problems of the literature. Both for the preemptive Job-Shop and for the minimization of
the number of late jobs, our results outperform the other approaches (if any) of the
literature. Concerning the RCPSP, we have shown that the set of techniques proposed is
very efficient for a particular class of instances, namely the highly cumulative class.

Following this thesis, it seems to us that severa research directions could be of great
interest:

First, notice that all types of resource constraints described in the introduction have not
been studied along this thesis. In particular, aimost no work has been performed on
problems that have both a cumulative and a preemptive dimension. Some propagation
algorithms proposed in this thesis apply well to such problems. However, one must
admit that it not the case for the branching schemes. On top of that, it seems to us that
it could be of great practical interest to generalize the results obtained on a disjunctive
overloaded resource to cumulative resources.

Second, we have seen that, despite our efforts, the theoretical complexities of the
algorithms we propose remains high (at least quadratic). A direct consequence is that
when increasing the size of instances, such an approach becomes inefficient. The time
spent per node being too high. One way to tackle the whole problem is to decompose it
heuristically in several problems of reasonable sizes.... Wide research areal

147

We hope that we will be able to pursue our research on scheduling problems, at the border
line between Operations Research and Artificia Intelligence. We believe that the synergy
between these disciplines will alow usto solve larger and larger complex problems.

148

Bibliography

Abderrahmane Aggoun and Nicolas Beldiceanu [1993]. Extending CHIP in Order to
Solve Complex Scheduling and Placement Problems. Mathematica and Computer
Modelling, 17(7):57-73, 1993.

R. Alvarez-Vades and JM. Tamarit [1989]. Heuristic Algorithms for Resource-
Constrained Project Scheduling: A Review and an Empirical Analysis. Chapter 5 in
Advancesin Project Scheduling, R. Slowinski and J. Weglarz editors, Elsevier, 1989.

David Applegate and William Cook [1991]. A Computational Sudy of the Job-Shop
Scheduling Problem. ORSA Journal on Computing, 3(2):149-156, 1991.

Kenneth R. Baker [1974]. Introduction to Sequencing and Scheduling. John Wiley and
Sons, 1974.

Philippe Baptiste [1994]. Constraint-Based Scheduling: Two Extensions. MSc Thesis,
University of Strathclyde, 1994.

Philippe Baptiste [1995]. Resource Constraints for Preemptive and Non-Preemptive
Scheduling. MSc Thesis, University Paris VI, 1995.

Philippe Baptiste [1998a]. An O(n*) Algorithm for Preemptive Scheduling of a Single
Machine to Minimize the Number of Late Jobs. Technical Report 98-98, Université de
Technologie de Compiegne, 1998.

Philippe Baptiste [1998b]. Polynomial Time Algorithms for Minimizing the Weighted
Number of Late Jobs on a Sngle Machine when Processing Times are Equal. Technical
Report 98-138, Université de Technologie de Compiegne, submitted, 1998

Philippe Baptiste, Yves Caseau, Tibor Kokeny, Claude Le Pape and Robert Rodosek
[1998a]. Creating and Evaluating Hybrid Algorithms for Inventory Management
Problems. Proceedings of the Fourth National Meeting on Practical Approaches to
NP-Complete Problems, Nantes, France, 1998.

Philippe Baptiste and Claude Le Pape [19954]. Disjunctive Constraints for Manufacturing
Scheduling: Principles and Extensions. Proceedings of the Third International Conference
on Computer Integrated Manufacturing, Singapore, 1995. Also in: International Journal of
Computer Integrated Manufacturing, 9(4):306-310, 1996.

149

Philippe Baptiste and Claude Le Pape [1995b]. A Theoretical and Experimental
Comparison of Constraint Propagation Techniques for Digunctive Scheduling.
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence,
Montréal, Québec, 1995.

Philippe Baptiste and Claude Le Pape [1996a]. A Constraint-Based Branch and Bound
Algorithm for Preemptive Job-Shop Scheduling. Proceedings of the International
Workshop on Production Planning and Control, Mons, Belgium, 1996.

Philippe Baptiste and Claude Le Pape [1996b]. Edge-Finding Constraint Propagation
Algorithms for Digunctive and Cumulative Scheduling. Proceedings of the Fifteenth
Workshop of the U.K. Planning Special Interest Group, Liverpool, United Kingdom,
1996.

Philippe Baptiste and Claude Le Pape [1997a]. Constraint Propagation and
Decomposition Techniques for Highly Disunctive and Highly Cumulative Project
Scheduling Problems. Proceedings of the Third International Conference on Principles and
Practice of Constraint Programming, Schloss Hagenberg, Austria, published in Lecture
Notes of Computer Science 1330, Springer-Verlag, 1997.

Philippe Baptiste and Claude Le Pape [1997b]. Adjustments of Release and Due Dates for
Cumulative Scheduling Problems. Proceedings of the Third International Conference on
Industrial Engineering and Production Management, Lyon, France, 1997.

Philippe Baptiste, Claude Le Pape and Wim Nuijten [1995a]. Incorporating Efficient
Operations Research Algorithms in Constraint-Based Scheduling. Proceedings of the First
International Joint Workshop on Artificial Intelligence and Operations Research,
Timberline Lodge, Oregon, 1995.

Philippe Baptiste, Claude Le Pape and Wim Nuijten [1995b]. Constraint-Based
Optimization and Approximation for Job-Shop Scheduling. Proceedings of the AAAI-
SIGMAN Workshop on Intelligent Manufacturing Systems, 1JCAI, Montréal, Québec,
1995.

Philippe Baptiste, Claude Le Pape and Wim Nuijten [1998b]. Satisfiability Tests and
Time-Bound Adjustments for Cumulative Scheduling Problems. Technical Report 98-97,
Université de Technologie de Compiegne, 1998. To appear in Annals of Operations
Research.

Philippe Baptiste, Claude Le Pape and Laurent Péridy [1998c]. Global Constraints for
Partial CSPs. A Case Sudy of Resource and Due-Date Constraints. To appear in the
Proceedings of the Fourth International Conference on Principles and Practice of
Constraint Programming, Pisa, Italy, 1998.

Nicolas Beldiceanu and Evelyne Contgjean [1994]. Introducing Global Constraints in
CHIP. Mathematical and Computer Modelling, 20(12):97-123, 1994.

150

Christian Bessiere, Eugene Freuder and Jean-Charles Régin [1995]. Using Inference to
Reduce Arc Consistency Computation. Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, Montréal, Québec, 1995.

Stefano Bistarelli, Ugo Montanari and Francesca Rossi [1995]. Constraint Solving over
Semirings. Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, Montréal, Québec, 1995.

Jacek Blazewicz, Wolfgang Domschke and Erwin Pesch [1996]. The Job-Shop Scheduling
Problem: Conventional and New Solution Techniques. European Journal of Operational
Research, 93(1):1-33, 1996.

Peter Brucker, Bernd Jurisch and Bernd Sievers [1994]. A Branch and Bound Algorithm
for the Job-Shop Scheduling Problem. Discrete Applied Mathematics, 49(1):107-127,
1994.

Peter Brucker [1995]. Scheduling Algorithms. Springer Lehrbuch, 1995.

Peter Brucker and Olaf Thiele [1996]. A Branch and Bound Method for the General-Shop
Problem with Sequence-Dependent Setup Times. OR Spektrum, 18:145-161, 1996.

Peter Brucker, Sigrid Knust, Arno Schoo and Olaf Thiele [1998]. A Branch and Bound
Algorithm for the Resource-Constrained Project Scheduling Problem. European Journal
of Operational Research, 107:272-288, 1998.

Peter Brucker, Svetlana A. Kravchenko and Yuri N. Sotskov [1999], Preemptive Job-Shop
Scheduling Problems with a Fixed Number of Jobs. To appear in ZOR-Mathematical
Methods of OR, first issue of 1999.

Jacques Carlier [1982]. The One-Machine Sequencing Problem. European Journa of
Operational Research, 11(1):42-47, 1982.

Jacques Carlier [1984]. Problémes d'ordonnancement a contraintes de ressources :
algorithmes et complexité. These de Doctorat d'Etat, Université Paris VI, 1984.

Jacques Carlier and Philippe Chrétienne [1988]. Problémes d'ordonnancement :
Modéisation / Complexité/ Algorithmes. Masson, 1988.

Jacques Carlier and Eric Pinson [1989]. An Algorithm for Solving the Job-Shop Problem.
Management Science, 35(2):164-176, 1989.

Jacques Carlier and Eric Pinson [1990]. A Practical Use of Jackson's Preemptive Schedule
for Solving the Job-Shop Problem. Annals of Operations Research, 26:269-287, 1990.

Jacques Carlier and Bruno Latapie [1991]. Une méthode arborescente pour résoudre les
problemes cumulatifs. RAIRO Recherche Opérationnelle, 25(3):311-340, 1991.

151

Jacques Carlier and Eric Pinson [1994]. Adjustment of Heads and Tails for the Job-Shop
Problem. European Journal of Operational Research, 78(2):146-161, 1994.

Jacques Carlier and Eric Pinson [1996]. Jackson's Pseudo-Preemptive Schedule for the
Pmri,gi/Cmax Scheduling Problem. Technical Report, Université de Technologie de
Compiégne, 1996.

Jacques Carlier and Emmanuel Néron [1996]. A New Branch and Bound Method for
Solving the Resource-Constrained Project Scheduling Problem. Proceedings of the
International Workshop on Production Planning and Control, Mons, Belgium, 1996.

Jacques Carlier and Emmanuel Néron [1998]. An Exact Method for Solving the Multi-
Processor Flow-Shop. Submitted to RAIRO, 1998.

Y ves Caseau [1996]. Contraintes et algorithmes, petit précis d’ optimisation combinatoire
pratique. Notes de cours du Magistere de Mathématiques Fondamentales et Appliquées et
d’ Informatique, Ecole Normale Supérieure, 1996.

Yves Caseau and Francois Laburthe [1994]. Improved CLP Scheduling with Task
Intervals. Proceedings of the Eleventh International Conference on Logic Programming,
Santa Margherita Ligure, Italy, 1994.

Yves Caseau and Francois Laburthe [1995]. Digunctive Scheduling with Task Intervals.
Technical Report, Ecole Normale Supérieure, 1995.

Yves Caseau and Francois Laburthe [1996a]. Cumulative Scheduling with Task Intervals.
Proceedings of the Joint International Conference and Symposium on Logic
Programming, Bonn, Germany, 1996.

Yves Caseau and Francois Laburthe [1996b]. CLAIRE: A Parametric Tool to Generate
C++ Code for Problem Solving. Working Paper, Bouygues, Direction Scientifique, 1996.

Amedeo Cesta and Angelo Oddi [1996]. Gaining Efficiency and Flexibility in the Smple
Temporal Problem. Proceedings of the Third Internationa Workshop on Temporal
Representation and Reasoning, Key West, Florida, 1996.

Edward G. Coffman Jr. (editor) [1976]. Computer and Job-Shop Scheduling Theory. John
Wiley and Sons, 1976.

Yves Colombani [1996]. Constraint Programming: An Efficient and Practical Approach
to Solving the Job-Shop Problem. Proceedings of the Second International Conference on
Principles and Practice of Constraint Programming, Cambridge, Massachusetts, 1996.

Yves Colombani [1997]. Un modele de résolution de contraintes adapté aux problemes
d’ordonnancement : un prototype et une application. These de I'Université de la
Méditerranée Aix-Marseille 11, 1997.

152

Stéphane Dauzere-Pérés [1995]. Minimizing Late Jobs in the General One-Machine
Scheduling Problem. European Journal of Operational Research, 81:134-142, 1995.

Stéphane Dauzére-Pérés and Marc Sevaux [1998a]. Various Mathematical Programming
Formulations for a General One Machine Sequencing Problem. Rapport de recherche
98/3/AUTO, Ecole des Mines de Nantes, 1998.

Stéphane Dauzere-Pérés and Marc Sevaux [1998b]. A Branch and Bound Method to
Minimize the Number of Late Jobs on a Sngle Machine. Rapport de recherche
98/5/AUTO, Ecole des Mines de Nantes, 1998.

B. De Reyck and W. Herroelen [1995]. Assembly Line Balancing by Resource-
Constrained Project Scheduling Techniques: A Critical Appraisal. Technica Report,
Katholieke Universiteit Leuven.

Erik Demeulemeester [1992]. Optimal Algorithms for Various Classes of Multiple
Resource-Constrained Project Scheduling Problems. PhD Thesis, Katholieke Universiteit
Leuven, 1992.

Erik Demeulemeester and Willy Herroelen [1992]. A Branch and Bound Procedure for the
Multiple Resource-Constrained Project Scheduling Problem. Management Science,
38(12):1803-1818, 1992.

Erik Demeulemeester and Willy Herroelen [1995]. New Benchmark Results for the
Resource-Constrained Project Scheduling Problem. Technical Report, Katholieke
Universiteit Leuven, 1995.

Jacques Erschler [1976]. Analyse sous contraintes et aide a la décision pour certains
problémes d'ordonnancement. Thése de Doctorat d'Etat, Université Paul Sabatier, 1976.

Jacques Erschler, Pierre Lopez and Catherine Thuriot [1991]. Raisonnement temporel sous
contraintes de ressource et problémes dordonnancement. Revue dintelligence
Artificielle, 5(3):7-32, 1991.

Patrick Esquirol [1987]. Regles et processus d'inférence pour I'aide a I'ordonnancement
de taches en présence de contraintes. Thése de I'Université Paul Sabatier, 1987.

Patrick Esquirol, Pierre Lopez, Héléne Fargier and Thomas Schiex [1995], Constraint
Programming. Belgian Journal of Operations Research, Special Issue Constraint
Programming, 35(2):5-36, 1995.

A. Federgruen and H. Groenevelt [1986]. Preemptive Scheduling of Uniform Machines by
Ordinary Network Flow Techniques. Management Science, 32(3):341-349, 1986.

153

Barry R. Fox [1990]. Chronological and Non-Chronological Scheduling. Proceedings of
the First Annual Conference on Artificial Intelligence, Simulation and Planning in High
Autonomy Systems, Tucson, Arizona, 1990.

S. French [1982]. Sequencing and Scheduling: An Introduction to the Mathematics of the
Job-Shop. John Wiley and Sons, 1982.

Eugene C. Freuder and Richard J. Wallace [1992]. Partial Constraint Satisfaction.
Artificial Intelligence, 58(1):21-70, 1992.

Michael R. Garey and David S. Johnson [1979]. Computers and Intractability. A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

Michel Gondran and Michel Minoux [1995]. Graphes et algorithmes. Eyrolles, 1995.

GOThA (Groupe d Ordonnancement Théorique et Appliqué) Jacques Carlier, Philippe
Chrétienne, Jacques Erschler, Claire Hanen, Pierre Lopez, Alix Munier, Eric Pinson,
Marie-Claude Portmann, Christian Prins, Christian Proust, Pierre Villon, [1993]. Les
problémes d'ordonnancement. RAIRO-Recherche Opérationnelle, 27(1):77-150, 1993.

Hiroshi Kise, Toshihide Ibaraki and Hisashi Mine [1978]. A Solvable Case of the One-
Machine Scheduling Problem with Ready and Due Times. Operations Research,
26(1):121-126, 1978.

Rainer Kolisch, Arno Sprecher and Andreas Drexel [1995]. Characterization and
Generation of a General Class of Resource-Constrained Project Scheduling Problems.
Management Science, 41(10):1693-1703, 1995.

Francois Laburthe, Pierre Savéant, Simon de Givry and Jean Jourdan [1998]. Eclair, a
library of constraints over finite domains. Technical Report ATS 98-2, Thomson CSF,
Corporate Research Lab, 1998.

E. L. Lawler [1990]. A Dynamic Programming Algorithm for Preemptive Scheduling of a
Sngle Machine to Minimize the Number of Late Jobs. Annals of Operations Research,
26:125-133, 1990.

Claude Le Pape [1988]. Des systemes d'ordonnancement flexibles et opportunistes. These
de I'Université Paris X1, 1988.

Claude Le Pape [1994]. Implementation of Resource Constraints in 1LOG SCHEDULE: A
Library for the Development of Constraint-Based Scheduling Systems. Intelligent Systems
Engineering 3:55-66, 1994.

Claude Le Pape [1995]. Three Mechanisms for Managing Resource Constraints in a
Library for Constraint-Based Scheduling. Proceedings of the INRIA/IEEE Conference on
Emerging Technologies and Factory Automation, Paris, France, 1995.

154

Claude Le Pape [1996]. Constraint-Based Scheduling: Principles and Application.
Proceedings of the IEE Colloquium on Intelligent Planning and Scheduling Solutions,
London, United Kingdom, 1996.

Claude Le Pape and Philippe Baptiste [1996]. Constraint Propagation Techniques for
Digunctive Scheduling: The Preemptive Case. Proceedings of the Twelfth European
Conference on Artificial Intelligence, Budapest, Hungary, 1996.

Claude Le Pape and Philippe Baptiste [1997a]. A Constraint Programming Library for
Preemptive and Non-Preemptive Scheduling. Proceedings of the Third International
Conference and Exhibition on the Practical Application of Constraint Technology,
London, United Kingdom, 1997.

Claude Le Pape and Philippe Baptiste [1997b]. An Experimental Comparison of
Constraint-Based Algorithms for the Preemptive Job-Shop Scheduling Problem.
Proceedings of the CP Workshop on Industrial Constraint-Directed Scheduling, CP,
Schloss Hagenberg, Austria, 1997.

Claude Le Pape and Philippe Baptiste [1998a]. Resource Constraints for Preemptive Job-
Shop Scheduling. Constraints, to appear.

Claude Le Pape and Philippe Baptiste [1998b]. Heuristic Control of a Constraint-Based
Algorithm for the Preemptive Job-Shop Scheduling Problem. Journal of Heuristics,
submitted.

Claude Le Pape and Philippe Baptiste [1998c]. Constraint-Based Scheduling: A
Theoretical Comparison of Resource Constraint Propagation Rules. Proceedings of the
ECAI98 Workshop on Non Binary Constraints, 1998.

Marie-Luce Lévy [1996]. Méthodes par décomposition temporelle et problemes
d’ ordonnancement. These de I’ Institut National Polytechnique de Toulouse, 1996.

Olivier Lhomme [1993]. Consistency Techniques for Numeric CSPs. Proceedings of the
Thirteenth International Joint Conference on Artificia Intelligence, Chambéry, France,
1993.

Hendrik C. R. Lock [1996]. An Implementation of the Cumulative Constraint. Working
Paper, University of Karlsruhe, 1996.

Pierre Lopez [1991]. Approche énergétique pour I'ordonnancement de taches sous
contraintes de temps et de ressources. Thése de I'Université Paul Sabatier, 1991.

Pierre Lopez, Jacques Erschler and Patrick Esquirol [1992]. Ordonnancement de taches
sous contraintes : une approche énergétique. RAIRO Automatique, Productique,
Informatique Industrielle, 26(6):453-481, 1992.

155

Alan K. Mackworth [1977]. Consistency in Networks of Relations. Artificial Intelligence,
8:99-118, 1977.

Paul D. Martin and David B. Shmoys [1996]. A New Approach to Computing Optimal
Schedules for the Job-Shop Scheduling Problem. Proceedings of the Fifth Conference on
Integer Programming and Combinatorial Optimization, Vancouver, British Columbia,
1996.

A. A. Mastor [1970]. An Experimental Investigation and Comparative Evaluation of
Production Line Balancing Techniques. Management Science 16(11):728-746, 1970.

Roger Mohr and Thomas C. Henderson, [1986]. Arc and Path Consistency Revisited.
Artificia Intelligence, 28:225-233, 1986.

Ugo Montanari [1974], Network of Constraints: Fundamental Properties and Applications
to Picture Processing. Information Sciences, 7:95-132, 1974.

J. Michael Moore [1968]. An n Job, One Machine Sequencing Algorithm for Minimizing
the Number of Late Jobs. Management Science, 15(1):102-109, 1968.

Emmanuel Néron, Philippe Baptiste, Jacques Carlier and Claude Le Pape, [1998]. Global
Operations for the Multi-Processor Flow-Shop. Proceedings of the 6" international
workshop on project management and scheduling, 1998.

W. P. M. Nuijten, E. H. L. Aarts, D. A. A. Van Erp Taaman Kip and K. M. Van Hee
[1993]. Randomized Constraint Satisfaction for Job-Shop Scheduling. Proceedings of the
AAAI-SIGMAN Workshop on Knowledge-Based Production Planning, Scheduling and
Control, IJCAI, Chambéry, France, 1993.

W. P. M. Nuijten [1994]. Time and Resource Constrained Scheduling: A Constraint
Satisfaction Approach. PhD Thesis, Eindhoven University of Technology, 1994.

W. P. M. Nuijten and E. H. L. Aarts [1996]. A Computational Study of Constraint
Satisfaction for Multiple Capacitated Job-Shop Scheduling. European Journa of
Operational Research, 90(2):269-284, 1996.

Wim Nuijten and Claude Le Pape [1998]. Constraint-Based Job-Shop Scheduling with
ILOG SCHEDULER. Journal of Heuristics, 3(4):271-286, 1998.

James H. Patterson [1984]. A Comparison of Exact Approaches for Solving the Multiple
Constrained Resource Project Scheduling Problem. Management Science, 30(7):854-867,
1984.

Mike Pegman, Nigel Forward, Brett King and Dave Teal [1997]. Mine Planning and
Scheduling at RTZ Technical Services. Proceedings of the Third International Conference
and Exhibition on the Practical Application of Constraint Technology, London, United
Kingdom, 1997.

156

Laurent Peéridy [1996]. Le probléme de job-shop : arbitrages et ajustements. Thése de
I’ Université de Technologie de Compiegne, 1996.

Laurent Péridy, Philippe Baptiste and Eric Pinson, [1998]. Branch and Bound Method for
the Problem 1 |r; | U;. Proceedings of the 6" international workshop on project
management and scheduling, 1998.

Michael Perregaard [1995]. Branch and Bound Methods for the Multi-Processor Job-Shop
and Flow-Shop Scheduling Problems. MSc Thesis, University of Copenhagen, 1995.

Eric Pinson [1988]. Le probléme de job-shop. These de I'Université Paris V1, 1988.

Marie-Claude Portmann, Antony Vignier, David Dardilhac and David Dezalay [1997].
Branch and Bound Crossed with G.A. to Solve Hybrid Flowshop. European Journal of
Operational Research, to appear, 1997.

Patrick Prosser, [1993]. Hybrid Algorithms for the Constraint Satisfaction Problem,
Computational intelligence 9(3):268-299, 1993.

Jean-Frangois Puget [1994]. A C++ Implementation of CLP. Technical Report, ILOG
SA., 1994,

Jean-Francgois Puget and Michel Leconte [1995]. Beyond the Glass Box: Constraints as
Objects. Proceedings of the Twelfth International Symposium on Logic Programming,
Portland, Oregon, 1995.

Jean-Charles Régin [1994]. A Filtering Algorithm for Constraints of Difference in CSPs.
Proceedings of the Twelfth National Conference on Artificial Intelligence, Seattle,
Washington, 1994.

Jean-Charles Régin [1995]. Développement d outils algorithmiques pour I’intelligence
artificielle. Application a la chimie organique. These de I’ Université Montpellier 11, 1995.
Jean-Charles Régin [1996]. Generalized Arc-Consistency for Global Cardinality

Constraint. Proceedings of the Thirteenth National Conference on Artificia Intelligence,
Portland, Oregon, 1996.

Jean-Charles Régin and Jean-Francgois Puget [1997]. A Filtering Algorithm for Global
Sequencing Constraints. Proceedings of the Third International Conference on Principles
and Practice of Constraint Programming, Schloss Hagenberg, Austria, 1997.

Thomas Schiex, Hélene Fargier and Gérard Verfaillie [1995]. Valued Constraint
Satisfaction Problems: Hard and Easy Problems. Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence, Montréal, Québec, 1995.

157

Stephen F. Smith [1994]. OPIS. A Methodology and Architecture for Reactive Scheduling.
In: Monte Zweben and Mark Fox (editors), "Intelligent Scheduling,” Morgan Kaufmann,
1994.

Stephen F. Smith and Cheng-Chung Cheng [1993]. Sack-Based Heuristics for Constraint
Satisfaction Scheduling. Proceedings of the Eleventh National Conference on Artificial
Intelligence, Washington, District of Columbia, 1993.

Pascal Van Hentenryck, Yves Deville and C. M. Teng [1992]. A General Arc-Consistency
Algorithm and its Specializations. Artificial Intelligence, 57(3):291-321, 1992.

Christophe Varnier, Pierre Baptiste and Bruno Legeard [1993]. Le traitement des
contraintes digonctives dans un probléeme d'ordonnancement : exemple du Hoist
Scheduling Problem. Deuxiéemes journées francophones de programmation logique,
Nimes et Avignon, France, 1993.

Antony Vignier, [1997]. Contribution & la résolution des problemes d’ ordonnancement de
type monogamme, multimachine (“Flow-Shop hybride’). These de I’ université de Tours,
1997.

Monte Zweben, Eugene Davis, Brian Daun and Michael J. Dede [1993]. Scheduling and
Rescheduling with Iterative Repair. IEEE Transactions on Systems, Man, and
Cybernetics, 23(6):1588-1596, 1993.

158

Appendix 1. Summary of notations

Given an integer constrained variable X,

d(x) denotes the domain of X,
Ib(x) denotes the minimal value in d(x),
ub(x) denotes the maximal value in d(x).

Given an activity A;,

start(Aj) denotes the constrained variable that represents the start time of A,

end(A;) denotes the constrained variable that represents the end time of A,
processingTime(A)) denotes the constrained variable that represents the processing
time of activity A,

WA, t) is an implicit 0-1 constrained variable representing fact that A, executes at
timet (when A; cannot be interrupted, W(A,, t) = (start(A) < t) O (t <end(A))),

set(A) isaset variable that represents the set of time points at which A; executes,

in(A) is a binary constrained variable representing the fact that A is performed on the
resource or not,

ri denotes the release date of activity A, i.e, r; = Ib(start(A)),

d; denotes the deadline of activity A, i.e., di = ub(end(A)),

Ist; = ub(start(A;)), denotes the upper bound of the start time variable, i.e., the latest
start time of A;,

eeti = Ib(end(A)), denotes the lower bound of the end time variable, i.e., the earliest
end time of A;,

pi denotes the processing time of the activity A, i.e., pi = Ib(processingTime(A)) (in
general, processingTime(A) is bound, and thus p; is exactly equal to
processingTime(A))),

w; denotes the weight that is associated to the activity A.

Given aset of activitiesQ,

ro denotes the smallest rel ease date among release datesin Q,
dq denotes the largest deadline among deadlinesin Q,
pa denotes the sum of the processing times of activitiesin Q.

Given aresource R,

159

» capacity(R) denotes the constrained variable that represents the capacity of R, i.e., the
number of parallel identical machinesthat are availablein R,

» capacity(R, t) denotes the constrained variable that represents the capacity of the
resource R available at timet (such variables are useful to model a variable profile of
aresource),

» Cgdenotesthe maximal capacity available, i.e., Cr = ub(capacity(R)),

» rgect(R) denotes the number of activities of the resource that can be sub-contracted.

Given an activity A; and aresource R,

» capacity(A;, R) denotes the constrained variable that represents the amount of resource
R required by activity A;.

* Cr denotes the minimal amount of the capacity of the resource required by the
activity, i.e,, ¢ g = Ib(capacity(A;, R)),

* in(A, R) denotes the binary variable that states whether the activity A is performed on
the resource or not.

When a single resource is considered, the name of the resource R is omitted, i.e,

capacity(R, t) = capacity(t), C = Cg, capacity(A;, R) = capacity(A), and ¢ = G r.

160

Appendix 2. Minimizing the weighted

number of |ate jobs to be preemptively

scheduled on a single machine, when
processing times are equal

Given a set of weighted jobs, with release dates and due dates, the problem of minimizing
the weighted number of late jobs that can be preemptively scheduled on a single machine
is NP-hard. However, it is shown in [Lawler, 1990] that this problem, denoted as the (1 |
rj, pmtn | Zw; U;), is solvable in O(n*W?), where W denotes the sum of the weights. This
result leaves a question open: Is there a polynomial time algorithm when all processing
times are equal (i, pi = p). We answer affirmatively and we provide an O(n'®) dynamic
programming algorithm™—.

From now on, we suppose that jobs are sorted in increasing order of due dates. We first
introduce Jackson Preemptive Schedule and some notation. Afterwards, we provide the
proposition that is the basis of our programming algorithm.

Definition.

Let © ={tsuchthat OIr;, I {0, ...,n} |t=ri +]| * p}. O
The time points in © play a particular role in the structure of optimum schedules. In the
following, we note © = {1y, ty, ..., t} the ordered set of distinct time-points in ©. Recall
that g < n’.

Definition.

The Jackson Preemptive Schedule (JPS) of a set of jobs O is the preemptive schedule
obtained by applying the Earliest Due Date priority dispatching rule: whenever the
machine is free and one job in O is available, schedule the job J; O O for which d; is the
smallest. If ajob J; becomes available while J; is in process, stop J; and start J; if d; < d,
otherwise continue Ji. O

4 The result presented in this Appendix come from [Baptiste, 1998b].

161

Jackson Preemptive Schedule has severa interesting properties (e.g., [Carlier, 1984]). In
particular, if ajob is scheduled on JPS after its due date, there is no feasible preemptive
schedule of the set of jobs. Hence, searching for a schedule on which the weighted number
of late jobs is minimal, reduces to finding a set whose weight is maximal and that is
feasible, i.e.,, whose JPS isfeasible.

Proposition Ap2-1.
For any subset of jobs S the start and end times of the jobs on the JPS of Sbelong to the
set O.

Proof (sketch).

We first prove that the end time of ajob on the JPS of Sbelongsto ©. Let J be any job

and let s and e be respectively its start and end times on JPS. Let t be the minimal time

point such that between t and s JPS is never idle. Because of the structure of JPS, t is a

release date, say ry. The jobs that execute (even partially) between s and e execute neither

before s nor after e (because Jackson Preemptive schedule is based upon the EDD rule).

Thuse—sisamultiple of p. Two cases can occur:

» Either Ji causes an interruption and hence s = ry.

* Or Ji does not cause any interruption and hence the jobs that execute between ry and s,
are fully scheduled in thisinterval. Consequently, s—t isamultiple of p.

In both cases, there is a release date ry (either ry or ry) such that between ry and e, JPS is

never idle and such that e is equal to ry modulo p. On top of that, the distance between ry

and eisnot greater than n* p (because JPSis not idle). Hence, e [©.

Now consider the start time of any job on JPS. This time point is either the release date of

the job or is equal to the end time of the “previous’ one. Thus, start times also belong

to O©. |

Definition.

For any time pointst,, t, in © with u<v and any for integer value k such that 1<k<n,

o et U(ty, t) ={Ji|i <kandt,<r; <t} (asfor the non-preemptive case),

e forany msuchthat 1 < m<n, let W(ty, ty, m) be the weight of the subset SCTU(ty,t,)
of mjobs such that, (1) the JPS of Sisfeasible and ends before t, and (2) its weight is
maximal. If there is no such subset, Wi(ty,t,,m) is arbitrarily set to -co. O

162

Schedule

corresponding to
\Al [+ + nrnA)\
Schedule Schedule
corresponding to corresponding to
\Al [+ + »nA) 1 \Al [+ + »nA)\
NN
I I R B T | I I -
ty t ty ty time

Figure Ap2-1. lllustration of Proposition Ap2-2

Proposition Ap2-2. (cf., Figure Ap2-1)
For any time points ty, t, in © with u < v and any integer valuesk and msuch that 1 <k<n
and 1<m<n, W(ty, t,, m) is equal to Wi (t,,t,,m) if re O [t,,t,) and to the expression
above otherwise:
max (Wi-1(ty, tv,m),
txgaée’ (Wi (tu, b i) + Wi (t, ty, o) + Wiea (ty, ty, ms)) i)
max(r,ty)<ty <ty <min(dy ty)
+Mp +mg=m-1,

p*(mp +1)=ty —ty
Proof.
Let W be the expression above. It is obvious that if ry O [ty,t,), Wi(ty, t,, M) is equal to

Wi1(tu, tv,m). In the following, we suppose that ry O [ty,ty).

Wefirst prove that W sW(t,t,,m).
« Consider the case where W =W(ty,t,,m). Since Uya(ty,t,) OUk(t,t,), we have
W <W(ty, ty, m).
» Consider now the case where there exist t,[JO,t,[1© and 3 integers my, mp, mg such that
max(r, tu) < tx<ty,<min(dy,ty),
my+mp+mg=m-1
p* (mp+1)=ty—ty,
W =W 1(ty, tx, my) + Wiea (tx, ty, mp) + W1 (ty, ty, mg)) + Wi
Obviously, the subsets Uj1(ty,ty), Uka(txty) and Ua(ty,ty) do not intersect. Thus, the
JPS schedules of the subsets that realize Wi.1(ty, tx, my), Wica(tx, ty, mz) and Wica(ty, tv, mg),
put one after another define a valid overall schedule of a set of m—1 jobs taken in
Uka(ty,ty). Moreover, between ty and t, there is enough space to schedule Ji since mp

163

jobsin Ui.(tx,ty) are scheduled and since p* (my+1)=t,—t,. As a consequence, we have
W <Wi(ty, ty, m).

We now prove that Wk(t,t,,m)sW'.

We only consider the case where W(t,,t,,m) is finite otherwise the result holds. Consider
a st S that redizes Wi(ty,t,m). If J does not belong to S then
Wic(tu, tv, M) =Wia (ty, tv, m)<W . Suppose now that JxJS Let tx and ty be the start and end
times of Ji on the JPS of S Thanks to Proposition Ap2-1, t,[J© and t,[]©. We also have
max(ri, ty) <tx<t,<min(di,ty). Let S, S, S be the partition of S-{J} into the jobs that have
a release date between t, and ty, between t, and t, and between t, and t,. Because of the
structure of JPS (J is the job whose due date is maximal), al jobs in § are scheduled
before ty. Moreover, all jobsin S, are scheduled after tx and before ty, and al jobsin S are
scheduled before t,. On top of that, p* (|S|+1)=t,—tx because Ji is also scheduled between
ty and ty,. Moreover, we have |S|+|S|+|Ss|+1=m. Finaly the weight of S, is not greater
than Wia(tu, t, 1S1]), the weight of S is not greater than Wica(ty, ty, [S[) and the weight of S
is not greater than Wia(ty, ty, |Ss]). This leads to Wigty, t,, m)<W'. O

Our dynamic programming algorithm relies on the above proposition. The values of
Wi(ty, t, M) are stored in a multi-dimensional array of size O(n°) (n possible values for k, n?
possible values for t,, n® possible values for t,, and n possible values for m).

* Intheinitialization phase the value of Wi(ty,t,,m) is set tow; if m=1 and if p is not
greater than min(dy,t,)-max(r1,t,) and to -co otherwise.

* We then iterate from k=2 to k=n. Each time, W is computed for all the possible
values of the parameters thanks to the formula of Proposition Ap2-2 and to the values
of W1 computed at the previous step.

The maximum weighted number of on-time jobsis equal to:

max(Wh(min(t;), max(t;), 1), Wh(min(t), max(t;), 2), ..., Wa(min(t), max(t;), n)).

The overall complexity of the agorithm is O(n°) for the initialization phase. For each

value of k, O(n°) values of W have to be computed. For each of them, a maximum among

O(n*) terms has to be computed (for given values of t,, m; and m,, there is only one

possible value for both t, and mg). This leads to an overal time complexity of on'. A

rough analysis of the space complexity leads to an O(n°) bound but since, at each step of

the outer loop on k, one only needs the values of W computed at the previous step (k-1),

the algorithm can be implemented with 2 arrays of O(n°) size (one for the current values

of Wand one for the previous value of W).

164

Appendix 3. Minimizing the weighted
number of late jobs to be scheduled on a
single machine, when processing times
are egual

Since when ajob islate, it can be scheduled arbitrarily late, the problem reduces to finding
a set of jobs (1) that is feasible, i.e., for which there exists a schedule that meets release
dates and due dates and (2) whose weight is maximal. From now on, we suppose that jobs
are sorted in increasing order of due dates. We first introduce some notation and then

provide the proposition that is the basis of our dynamic programming algorithmEl.

Definition.

Let © ={tsuchthat CIr;, I 0 {0, ...,n} |[t=ri + | * p}. O
Notice that there are at most n? valuesin ©.

Proposition Ap3-1.

On any left-shifted schedule (i.e.,, on any schedule on which jobs start either at their
release date or immediately after another job), the starting times of jobs belong to ©.

Proof.

Let J« be any job. Let t be the largest time point before the start time of J¢ at which the
machine is idle. Since the schedule is left-shifted, t is a release date, say ri. Between r;
and the starting time of Jy, | jobs execute (0 < | < n). Hence the starting time of Jx belongs
to O. O
Since any schedule can be left-shifted, Proposition Ap3-1 induces a simple dominance
property: Thereis an optimal schedule on which jobs start at time pointsin ©.

1> The result presented in this Appendix come from [Baptiste, 1998b].

165

Definition.
e For any integer k < n, let Uy(s,e) be the set of jobs whose index is lower than or equal
to k and whose release date isin the interval [s,e).
* Let W(s,e) be the maximal weight of a subset of Uy(s,e) such that there is a feasible
schedule S of these jobs such that
Sisidle beforetime s+p,
Sisidle after timee,
starting times of jobs on Sbhelong to ©.

Notice that if the subset of Uy(s,€) is empty, Wi(s,€) isequal to 0. O
Schedule Schedule
Idle corresponding to J corresponding Idle
time Wei(s,S) to Wia(s,€) time
I ——— 1 R s s B B B s >
S s+p s S+p e time

Figure Ap3-1. lllustration of Proposition Ap3-2

Proposition Ap3-2. (cf., Figure Ap3-1)
For any value of kin[1, n] and for any values s, e with s< e, Wk(s,€) is equal to Wi.1(s,€)
if re 0 [s,€) and to the following expression otherwise:

max(Wk-1(s,€), max (WiktWica(s,8) +Wk1(S',€))).

SO
max(r, ,s+p)<s'smin(d, ,e)-p

Proof (sketch).
Let W be the expression above. If r¢ [0 [s,e), the result obviously holds since

Uk(s,€) = Uk.1(s,6). We now consider the case where r¢[[s, €).

Wefirst provethat W <W(s,e).

o If W =Wy(s,€) then we obviously have, W =Wi.1(s,€) <Wi(s,€).

e |If there is a value s in © such that max(ry,s+p)<s <min(dy,€)-p and such that
W =W+ W1 (S,8) +Wk1(S ,€). Let X and Y be two subsets that realize respectively Wi
1(s,s) and Wi.1(S , €). Because of the definition of W, the sets X and Y are digoint and
moreover, there exists a feasible schedule of X that fitsin [s+p,s] and there exists a
feasible schedule of Y that fitsin [S +p,€]. Thus, XOYO{J} is a set whose weight is
W and there is a schedule of the jobs in this set that does not start before s+p and that

166

ends before e (take the schedule of X, schedule Ji at time s’ and add the schedule of Y).
On top of that, starting times belong to ©. Hence, W <W(s, €).

We now prove that Wi(s,e)<W'.

Let Z be the subset that realizes W(s, €). If Jx does not belong to Z then Wi(s, €) = Wi.(S,

€) < W. Now suppose that Jx belongs to Z. According to the definition of W(s, €), thereis

aschedule Sof Z that fitsin [s+ p, €] on which starting times belong to ©.

We claim that we can suppose that on S, the jobs executed after Ji are not available when

Jk starts (i.e, their release date is strictly greater than the start time of Ji). To justify our

claim, we show how S can be modified to reach this property: Suppose that thereisajob J;

that starts after Jx and that is available at the time where Ji starts. Let then f(S) be the

schedule obtained by exchanging the positions of J; and J. Because d; < dx and because

processing times are equal, the resulting schedule is feasible. Notice that each time f is

applied, the position of J strictly increases and that the idle time intervals of the resource

remain the same. Thus, f can be applied a limited number of times only. The resulting

schedule is feasible and the jobs executed after J are not available at the starting time of

Jk- Ontop of that the overall set of starting times has not been modified.

Let us examine the partition induced by the starting time s’ of Jy.

» The jobs scheduled before s', belong to Uy.a(s, s') and their total weight is lower than
or equal to Wk1(S, S).

» The jobs scheduled after J belong to Uy.1(S', €) and their total weight is lower than or
equal to Wi.4(s', €).

* Theweight of JiisWk.

Moreover s isin © because it is a starting time and max(ry, s+ p) < S < min(dy, € — p.

Hence, the weight of the set Z islower than or equal to W'. O

Given the dominance property induced by Proposition Ap3-1, the maximum weighted

number of on-time jobs is W,(min® —p, max®). Thanks to Proposition Ap3-2, we have a

straight dynamic programming agorithm to compute this value. The relevant values for s

and e are exactly those in © (plus min® —p for). The values of W(s, €) are stored in a

multi-dimensional array of size O(n°) (n possible values for k, n® possible values for s and

n® possible values for). Our algorithm then works as follows.

* Intheinitialization phase, Wy(s, €) isset to O for any values s, e (s<€) in .

* We then iterate from k = 1 to k = n. Each time, W is computed for all the possible
values of the parameters thanks to the formula of Proposition Ap3-2 and to the values
of W1 computed at the previous step.

167

The initialization phase can be done in O(n®). Afterwards, for each value of k, O(n®) values
of Wi have to be computed. For each of them, a maximum among O(n?) terms is
computed. This leads to an overall time complexity of O(n’). A rough analysis of the
space complexity leads to an O(n°) bound but since, at each step of the outer loop on k,
one only needs the values of W computed at the previous step (k-1), the algorithm can be
implemented with 2 arrays of O(n”) size (one for the current values of W and one for the
previous values of W).

168

	Remerciements
	Table of Contents
	REMERCIEMENTS	2
	Chapitre A. Introduction (en français)
	A.1.		Programmation par Contraintes
	A.2. 	Recherche Opérationnelle et Programmation par Contraintes
	A.3. 	L’Ordonnancement
	A.3.1.	Représentation des Activités et des Ressources
	A.3.2.	Contraintes Temporelles et Contraintes de Ressources
	A.3.3.	Des Problèmes Classiques d’Ordonnancement

	A.4. 	Résumé des Résultats et Plan de la Thèse

	Chapter A. Introduction
	A.1. 	Constraint Programming
	A.2. 	Incorporating Efficient O.R. Algorithms in Constraint-Based Systems
	A.3. 	Scheduling
	A.3.1.	Representation of Activities and Resources
	A.3.2.	Temporal and Resources-Constraints
	A.3.3.	Modeling some Classical Scheduling Problems

	A.4. 	Summary of Results and Outline of the Thesis

	Chapter B. Propagation of Resource Constraints
	B.1.		The Non-Preemptive Disjunctive Case
	B.1.1.	Time-Table Constraint
	B.1.2.	Disjunctive Constraint Propagation
	B.1.3.	Edge-finding
	B.1.4.	Not-First, Not-Last

	B.2.		The Preemptive Disjunctive Case, the Mixed Case
	B.2.1.	Time-Table Constraint
	B.2.2.	Disjunctive Constraint Propagation
	B.2.3.	Network-Flow based Constraints
	B.2.4.	Edge-Finding

	B.3.		The Cumulative Case
	B.3.1.	Necessary Conditions for the Existence of a Feasible Schedule
	B.3.1.1.	A Necessary and Sufficient Condition of existence for the Fully Elastic€CuSP
	B.3.1.2.	A Necessary and Sufficient Condition of existence for the Partially Elastic CuSP
	B.3.1.2.1.	Jackson’s Partially Elastic Schedule
	B.3.1.2.2.	Energetic Reasoning
	B.3.1.2.3.	A Quadratic Algorithm

	B.3.1.3.	A “Left˚Shift€/€Right˚Shift” Necessary Condition of existence for the€CuSP€€€
	B.3.1.3.1.	Characterization of relevant and irrelevant intervals
	B.3.1.3.2	A Quadratic Algorithm

	B.3.1.4.	Synthesis of Theoretical Results

	B.3.2.	Time-Bound Adjustments for the CuSP
	B.3.2.1. Time-Bound Adjustments for the Fully Elastic CuSP
	B.3.2.2. Time-Bound Adjustments for the CuSP Based on the Partially Elastic Relaxation
	B.3.2.2.1. Resolution of P1 for all i
	B.3.2.2.2. Resolution of P2 for all i

	B.3.2.3. “Left˚Shift€/€Right˚Shift” Time-Bound Adjustments for the CuSP
	B.3.2.4. Synthesis of Theoretical Results

	B.4.		Over-loaded Resources
	B.4.1. 	Lower Bound Computation
	B.4.1.1.	The Preemptive Lower Bound
	B.4.1.1.1. Reformulation of the Problem
	B.4.1.1.2. Some Fundamental Properties
	B.4.1.1.3. Overall Algorithm
	B.4.1.1.4. Minimizing the Weighted Number of Late Activities

	B.4.1.2.	The Relaxed Preemptive Lower Bound

	B.4.2. 		Resource Constraint Propagation
	B.4.2.1.	Late Activity Detection
	B.4.2.2.	On-Time Activity Detection

	Chapter C. Problem Solving and Experimental Results
	C.1.		The Job-Shop Scheduling Problem
	C.2.		The Preemptive Job-Shop Scheduling Problem
	C.2.1.	A dominance property
	C.2.2.	Branching scheme
	C.2.3.	Experimental Results

	C.3.		The Resource-Constrained Project Scheduling Problem.
	C.3.1.	General Framework
	C.3.2.	Constraint Propagation
	C.3.3.	Dominance Rules
	C.3.3.	Experimental Results

	C.4.		Minimizing the Number of Late Activities on a Single Machine
	C.4.1.	Search Strategy
	C.4.1.1.	Activity Selection
	C.4.1.2.	Solving the One-Machine Problem
	C.4.1.3.	Dominance Properties
	C.4.1.3.1.	Dominance of Small Activities with Large Time-Windows
	C.4.1.3.2.	Straight Scheduling Rule
	C.4.1.3.3.	Decomposition Rule

	C.4.2.	Experimental Results

	Chapitre D. Conclusion (en français)
	Chapter D. Conclusion
	Bibliography
	Appendix 1. Summary of notations
	Appendix 2. Minimizing the weighted number of late jobs to be preemptively scheduled on a single machine, when processing times are equal
	Appendix 3. Minimizing the weighted number of late jobs to be scheduled on a single machine, when processing times are equal

